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ABSTRACT 

Piyavskii’s algorithm maximizes a univariate function satisfying a Lipschitz condition. We propose a modified Piy- 
avskii’s sequential algorithm which maximizes a univariate differentiable function f by iteratively constructing an upper 
bounding piece-wise concave function Φ of f and evaluating f at a point where Φ reaches its maximum. We compare the 
numbers of iterations needed by the modified Piyavskii’s algorithm (nC) to obtain a bounding piece-wise concave func- 
tion Φ whose maximum is within ε of the globally optimal value fopt with that required by the reference sequential algo- 
rithm (nref). The main result is that nC ≤ 2nref + 1 and this bound is sharp. We also show that the number of iterations 
needed by modified Piyavskii’s algorithm to obtain a globally ε-optimal value together with a corresponding point (nB) 
satisfies nB ≤ 4nref + 1 Lower and upper bounds for nref are obtained as functions of f(x), ε, M1 and M0 where M0 is a 
constant defined by    0 ,= sup x a bM f x   and M1 ≥ M0 is an evaluation of M0. 

 
Keywords: Global Optimization; Piyavskii’s Algorithm 

1. Introduction 

We consider the following general global optimization 
problems for a function defined on a compact set  

0.9 0.15 1.4 0.9 :mX R ex ex ex ex   
(P) Find  

 , 0.9 0.15 1.4 0.9x f X R ex ex ex e     x   

such that 

   = .f f x f x x X      

(P1) Find optx X  such that fopt = f(xopt) ≥ f* − ε, 
where ε is a small positive constant. 

Many recent papers and books propose several ap- 
proaches for the numerical resolution of the problem (P) 
and give a classification of the problems and their meth- 
ods of resolution. For instance, the book of Horst and 
Tuy [1] provides a general discussion concerning deter-
ministic algorithms. Piyavskii [2,3] proposes a determi-
nistic sequential method which solves (P) by iteratively 
constructing an upper bounding function F of f and 
evaluating f at a point where F reaches its maximum, 
Shubert [4], Basso [5,6], Schoen [7], Shen and Zhu [8] 
and Horst and Tuy [9] give a special aspect of its appli-
cation by examples involving functions satisfying a 
Lipschitz condition and propose other formulations of the  

Piyavskii’s algorithm, Sergeyev [10] use a smooth auxil- 
iary functions for an upper bounding function, Jones et al. 
[11] consider a global optimization without the Lipschitz 
constant. Multidimensional extensions are proposed by 
Danilin and Piyavskii [12], Mayne and Polak [13], 
Mladineo [14] and Meewella and Mayne [15], Evtu- 
shenko [16], Galperin [17] and Hansen, Jaumard and Lu 
[18,19] propose other algorithms for the problem (P) or 
its multidimensional case extension. Hansen and Jaumard 
[20] summarize and discuss the algorithms proposed in 
the literature and present them in a simplified and uni- 
form way in a high-level computer language. Another 
aspect of the application of Piyavskii’s algorithm has 
been developed by Brent [21], the requirement is that the 
function is defined on a compact interval, with a bounded 
second derivative. Jacobsen and Torabi [22] assume that 
the differentiable function is the sum of a convex and 
concave functions. Recently, a multivariate extension is 
proposed by Breiman and Cutler [23] which use the 
Taylor development of f to build an upper bounding 
function of f. Baritompa and Cutler [24] give a variation 
and an acceleration of the Breiman and Cutler’s method. 
In this paper, we suggest a modified Piyavskii’s sequen-
tial algorithm which maximizes a univariate differenti-
able function f. The theoretical study of the number of 
iterations of Piyavskii’s algorithm was initiated by Dani- *Corresponding author. 
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lin [25]. Danilin’s result was improved by Hansen, Jau-
mard and Lu [26]. In the same way, we develop a refer- 
ence algorithm in order to study the relationship between 
nB and nref where nB denotes the number of iterations 
used by the modified Piyavskii’s algorithm to obtain an 
ε-optimal value, and nref denotes the number of iterations 
used by a reference algorithm to find an upper bounding 
function, whose maximum is within ε of the maximum of 
f. Our main result is that nB ≤ 4nref + 1. The last purpose 
of this paper is to derive bounds for nref. Lower and upper 
bounds for nref are obtained as functions of f(x), ε, M1 and 
M0 where M0 is a constant defined by  

   0 ,= sup x a bM f x    

and M1 ≥ M0 is an evaluation of M0.  

2. Upper Bounding Piecewise Concave  
Function 

Theorem 1. Let 

  2 , , 0.9 0.15 1.4 0.9f C a b R ex ex ex ex    

and suppose that there is a positive constant M such that  

 
 

,

.sup
x a b

M f x


             (1) 

Let  

     =
b x x a

P x f a f b
b a b a

 


 
  

and  

     = .
2

M x P x x a b x      

Then 

     for all , .x f x x a b    

Proof. Let  

     = ,x x f x    

we have  

   " = " 0x M f x    .   

Then Ψ is a concave function, the minimum of Ψ over 
[a, b] occurs at a or b. Then  

   
 

0

x a

b

  

 



  

for all  ,x a b . 
This proves the theorem. 
Remark 1. Let  

   1
= .

2

f b f aa b
u

M b a





  

Then the maximum Φ* of Φ(x) is: 

       

 

 
 
 

2

2

1 1

2

1
= 4

,

f b f a
f b f a

M b a

M a b

if u a b

f a

f b



        
   

 
     
 




 

If the function f is not differentiable, we generalize the 
above result by the following one:  

Theorem 2. Let f be a continuous on [a, b] and sup- 
pose that there is a positive constant M such that for 
every h > 0 

       22 ,f u h f u f u h Mh u a h b h         .  

(2) 

Then 

     

    , .
2

b x x a
f x f a f b

b a b a

M
x a b x x a b

 
 

 

    

 

Proof. without loss of generality, we assume that f(a) 
= f(b) = 0 and M = 0. 

Let us consider the function f(x) − Φ(x) instead of the 
function f(x). It suffice to prove that 

 
 *

,
= 0max

x a b
f f x


 .  

Suppose by contradiction that f* > 0, and let  

    *= sup , = .u x a b f x f   

The function f is continuous, f(u) = f* > 0, thus a < u < b, 
consequently  ,u a h b h    for h > 0 small and we 
have f(u − h) ≤ f(u) and f(u + h) < f(u). 

Since M = 0, this contradicts the hypothesis (3). Hence 
f* ≤ 0. 

Remark 2. Since the above algorithm is based entirely 
on the result of Theorem 1, it is clear that the same algo- 
rithm will be adopted for functions satisfying condition 
(2). 

If f is twice continuously differentiable, the conditions 
(1) and (2) are equivalents. 

3. Modified Piyavskii’s Algorithm 

We call subproblem the set of information  

= , , ,i i i i iP x a b  ,    

describing the bounding concave function 
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=

,
2

i i i
i

i i

i i

b x f a x a f b
x

b a

M
x a b x

  




  

i

 

   
, ,

= and = argmax maxi i i i
x a b x a bi i i i

.x x 

       

   x  

The algorithm that we propose memorizes all the sub- 
problems and, in particular, stores the maximum i

  of 
each bounding concave function Φi over [ai, bi] in a 
structure called Heap. A Heap is a data structure that 
allows an access to the maximum of the k values that it 
stores in constant time and is updated in O(Log2k) time. 
In the following discussion, we denote the Heap by H. 

Modified Piyavskii’s algorithm can be described as 
follows: 

3.1. Step 1 (Initialization) 

 k ← 0 
 [a0, b0] ←[a, b] 
 Compute f(a0) and f(b0) 

     0
0 0max ,optf f a f b   

     0
0 0argmax ,optx f a f b   

 Let 0  be an upper bounding function of f over [a0, 
b0] 

 Compute    0 0,0 0= max x a b x
   

 0  0opt
 

 if 0 0
opt optf     Stop, 0

optf  is an ε-optimal value  

  0 0 0 0 0= , , ,H P x a b      

3.2. Current Step (k = 1, 2, ···) 

While H is no empty do 
 k ← k + 1 

 Extract from H the subproblem b   = , , ,m m m m mP x a 

with the largest upper bound  l


  , ,k k m ma b x b     

  , ,l l m ma b a x     

3.2.1 Update of the Best Current Solution 
for j = l, k do 

3.2.1.1. Lower Bound 

If   1> k
j optf x f   then  

 j
k

optf f x  

k
opt jx x  

Else 
1k k

opt optf f   

1k k
opt optx x   

End if 

3. r Bound 
 Build an upper bounding function Φj on [aj, bj]  

2.1.2. Uppe

 Compute  ,= max j jx a bj j x
  

   

 Add = , , ,j j j j jx a P b    H  to

r  
m H all 

End fo
 Delete fro subproblems  

= , , ,p p pP x a bp
     

k
p optf   with 

3.2 timality est .2. Op  T

 Let k
opt  be the maximum of all j

  

 If ,k k
opt optf     then Stop, f k

opt  is an ε-optimal 

value 

le
 bn] denote the smallest subinterval of [a, b] 

n, whose end points are evaluation points. 
Th

m 

End Whi  
Let [an,

containing x
en the partial upper bounding function Φn−1(x) span- 

ning [an, bn] is deleted and replaced by two partial upper 
bounding functions, the first one spanning [an, xn] de- 
noted by Φnl(x) and the second one spanning [xn, bn] de- 
noted by Φnr(x) (Figure 1).  

Proposition 1. For n ≥ 2 the upper bounding function 
Φn(x) is easily deduced fro    1 1, , nx x   as 
follows: 

     
  

2

1

1

4
=

4

n n n n

nl

n n

f x f a x

f a





  


 
 

and 



      
  

2

1

1

4
= .

4

n n n

nr

n n

nf x f b f x

f b







  


 
 

Proof. In the case where 

   f1
=

2
n n n n

n n

x f a

a




 

a x
x

M x
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Figure 1. Upper bounding piece-wise concave function. 
 
is in [an, xn], then from remark 1, the maximum of 

 nl x  is given as follows  

       

 21

4

nl
n n

n n

M x a

M x a

     


  


 (3) 

The maximum of 

2
1 1

=
2

n n
n n

f x f a
f x f a

  
 


 1n x  spanning [an, bn] is 
reached at the point 

   1

n n

= .
2

n nn n
n

f b f aa b
x


 

M b a




We deduce that  

        
   

2 2

2

2

1 1
=

4n n

1
,

n n n n

n n

n n

x a b  a f b f a
M

f b f a

b aM

 

 
    

 

then  

    2

1

1 1
=

4 2n n n nM x a f a
    .

By substitution in expression (3), we have the result. 
We show in the same way that the maximum nr

  of 
 nr x  defined in [xn, bn] is given by: 

      
  

2

1 4
=

n n n n

nr

1

.
4 n n

f x f b f x




  


  f b

 

Remark 3. Modified Piyavskii’s al rithm obtains an 
 ε of the maximum value of f(x) 

when the gap 

go
upper bound on f within

n f    is not larger than ε, where  

   ,= .max x a bf f x
   

But f* and  

   ,= arg max x a bx f x
  

are unknown. So modified Piyavskii’s algorithm stops 
only after a so  value within ε of the upper bolution of und 
has been found, i.e., when the error n nf

   is not lar-
ger than ε. The number of iteratio to satisfy 

 conditions is studied below. 

4. Convergence of the Algorithm 

f the n

 

 
ns needed 

each of these

We now study the error and the gap of Φn in modified 
Piyavskii’s algorithm as a function o umber n of 
iterations. The following proposition shows how they 
decrease when the number of iterations increases and 
provides also a relationship between them. 

Proposition 2. Let =n n nf     and =n n f      
ter n iterations denote respectively the error and the gap af

of modified Piyavskii's algorithm. Then, for 2n   1) 

2 1 4,n n    2) 2 1 4,n n    3) 2 1 2.n n     
Proof. First, notice that    ,n n

  and  n   are 
non increasing sequences and  nf

  is nondecreasing. 
After n iterations of the modified Piyavskii's algorit

tion 
hm, 

th e-wise upper bounding piec ve funce conca  n x  
contains  1n   partial upper bounding concave func- 
tions, which we call first generation function. We call the 

 boundi e funct nedpartial upper ng concav ions obtai  by 
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sp ation funclitting these second gener tion. m  must 
belong to the second generation for the first time after no 
more than another 1n   iterations of the modified 
Piyavskii’s algorithm, at iteration m (m ≤ 2n − 1). 

Let k k m  be the iteration after which the 
maximum m

  of 
 1n  

m x  has been obtained, by 
splitting the maximum 1k


  of  1 .k x  Then, in the 

case where  

   
 

=
2

k kk k
k

kk

f x f aa x
x

M x a




 

is in  , ,ka x nd fro  pro osition 1, we get:  

    
k  a pm

 
  

   
  


 


2

1
=

k k k

m

f x a


 


1

4

f a





 

 

rg max

2

4

1
= 2 ,

4

k

k k

f f x

f a

f x
f x




    
  

 

where 

1
1

k k k
k kf a 
 
k kf a 

   , 1= a x a bk kx x    

and  is one of t dpoints of the in ove
whi e function  defined. 

1)  have 

ka
ch th
 We

he en

1k  is

2 1n n

terval 

m

r 

2 1 2 1 ,n mf f   
      

  

where 

    =0, , 1= = max , .max i mm i k kf f x f f x 
   

If  = ,m kf f x  the e, we have  refor

      
    

 
  

 

2 1

1

1

1

1

4

4

4

4

4

= .
4

n

k k

k k

k

k k

k k

n n

n

f x f a f x
2

1

2

k k

k

k

f x
f a

f a

f x

f

f x






















 

  


 

 


 

 


 


If 



 

1= ,m kf f 
  

• case 1  
we will consider two cases:   

If ,k kx a   then  = =m k mf a f   and if ,k kx x   
then  = =m k mf x f   and the algorithm

case 2 
 stops. 

• 
 

 , ,k k kx a x   then we have  

   1
= ,

2
k kk k

k k
k k

f x f aa x
x a

M x a

  


  

hence  

     

 

2

1

2

=

k k k k

k k

M
f a f x x a

f a


  

 

  

(proposition 1). 
Moreover 

    1 .k k k kf x f a f a
      

We deduce from these two inequalities that  

     1 .k k kf kx f a f a     

Therefore 

   

2 1

    
 

        

 

2

1
1

1 1

1 1 1

1 1

2
4

1
2

1
3

4

= δ / 4.
4

n

k k

k k
k k

k k k k k k

k k k

k k

n

f x f a
1k k

1

4

4

n n

f x f
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f x f a f x f a f

f f

f



f a

f



 
 



 
 

  
  

 
 

    
   

     

  

 




 

  

  

2) We have 

2 1 2 1 .n n mf f   
         

the same steps to prove the second point of 1) 
hat 

We follow 
and show t 2 1 4.n n     
3) 

• case 1  
If k kx a   or ,k kx x   then = =m mf f    and the 
al ops. 

• case 2 
gorithm st  

 , .k k kx a x   First, we have  

   
    

 

 

2

1
1

1

1
= 2

4

,
2

k k

m k k k
k k

k k

f x f a
f x f a

f a
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and  
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1

2

,
2

m

k k

n k

f

f x

f f x

 






 




 


 

therefore   .k nf x f     Hence  

 
2 1 2.

4
n k

n n

f x
 





 
   

This proves the proposition. 
Proposition 3. Modified Piyavskii’s algorithm (with 
= 0 ) is convergent, i.e. either it terminates in a finite 

number of iterations or  

   ,= = = maxlim limn x a bn n .n f f f  
   x

Proof. This is an immediate consequence of the 
definition of and i) of proposition 2. 

 Algorithm

ber of necessary function evaluations for 
(P) mea  efficiency of 
 ansen  and Lu [26] 

um nu uation points 
re tain a gua f problem (P) 
where the functions involved are Lipschitz-Continuous 
on 



δn  

5. Reference  

Since the num
lving proso blem sures the a method, 

Danilin [25] and H , Jaumard suggested 
studying the minim mber of eval

quired to ob ranteed solution o

 , .a b  
n the samI e way, we propose to study the minimum 

number of evaluation points required to obtain  
guaranteed solution of problem (P) where the functions 
involved satisfy the condition (1).  

For a given tolerance

a

   and constant M this can be 
rence bounding piece-wise 

concave function that  
done by constructing a refe

 such ref

   , =max x a b ref x f 
   , 

with a smallest possible number f evaluations 
points  in 

refn  o

1 2, , , nref
y y y  , .a b

 boundin
  

Suc g e concave 
function is constructed with 

h a reference piece-wis

   ,= max x a bf f x


se, designed
ut rather to

ry evaluation points i
her algorithm
g function  ref

 which 
o be known. It  not to 

lem (P) from th  give a 
reference number of necessa n order 
to study the efficiency of ot  to 

is assumed t  is of cour
solve prob e outset, b

s. It is easy
see that a reference boundin x  can be 

1). Initialization 
•   

obtained in the following way: 

Description of the Reference Algorithm 

1k 
• 1y   root of the equation  

   2
=

M
a x f x    0.f    

ction 

2

2). Reference bounding fun
While <ky b  do 

• compute  kf y  

•   2
(p k kk

x y f f y
M

     

• 1 root of the equation  ky  

   2

= 0
2 pk

M
f f x x x       

• 1k k   
End While. 
3). Minimum number of evaluations points   
• refn k  

A reference bound function ing is then defined as 
follows (see Figure 2) 

ref  

 

  

  

2
,

2

M
x a y



1

, ,k2 1

2

=
2 = 1, , 1

,
2

k
ref pk

ref

p nn

f x a if

refref

if x y yM
x f x x

k n

M
f x x if x y b










    

   







            


 

6. Estimation of the Efficiency of
Modified Piyavskii’s A

 the 
lgorithm 

Proposition 4. For a given a tolerance ,  let ref  be 
ding function with 
 and 

a reference boun
poin

refn  evaluations 
ts nref1, ,y y = .ref f     Let C  be a 

boun  di ction obtained by the 
uation points 

ng fun
algorithm with eval

modified Piyavskii’s
,1, , nC

x x
 that

h

 where nC 
ofis the smallest number  iterations suc   

 
 

,
= .maxC C

x a b
x f  


     

Th ave 

,

en we h

2 1C refn n                 (4) 

and bound is sharp for all values of 
Proof. The proof is by inducti on  We 

initia e the ind
• Case 1 
We have  that 

the efrn  
on refn

liz uction at = 1.refn  
.b  (see Figure 3) 1 =y

 to show      , ,C R .x x x a b     
We have  

         

  
2

x a 

=
b x f a x a f b

M
b x

  



C x
b a
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Figure 2. Reference bounding function. 
 

 

Figure 3. Case y1 = b. 
 

and             2
= .

2ref

M
x f x          2

= =
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M
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hence  

      

     

      
 2

( ) =

2 2

= .
2

C

b x f a x a f
x

b a

M M
x a b a x a b x

b x f a x a f M
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Therefore  

        = 0C ref

b x
x x f a f

b a


    


 ,

hence the result holds. 
• case 2 y1 < b. (see Figure 4) 
If nc = 2, (4) holds. In this case, we have  

 

   

   

2

1

2

11

,
2

=

, ,
2

ref

p

M
f x a si x a y

x

M
f x x si x y b









    


 

    


 

where 

  1 11

2
= .px y f f y

M
     

at Assuming th 1 > f     and  3 1,x a y  ( the 
proof is similar for  3 1,x y b ). We denote by  l x  
and  r x  the ing  

respectively on 

partial bound  functions defined 

 3,a x  and  3 ,x b  and by r
  a 

maximum value of  .r x  We show that  

     3,l refx x x a x       

and that .r f      Indeed, we have  

         

  

3 3

3

3

=

2

l

x x f a x a f x
x

x a

M
x a x x

  




  

 

and 

     2

3 3 = ,
2ref

M
f x x f a x      3

thus 

   

    
 

3

3

30 , .

l refx x

x x
f a f

x a

x a x



 


 



  

 

If  

   
 

33

3

=
2

f b f xx b
x

M b x

 


  

is in  3 , ,x b  then  

         
  

2

3
3 1

1

1 1
= .

2 2 2
r

f b f x
f x f b

f b
 



      
   

 

 

 

Figure 4. Case y1 < b. 
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As 

    3 1f b f b    f x

of proposition (see the proof 2), we have 

  

 

  

3 1

2

3 1

1 1

1

2

1

2 2

1
.

2

r f x

M
f a x

f f a f



 

 

 

   

  

      
 

      

 

If ,x b   then  = .r f b f       
If x  ≤ x3 then  = f x f3r     and (4) holds. 

e now th  and 
onsider nref = k + 1. The relation (  = 2, 

therefore we may assume that  

.

 
at (4) holds for refAssum  1 ,n k k 

4) holds for ncc

1 1 2> , = and =f x a x b     

If we let  

   ,3 1= arg ,max x a bx x    

the modified Piyavskii’s algorithm has to be imple- 
mented on two subintervals [x1, x3] and [x3, x2] There are 
two cases which need to be discussed separately: 

• case 1 (see Figure 5) 
There is a subinterval containing all the nref evaluation  

points of the best bounding function  .ref x
that ,[ 1 xx
. Let 

 Without 
loss of generality, we may assume  con- 
tains all nref evaluation points of 

]3

ref x  and x  
be the solution of  1 x f= .   By symmetry, we 
have  

3 = .
2

x x
x

 
  

Let nref
y  

tial bou
be the abscissa of the maxim f the last 

par nding function of 
um o

 .ref x  Due to our 
n,  assum we have ptio

  2
= (n n nref ref ref

y y f f y x
M

 ,       

since otherwise there is an another evaluation point of f 
on the interval  

, .nref
y b 
  

  

Let 1nref
y   be the abscissa of the maximum of the 

function of partial bounding  .ref x  preceding .nref
y  

In this case, we have  

  1

2
> =n n nref ref ref

x y y f f y
M


      .

But 1 <nref
y x 

n
 implies that nref = 1, which is not the 

case accordi g to the assumption (nref ≥ 2). Therefore, 
this case will never exist. 

 

 

Figure 5. The subinterval contains refall the n  evaluation points. 

Copyright © 2012 SciRes.                                                                                  AM 



R. ELLAIA  ET  AL. 1315

 
• case 2 

None of the subintervals contains all the nref uation 
points of Φref(x). We can then apply induction, reasoning 
on the subintervals [x 2] obtained by modi-
fied Piy

 eval

1, x3] and [x3, x
avskii’s algorithm. If they contain  and 

evaluation points respectively, [x1, x ] contain

1
cn

s 

2
cn  
12

1 2
c cn n   

Then evaluation points as x3 belongs to b  subi
(4) follows by induction on n . 

d
0 we hav

bound (4) is sharp. 
As noticed in remark 3, the modified Piyavskii’s algo- 

rithm does not necessarily stop as soon as a co  is 
found as described in proposition 4, but only when the 
rror does not exceed ε. We now study the number of 

evaluation points necessary for this to happen. 
Proposition 5. For a given tolerance ε, let nref be the 

number of evaluation points in a reference bounding 
function of f and nB the number of iterations after which 
the modified Piyavskii’s algorithm stops. We then have  

.               (5) 

Proof. Let Due to proposition 4, after 
 iterations

oth ntervals. 
ref

Consi er the function f(x) = x defined on [0, 1], the 
constant M is equal to 4. For ε = e nC = nref + 1 
(see Figure 6), and the 

ver

e

4 1B refn n   

= 2 1.C refn n   
, we have Cn  .C f  

  
iterations, we have 

 Due to 3) of 
proposition 2, after  2 1Cn    

2 1 2 1 ,n n nC C C
f f  

   
      

algorithm is satisfied. This proves (5). 



which shows that the termination of modified Piyavskii’s  

7. Bounds on the Number of Evaluation 
Points 

e prev
modified algo

nce algorithm. We now evaluate 
the number nB of evaluation functions of the modified 
Piyavskii’s algorithm itself. To achieve this, we rive 
bounds on nref, from which bounds on n  are readily ob- 
ta he re

In th ious section, we compared the number of 
evaluation functions in the  Piyavskii’s - 
rithm and in the refere

de
B

ined using t lation nref ≤ nB ≤ 4nref + 1. 
Proposition 6. Let f be a C2 function defined on the in- 

terval [a, b]. Set 

   0 ,= sup x a bM f x   

and let  

   ,= .max x a bf f x
   

Then the number nref of evaluation points in a reference 
cover Φref using the constant M1 ≥ M2 is bounded by the 
following inequalities:  

    1 0

0

1 0

d

.

2log( 1 )

b

a

ref

x
M M f

f f x
n

M

M M





 
 


 
   


  (6) 

 

 

ontains all the nref evaluation points. Figure 6. None of the subintervals c
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0

2

1 0

1

0

0 1

d

.2 .2 ,
2

d

4 2

.2 .2 .

b

ref

b

a

M x

M M
in inif f

n M

M x

f f x

in inif M M



2 a f f x

 











        


  
 





  (7) 

Proof. We suppose that the reference cover Φref has 
nref − 1 partial upper bounding functions defined by the 
evaluation points  

.

We consider an arbitrary partial upper bounding function 
and the corresponding subinterval [yi, yi + 1] fori i = 1, ···, 
nref − 1. To simplify, we move the origin to the point (yi, 
f(yi)). Let d = yi + 1 − yi , z = f(yi + 1) − f(yi) and h = f* + ε. 
We assume z ≥ 0 (See Figure 7). 

Let be the partial upper bounding function de- 
fined on yi + 1] and 

  


1 2= , , , =nref
a y y y b  

r
ref  

 [yi, pi
x  the point where  

 , 1
=max

r
x y y refi i

x f 
   

    

is reached, then 

  

  1 1

2
=

2
= .

p i ii

i i

x y f f y
M

y f f y
M








 

  

  

 

We deduce that  
2

1d1
= .

2 2

Mz
h

M d
    

1  

Let g1 be the function defined on [yi, yi + 1] by: 

 

       

  

1

1 1

1

0

= i i i i

i i

g x

y x f y x y f y

y y

M
x y y x

 



  



  
 

12 i i

z



20 0= ( ) .
2 2

M d M
x x

d
 

e  We hav

     1 , .f x g x x a    b

Thus we have 

 

 

0

dd x

f f x

0
1

20
20 01

1

d

d
.

d1

2 2 2 2

d

d

x

f g x

x

M d MMz z
x x

M d d


 


        

   





 

Consider the function 
 

  

 

Fig ns. ure 7. The reference cover Φref has nref − 1 partial upper bounding functio
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2

20 01
1

1

d1
= .

2 2 2 2

M d MMz z
F x x

M d d
        

   
 x

Let x1 and x2 be the roots of the equation F1(x) = 0; 
they are given by  

0
1

0

2 2

0 0 1

1

2

2 2

1
=

d M d

M d z
x 0

0

2 2

1
=

2

2

M d z
x

M d

M d M M dz z

M d

    
 


    

0 0 1

12 2

M d M M dz z

d M d

       
    

  
   
 

                 

Then F1 is written in the following way  

 

    1 1 2= .
2

0M
F x x x x x    

Let  

0= ,
2

M d z

d
   

0= ,
2

M d z

d
   

2 2

0 0 1

1

=
2 2

M d M M dz z

d M d
        

  
 .

We have 

 0
1

d 1
= log log

1
= log log

d x

F x

   
    

   
    

  
   

     
         


 

.

Since θ ≥ 0 and g1 reaches its minimum at the point θ, 
then  

1
 
 





  

and  

 0
1

d 1
log .

d x

F x

 
  




  

Since 

0

1 0

log 2log 1 ,
M

M M

 
 

 
     

 

  1 0

1 1
,

2 M M f 


 
 

then 

 

  

0

0

1 01 0

d

2
log 1 ,

d x

f f x

M

M MM M f









 

 
      


 

and  

 

  
0

1 01 0

d

2
log 1 .

b

a

ref

x

f f x

M
n

M MM M f









 

 
     


 

.  
Now let us consider the function G defined and con-

tinuous on [yi, yi + 1] such that 

• 

This proves (6)

     1, ,i if x G x x y y     

  .G x f   • 

Two cases are considered  
case 1: If  

22

01

and  

12 2M d 0

1 1
,

2 2

M dM dz z

M d
        

 
  (8) 

then, the function G is given by  

 

    20 0
2= =

2 2

M d Mz
G x g x x x

d
   
 

 .

Hence 

   0
2

d d
.

d d

o

x x

f f x f g x  
      

We consider  

 
2

20 01
2

1

1
= ,

2 2 2 2

M d MM dz z
F x x

M d d
        

   
 x

its derivative is 

  0
2 0= ,

2

M dz
F x M

d
     
 

 x

  0
2

0

1
= 0 = .

2

M dz
F x x

M d
     

 
 

Thus F2 is expressed as follows  

     2
0

2 2= ,
2

F x F x x 
M

x   
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hence  

 

     

 

0
2

2

F x

0

0 2 2

0

2

d

= arctan
2

arctan .
2

d x

M
d x

M F x F x

M
x

F x


 




        

     



 

Since  

 
22

01
2

1 0

1 1
=

2 2 2 2

M dM d z z
F x

M d M d
         

   
 

and               arctan ,
2

x


   

then             
 0

2 0

d 2
,

d x

F x M 
   

and 

  0

d 2
.

b

refa

x
n

Mf f x   
   

Moreover, the inequality  

 
2

1 0

12

M M
f

M
  

  
 

 

implies (8), this proves the first inequality of (7).  
 Suppose that:  Case 2:

22

01

1 0

1 1
.

2 2 2 2

M dM d z z

M d M d
        

   
  (9) 

Let X1 et X2 be the roots of the equation  
2

20 01

12 2 2 2M d d 
1

= 0,
M d MM dz z

x x        
   

 

2 are given by  X1 and X

0
1

0

2 2

0 0 1
0

1

0
2

1
=X

M d0

2 2

0 0 1
0

1

1
=

2

2 ,
2 2

2

2 .
2 2

M dz
X

M d

M d M M dz z
M

d M d

M dz

M d M M dz z
M

d M d





    
 

   


             


     
                 

 

In this case, G is given by 



   
 

 

20 0

1 2

3 2

1

1

1 2

2 2

if 0, [ , ]
= =

1

2 2

if , .

M d Mz
x x

d

x X X d
G x g x

M dz

M d

x X X



   
 
  


      
 

 

We have 

 

 

   

   

0

0
3

1

0 2
0

2
0

2

d

d

d

2

d

d

X

x

f f x

x

f g x

x
M

F x x x

M
x x









 

 


 


 

 





  

Moreover, M0 = M1 implies the condition (9) and we 
have 

2

2

1 2

d d
.

X d

X X

x x

F x  
  

2

 2

0
1 0

0

01
= 2

M dz
X M2 0

0

= 0

1
= 2

2

2

x

M dz
X M

M d

M d

F











      

  
 


       

 

Therefore 

 
1

0 2*0 0

d 2
£ ,

2

X x
M Mx x 

  

2

1
0

d 4
,

2

X

X

x

M 
  

 22 *0 0

d 2
,

2

d

X

x
M Mx x 




  

and 

 0
03

d 2
4 .

d x

Mf g x  
   

Hence 

 
0 d

.
4 2

b

ref a

M x
n

f f x
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Table 1. Computational results with 2= 10  . 

C

ref

N

n
 Function 

number 
Function f(x) Constant M Interval [a, b] 

Optimal 
value fopt 

Optimal 
point(s) xopt 

NC nref 

   3 1.4 sin 18x x   1 626.4 [0, 1] 1.48907 0.96609 13 7 1.85 

     −6.7745761    

2 350 [−10, 10] 12.03125 −0.49139 76 44 1.72 

     5.791785    

3 

  5

=1
sin 1

k
k k x k   

10 sin10x x  2100 [0, 7.9197273 0.79785 16 10 1.6 1] 

sin sin10 3x x   4 12 [2.7, 7.5] 1.899599 5.145735 11 6 1.83 

  –7.0835    

5 350 [−10, 10] 14.508 –0.8003 69 39 1.76 

     5.48286    

x 51 [0, 4] 0.788685 0.224885 21 13 1.61 

7 

   

  5

=1
cos 1

k
k k x k   

6 e sin 2x   

 216 24 5 xx x e   24 [1.9, 3.9] 3.85045 2.868 16 11 1.45 

2 3128 282.58 25x x x   370 [0, 1] 1.72866 0.18916 33 24 1.37 

 4 5278.7 100.9x x          

9 sin sin 2 3x x   9 [3.1, 20.4

10 

] 1.90596 17.029 30 19 1.57 

sin 3 1x x   10 [0, 6 7.81567  5.87287 11 6 1.83 .5] 

11 sinx x  31 [0, 10] 7.91673 7.9787 22 12 1.83 

12 2cos cos 2x x   15 [−1.57, 6.28]  1.5 2.094 26 17 1.52 

     4.189    

13 3 3sin cosx x   18 [0, 6.28]  1 3.142 28 18 1.55 

14 
10

sin sin
3

x
x   12.1 [2.7, 7.5]  1.6013 5.19978 11 6 1.83 

        log 0.84 3x x    

 
ations of modified Piyavskii's algorithm for different values of M. 

 Test function No 1 Test function No 2 Test function No 3 

ε and Table 2. The number of function evalu

Mε 626.4 800 975 1500 2000 350 400 500 600 1000 2100 2150 2200 2300 3000

0.5 10 11 15 18 18 67 68 72 75 103 11 11 12 12 13 

10−2 13 17 21 24 26 76 78 85 86 122 16 16 17 17 18 

10−4 17 22 25 28 32 88 89 95 103 141 22 22 22 22 23 

10−6 20 26 31 36 38 96 98 108 118 160 27 27 28 28 29 

10−8 24 29 36 41 46 106 111 132 177 31 32 34 33 36 121 

 
8. Computational Experiences 

In this section, we report the results of computational 
experiences performed on fourteen test functions (see 
Tables 1 and 2). Most of these functions are test functions 
drawn from the Lipschitz optimization literature (see  

Hansen and Jaumard [20]). 
The performance of the Modified Piyavskii’s algo- 

rit easured in terms of NC, the number of function 
evaluations. The number of function evaluations NC is 
compared with (nref), the number of functio uations 
required by the reference sequential algorithm. We ob- 

hm is m

n eval
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serve that NC is on the average only 1
More precisely, we have the following estimation  

.35 larger than (nref). 

1.35 1.85CN
 

refn
. 

For the first three test ions, we obser  that the 
influe of the parameter M is not very important, since 
the number of function evaluations increase reciably
for a same precision ε. 
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