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ABSTRACT

Piyavskii’s algorithm maximizes a univariate function satisfying a Lipschitz condition. We propose a modified Piy-
avskii’s sequential algorithm which maximizes a univariate differentiable function f by iteratively constructing an upper
bounding piece-wise concave function @ of f'and evaluating f'at a point where ® reaches its maximum. We compare the
numbers of iterations needed by the modified Piyavskii’s algorithm (n¢) to obtain a bounding piece-wise concave func-
tion ® whose maximum is within ¢ of the globally optimal value f;,, with that required by the reference sequential algo-
rithm (n,). The main result is that n¢ < 2n,.r+ 1 and this bound is sharp. We also show that the number of iterations
needed by modified Piyavskii’s algorithm to obtain a globally e-optimal value together with a corresponding point (75)
satisfies np < 4n,,s + 1 Lower and upper bounds for n,, are obtained as functions of f(x), &, M, and M, where M, is a

constant defined by M, =sup,, )~/ "(x) and M; > M, is an evaluation of M.

Keywords: Global Optimization; Piyavskii’s Algorithm

1. Introduction

We consider the following general global optimization
problems for a function defined on a compact set
XcR -009ex0.15exl.4ex 0.9ex™ :
(P) Find
(x*,f*) € XxR —0.9ex0.15ex1.4ex 0.9ex

such that
[ =r(x")zf(x) vxex.
(Py) Find x,, € X such that f,,, = fix,,) > f - &,

opt
where ¢ is a sm';ll positive constant.

Many recent papers and books propose several ap-
proaches for the numerical resolution of the problem (P)
and give a classification of the problems and their meth-
ods of resolution. For instance, the book of Horst and
Tuy [1] provides a general discussion concerning deter-
ministic algorithms. Piyavskii [2,3] proposes a determi-
nistic sequential method which solves (P) by iteratively
constructing an upper bounding function F of f and
evaluating f at a point where F reaches its maximum,
Shubert [4], Basso [5,6], Schoen [7], Shen and Zhu [8]
and Horst and Tuy [9] give a special aspect of its appli-
cation by examples involving functions satisfying a
Lipschitz condition and propose other formulations of the
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Piyavskii’s algorithm, Sergeyev [10] use a smooth auxil-
iary functions for an upper bounding function, Jones et al.
[11] consider a global optimization without the Lipschitz
constant. Multidimensional extensions are proposed by
Danilin and Piyavskii [12], Mayne and Polak [13],
Mladineo [14] and Meewella and Mayne [15], Evtu-
shenko [16], Galperin [17] and Hansen, Jaumard and Lu
[18,19] propose other algorithms for the problem (P) or
its multidimensional case extension. Hansen and Jaumard
[20] summarize and discuss the algorithms proposed in
the literature and present them in a simplified and uni-
form way in a high-level computer language. Another
aspect of the application of Piyavskii’s algorithm has
been developed by Brent [21], the requirement is that the
function is defined on a compact interval, with a bounded
second derivative. Jacobsen and Torabi [22] assume that
the differentiable function is the sum of a convex and
concave functions. Recently, a multivariate extension is
proposed by Breiman and Cutler [23] which use the
Taylor development of f to build an upper bounding
function of f. Baritompa and Cutler [24] give a variation
and an acceleration of the Breiman and Cutler’s method.
In this paper, we suggest a modified Piyavskii’s sequen-
tial algorithm which maximizes a univariate differenti-
able function f. The theoretical study of the number of
iterations of Piyavskii’s algorithm was initiated by Dani-
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lin [25]. Danilin’s result was improved by Hansen, Jau-
mard and Lu [26]. In the same way, we develop a refer-
ence algorithm in order to study the relationship between
ng and n,,, where np denotes the number of iterations
used by the modified Piyavskii’s algorithm to obtain an
g-optimal value, and #,.r denotes the number of iterations
used by a reference algorithm to find an upper bounding
function, whose maximum is within ¢ of the maximum of
/- Our main result is that ng < 4n,,,+ 1. The last purpose
of this paper is to derive bounds for #,.. Lower and upper
bounds for #,,are obtained as functions of f{x), &, M, and
M, where M, is a constant defined by

M, = supxe[a‘h]—f”(x)
and M, > M, is an evaluation of M.
2. Upper Bounding Piecewise Concave
Function
Theorem 1. Let

feC*([a,b],R —09ex0.15ex] 4ex 0.9ex)

and suppose that there is a positive constant M such that

M= _st]—f”(X)- €]
Let
_b—x X—a
P(x) =2 (@) 2 )
and
q)(x)=P(x)+%(x—a)(b—x).
Then
®(x)> f(x) forall xe[a,b].
Proof. Let
¥ (x)=(x)-f(x),
we have

¥"(x) = —M — f"(x) 0.
Then ¥ is a concave function, the minimum of ¥ over
[a, b] occurs at a or b. Then
¥ (x)=Y¥(a)
=¥(b)
=0

forall xe [a,b] .
This proves the theorem.
Remark 1. Let

. a+b+Lf(b)—f(a).
2 M b—a

Copyright © 2012 SciRes.

Then the maximum ®" of O(x) is:

%[f(b)ﬁ(a%ﬂwj

+%M(a—b)2 }

if uela,b]
/(a)
/(%)

If the function f'is not differentiable, we generalize the
above result by the following one:

Theorem 2. Let f be a continuous on [a, b] and sup-
pose that there is a positive constant M such that for
every h>0

fu+h)=2f(u)+ f(u—h)=Mhn* Yue[a+hb-h].
2

Then

b—x
<

b-a

+%(x—a)(b—x) Vx e [a,b].

21 (p)

f(x) b—a

f(a)+

Proof. without loss of generality, we assume that f{a)
=f{b)=0and M =0.

Let us consider the function f{x) — ®(x) instead of the
function f(x). It suffice to prove that

5

f = maxf(x)ﬁo.

xe[a,b

Suppose by contradiction that /> 0, and let
u= sup{x € [a,b]|f(x) = f*}

The function f'is continuous, Au) =f >0, thus a <u < b,
consequently u e[a+h,b—h] for h > 0 small and we
have f{lu — h) <f(u) and flu + h) <fu).

Since M = 0, this contradicts the hypothesis (3). Hence

f <o,

Remark 2. Since the above algorithm is based entirely
on the result of Theorem 1, it is clear that the same algo-
rithm will be adopted for functions satisfying condition

2).
If f'is twice continuously differentiable, the conditions
(1) and (2) are equivalents.

3. Modified Piyavskii’s Algorithm
We call subproblem the set of information
P =[®x a0,

describing the bounding concave function
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1308 R.ELLAIA ET AL.

+ 2 (r-a) (b -x),

®; = max @,(x) and x =arg max ©,(x).
xe[a[,b[] ,xe[af,b[

The algorithm that we propose memorizes all the sub-
problems and, in particular, stores the maximum @] of
each bounding concave function ®; over [a;, b;] in a
structure called Heap. A Heap is a data structure that
allows an access to the maximum of the k£ values that it
stores in constant time and is updated in O(Log,k) time.
In the following discussion, we denote the Heap by H.

Modified Piyavskii’s algorithm can be described as
follows:

3.1. Step 1 (Initialization)

o k0
[ao, bo] «[a, b]
Compute f{aop) and f{by)

. ;;t(—max{f(ao),f(bo)}
. xgpt <« argmax{f(ao),f(b0 )}

e Let @, be an upper bounding function of f over [ay,
bo]

o Compute ®f = max .fu.sPo (¥)
° @2[” <«— (1)3

o if @) —f) <& Stop, f, isane¢-optimal value

opt — opt

H P, =[®},x;,a,,b, ]}

3.2. Current Step (k=1,2, ")

While H is no empty do
o k—k+1

e Extract from H the subproblem P, = [CI); X4, ,bmJ
with the largest upper bound @]
. [ak,bk]e[x;,bm]

o [a,b] e[am,x;]

3.2.1 Update of the Best Current Solution
forj=1kdo

3.2.1.1. Lower Bound

If f(x;)> “1 then

opt

Copyright © 2012 SciRes.

foo— £(x)

k *
X € X;

Else
k k-1
f;)pt <~ f‘npt
k k-1
xopt <~ xopt

End if

3.2.1.2. Upper Bound
¢ Build an upper bounding function ®; on [a;, b;]

o Compute CD);:maXxe[aj,bjF)j (x)
« Add P =[®},x},a,b,] toH

End for
e Delete from H all subproblems

P=[(I);,x;,ap,pr

. % k
with @ < f

3.2.2. Optimality Test
o Let @), bethe maximumofall @

o If ® —f; <¢&, then Stop, [

ot S i 18 an e-optimal

value

End While

Let [a,, b,] denote the smallest subinterval of [a, b]
containing x,, whose end points are evaluation points.
Then the partial upper bounding function ®,;(x) span-
ning [a,, b,] is deleted and replaced by two partial upper
bounding functions, the first one spanning [a,, x,] de-
noted by @,,(x) and the second one spanning [x,, b,] de-
noted by @,,(x) (Figure 1).

Proposition 1. For n > 2 the upper bounding function
®,(x) is easily deduced from ®,(x),---,®, (x) as
follows:

o (@t /() —47(a)(x)
" (o, - f(a,))
and
o (Pt S()) =47(8) 1 (%)

nr

a(@;, -1 (b,))
Proof. In the case where

a1 ()1 (a)
2 M

x}’l _aﬂ
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Figure 1. Upper bounding piece-wise concave function.

is in [a, x,], then from remark 1, the maximum of
@, (x) is given as follows

@, =5 f(x,,)+f(an)+L(f(xn)—f(an)T

M X, —a,
3)
+%M(xn —-a, )2 }

The maximum of @, (x) spanning [a,, b,] is
reached at the point

L _@tb, 1 f(b)-f(a,)
" 2 M b,—a,
We deduce that
2 1 1
(xn _an) :Z(bn _an) + (f(bn)_f(an))
+L f(bn)_f(an) ’
M? b —a ’

then

1 FI I
_M(‘xn _an) = _((anl _f(an ))
4 2

By substitution in expression (3), we have the result.
We show in the same way that the maximum @] of

®,, (x) defined in [x,, b,] is given by:

o+ /(x,)) ~47(5,) f(x").

o
? o, 10

nr

Copyright © 2012 SciRes.

Remark 3. Modified Piyavskii’s algorithm obtains an
upper bound on f within ¢ of the maximum value of f(x)
when the gap @, — f* is not larger than &, where

f* = maXxe[a,b}f(x)'
But f and
x" = arg max sefas)f (x )

are unknown. So modified Piyavskii’s algorithm stops
only after a solution of value within ¢ of the upper bound
has been found, i.e., when the error @ — f" is not lar-
ger than . The number of iterations needed to satisfy
each of these conditions is studied below.

4. Convergence of the Algorithm

We now study the error and the gap of @, in modified
Piyavskii’s algorithm as a function of the number n of
iterations. The following proposition shows how they
decrease when the number of iterations increases and
provides also a relationship between them.

Proposition 2. Let 6, =@, —f  and S5 =@, - f°
denote respectively the error and the gap after n iterations
of modified Piyavskii's algorithm. Then, for n>2 1)
8, $6,/4, 2) S5, ,<6./4, 3) 5, ,<6./2.

Proof. First, notice that (CI):‘), 5,) and () are
non increasing sequences and (f,) is nondecreasing.
After n iterations of the modified Piyavskii's algorithm,
the upper bounding piece-wise concave function @, (x)
contains (n—1) partial upper bounding concave func-
tions, which we call first generation function. We call the

partial upper bounding concave functions obtained by
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1310 R.ELLAIA ET AL.

splitting these second generation function. @, must
belong to the second generation for the first time after no
more than another n—1 iterations of the modified
Piyavskii’s algorithm, at iteration m (m < 2n — 1).

Let k (n+1<k<m) be the iteration after which the
maximum @) of @, (x) has been obtained, by
splitting the maximum ®;_, of @, (x). Then, in the
case where

P4ty +f(xk)—f(ak)
, 2 M(xk—ak)

isin [a,,x,], and from proposition 1, we get:

o+ £ (5)) ~4f () /(%)

-
? 40y, 1 (a))

m

:% 2f(x)+ f(a )+ Dy, +

(£ (x)- 1 (a))
(I)Z—l _f(ak) ’

where
X, = argmax vefas[Pss (x)

and @, is one of the endpoints of the interval over
which the function @, | is defined.
1) We have

Oy = Pyt = Lot SO, — 1
where
S =maxi—o....f (%)= max(f,il,f(xk ))
If fr=f(x,), therefore, we have
0.

(@i /() -4 (@) f ()
) 4@ -1 (a,))

(q)zfl _f(xk ))2

4(®271 _f(ak ))

-/ (%)

<

< CD;—I _f(xk)
4
o
4
_9%
1

If f=7f",, wewill consider two cases:

* case 1

If x; <a,, then @, =f(a,)=f, and if x, >x,,
then @) = f(x,)=f, and the algorithm stops.

* case 2

Copyright © 2012 SciRes.

x; €[a;,x,], then we have

o =N +if(xk)—f(ak)

>
g 2 M X, —a, =%
hence
M
f(ak)_f(xk)gz(xk _ak)z
:CDL f(ak)

(proposition 1).
Moreover

S ()= f(a) <@, - f(a).
We deduce from these two inequalities that

1/ (x) = f (@) s @5 =/ (a,).
Therefore

1)

2n-1

2

(f(xk)—f(ak))
@, _f(ak)

S%{Zf(xk)+f(ak)+(bzl+ _

g%{Zf(xk)+d>;_1 1 @)+ ()= (@) - 11
L e |
SZ(:)’fk—l +(Dk—1)_fk—1

< (Dlt—l — fl::l
4

<L) =3, /4.
4

2) We have
52ln—1 :q);n—l _f* Sq)jn _f*'

We follow the same steps to prove the second point of 1)
and show that &,,, <&, /4.
3)

e case 1
If x,<a, or x,>x, then ® =f"=f" and the
algorithm stops.

scase2 x, €[a,,x,|. First, we have

(£ (%) (a))
CDZ—I _f(ak)

@) =127 (%) () + 0+

< f(xk)+q)l*f—l ’

2

and
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[T,
Sf(xk)*'q);q
2
<f*+§;:+f(xk)
- 2
therefore f(x,)> f"—&,. Hence

é‘2nfl < q)” _4f‘(x}€)

>

<6,/2.

This proves the proposition.

Proposition 3. Modified Piyavskii’s algorithm (with
£=0) is convergent, i.e. either it terminates in a finite
number of iterations or

limn—noq): = limn—yoof"* = f* = maxxe[a,b].f(x)'

Proof. This is an immediate consequence of the
definition of §, and i) of proposition 2.

5. Reference Algorithm

Since the number of necessary function evaluations for
solving problem (P) measures the efficiency of a method,
Danilin [25] and Hansen, Jaumard and Lu [26] suggested
studying the minimum number of evaluation points
required to obtain a guaranteed solution of problem (P)
where the functions involved are Lipschitz-Continuous
on [a,b].

In the same way, we propose to study the minimum
number of evaluation points required to obtain a
guaranteed solution of problem (P) where the functions
involved satisfy the condition (1).

For a given tolerance & and constant M this can be
done by constructing a reference bounding piece-wise
concave function @, . such that

maXxe[a,b](Drgf (x) = f* te,

with a smallest possible number 7, of evaluations
points Vs D2 s Y in [a,b].

Such a reference bounding piece-wise concave
function is constructed with f* = max ./ (¥) Which
is assumed to be known. It is of course, designed not to
solve problem (P) from the outset, but rather to give a
reference number of necessary evaluation points in order
to study the efficiency of other algorithms. It is easy to
see that a reference bounding function ®,,, (x) can be
obtained in the following way:

Description of the Reference Algorithm

1). Initialization
s k<1
* y, < root of the equation

Copyright © 2012 SciRes.
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e +g_%(a_x)2 —f(x)=o.

2). Reference bounding function
While y, <b do

« compute /()

2 [
‘X, < +\/ﬁ(f +e=/((n))
* V., < rootof the equation
* M 2
f +8—f(x)—7(xpk —x) =0

s kk+1
End While.
3). Minimum number of evaluations points
* n, <k
A reference bounding function @
follows (see Figure 2)

s 18 then defined as

f*+5—%(x—a)2 if xela,y]
) M 2 ifxe[Yk:)’kn]s
(Dref(x)* f +8—7(x—xpk) k=1""’nref_1

if xe [yﬂmf ,b}

6. Estimation of the Efficiency of the
Modified Piyavskii’s Algorithm

Proposition 4. For a given a tolerance &, let ®,, be
a reference bounding function with n,, evaluations
points  y,--+,y, —and @ =[f"+e Let ®. be a
bounding function obtained by the modified Piyavskii’s

algorithm with evaluation points x, Xy where n¢
is the smallest number of iterations such that
o) = Ir%ax]cDC (x)< f"+e.
xela,b
Then we have
ne <2m,, +1, 4)

and the bound is sharp for all values of n,,,

Proof. The proof is by induction on n,,
initialize the induction at n,,, =1.

*Casel y =b. (seeFigure3)

We have to show that @ (x)<®,(x), Vxe[a,b].
We have

We
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fte
a 1 Lp, U2 Ly b
Figure 2. Reference bounding function.
f*+e
‘.‘f’ref (JJ)
L1 = a b= Iy >
Figure 3. Case y; = b.
. M . M
and @, (x)=f +5—7(x—a)2. But f(b)=o,, (b)=f +£—7(b—a)2,

Copyright © 2012 SciRes.
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hence respectively on [a,x;] and [x;,b] and by @, a
(b—x)f(a)+(x—a)(f*+g) maximum value of ®, (x). We show that
D (x)= b—a CD,(x)SCDWf(x) Vxe[a,x3]

and that @) < " +¢. Indeed, we have

o, (x) = =X (@) (x=a) f(x)

X, —a

—%(x—a)(b—a)+%(x—a)(b—x)

(b—x)f(a)+(x—a)(f*+5)
b-a

-y

5 x—a) . M
+—(x—a)(x3 —x)

Therefore 2

bh—x and

- (f(a)=(r"+2))=0,

D (x)-D,, (x)=

Q

. M 2
f(x)< D, (x)=r +£——(a—x3) ,
hence the result holds. 2
* case 2 y; <b. (see Figure 4) thus

If n. =2, (4) holds. In this case, we have @, (x)-D,, ()
1 ref

, M 2 .
f +8—7(x—a) szxe[a,yl] Sx3_x(f(a)—<f*+8))
X, —a
(D’ef(x)_ <0 Vxe[a,x;).
f*+5—M(x—x )2 si x €[ y,,b]
: 2 7 b If
where =S +b+f(b)—f(x3)

2 M (b-x;)
Xp =N +\/%(f*+g_f(yl))'

isin [x;,b], then
Assuming that ®] > " +¢ and x, €[a,y] ( the b)— 2
proof is similar for x; €[y,b]). We denote by @, (x) 0N :% f(x3)+%(f(b)+(1)f)+(f()—f(x3)) .

and @, (x) the partial bounding functions defined Z(QT_f(b))
o]
e _ -
‘ &f(i')
#
2

T =a T3 Y1

Figure 4. Case y; <b.

Copyright © 2012 SciRes. AM
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| (B)= £ (x)| < @} =/ (b)

(see the proof of proposition 2), we have
* 1 *
o SE{f(x3)+CDI}

S%{f*+g—%(a—x3)2 +(I)f}

s%{f"+g—<DT+f(a)+CDT}Sf*+g.

If x">b, then @) =f(b)<f +¢.
If x" <xjthen @)= f(x;)< /" +¢& and(4)holds.
Assume now that (4) holds for n,, <k (k> 1), and
consider n,, = k + 1. The relation (4) holds for n, = 2,
therefore we may assume that

O] > f"+e,x, =aand x, = b.
If we let
X3 = arg max xefa.s[P, (x),

the modified Piyavskii’s algorithm has to be imple-
mented on two subintervals [x;, x3] and [x3, x,] There are
two cases which need to be discussed separately:
* case | (see Figure 5)
There is a subinterval containing all the n,. evaluation

A

1

frte

ET AL.

points of the best bounding function @, (x). Without
loss of generality, we may assume that [x,,Xx;] con-
tains all n,.r evaluation points of @, . Let x' and x"
be the solution of ®,(x)=f"+¢ By symmetry, we
have

x'+x"
X, = .

2

Let y,  be the abscissa of the maximum of the last
partial ref)ounding function of @, (x). Due to our
assumption, we have

2
’ — “ * _ > 4
ynm/- y”re/" + \/M (f +& 'f((y"rc{f )) =z X >

since otherwise there is an another evaluation point of f
on the interval
|:yn,,e/- ’b:| *

Let y! . be the abscissa of the maximum of the
partial bounding function of ®,, (x). preceding y! S
In this case, we have

b 2 .
X > ynw/.—l - ynref _\/M(f +g_'f(y”re/" ))

But y, < x' implies that n,.,,= 1, which is not the
case according to the assumption (n,,s > 2). Therefore,
this case will never exist.

dc(x)

~.
Ny

I

e

éref (-L)

///

1

Tl =a £ Ynpey

"

,
- Yres

Figure 5. The subinterval contains all the n,.,evaluation points.

Copyright © 2012 SciRes.
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* case 2
None of the subintervals contains all the #,,, evaluation
points of ®,.(x). We can then apply induction, reasoning
on the subintervals [x, x3] and [x3, x,] obtained by modi-
fied Piyavskii’s algorithm. If they contain n' and n’
evaluation points respectively, [x;, x,] contains 7. +n’ —1
evaluation points as x; belongs to both subintervals. Then
(4) follows by induction on 7,

Consider the function f{x) = x defined on [0, 1], the
constant M is equal to 4. For ¢ = 0 we have n¢ = n,,y+ 1
(see Figure 6), and the bound (4) is sharp.

As noticed in remark 3, the modified Piyavskii’s algo-
rithm does not necessarily stop as soon as a cover is
found as described in proposition 4, but only when the
error does not exceed &. We now study the number of
evaluation points necessary for this to happen.

Proposition 5. For a given tolerance &, let n,, be the
number of evaluation points in a reference bounding
function of f and ng the number of iterations after which
the modified Piyavskii’s algorithm stops. We then have

ng <4n, +1. (5)

Proof. Let n. =2n_, +1. Due to proposition 4, after

ref

A

algorithm is satisfied. This proves (5).

7. Bounds on the Number of Evaluation
Points

In the previous section, we compared the number of
evaluation functions in the modified Piyavskii’s algo-
rithm and in the reference algorithm. We now evaluate
the number np of evaluation functions of the modified
Piyavskii’s algorithm itself. To achieve this, we derive
bounds on #,,, from which bounds on ny are readily ob-
tained using the relation #,,, < np< 4n,, + 1.

Proposition 6. Let  be a C function defined on the in-
terval [a, b]. Set

MO = Supxe[a,b]_f”(x)
and let
S = maxadusf (%)-

Then the number n,.; of evaluation points in a reference
cover @, using the constant M, > M, is bounded by the
following inequalities:

' . . * o * <g. « b dx
ne 1t'er'at10ns, we have d)F f g. Due to 3) of \/(M1 +M0)(f + g)j
proposition 2, after 2n. —1 iterations, we have “ frre—f(x) ©
n, < .
* * * * ref
() - <O —f, M
2ner-1 f‘ZnCvfl ner f \/Elog([l-k M 0]\4 ])
which shows that the termination of modified Piyavskii’s ! 0
Gref (J’)
4:1: =0 Y1 I3 ro =1 g
Figure 6. None of the subintervals contains all the n,, evaluation points.
AM
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JMe Jb dx We deduce that
N2 Y v e—f(x) L1 (2+%)2

2 oM
M, M . !
2in  2inif (#J (f + 5) >g,

d 2

My > 2M, @) Let g; be the function defined on [y;, y;+ 1] by:
JM & J-h dx & (x)
W2 e f(x) (=) L)+ (= 3) f (1)
2in 2inif M, =M,. Vi =¥,
Proof. We suppose that the reference cover @,  has M
n. — 1 partial upper bounding functions defined by the —TO(X — Y )(J’m —x)
evaluation points
a:ylayzf”aynrg/ =b. :(E—MOd) +%X2
d 2 2

We consider an arb.itrary p'artial upper bounding function We have
and the corresponding subinterval [y;, y;+ ] forii=1, -,
n,er— 1. To simplify, we move the origin to the point (y;, f(x)2g(x) Vxe[ab].
o). Letd =y 1~y z=fyie) —fy)and h=f +e. Thus we have

We assume z > 0 (See Figure 7).

Let @, be the partial upper bounding function de- J‘ L S
fined on [, yi+1]and x,  the point where O fTe—f(x)
maXXE[yis,VH[](D:ef ('x) - f* +é > Id dx
is reached, then " ST re-g(x)
2 /. d dx
Xy _yf+\/ﬁ(f +g—f(y[)) :‘[0

1 (z dMljz : Md) M, ,
—+ - == X——x
oM \d 2 d 2 2

Consider the function

= Vin _\/%(f* +g—f(yi+l))'

f*+e
f*
F(yitr)
c’ﬁ:e f (‘T) /// ]
h
f(z)
Z
)| ™ vy Vit
\\\// a1(z)
d

Figure 7. The reference cover ®,,has n,,,— 1 partial upper bounding functions.
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2
M M,
Fx)=— z M ) (z Md) M, »
2M \d 2 d 2 2
Let x; and x, be the roots of the equation Fi(x) = 0;
they are given by

1(M0d zj
X =—
M, |\ 2 d
(M =Y My (Md =Y
2 d) M\ 2 d
1 [Mod zj
X, =— -
M, |\ 2 d

Md z : M, (M,d zY
+ ERal i
2 d M, 2 d

Then F| is written in the following way

M
R (x) =22 (v (v-x,).
Let
a=M0d+£
2 d’
9:M0d_£
2 d’
oo T ]
2 d) M\ 2 4
We have
J L[ o+ | |9 ,B|}
=—11 +1lo
G P o

:%{mg[%J e g[%j}

Since 8 > 0 and g; reaches its minimum at the point 6,

then
9+ﬁ21
p-0
and
E(x) B pa
Since
a ’B>210g M, ,
M +M,
and
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1 1
—_> ,
B \/2(M1+M0)(f*+g)

then
J-d dx
O fT+e—f(x)
> 2 - 10g[1+ M, J,
(M, +M,)(f" +¢) M, +M,
and
Ib dx
“frre—f(x)
>n / 2 log| 1+ M, .
(M, M,)(f +e) M, +M,
This proves (6).

Now let us consider the function G defined and con-
tinuous on [y;, ¥;+1] such that

« f(x)<G(x) Vxe[ynya]
. G(x)ﬁf*.

Two cases are considered
case 1: If

2 2
M M
L (2, Mdy L[z Md) . (s
oM \d 2 oM \d 2
then, the function G is given by
z M, j

6()- ()= £+ 2%

Hence

X———X .

2

e et
O fTre—f(x) 0 fTHe—g,(x)

We consider

MdY Md\ M
Fz()c):L £+—ld B R ) P B
wm \d - 2 d 2 2

its derivative is

F(x)= —(§+ Mzodj—i-Mox,
F(x)=0cx" _ML(é Mzod]
0

Thus F), is expressed as follows

R ()= F () + G- )

AM
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hence
Id dX
* F,(x)
2
= arctan ° _(d-x"
() | o ()
+arctan My
2F, ()
Since
1 (Md zY 1 (Md zY
F(x)=—] 1+ - il i g
(<) 2M1( 2 +d] 2M0( 2 +dj =¢
and arctanxsﬁ,
2
d dx 2
th < ,
en '[‘)Fz(x) T Moz
and

b dx / 2
Jamgnmfﬂ M_Og

In this case, G is given by

2 M) My
d 2 2
if xe[O,X]]u[Xz,d]

(=g (=i
oM \d 2
if xe[Xl,Xz].

We have

J-d dx
O fT+e—f(x)
[
O [T +e—gy(x)
= i dx
" R(x)+ Mo (x-x)
i X2%+J.d dx
Xl &

PR () ()

Moreover, My, = M| implies the condition (9) and we
have

Moreover, the inequality _
2
M, -M, " 1
10 >
implies (8), this proves the first inequality of (7). 1
Case 2: Suppose that: X, :V + V2Me
0
2 2
1 (Md 2z} 1 (Md z) e (9) Therefore
oM\ 2 a) 2m\ 2 d
. J‘Xl dx 2
Let X; et X; be the roots of the equation 0o M, (x_x* )2 Mog,
MdY Md\ M
L £+—‘dj —e—| 2400 |y 20y =0,
2M \d 2 d 2 2 J-ng: 4
X, and X, are given by e 2M,e
_ 1 £+M0d J~d dx < 2
oM, \d 2 X2 M, (x_x*)z T\ Mye
2
- [£+M°d —%(z M—dJ +2M € ¢, and
d 2 M \d
d dx 2
<4
XZZL (£+M0dj '[Of +e-gy(x) Me
M, |\d 2
Hence
z Md\ M,(z Md
+.| =+ -2 —— | +2M ¢ \/Ms dx
\/(d 2 j M, \d Moy I
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Table 1. Computational results with £=1072.

ljlllllr;rclggrn Function f{x) Constant M Interval [a, b] \%IIJS:Z)I/ p(grlitt(i;lilapz Nc Hyef %
1 (=3x+1.4)sin(18x) 626.4 [0, 1] 1.48907 0.96609 13 7 1.85
—6.7745761

2 Zizlk sin((k+1)x+k) 350 [-10, 10] 12.03125 —0.49139 76 44 1.72
5791785

3 10xsin10x 2100 [0, 1] 7.9197273 0.79785 16 10 1.6

4 —sinx—sin10x/3 12 [2.7,7.5] 1.899599 5.145735 11 6 1.83
—7.0835

5 Zizlkcos((k+1)x+k) 350 [-10, 10] 14.508 —0.8003 69 39 1.76
5.48286

6 e ¥ sin2mx 51 [0, 4] 0.788685 0.224885 21 13 1.61

7 (16x2 —24x+5)e“ 24 [1.9,3.9] 3.85045 2.868 16 11 1.45

8 255 —128x2 +282.5x° 370 [0, 1] 1.72866 0.18916 33 24 1.37

—278.7x* +100.9x°

9 —sin x —sin2x/3 9 [3.1,20.4] 1.90596 17.029 30 19 1.57

10 x—sin3x+1 10 [0, 6.5] 7.81567 5.87287 11 6 1.83

11 xsinx 31 [0, 10] 7.91673 7.9787 2 12 1.83

12 —2c0sx —cos2x 15 [-1.57, 6.28] 1.5 2.094 26 17 1.52

4.189
13 —sinx — cos’x 18 [0, 6.28] 1 3.142 28 18 1.55
14 —sinx—sinloTx 12.1 [2.7,7.5] 1.6013 5.19978 11 6 1.83

—logx+0.84x-3

Table 2. The number of function evaluations of modified Piyavskii's algorithm for different values of ¢ and M.

Test function No 1 Test function No 2 Test function No 3

Me 626.4 800 975 1500 2000 350 400

0.5 10 11 15 18 18 67 68
1072 13 17 21 24 26 76 78
107 17 22 25 28 32 88 89
107 20 26 31 36 38 96 98
107 24 29 36 41 46 106 111

500 600 1000 2100 2150 2200 2300 3000
72 75 103 11 11 12 12 13
85 86 122 16 16 17 17 18
95 103 141 22 22 22 22 23
108 118 160 27 27 28 28 29
121 132 177 31 32 34 33 36

8. Computational Experiences

In this section, we report the results of computational
experiences performed on fourteen test functions (see
Tables 1 and 2). Most of these functions are test functions
drawn from the Lipschitz optimization literature (see

Copyright © 2012 SciRes.

Hansen and Jaumard [20]).

The performance of the Modified Piyavskii’s algo-
rithm is measured in terms of N, the number of function
evaluations. The number of function evaluations N is
compared with (7,.), the number of function evaluations
required by the reference sequential algorithm. We ob-

AM
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serve that N¢ is on the average only 1.35 larger than (n,).
More precisely, we have the following estimation

N,
1.35<—5<1.85.
nref

For the first three test functions, we observe that the
influence of the parameter M is not very important, since
the number of function evaluations increase appreciably
for a same precision ¢.
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