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ABSTRACT

Most of the features of Cover Song Identification (CSI),

for example, Pitch Class Profile (PCP) related features, are

based on the musical facets shared among cover versions:

melody evolution and harmonic progression. In this work,

the perceptual feature was studied for CSI. Our idea was

to modify the Perceptual Linear Prediction (PLP) model in

the field of Automatic Speech Recognition (ASR) by (a)

introducing new research achievements in psychophysics,

and (b) considering the difference between speech and

music signals to make it consistent with human hearing

and more suitable for music signal analysis. Furthermore,

the obtained Linear Prediction Coefficients (LPCs) were

mapped to LPC cepstrum coefficients, on which liftering

was applied, to boost the timbre invariance of the resultant

feature: Modified Perceptual Linear Prediction Liftered

Cepstrum (MPLPLC). Experimental results showed that

both LPC cepstrum coefficients mapping and cepstrum lif-

tering were crucial in ensuring the identification power of

the MPLPLC feature. The MPLPLC feature outperformed

state-of-the-art features in the context of CSI and in re-

sisting instrumental accompaniment variation. This study

verifies that the mature techniques in the ASR or Compu-

tational Auditory Scene Analysis (CASA) fields may be

modified and included to enhance the performance of the

Music Information Retrieval (MIR) scheme.

1. INTRODUCTION

Cover Song Identification (CSI) refers to the process of

identifying an alternative version, performance, rendition,

or recording of a previously recorded musical piece [26]. It

has a wide range of applications, such as music collection

search and organization, music rights management and li-
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censes, and music creation aids. Inspired by the actual

application requirements and researchers’ growing interest

in identifying near-duplicated versions, CSI has become a

dynamic area of study in the Music Information Retrieval

(MIR) community over the past decades. As a result, for

the first time in 2006, the CSI task was included by the Mu-

sic Information Retrieval Evaluation eXchange (MIREX),

an international community-based framework for the for-

mal evaluation of MIR systems and algorithms [6].

Since there are many different formats of cover ver-

sion, such as remastering, instrumental, mashup, live per-

formance, acoustic, demo, remix, quotation, medley, and

standard, the cover version may differ from the original

in timbre, tempo, timing, structure, key, harmonization,

lyrics and language, and noise [24]. What remain almost

invariable among cover versions are melody evolution and

harmonic progression, which form the basis of most exist-

ing CSI feature extraction algorithms. Among these fea-

tures, the Pitch Class Profile (PCP) (or chroma) [9] and

related descriptors [3, 7, 19, 25, 26, 31, 33]–which can rep-

resent harmonic progression directly–are robust to noise

(e.g. ambient noise or percussive sounds) and indepen-

dent of timbre, played instruments, loudness, and dynam-

ics, have become the most widely-used features for CSI.

In [7], the beat-synchronous chroma for two tracks were

cross-correlated, from the results of which the sharp peaks

indicating good local alignment were looked for to deter-

mine the distance between them. This CSI scheme per-

formed the best in the audio CSI task contest of the 2006

MIREX. The Harmonic Pitch Class Profile (HPCP) feature

proposed in [12] shared the common properties of PCP, but

since it was only based on the peaks of the spectrum within

a certain frequency band, it reduced the influence of noisy

spectral components. It also took the presence of harmonic

frequencies into account and was tuning independent. The

CSI scheme based on the HPCP and Qmax similarity mea-

sure [26,27] achieved the highest identification accuracy in

the audio CSI task contest of the 2009 MIREX. In [19], the

lower pitch-frequency cepstral coefficients were discarded

and the remaining coefficients were projected onto chroma

bins to obtain the Chroma DCT-Reduced log Pitch (CRP)

feature. The CRP feature achieved high degree of timbre
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invariance and, thus, outperformed conventional PCP in

the context of music matching and retrieval applications.

We observed that despite the promising achievements of

the CSI technique over the last decade, the available CSI

schemes cannot perform as well as the human ear does.

One possible reason is that the available CSI schemes pay

attention solely to the musical facets (e.g. melody evo-

lution and harmonic progression) that are shared among

cover versions and do not resemble the way humans pro-

cess music information at all [24]. In this paper, we pro-

pose a perceptually inspired model called the MPLPLC

model to process music signals based on the Perceptual

Linear Prediction (PLP) model [13] in the ASR field. In

the proposed scheme, we will consider equally the various

attributes of human auditory processing, the difference be-

tween speech and music signals, and the requirements of

representing the musical facets shared among cover ver-

sions. First, the MPLPLC model uses the Blackman win-

dow but not the Hamming window to weight each frame

to maintain the harmonic information of the music. Sec-

ond, it replaces frequency warping on the bark scale with

a real filter bank equally spaced on the Equivalent Rectan-

gular Bandwidth (ERB) scale to model the time and fre-

quency resolution of human ears. Third, it substitutes a

fixed equal loudness curve for a loudness model suitable

for time-varying sounds (speech or music) [11]. Fourth,

the hair cell transduction model [17] takes the place of

cubic-root intensity-loudness compression to replicate the

characteristics of auditory nerve responses, including rec-

tification, compression, spontaneous firing, saturation ef-

fects, and adaptation [32]. Last and most important, to

make the resulted feature (MPLPLC) suited for the CSI

task, the LPCs are transformed into LPC cepstrum coef-

ficients to reduce the correlation between them and their

unnecessary sensitivity, the result of which is liftered to

achieve some degree of timbre invariance [1, 14].

The identification power and robustness to the varia-

tion in instrumental accompaniments of MPLPLC were

tested on two different collections. The first was com-

posed of 502 songs and 212 cover sets and the second

consisted of 85 cover sets whose cover versions have been

performed by the same artist with different instrumental

accompaniments. We observed that MPLPLC achieved

higher identification accuracy, in terms of the Mean of Av-

erage Precision (MAP), the total number of identified cov-

ers in the top five (TOP-5), the mean rank of the first iden-

tified cover (RANK), and the Mean averaged Reciprocal

Rank (MaRR) [23]. It also achieved a higher degree of in-

variance to instrumental accompaniments than the conven-

tional PLP feature [13] and different PCP-related features:

the beat-synchronous chroma [7], the HPCP [12, 26], and

the CRP [19]. Experimental results also verified that both

the LPC cepstrum coefficients mapping and the cepstrum

liftering are crucial in ensuring the identification power of

MPLPLC.

The rest of this paper is organized as follows. The signal

processing steps involved in the proposed MPLPLC model

have been described in detail in Section 2. The perfor-

mances of the MPLPLC feature in the CSI task in com-

parison with PLP and other state-of-the-art features have

been evaluated and discussed in Section 3. Conclusions

and prospects on future work have been given in Section 4.

2. MPLPLC MODEL

A block diagram of the MPLPLC model is shown in Figure

1. The signal processing steps involved in this model are

discussed in detail as follows.

2.1 Pre-processing

The input music signal is first converted to mono, 8 kHz

and 16 bits per sample version to reduce both the compu-

tation time and memory requirements. Then, it is filtered

by a preemphasis filter of the form

H(z) = 1− µz−1 (1)

where the coefficient µ is chosen between 0.95 and 0.99.

The preemphasis is needed because first, it weakens the

influence of low-frequency noise and strengthens the high-

frequency signal; second, it reduces the dynamic range of

the spectrum to make autoregressive modelling easier [4];

and third, it has been proven helpful in maintaining har-

monic information in audio signals [22].

2.2 Enframing

The pre-processed signal is segmented into overlapping

frames, denoted as {si|i = 1, · · · , N}, and each frame is

windowed by the Blackman window [20] to get {sw i|i =
1, · · · , N}.

We chose the Blackman window but not the Hamming

window because the Blackman window has a wider main-

lobe and lower highest side-lobe than the Hamming win-

dow [28]. As described in the open course Audio Signal

Processing for Music Applications 1 , this characteristic of

the Blackman window helps to maintain and smooth the

peaks in the spectrum corresponding to the harmonics in

the music signal.

2.3 Equal Loudness Predicting

To compensate for the frequency-dependent transmission

characteristics of the outer ear (pinna and ear canal), the

tympanic membrane, and the middle ear (ossicular bones),

each windowed frame sw i is filtered by an equal loudness

model to simulate the transfer function from the sound field

to the oval window of the cochlea [2] to get swl i. In PLP,

a fixed equal-loudness curve is combined [13]. However,

since a music signal is time-varying and has both short-

term loudness (the loudness of a specific note) and long-

term loudness (the loudness of a musical phase) [18], the

fixed loudness curve is not suited to it. So, Glasberg and

Moore’s [11] loudness model, which can be applied di-

rectly to the sound and works for time-varying sounds, is

applied to the MPLPLC model.

1 https://class.coursera.org/audio-001/lecture/53
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Figure 1. The comparison between the PLP model (left) and MPLPLC model (right).

2.4 Auditory Filter Bank Modeling

To obtain the auditory spectrum, PLP does a critical-band

integration after a Fourier Transform (FT) [13]. The prob-

lem is that frequency bin in FT is linear, so it has a constant

spectral resolution, while the human ear has high spectral

resolution at low frequency and low spectral resolution at

high frequency. Therefore, in the proposed scheme, a real

filter-bank composed of Nf channels equidistantly spaced

on the ERB [10] scale was applied to imitate the frequency

resolution of human hearing. The bandwidths of the chan-

nels in the filter bank are proportional to the center fre-

quencies (see Figure 2). The real filter bank can obtain

a good spectral resolution at low frequencies and a good

temporal resolution at high frequencies (like the human

ear) [15]. Another advantage of the filter bank approach

is that each bandpass channel is treated essentially inde-

pendently, i.e., there are no global spectral constraints on

the filter bank outputs [14]. In this specific case, a Han-

ning window on the frequency side was chosen 2 and the

experimental results showed that the type of filter has lit-

tle influence on the obtained cepstral feature. The output

of the j-th channel in the filter bank for the input swl i is

denoted as s
(j)
wla i.

2.5 Hair Cell Transduction

In PLP [13], the cubic-root amplitude compression is com-

bined to approximate the power law of hearing and sim-

ulate the nonlinear relation between the intensity of the

2 http://ltfat.sourceforge.net/doc/filterbank/erbfilters.php

Figure 2. Frequency responses of the filters in the auditory

filter bank, with center frequencies equally spaced between

131 Hz and 3400 Hz on the ERB-rate scale.

sound and its perceived loudness [29]. Meddis’s hair cell

transduction model [17] is incorporated in the MPLPLC

model to simulate the rectification, compression, sponta-

neous firing, saturation effects, and adaptation characteris-

tics of auditory nerve responses [32]. This operation also

helps to reduce the spectral amplitude variation of the au-

ditory spectrum, which makes it possible to do the all-pole

modeling by a relative low model order [13]. The hair cell

transduced version of s
(j)
wla i is denoted as ŝ

(j)
wla i.

2.6 Filter Bank Based Energy Calculation

To represent the energy distribution of the music signal on

each channel, the energy of the j-th channel for the i-th
frame, denoted as gi(j), is calculated as follows:
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gi(j) = log

Lw
X

n=1

⇣

ŝ
(j)
wla i(n)

⌘2

(2)

Here, ŝ
(j)
wla i(n), n = 1, · · · , Lw is the element of the vec-

tor ŝ
(j)
wla i. Then, the filter bank based energy of the i-th

frame is gi = [gi(1), · · · , gi(Nf )].

2.7 Autoregressive Modeling

To represent the spectral envelope of the filter bank based

energy in a compressed form, the filter bank based en-

ergy gi, i = 1, · · · , N are modelled by a pth-order all

pole spectrum σ/Ai(z), where σ is constant and Ai(z) =
1+ai1z

−1+· · ·+aipz
−p, using the autocorrelation method

[16]. Then, the LPCs of the ith frame are denoted as

ai = [ai(1), · · · , ai(p)].

2.8 LPC Cepstrum Coefficients Mapping

To reduce the correlation between them [5], the LPCs ai
are further transformed into (real) LPC cepstrum coeffi-

cients, denoted as ci = [ci(1), · · · , ci(p)], with the follow-

ing recursion formula [14]:

ci(n) = −ai(n)−
1

n

n−1
X

k=1

(n− k)ai(k)ci(n− k) (3)

Figure 3(a) and 3(b) show the comparison between the

spectrum of filter bank based energy and its LPC smooth-

ing result, and that between the spectrum of filter bank

based energy and its cepstrum smoothing result, respec-

tively. It can be seen that first, both the LPC and the cor-

responding LPC cepstrum can represent the rough change

trend of the spectral envelop of the filter bank based energy,

and second, the LPC smoothing does not follow the slow

variations of the filter bank based energy as well as LPC

cepstrum smoothing does. This means that the LPC cep-

strum mapping helps to reduce the unnecessary sensitivity

that exists in LPC smoothing results.

2.9 Cepstrum Liftering

It has been proven that the variability of low quefrency

terms is primarily due to variation in transmission, speaker

characteristics, and vocal efforts of the human voice [14].

As for the music, the lower quefrency is closely related

to the aspect of timbre [19, 21, 30]. So, to boost the de-

gree of timbre invariance of the proposed feature, the lif-

tering window proposed in [14] [see Eq.(4)] is applied to

the LPCs first; then, the lower q elements of the result

are truncated to get the liftered LPCs denoted as ĉi =
{ĉi(1), · · · , ĉi(p− q)}.

WL(n) =

⇢

1 + p
2sin(

πn
p
), n = 1, 2, · · · , p

0, otherwise
(4)

(a)

(b)

Figure 3. Comparison of spectral smoothing methods.

3. EVALUATION

3.1 Evaluation Preparation

To test the effectiveness of the MPLPLC feature in the

pop CSI task, the enhanced Qmax method [27] (denoted

as Q̂max in this paper) was used to measure the distance

between the MPLPLC time series of two pieces of mu-

sic. The parameters chosen to calculate cross recurrence

plots [34] were embedding dimension m = 15, time delay

(in units) τ = 2 and the maximum percentage of neigh-

bours κ = 0.1. Furthermore, the parameters used to com-

pute a cumulative matrix Q [26] are the penalty for a dis-

ruption onset γo = 5 and the penalty for a disruption ex-

tension γe = 0.5.

Two music collections were used. The first one (de-

noted as Collection 1) comprised 502 pop songs of various

styles and genres and 212 cover sets. The average number

of covers in each cover set is 2.4, and the distribution of

the cover set cardinality has been presented in Figure 4.

Western songs and Chinese songs occupy one half of this

collection. The second one (denoted as Collection 2) is in-

dependent of Collection 1 and comprised 175 songs and

85 cover sets. The cover versions of each cover set in Col-

lection 2 were pop songs performed by the same artist but

with different instrumental accompaniments. The materi-

als were obtained from a personal music collection. The

identification accuracy and robustness against variation in

instrumental accompaniments of the MPLPLC was tested

on Collection 1 and Collection 2, in comparison with the
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Figure 4. Distribution of the cover set cardinality.

PLP feature [13], CRP feature [19] 3 , Ellis’s cover song

scheme [7] 4 , and Serrà’s cover song scheme [27] 5 . The

parameters of the MPLPLC model have been listed in Ta-

ble 1, and those of PLP, CRP, Ellis’s scheme, and Serrà’s

scheme are the same as those in [13], [19], [7], and [27],

respectively.

Table 1. Parameter setting of MPLPLC feature
Description Value

Preemphasis parameter µ 0.97

Frame length 464ms

Frame overlap 116ms

Minimum central frequency of auditory filter 133Hz

Maximum central frequency of auditory filter 6856Hz

Number of channels in auditory filter bank Nf 41

LPC order p 16

Number of cepstrum 16

Cepstrum truncate number q 3

3.2 Identification Accuracy

We used each of the 502 songs in Collection 1 as a query

and calculated the distance [27] between each query and

the remaining 501 songs based on different features. The

identification accuracy, in terms of TOP-5, MAP, RANK,

and MaRR, obtained from the distance matrices (see Ta-

ble 2) demonstrated that MPLPLC performed better than

the conventional features in the CSI task over Collection 1.

One possible explanation for this result is that Collection 1

was composed of pop songs that included a singing voice,

and due to the MPLPLC’s background in speech recog-

nition, it outperformed the musical facet based features

in representing the singing voice. As an example, we

studied two versions of the song Wishing We Last For-

ever as performed by Teresa Teng and Faye Wong, re-

spectively. In these two versions, the singing voice is

dominant, the instrumental accompaniments are different,

and the rhythm is smoothing. The version performed

by Teresa Teng includes a national instrument accompa-

niment, which doesn’t conform to the twelve-tone equal

temperament. The cross recurrence plots for these two

versions based on MPLPLC, CRP [19], beat-synchronous

chroma [7] and HPCP [27] have been presented in Fig-

ure 5(a)-(d), respectively. We observe that the extended

pattern in Figure 5(a), which corresponds to similar sec-

tions in two versions, is much more distinct and longer

3 http://resources.mpi-inf.mpg.de/MIR/chromatoolbox/
4 http://labrosa.ee.columbia.edu/projects/coversongs/
5 http://joanserra.weebly.com/publications.html

than those in Figure 5(b)-(d). This indicates that first,

MPLPLC may outperform the other features in represent-

ing the singing voice characteristics, and second, the differ-

ence in harmonic information resulting from the difference

in instrumental accompaniment affects the performance of

PCP-based features.

Table 2. The identification accuracy comparison among

MPLPLC and conventional features over Collection 1.

System
Identification accuracy

TOP-5 MAP RANK MaRR

MPLPLC +Q̂max 738 0.9446 3.79 0.4387

PLP [13] +Q̂max 386 0.4783 58.52 0.2392

CRP [19]+Q̂max 525 0.6719 56.48 0.3237

Ellis’s [7] 600 0.7489 28.32 0.3507

Serrà’s [27] 558 0.7266 28.28 0.3507

(a) (b)

(c) (d)

Figure 5. Cross recurrence plot for two versions of Wish-

ing We Last Forever as performed by Teresa Teng and Faye

Wong based on different features: (a) MPLPLC (Q̂max =
464.5), (b) CRP (Q̂max = 21), (c) Beat-synchronous

chroma (Q̂max = 61.5), and (d) HPCP (Q̂max = 47.5)

3.3 Robustness against Variation in Instrumental

Accompaniments

When compared with classical music, popular music can

present a richer range of variation in style and instrumen-

tation [8]. To test the robustness of MPLPLC against vari-

ation in style and instrumentation, the identification accu-

racy in terms of MAP achieved by MPLPLC and by the

conventional features were tested and compared with Col-

lection 2. The experimental results shown in Figure 6 in-

dicate that the MPLPLC feature achieves a higher degree

of invariance against instrumental accompaniment than the

PLP feature [13], CRP feature [19], Ellis’s scheme [7],

and Serrà’s scheme [27]. This phenomenon may also re-

sult from the MPLPLC’s ability of representing the singing

voice.
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Figure 6. Comparison of robustness against variation in

instrumental accompaniments over Collection 2.

3.4 Effect of Cepstrum Mapping and Liftering

To demonstrate the influence of the step LPC cepstrum co-

efficients mapping and cepstrum liftering on the identifi-

cation power of of the MPLPLC feature, the identification

accuracy based on the MPLP feature, which is obtained

by the MPLPLC model without LPC cepstrum coefficients

mapping and cepstrum liftering steps; the MPLPC feature,

which is generated by the MPLPLC model without cep-

strum liftering step; and the MPLPLC feature, have been

compared in terms of TOP-5, MAP, RANK, and MaRR

over Collection 1 in Figure 7. It can be seen that both LPC

cepstrum coefficients mapping and cepstrum liftering help

to enhance the identification power of the MPLPC feature.

(a) (b)

(c) (d)

Figure 7. Identification accuracy comparison among

MPLP feature, MPLPC feature, and MPLPLC feature, in

terms of (a) TOP-5, (b) MAP, (c) RANK, and (d) MaRR

over Collection 1.

4. CONCLUSION

We present a new approach, the MPLPLC model, to ex-

tract perceptually relevant features from the music signals

for pop cover song identification. Here, our main idea is

to modify the PLP model, which is a mature technique in

the ASR field, by introducing the newest research achieve-

ments in psychophysics, such as the time-varying loudness

model, auditory filter bank model, and hair cell transduc-

tion model, and by taking the difference between speech

and music signals into consideration. Furthermore, LPC

cepstrum mapping and cepstrum liftering are combined in

the proposed model to boost the resulting feature towards

timbre invariance. Experimental results over two music

collections show that MPLPLC achieves higher identifica-

tion accuracy and degree of invariance against instrumen-

tal accompaniment than the conventional PLP feature and

state-of-the-art music theory based features [7, 19, 27] in

the CSI task. This means that the mature techniques in

ASR may be modified and used in CSI or other MIR fields.

Despite these achievements, there still exists a lot of

room for improvement. Since the MPLPLC feature is

based on the modification of PLP, which has been suc-

cessful in the ASR field, it is good at representing singing

voice characteristics. As a result, the MPLPLC-based

CSI scheme can identify cover versions with a prominent

sing voice very well but not those with only instrumen-

tal sounds. To solve this problem, in the near future, we

will study the SCI scheme, which is based on the fusion of

the MPLPLC feature and the musical facet based features

(e.g. PCP-based features), which are good at analyzing

harmony-based western music. Furthermore, we plan to

look into the application of the MPLPLC feature for other

MIR tasks, such as structure analysis, cross-domain music

matching, and music segmentation.
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[26] J. Serrà, X. Serra, and R.G. ANDRZEJAK. Cross re-

currence quantification for cover song identification.

New Journal of Physics, 11(9):111–222, 2010.
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