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Abstract—This paper targets hard-cut detection for archive film,
i.e., mainly black-and-white videos from the beginning of the last
century, which is a particularly difficult task due to heavy visual
degradations encountered in the sequences. A robust hard-cut
detection system based on modified phase correlation is presented.
Phase-correlation-based hard-cut detection is carried out using
spatially sub-sampled video frames, and a candidate hard-cut is
indicated in the case of low correlation. A double thresholding
approach consisting of a global threshold used in conjunction with
an adaptive local threshold is used to detect candidate hard-cuts.
For uniformly colored video frames the phase correlation is ex-
tremely sensitive to noise and visual defects. Mean and variance
based simple heuristic false removal at uniformly colored video
frames is used at the final stage to prevent false detections in such
cases. The paper provides a through theoretical analysis to show
the usefulness of spatial sub-sampling. Furthermore through ex-
perimental results are presented for visual defects encountered in
archive film material, to present the effectiveness of the proposed
approach.

Index Terms—Archive film, cut detection, phase correlation,
video indexing.

I. INTRODUCTION

H
ARD-CUT detection is usually the initial step and an im-

portant part of video segmentation, which has numerous

applications in a variety of fields such as video retrieval, in-

dexing, analysis, semantic description and compression. The de-

velopment of shot boundary detection algorithms has been an

important area of research as it is a necessity for nearly all video

segmentation approaches and hence, a prerequisite for higher

level video content analysis. Shot-boundary detection has also

applications in other fields of video processing, such as video

restoration for example. In the case of video restoration it is

usually even more difficult to achieve a reasonable hard-cut

detection performance as the video sequence commonly con-

tains visual degradations. This paper presents a hard-cut de-

tection technique that gives superior detection accuracy even

for seriously distorted archive film sequences, such as typical

black-and-white videos from the beginning of the last century.

A video sequence is typically a collection of camera shots

(or scenes) concatenated using postproduction techniques. An

uninterrupted sequence of frames contiguously captured by the
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same camera is referred to as a single shot or scene. Transi-

tions from one shot to the next can be classified into two basic

types, namely abrupt hard-cuts (or hard-cuts) and gradual tran-

sitions. Various methods have been proposed for the detection

of hard-cuts and gradual shot changes [1]–[37]. Methods pro-

posed for the detection of hard-cuts can mainly be classified

according to their basic properties into pixel-based, histogram-

based, block-based, feature-based and motion-based techniques

[1], [2]. A short literature review is given initially for the sake

of completeness.

Pixel-based methods, which mainly consider pixel-wise dif-

ferences of consecutive frames are proposed in [3], [4]. The

global interframe difference of consecutive frames is used for

detecting a hard-cut in [3]. It has been proposed to filter images

to suppress camera motion and noise, and then count the number

of significantly different pixels to decide a hard-cut in [4].

Histogram information of successive frames employing sev-

eral metrics for hard-cut detection is considered in [5]. Color

histograms in several color spaces such as RGB, HSV, YUV,

Lab, and Luv have also been utilized as different metrics for

this purpose in [6]–[11]. While histogram-based techniques can

provide a fairly reasonable performance for color sequences

with minor visual defects and limited camera and object move-

ments using color histogram information, the performance of

histogram techniques is limited for grayscale sequences partic-

ularly in case of visually degraded frames.

Block-based evaluations have also been considered for pixel-

based and histogram-based methods considering several color

spaces [12]–[19]. A likelihood ratio, which is defined using

block mean and variances is utilized to detect hard-cuts in [12].

Block mean differences in the HSV color space are computed

using the hue and saturation components in [13]. Block sam-

pled images in HSV color space are utilized in [14] to avoid

illumination changes, and the deviation of block-based differ-

ences is used to detect hard-cuts. A local distance criteria de-

fined in the RGB color space for blocks of consecutive video

frames is employed in [15]. Block-based differences of succes-

sive frames in the RGB color space are utilized as main cri-

teria to decide a hard-cut in [16]. Block-based histogram met-

rics in RGB, HSI and Lab color spaces are employed to decide

hard-cuts in [17]–[19].

Several feature-based hard-cut detection methods have been

proposed in [20]–[23]. Edge features of video frames are uti-

lized for computing decision metrics in [20]–[23]. Motion com-

pensation prior to edge detection is employed in [20] to gain ro-

bustness against motion. The method of [20] is improved in [21]

by taking the edge information of several successive frames into

account. The persistency of edge objects is utilized in [22]. Edge

1051-8215/$20.00 © 2006 IEEE
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detection is performed in HSL color space to decide a hard-cut

in [23]. It has been proposed in [24] and [25] to utilize a fre-

quency domain correlation feature to detect hard-cuts. The tech-

nique proposed in [24] uses overlapping blocks and evaluates

the phase correlation between each co-paired block in succes-

sive frames to decide a hard-cut in the case of low correlation. A

similarity metric based on the frequency domain correlation of

non-overlapping blocks is proposed to detect hard-cuts in [25].

Motion-based shot change detection methods make mainly

use of the motion information to detect hard-cuts. The global

motion information is acquired using parametric models in

[26], and the consistency of global motion is utilized to detect a

hard-cut. Multi-resolution motion estimation for global motion

compensation which employs a two-dimensional affine model

is utilized as a first step in [27] and [28]. Temporal evaluation

of dominant motion is analyzed to decide shot changes in [27],

whereas average pixel differences between motion compen-

sated consecutive frames are thresholded using an adaptive

threshold to detect hard-cuts in [28]. Motion compensation

used in conjunction with a modified test for histogram

changes is proposed in [30]. Optical flow information is used

to decide hard-cuts in [31] and [32]. Overlapping subsequences

comprising three frames are used to estimate the next frame

in [31], and a hard-cut decision is given if the actual frame is

different from the prediction. In [32], video frames are initially

sub-sampled and smoothened, followed by optical flow calcu-

lation and hard-cut detection based on likelihood computation

for non-textured blocks.

The combination of several hard-cut detection techniques

used together has also been utilized [33]–[37]. In [33] the

test for color histogram is utilized in conjunction with contour

analysis to detect a hard-cut. The mean intensity value of the

current frame, interframe pixel differences and changes in color

distribution are employed with adaptive thresholds to detect

a hard-cut in [34]. The method proposed in [35] uses mean

intensity values, Euclidian distance, histogram comparison,

likelihood ratio and motion estimation to decide a hard-cut.

Thresholded pixel-wise and histogram differences are em-

ployed for hard-cut detection using a K-means clustering stage

in [36]. DC image differences, histogram test, and edge

information are utilized together in a two phase approach to

detect a hard-cut in [37].

Despite of the large amount of work carried out in this area,

none of the previous techniques result in a robust and reliable ap-

proach that provides acceptable hard-cut detection performance

particularly in the case of visually degraded sequences.

As stated in [24], phase-correlation-based hard-cut detec-

tion stands out in that it is fairly insensitive to the presence

of global illumination changes and noise and is therefore

stated to outperform established methods for cut detection

in such cases. The robustness against illumination changes

and noise is particularly important if video frames display

visual degradation, which is commonly the case in archive film

sequences for instance. Phase-correlation basically makes use

of Fourier transform properties to detect similarities between

video frames. The phase-correlation surface will have a high

peak if two frames have high resemblance even in the case of

a global translational shift (because the effect of translation is

only an equivalent shift in the image phase), but a low peak will

result if the similarity between consecutive frames is small,

or the global motion cannot be resolved by simple translation

only [38]. The phase-correlation-based cut-detection technique

proposed in [24] uses overlapping blocks and evaluates the

phase correlation between each co-paired block in successive

frames and decides on a hard-cut in the case of low correlation.

Although the approach of [24] is stated to perform better

than histogram-based techniques due to its robustness against

brightness variations and noise, experimental evaluations show

that it is still affected by rigorous camera and object movements

that cannot be approximated by trivial translational shifts,

particularly camera zoom, as well as other visual defects that

are commonly encountered in archive film.

This paper proposes a hard-cut detection approach referred to

as modified phase-correlation (MPC) based hard-cut detection.

The proposed approach consists of three main steps: phase

correlation of spatially sub-sampled video frames, double

thresholding of phase-correlation peaks for hard-cut detection

and false detection removal by mean and variance tests. The

spatial sub-sampling is shown to improve robustness particu-

larly against visual degradation and local motion. Furthermore,

a double thresholding strategy consisting of a global threshold

aided by an adaptive local threshold is implemented to im-

prove hard-cut detection performance. Finally, a simple mean

and variance test is utilized for heuristic exclusion of false

detections in uniformly colored frames in which cases phase

correlation is extremely sensitive to noise. This paper provides

a through theoretical analysis particularly for the effectiveness

of spatial sub-sampling. The proposed approach is evaluated

extensively and thoroughly, and is shown to give superior

hard-cut detection performance, even for visually degraded

sequences, outperforming previously reported techniques.

II. MODIFIED PHASE-CORRELATION-BASED

HARD-CUT DETECTION

If frame is mainly a spatially shifted version of , then

(1)

where and show the horizontal and vertical displacements,

and represents a contrast difference. If represents the

two-dimensional discrete Fourier transform (DFT) of frame ,

then the DFT of frame will be

(2)

In this case, the phase-correlation surface is obtained as

(3)

where represents the inverse Fourier transform.

Hence, the phase-correlation surface will have a peak at the

location corresponding to the displacement between the two im-

ages. A particularly useful feature of the phase correlation tech-

nique is the way performance degrades gracefully as conditions
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depart from the ideal of pure translation [38]. Identifiable peaks

continue to be found provided that the global motion can be

approximated by a translation; hence, a small degree of global

zoom and rotation, and even some amount of object movement

within the frames can be compensated. In this case, the peak

is usually reduced in amplitude and spatially extended. How-

ever, in the case of extensive zoom, rotation or local motion that

cannot be approximated as a frame to frame translation it might

not be possible to obtain easily identifiable peaks in the phase

correlation surface. Hence, if hard-cut detection based on phase

correlation is carried out and a hard-cut is decided according to

the peak value of the phase correlation surface, it is possible that

an incorrect decision is given in the case of extensive zoom, ro-

tation, noise or local motion.

A high phase-correlation surface peak is typically obtained

for frames belonging to the same shot due to similarities be-

tween consecutive frames. However, in an ideal hard-cut, where

one frame belongs to the former and the next frame to the new

shot, there is no similarity between the former shot and the new

one and a very low phase correlation peak will be observed.

Therefore, it is fundamentally possible to decide on the simi-

larity of video frames according to the peak value in the phase-

correlation surface and detect hard-cuts. In practical video se-

quences, however, hard-cuts are not always ideal. There might

be similarities between two different shots because of common

scenery, people or objects; or two different shots might have

common content or similar statistical features making it diffi-

cult to detect the hard-cut. Alternatively, there might be sub-

stantial camera or object movement; noise or visual defects; or

even brightness variations within a shot reducing similarities be-

tween consecutive frames of the same shot, potentially causing

incorrect hard-cut decisions.

It is important to note at this point that sometimes phase cor-

relation is incorrectly being accounted to be equivalent to simple

spatial domain correlation, with only the gain of reduced com-

putational complexity. However, it is shown (see for instance

[39]) that the peak in the phase correlation can be detected much

more accurately compared to classical spatial domain cross cor-

relation as phase correlation provides a distinct sharp peak in

the case of correspondence, which is not the case in cross-cor-

relation. Furthermore, the normalization inherent to phase cor-

relation makes it more robust to noise correlated to the image

functions, such as uniform illumination variations, average in-

tensity offsets, blur, and fixed gain errors resulting from calibra-

tion. Hence, phase correlation will significantly outperform spa-

tial domain cross correlation for hard-cut detection approaches.

A. Phase Correlation of Spatially Sub-Sampled Video Frames

The first stage of the approach presented in this paper con-

sists of phase correlation of spatially sub-sampled video frames.

Theoretical analysis is provided together with through experi-

mental results to show that spatial sub-sampling is very effec-

tive against noise and visual degradations as well as camera and

local motion. Spatial sub-sampling of video frames has an in-

herent smoothing feature (see [40] for instance) and is therefore

expected to reduce the effect of object and camera motions as

well as visual degradations, rendering the image more suitable

for detecting similarities between two images.

The effect of spatial sub-sampling on phase correlation is ac-

tually formulated in [39] to establish an extension of phase cor-

relation to sub-pixel accuracy. It is shown in [39] that the phase

correlation of sub-sampled video frames leads to a sub-sampled

two-dimensional (2-D) Dirichlet kernel which is very closely

approximated by a 2-D sinc function. It follows that the effect

of sub-sampling on the phase correlation process is a spread in

the surface peak. However, an important aspect is that the main

peak value does not change as it is independent of the sub-sam-

pling factor (see [39, eq. (18)]), and therefore it can be argued

that spatial sub-sampling of video frames is expected to have no

effect on the main peak value (accordingly no negative effect),

at least under ideal conditions.

In the following sub-sections it is demonstrated that spatial

sub-sampling of video frames has actually a positive effect on the

main peak value, as the spatial sub-sampling process introduces

robustness against noise and visual degradations, camera zoom

and rotation, as well as local object motion. An important bonus

benefit of spatial sub-sampling is the reduction in the compu-

tational load, as reducing the size of video frames significantly

decreases the computational load of the Fourier transform.

Anti-aliasing filtering before sub-sampling has been evalu-

ated but it has been observed that the effect of anti-aliasing fil-

tering on the phase correlation result is negligibly low and that

hard-cut detection performance is not affected. Anti-aliasing

filtering is therefore omitted to lower the computational load.

Note that the negligibility of anti-aliasing filtering is also con-

firmed in the concluding remarks of [39].

The consequences of noise, camera rotation, camera zoom,

or local object motion (i.e., non-matching parts) on the Fourier

transform have already been well derived [39], [41]. Further-

more, the frequency domain counterpart of spatial sub-sampling

is also well known. For phase correlation, the influence of these

effects on the location of the phase correlation surface peak is

also well derived. However, in the case of hard-cut detection,

it is the phase correlation peak value amplitude that is being

used to decide a hard-cut. In addition to establishing theoret-

ical correspondences between the aforementioned effects and

the phase correlation peak amplitude, various experimental re-

sults are presented in the following sub-sections to show the in-

fluence of spatial sub-sampling.

1) Influence of Noise: In order to investigate the influence of

noise, it is assumed that frame is affected by additive white

Gaussian noise (AWGN), so that

(4)

where represents AWGN. Hence, the DFT of frame

is obtained as

(5)

where represents the 2-D DFT of AWGN, while

and show the real and imaginary parts of the

Fourier transform, respectively. In a similar approach to [42],

if image pixels are assumed to be independent and identically
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distributed (i.i.d) then the real and imaginary parts of the

Fourier transform will be computed as

(6)

and

(7)

As a result of the central limit theorem, and

will have Gaussian (normal) distributions. If is zero

mean (note that subtracting the mean value of the image will

not affect the phase correlation process) and has a variance of

(where represents ex-

pectation) then and will have zero means di-

rectly as a result of (6) and (7). Furthermore,

(8)

A similar derivation can be performed for . There-

fore, and will each have a variance equal to

.

If has zero mean and a variance of

, then and will also be Gaussian (as a

result of the central limit theorem because noise is by definition

i.i.d.) with zero mean and variance .

The phase-correlation surface is obtained as

(9)

As there is no global displacement between the two frames in

this case, the surface peak will be located at and

the phase correlation peak value is obtained as

(10)

Using the truncated Tylor series approximation, the expected

value of the ratio of two random variables and can be

approximated as

(11)

where represents the mean, represents standard deviation

and represents the covariance between and .

Because and are independent and the real

and imaginary parts of have zero mean values, the

second term in (10) is obtained to be equal to zero, and therefore

the phase correlation peak value is found to be

(12)

The real part of is obtained as

. If and have Gaussian

distributions, will have a Gaussian distribution with

zero mean and a variance equal to , which

is also true for the imaginary part of .

Because the real and imaginary parts have Gaussian dis-

tributions with the same mean and variance, and

will both have Rayleigh distributions. Therefore,

(13)

and similarly

(14)
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Hence, using (11) the phase correlation peak value is obtained

as

(15)

The covariance is defined as

(16)

Because

(17)

and

(18)

the worst case covariance can be obtained as

(19)

and in this case, the phase correlation peak value is obtained as

(20)

As and

with equality only valid if or . Therefore,

and hence

. With an increase in the noise standard

deviation, reduces obviously faster (takes

a smaller value) compared to . Further-

more is multiplied with a constant smaller

than unity. Therefore, with an increase in the noise stan-

dard deviation, will decrease faster than

increases. Hence, an

increase in the noise standard deviation reduces the phase

correlation peak value, while the peak value can be in-

creased by reducing the noise standard deviation (Note that

for ). In practice, pixel values are not

i.i.d. but demonstrate a rather strong correlation, and therefore

it is more appropriate to model the real and imaginary parts of

the Fourier transform of an image using Generalized Gaussian

Density functions just as it usually done for Discrete Cosine

Transform (DCT) and Discrete Wavelet Transform (DWT)

coefficients and the magnitude of the Fourier transform can be

modeled using the Weibull distribution which forms a general-

ization to the Rayleigh case [43]. However, if these models are

used, the scale and shape parameters will vary specifically to

image and noise characteristics as a result of which a general

solution can not be obtained in a straightforward way. Hence,

the simple Gaussian model is preferred to obtain a general idea

of the relation between noise power and the phase correlation

surface peak value.

A simple way to reduce noise power (noise standard de-

viation) is to perform signal averaging. When two AWGN

components are added the resultant noise standard deviation

increases by , while the signal power is doubled. Hence, the

signal-to-noise ratio is expected to increase by .

For single video frames, it is possible to perform spatial aver-

aging to reduce noise power. Because neighboring pixels will

have some correlation, while noise is uncorrelated, averaging

of neighboring pixels will increase the signal-to-noise ratio

and hence the phase correlation peak value will increase with

relation to (20).

In order to experimentally examine the influence of spatial

sub-sampling on the phase correlation peak amplitude value

under noise, synthetic distortions in the form of salt-and-pepper

noise and Gaussian noise are introduced to test images. These

effects are investigated because noise is typical to low quality

video sequences (such as archive film material) and can affect

the hard-cut detection performance, while these two types of

noise reasonably express typical visual degradations encoun-

tered in archive film.
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Fig. 1. Phase correlation surface peak values under salt-and-pepper noise.

Fig. 2. Phase correlation surface peak values under Gaussian noise.

The phase correlation surface peak values obtained between

the original Lena and salt-and-pepper noise added versions

for various noise densities are displayed in Fig. 1. In order to

investigate the influence of spatial sub-sampling, original and

noisy images are spatially sub-sampled by a factor of four, and

the phase correlation surface peak values obtained after spatial

sub-sampling are investigated. Note that the horizontal axis of

Fig. 1 indicates the noise density, while the vertical axis shows

the phase correlation surface peak value. As observed from the

figure, phase correlation surface peak amplitudes are increased

about three times when using spatial sub-sampling in the case

of salt-and-pepper noise. A particular important aspect is that

the phase correlation peak value falls sharply after small noise

densities if spatial sub-sampling is not employed, while the

drop is much more gradual if spatial sub-sampling is utilized.

Phase correlation surface peaks obtained between the orig-

inal Lena and Gaussian noise added versions as well as values

obtained for sub-sampled Lena and sub-sampled noisy Lena

images are plotted in Fig. 2. As observed from the figure,

phase correlation surface peak amplitudes are increased about

five times when using spatial sub-sampling in the case of

Gaussian noise. Again the phase correlation peak value drops

harshly after small noise powers if spatial sub-sampling is not

employed, while the decrease is much more gradual in the case

of spatial sub-sampling.

These results clearly demonstrate that spatial sub-sampling

will add important robustness to the phase-correlation-based

hard-cut detection process for noisy sequences, as the influence

of noise is significantly reduced. This is an important advantage

for sequences with intensive noise or visual degradations, as it

is commonly the case for archive film sequences.

2) Influence of Flicker: Extreme lighting conditions and

changes for instance occurring during a camera pointing to

light source or flashes are likely to cause incorrect hard-cut

decisions. If there is a contrast and brightness change between

video frames, so that

(21)

then their Fourier transforms will be related by

(22)

In this case, the phase-correlation surface is obtained as

(23)

and therefore

(24)

where is used to change constants and

because is already real.

Although contrast and brightness changes are automatically

cancelled in the phase correlation process under ideal situations,

in practical cases there is usually a clipping effect. This results

from luminance values exceeding the maximum allowed value

(determined by the bit-depth) being clipped at the maximum.

In order to investigate the influence of spatial sub-sampling

on the phase correlation result under brightness variations,

synthetic global additive flicker is introduced to test images.

Phase correlation surface peaks obtained between the original

and global flicker (additive changes in luminance) introduced
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Fig. 3. Phase correlation surface peak values under brightness variations.

Lena images, as well as phase correlation surface peak values

after sub-sampling are shown in Fig. 3. In this figure, the hor-

izontal axis displays the intensity value globally added to the

Lena image. It is observed from the figure that sub-sampling

slightly increases phase correlation surface peak amplitudes

particularly in the case of intensive flicker. The small gain can

be explained as a result of pixel values being changed to a

middle grey level because of the averaging process.

3) Influence of Camera Rotation and Zoom: If there is a ro-

tation between video frames, so that

(25)

then their Fourier transforms will show the same rotation and

will be related by [44]

(26)

In this case, the phase-correlation surface is obtained as

(27)

where represents the phase spectrum.

Because there is no displacement between the two frames in

this case, the surface peak will be located at and

the phase correlation peak value is obtained as

(28)

Fig. 4. Phase correlation surface peak values under camera rotation.

Note that the imaginary part can be ignored as the phase cor-

relation result will be real. At small rotation angles, the effect

of rotation is expected to be reduced by sub-sampling because

pixel values will be averaged to intermediate values.

A similar analysis can be performed for scale changes. If

frame is a scaled version of with scale factors for

the horizontal and vertical directions, their Fourier transform is

related by [44]

(29)

In this case, the phase correlation peak value is obtained as

(30)

Particularly for small scale changes, the effect of scale change

will be reduced by sub-sampling because pixel values will be

averaged to intermediate values.

To investigate the effect of rotation, test images are initially

rotated in counter clockwise direction with a step size of 1 . In

order to avoid the effect of blank regions entering the image after

rotation, 512 512 pixel sized images are rotated and the centre

256 256 pixel region is cropped afterwards. Phase correlation

surface peak results against rotation angles for the Lena image

are shown in Fig. 4, with and without spatial sub-sampling. It

is noticed that phase correlation peaks of sub-sampled video

frames are approximately three times higher, and sub-sampling

is particularly useful for small rotation angles.

In order to examine the effect of zoom to the phase correla-

tion process, the Lena image is zoomed from 1% to 100% with

1% steps using Bicubic interpolation. Phase correlation surface

peak values against zoom rate are shown in Fig. 5. As observed

from this figure, phase correlation peaks of spatially sub-sam-

pled video frames are obtained to be approximately four times

higher, and sub-sampling is again particularly useful for small

scale changes.

These results clearly demonstrate that spatial sub-sampling

will improve the robustness of the phase-correlation-based
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Fig. 5. Phase correlation surface peak values under camera zoom.

Fig. 6. Phase correlation surface peak values under local motion in the
“Weather” sequence.

hard-cut detection process in the case of camera rotation and

zoom. Although it is possible and has actually been proposed

to utilize global motion compensation schemes within hard-cut

detection systems to be more robust against rotation and zoom;

motion estimation itself is likely to fail particularly for visually

degraded sequences. It is therefore of advantage to utilize

a technique that is not depending on motion compensation.

The phase correlation approach inherently compensates for

translational movements and as rotation or zoom is usually less

effective, phase-correlation-based hard-cut detection provides

a reasonable approach that does not require auxiliary global

motion compensation. It is furthermore of advantage that spa-

tial sub-sampling even improves the robustness against global

camera motion particularly for small rotation and scale changes

that are likely to occur in video sequences.

4) Influence of Local Motion: In case of local motion there

will be non-overlapping parts or parts that display different dis-

placements and hence result in secondary peaks reducing the

height of the main peak value. Similar to [39], the total signal

Fig. 7. Phase correlation surface peak values under local motion in the “Akiyo”
sequence.

Fig. 8. Phase correlation peak values against sub-sampling factor for various
similar and dissimilar images.

power can be defined as the squared ratio of the area of overlap-

ping parts corresponding to the main peak, and the noise vari-

ance can be defined as the squared ratio of the area of non-over-

lapping parts. In this case, spatial sub-sampling will result in

averaging of pixel values and is therefore expected to reduce

the effect of non-overlapping parts.

In order to investigate the effect of spatial sub-sampling in

the case of local motion, two well known test video sequences,

namely the “Weather” and “Akiyo” test sequences are utilized.

Both sequences are captured using a constant camera, and the

“Weather” sequence contains negligibly low camera noise while

the “Akiyo” sequence contains nearly no camera noise at all, so

that the effect of local motion only can be assessed. As men-

tioned, these sequences are chosen as they basically do not con-

tain any camera noise and camera motion, and are therefore

very suitable for investigating the effect of local motion to the

phase correlation process. Phase correlation surface peak values

are shown in Figs. 6 and 7 for the “Weather” and “Akiyo” se-

quences, respectively. As observed from these figures, phase
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Fig. 9. Test images used in the sub-sampling factor results presented in Fig. 8. (a) Cameraman. (b) Lena. (c) Barbara. (d) Ball 1. (e) Ball 2. (f) Alaska # 05130.
(g) Alaska # 05131. (h) Birthoft # 25255. (i) Birthoft # 25256.

correlation peaks of sub-sampled video frames are (sometimes

significantly) higher, clearly illustrating that spatial sub-sam-

pling introduces robustness against local motion.

5) Influence of Sub-Sampling on Dissimilar Images:

Because spatial sub-sampling results in high frequency compo-

nents being removed from the video frames, it is expected that

images are made more equal and the phase correlation peak

value should also increase for dissimilar images. Therefore, it is

also necessary to investigate the effect of spatial sub-sampling

on dissimilar video frames (frames not belonging to the same

shot) to ensure that a gain is achieved for hard-cut detection.

For this purpose, Fig. 8 displays the change in phase correlation

peak value against sub-sampling factor for dissimilar images as

well as video frames belonging to the same shot. The images

used for these results are given in Fig. 9. It is seen that for a

sub-sampling factor of two or four, an important increase in

phase correlation peak value is obtained for similar frames

(i.e., frames belonging to the same shot). However, in the case

of dissimilar frames the increase in the phase correlation peak

is rather limited. It is therefore easier to distinguish between

similar and dissimilar frames after a spatial sub-sampling by

a factor of two or four. It is furthermore seen from the results

corresponding to the ball images, that spatial sub-sampling

by a small factor can actually reduce the phase correlation

peak value for two frames not belonging to the same shot but

having similar content, which shows an important advantage for

hard-cut detection. Naturally, if the image size is over-reduced

(in the limit case video frames are sub-sampled to 1 pixel in

each dimension) the phase correlation peak value increases

significantly even for dissimilar frames, and in the limit case

the phase correlation peak value reaches unity.

In summary, spatial sub-sampling of video frames by a small

factor (of two or four), improves the ability to distinguish be-

tween similar and dissimilar frames using the phase correla-

tion peak value. Note that a sub-sampling factor of two or four

has been found to be appropriate for videos with frame sizes of

about MPEG1-2 sized frames (the archive films utilized in the

results presented in this paper are of size 368 480 pixels while

the MPEG-7 sequences have frame sizes of 320 240 pixels),

but trials on high definition video (HDV) have shown that a

higher sub-sampling factor (of eight or sixteen) can be utilized

for larger frame sizes (videos with frame sizes of 1280 720

and 1920 1080 pixels are used for the corresponding HDV

experiments).

B. Double Threshold for Hard-Cut Detection

Experimental work reported in Section III, shows that nei-

ther global thresholding nor local thresholding gives optimal

performance, but it is possible to get an improved success if

both are used together. Although a single global threshold might

not give satisfactory detection results in the overall, it still pro-

vides a good measure for a candidate hard-cut in general. On
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the other hand a local threshold is useful to include local varia-

tions. Hence, a double threshold strategy, consisting of a global

threshold assisted by a local and hence adaptive threshold is uti-

lized for phase-correlation-based hard-cut detection.

In order to decide a hard-cut it is initially required that the

phase correlation peak value falls below the global threshold. If

a phase correlation peak value is obtained to be lower than the

global threshold, a sliding window is constructed comprising

phase correlation peak values of frames to the left-hand and

frames to the right-hand side of that particular candidate

frame (i.e., the sliding window size is ). Note that in

the implemented approach, the window size is also defined to

be adaptive, and the window is actually truncated at the first

frame with a phase correlation peak value below a certain rate

of the global threshold determined by the scale factor . The

mean phase correlation peak values of both sides of the candidate

frame are computed and averaged, and a scale factor is used

to obtain the local threshold value. If the phase correlation peak

value of the candidate frame is above the local threshold no

hard-cut is decided, otherwise the frame is kept as candidate

hard-cut and forwarded to the false detection removal stage. The

truncation of the sliding window at the point where the phase

correlation value of the neighbor frames is a certain factor

below the global threshold ensures that no incorrect detection is

accomplished if the phase correlation remains constantly very

low for some time due to very intensive motion for instance. Note

that in some cases it is possible that the phase correlation values

of both adjacent frames are below the cut-off threshold

so that no sliding window can be constructed to compute the local

threshold and in this case, the local threshold is set to a very

low value (typically 0.01) to avoid any incorrect detections.

The computation of the adaptive local threshold can be sum-

marized as given in (31), shown at the bottom of the page. In this

equation, denotes the global threshold, denotes the

left-hand site local threshold, denotes the right-hand site

local threshold, shows the final local threshold computed,

is the highest peak in the phase correlation surface for

frames and is the scale factor determining how much

below the global threshold value the window is to be truncated

, and is a scale factor specifying the local drop

amount in the phase correlationpeak value required forahard-cut

to be decided . Suitable parameters for the local

threshold computation process are determined experimentally.

C. False Detection Removal by Monitoring Frame Means and

Variances

An important problem with phase-correlation-based hard-cut

detection is that the system incorrectly decides a hard-cut if

noise or visual defects occur during single-colored video frames,

which are for instance encountered during slow fade-in and

fade-out effects. Due to the lack of spatial detail within the

image, the phase-correlation method is highly sensitive to noise

and visual defects in this case. It is again possible to use (20)

to explain this effect. If the image standard deviation is very

low (i.e., ) and the frame is affected by noise such

that then it is possible to take and

so that the phase correlation peak is obtained to be

(32)

Therefore, the phase-correlation-based hard-cut detection ap-

proach will signal an incorrect hard-cut in the case of noise if

the frame variance is extremely low.

It is proposed to monitor frame means and variances, in par-

allel to the modified phase-correlation-based hard-cut detection

algorithm, and ignore hard-cuts signaled by the phase-correla-

tion algorithm if frame variances remain below an extremely

low threshold and the image mean shows only a small change,

sustaining that the sequence continues to display the same

(31)
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TABLE I
DETAILS AND SOURCE OF ARCHIVE FILM SEQUENCES USED IN THE EXPERIMENTAL RESULTS

single-colored image. In other words, an extremely low vari-

ance (below 50 for results presented in this paper) confirms that

the video frame is single-colored (has very low spatial detail),

and allowing only small changes in the intensity mean (below

20 for results presented in this paper) ensures that the same

single-colored shot continues. Note that this step is executed

only if a candidate hard-cut is signaled by the modified phase

correlation process to confirm the hard-cut. Hence, a heuristic

false detection removal procedure is being included into the

phase-correlation-based hard-cut detection process.

III. EXPERIMENTAL RESULTS

The proposed hard-cut detection algorithm mainly relies on

the phase correlation of spatially sub-sampled video frames.

Spatial sub-sampling is performed by averaging neighbor pixel

values of the original image (i.e., using the mean operation),

which has an inherent smoothing effect. Fig. 10 shows the phase

correlation peak values for original video frames as well mean

and bicubic sub-sampled video frames (with a sub-sampling

factor of four) for part of the “Birthoft” sequence, with hard-

cuts being indicated. It is seen in Fig. 10 that the sub-sampling

method (i.e., mean or bicubic) makes only a negligible differ-

ence, while sub-sampling clearly increases the phase-correla-

tion peak value for frames belonging to the same shot.

A. Experimental Setup

The performance of the proposed modified phase-corre-

lation-based hard-cut detection algorithm, which consists of

spatial sub-sampling of video frames and then double thresh-

olding the phase correlation peak values followed by false

detection removal using variance and mean monitoring is com-

pared against several other hard-cut detection approaches. Two

Fig. 10. Phase correlation peak values for original, mean sub-sampled,
and bicubic sub-sampled frames of the “Birhoft” sequence between frames
#2100–2150.

different sets of video sequences are used for the evaluation

process. The first set consists of 10 archive film sequences,

which are chosen to include all sorts of visual degradations

encountered in archive film material as well as various effects

such as large movement and abrupt illumination changes.

Information about these sequences is provided in Table I. The

second set consists of standard MPEG-7 test sequences, namely

lgerca_lisa_1.mpg (54 hard-cuts) and lgerca_lisa_2.mpg (60

hard-cuts). These sequences are used as they contain numerous

similar shots with related content and no distinctive visual

degradation, and are captured by a hand held camera.
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Fig. 11. Sensitivity of the proposed method with respect to introduced local threshold parameters. (a) Variable global threshold. (b) Variable windows size.
(c) Variable � parameter. (d) Variable � parameter.

In order to assess the performance of hard-cut detection algo-

rithms, two metrics, namely the recall rate and precision rate, are

used. The recall rate and precision rate are defined as

(33)

where denotes the amount of correctly detected hard-cuts,

denotes the amount of missed hard-cuts, and denotes the

amount of false detections. Recall and precision rates are typ-

ically inversely related; if detection parameters are changed to

increase one the other typically decreases.

In order to determine the optimum threshold parameters of

the double threshold strategy of MPC, all parameters of the

double threshold (i.e., ) are initially set to reason-

able values and then each parameter is iteratively tuned, keeping

the other three constant. Because recall and precision rates are

inversely related, the optimum point is selected as the point

where the recall rate is closest to the precision rate. The opti-

mization is initially carried out using the archive film sequences

only (i.e., set 1). In this case, the optimum parameters are ob-

tained as and .

While these parameters have been observed to also provide suc-

cessful performance in terms of the precision rate for MPEG-7

sequences (i.e., set 2), the recall rate is relatively lower as some

hard-cuts are missed due to similar shot content. For this reason

the optimum parameters for the MPEG-7 set are also evaluated

and obtained as and .

In this case, the amount of missed hard-cuts is reduced in the

MPEG-7 set, however, the amount of false detections increases.

Fig. 11 shows the change in recall and precision rates for set 2,

where always three of the parameters are kept at the optimum

and the fourth parameter is varied to evaluate the sensitivity. It

is seen from Fig. 11 that a small change in the parameters has

only a slight effect on performance.

The first approach used for comparison is denoted as stan-

dard phase correlation (PC) that directly evaluates the phase cor-

relation for entire video frames (i.e., without spatial sub-sam-

pling) after which a hard-cut is signaled for low correlation

values. A double threshold strategy is also utilized for PC-HC

as it has been observed to give the best performance. The op-

timum double threshold parameters for PC-HC are obtained as

and for set 1, and
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TABLE II
HARD-CUT DETECTION RESULTS WITH THRESHOLD PARAMETERS OPTIMIZED FOR ARCHIVE FILM SEQUENCES.

CORRECT (C), MISSED (M), FALSE (F) HARD-CUTS, RECALL (R) AND PRECISION (P) RATES

and for set 2. Note

that, the proposed false detection removal by variance and mean

monitoring is also included in the PC-HC algorithms in order to

reduce the number of incorrect detections so as to assess the best

performance that can possibly be achieved by PC-HC without

spatial sub-sampling but with double thresholding and heuristic

false detection removal.

The second approach used for comparison makes use of the

method proposed in [24] and is referred to as overlapped block-

based phase correlation (OBBPC). In this case, video frames are

divided into overlapping blocks of size 256 256 pixels with

an overlap of 32 pixels for set 1 and an overlap of 16 pixels for

set 2 (the second overlap is less as the frame sizes are smaller).

Then the phase correlation peak for each co-sited block pair is

computed and combined to give the detector response

(34)

where denotes the total number of blocks, is the

highest peak in the phase correlation surface for the th co-sited

block pair, and is a scale factor used to normalize the detector

response to provide an output in the range . Results are

provided for a double threshold strategy with optimum param-

eters obtained as and

for set 1, and and for

set 2. Again, the proposed false detection removal by variance

and mean monitoring is included in the OBBPC-HC algorithms

to obtain the best possible performance.

Other than the two mentioned phase-correlation-based tech-

niques, two commonly used histogram-based, namely [5]

and histogram difference (HD) [9] based hard-cut detection

techniques are tested for comparison. The hard-cut detection

performance of these techniques is evaluated for an adap-

tive thresholding approach, with the threshold value being

computed as in [9], and the threshold parameter is obtained

experimentally so as to give the best results. It has been ob-

served that the false detection elimination proposed in this

paper also works for histogram-based techniques and therefore

the proposed false detection removal by variance and mean

monitoring is also included into the histogram-based hard-cut

detection algorithms to obtain the best possible performance.

Furthermore, the motion-based hard-cut detection technique

proposed in [28] is also used for comparison to evaluate the

performance of a technique that explicitly utilizes motion

compensation.

Finally, the edge-based technique presented in [20] is evalu-

ated, to assess the appropriateness of edge-based methods for

archive film sequences. This approach has also been optimized

for archive film sequences and MPEG-7 sequences, respectively.

B. Comparative Performance Evaluation

The recall and precision rates obtained for the test sequences

of set 1 and set 2 are given in Tables II and III, respectively,
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TABLE III
HARD-CUT DETECTION RESULTS WITH THRESHOLD PARAMETERS OPTIMIZED FOR MPEG-7 TEST SEQUENCES.

CORRECT (C), MISSED (M), FALSE (F) HARD-CUTS, RECALL (R) AND PRECISION (P) RATES

for the proposed method as well as the other methods used for

comparison.

Table II shows the hard-cut detection performance of the

mentioned techniques with threshold parameters optimized for

the archive film test sequences. It is observed that for archive

sequences the proposed approach significantly outperforms all

other techniques used for comparison. The proposed approach

provides recall and precision rates of about 99%, whereas

all other approaches provide significantly lower rates. It is

seen that [9], [20], and [28] outperform the other phase-cor-

relation-based approaches (PC-HC and [24]). If the hard-cut

detection performance for MPEG-7 sequences is assessed with

threshold parameters optimized for archive film, it is seen that

the proposed approach provides an excellent precision rate (no

incorrect hard-cut detections) but the recall rate drops. In this

case, the recall rate of the proposed approach is lower than

[20] and [28], and the main reason is that there are extremely

similar shots in the second test set (shots in which filming is

temporarily ceased and then the camera continues from nearly

the same place) so that some hard-cuts are missed due to a low

global threshold value. In the overall, the proposed approach

outperforms all other methods used for comparison.

In order to evaluate the influence of each individual module

of MPC-HC, results for MPC-HC are also provided for a

single global threshold only, a single local threshold only, and

without the heuristic false removal. Comparing PC-HC and

MPC-HC with double thresholding it is seen that the additional

spatial sub-sampling of MPC-HC provides a very important

performance increase in terms of precision as well as recall.

Comparing MPC-HC with double thresholding against single

threshold approaches, it is seen that MPC-HC provides a good

performance for any single threshold strategy, yet the double

threshold performance is superior. While MPC-HC with only

adaptive thresholding performs close to the double thresholding

case, an additional benefit of the double threshold strategy is

that a local threshold is only computed if the phase correlation

peak value is below the global threshold, thus reducing the

required computation amount. Comparing MPC-HC with the

case where no heuristic false removal is utilized (MPC w/o

HFR) it is seen that the introduced variance and mean tests

successfully remove a significant number of false detections,

hence the heuristic false removal strategy is very effective.

Table III shows the hard-cut detection performance of the

mentioned techniques with threshold parameters optimized

for the MPEG-7 test sequences. In this case, the proposed

approach outperforms all other techniques for set 1, with only

two real hard-cuts being missed due to the comparatively higher

global threshold, however, the precision rate decreases. For the

MPEG-7 sequences, the proposed approach misses only one

more hard-cut than [28] but the precision rate is significantly

higher as the number of incorrect detections is low. In the

overall, the proposed approach again outperforms all other

techniques used for comparison. Note that these results are im-

portant to show that the effectiveness of the proposed approach
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Fig. 12. (a) Frames # 8647–8661 of the “Allusa” sequence. (b) Phase correlation peak values and respective thresholds for part of the “Allusa” sequence for
PC-HC. (c) Detector response values and respective threshold for part of the “Allusa” sequence for OBBPC-HC. (d) Phase correlation peak values and respective
thresholds for part of the “Allusa” sequence for MPC-HC.

is not strictly depending on the optimization of threshold pa-

rameters. In this case, threshold parameters are optimized for

sequences with totally different characteristics, however, the

performance on archive films is still acceptable.

It has been observed that gradual shot change effects (such

as dissolve, wipe, fade in and fade out) do not influence the

overall hard-cut detection performance: none of the false de-

tections occur during gradual transitions. The phase correlation

process itself is robust to gradual transitions such as dissolves

and wipes. While the frame variance drops to very low values

during fade in and fade outs, in which case the phase correla-

tion peak value can signal an incorrect hard-cut, as confirmed

by (32), in this case, the heuristic false removal prevents any

false detection. Hence, the proposed scheme suppresses gradual

shot change effects successfully so that only hard-cuts are eval-

uated. The proposed approach is aimed at hard-cuts only and is

obviously not suited to detect gradual shot changes, as the main

aim is to suppress such effects to improve the hard-cut detec-

tion accuracy in the first place. For archive video restoration it

is typically required to reset restoration algorithm parameters at

the beginning of a new scene so that the restoration process will

have a new start with no bias being introduced from previous

scene characteristics. In the case of gradual changes it usually

possible to continue running the restoration algorithm without

any problem.

While theoretical analysis as well as precision and recall rates

show that the presented approach is effective; two supplemen-

tary examples are presented in Figs. 12 and 13 for video parts of

archive film sequences where the proposed MPC-HC technique

outperforms the other phase-correlation-based PC-HC and

OBBPC-HC methods. The figures also show the hard-cut (HC)

instants, the adaptive local thresholds and the global thresholds
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Fig. 13. (a) Frames # 27–44 of the “Panama” sequence. (b) Phase correlation peak values and respective thresholds for part of the “Panama” sequence for PC-HC.
(c) Detector response values and respective threshold for part of the “Panama” sequence for OBBPC-HC. (d) Phase correlation peak values and respective thresholds
for part of the “Panama” sequence for MPC-HC.

of the double threshold approach with parameters optimized

for archive film performance. Fig. 12(a) shows part of the

“Allusa” test sequence with intensive global camera motion

and serious local object motion. As seen in Fig. 12(b), PC-HC

misses one hard-cut and detects the other hard-cut correctly.

Fig. 12(c) shows that this is also the case for OBBPC-HC,

while furthermore one incorrect hard-cut is detected. How-

ever, MPC-HC detects both hard-cuts correctly as observed in

Fig. 12(d). Fig. 13(a) shows part of the “Panama” test sequence

illustrating serious visual defects (blotches) in various frames.

While PC-HC and OBBPC-HC can signal these blotches as

hard-cuts, in MPC-HC the phase correlation peak values are

above the local threshold so that no incorrect decision is carried

out in the proposed approach.

In summary, while the previously proposed OBBPC [24]

improves the performance of hard-cut detection compared

to standard PC, the performance is still insufficient and the

computational load is significantly increased due to numerous

overlapped FFT computations. The proposed modified phase-

correlation-based hard-cut detection technique provides a supe-

rior detection performance with about 99% precision and recall

rates even for difficult to segment archive films. Furthermore the
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spatial sub-sampling considerably reduces the computational

load of the FFT process. For a frame size of 368 480 pixels

(a size typical to archive film sequences), for example, PC-HC

requires the computation of a single 512 512 FFT (a power

of two), OBBPC-HC requires the computation of 32 FFTs of

size 256 256, while the proposed MPC-HC sub-samples the

video frames to a size of 92 120 and therefore requires the

computation of a single 128 128 FFT per video frame, and

the same is valid for the IFFT computation encountered in the

phase correlation process. The proposed hard-cut detection

technique has therefore a considerably reduced computational

load compared to the other phase-correlation-based detection

algorithms and outperforms techniques previously proposed in

literature such as the histogram-based techniques proposed in

[5] and [9], the phase-correlation-based technique proposed in

[24], the edge-based technique proposed in [20], as well as the

motion-based technique proposed in [28].

IV. CONCLUSION

This paper presents a hard-cut detection approach referred

to as modified phase-correlation-based hard-cut detection

with application to b/w archive films. The presented approach

consists of three steps. Initially video frames are spatially sub-

sampled and the peak phase-correlation value is computed.

Then a double threshold strategy for hard-cut decision is uti-

lized. Finally, heuristic false detection removal by variance and

mean tests is carried out.

The paper provides a through theoretical analysis to show

the usefulness of spatial sub-sampling and heuristic false detec-

tion removal. Furthermore through experimental results are pre-

sented for visual defects encountered in archive film material,

to present the effectiveness of the proposed approach. Results

are demonstrated for archive film sequences that are particularly

difficult to segment due to visual degradation, and it is shown

that the proposed approach provides superior performance. The

spatial sub-sampling has a bonus benefit of substantially re-

ducing the computational load required for the phase-correla-

tion-based detection process.
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