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Modified Projectile Linear Theory
for Rapid Trajectory Prediction

Leonard C. Hainz III∗ and Mark Costello†
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In some smart weapons, estimation of the impact point of the shell at each computation cycle of the control law
is an integral part of the control strategy. In these situations, the impact point predictor is part of the imbedded
computing system onboard the projectile. Practical considerations dictate that the impact point predictor yield
rapid yet reasonably accurate estimates. Common methods for rapid trajectory prediction are numerical inte-
gration of point mass dynamic equations and evaluation of approximate closed-form solutions of the rigid-body
projectile dynamic equations. These methods are shown to exhibit poor impact point prediction for long-range
shots with high gun elevations characteristic of smart indirect fire munitions. Through modifications of projectile
linear theory, a rapid projectile impact point predictor is proposed that eliminates the accuracy problems of the
other methods while preserving low computational requirements. Typical results are provided for a short-range
trajectory of a direct fire fin-stabilized projectile and a long-range trajectory for an indirect fire spin-stabilized
round to substantiate these claims.

Nomenclature
A, B, C, E = epicyclic matrix coefficients
aV , bV = velocity solution coefficients
CDD = roll moment aerodynamic coefficient

due to fin cant
CL P = roll damping aerodynamic coefficient
CM Q = pitch damping aerodynamic coefficient
CN A = normal force aerodynamic coefficient
CN P A = Magnus force aerodynamic coefficient
CN R = yaw damping aerodynamic coefficient
CX0 = zero yaw axial force aerodynamic coefficient
CX2 = yaw angle squared axial force

aerodynamic coefficient
CY B1 = normal force aerodynamic coefficient

along jn axis
CY 0 = trim side force aerodynamic coefficient
CZ A1 = normal force aerodynamic coefficient

along knr axis
CZ0 = trim vertical force aerodynamic coefficient
D = projectile reference diameter
Fv, Fw, Fq , Fr = epicyclic equations forcing coefficients
g = gravity
I = projectile inertia matrix
IX X , IY Y , IZ Z = diagonal components of the inertia matrix
IXY , IY Z , IX Z = off-diagonal components of the

inertia matrix
L̃, M̃, Ñ = external moments on projectile,

expressed in the no-roll frame
L̃ A, M̃A, ÑA = moment due to aerodynamic force,

expressed in the no-roll frame
L̃ M , M̃M , ÑM = moment due to Magnus force, expressed

in the no-roll frame
L̃UA, M̃UA, ÑUA = unsteady aerodynamic moment, expressed in

the no-roll frame
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m = mass of projectile
p̃ = projectile roll rate, expressed in

no-roll frame
q̃, r̃ = projectile pitch and yaw rates, expressed in

the no-roll frame
R⊕C A = vector from the projectile center of mass to

the center of pressure
R⊕C M = vector from the projectile center of mass to

the Magnus center of pressure
RMC M = distance from center of mass to Magnus

center of pressure along station line
RMC P = distance from center of mass to center of

pressure along station line
s = dimensionless arc length
t = time
ũ, ṽ, w̃ = projectile velocity components, expressed in

no-roll frame
ũ A, ṽA, w̃A = projectile aerodynamic velocity components,

expressed in the no-roll frame
ũW , ṽW , w̃W = wind velocity, expressed in the no-roll frame
V = total velocity
VA = total aerodynamic velocity
X̃ , Ỹ , Z̃ = external forces on projectile expressed in the

no-roll frame
X̃ A, ỸA, Z̃ A = aerodynamic force acting on the projectile

expressed in the no-roll frame
X̃ M , ỸM , Z̃ M = Magnus force acting on the projectile

expressed in the no-roll frame
X̃w, Ỹw, Z̃w = weight force acting on the projectile

expressed in the no-roll frame
x, y, z = projectile position in inertial space
α, β = aerodynamic angles of attack
θ, ψ = projectile pitch and yaw angles
ρ = atmospheric density
σF , σS = epicyclic eigenvalue real components
�F , �S = epicyclic eigenvalue imaginary components
φ = projectile roll angle

Introduction

B EFORE 1500, it was believed that projectiles in flight moved
in a straight line until the round lost its “impetus” at which

point it fell to the ground abruptly. In the first half of the 16th cen-
tury, Italian ballistician Niccolo Tartaglia first noted that projectiles
in flight move along a curved path. The work of Galileo Galilei,
the well-known Italian physicist and astronomer, generated the first
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HAINZ AND COSTELLO 1007

analytic projectile trajectory solution and found that the path was
parabolic. He effectively modeled the projectile as a point mass with
only gravity acting on the projectile. His trajectory predictions were
remarkably accurate primarily because early projectiles were heavy
and fired with low initial velocity. In 1711, Johann Bernoulli created
the first projectile trajectory solution including the effect of aero-
dynamic drag. Understanding of the effect of aerodynamic drag on
the trajectory of a projectile was greatly aided by the invention of
the ballistic pendulum by English ballistician Benjamin Robins in
early part of the 18th century. The ballistic pendulum allowed the
impact velocity of a projectile to be determined. When rounds were
fired at the pendulum from different distances, the effect of drag was
deduced. A variety of functions relating drag and projectile velocity
were developed by different research organizations. In the middle
of the 18th century, Swiss mathematician Leonard Euler developed
the short arc method for rapidly obtaining approximate solutions of
the point mass projectile dynamic equations with aerodynamic drag
as a function of velocity. This basic method of generating projectile
trajectories remained the state of the art until World War I. Dur-
ing this time, various organizations created general tables providing
impact data for a given shell under different muzzle velocity and
angle of launch conditions. One of the more notable set of tables
was generated by Italian ballistician Francesco Siacci. As new gun
technology emerged in the form of rifled guns (1750) and elongated
bullets (1825) and new missions such as artillery and antiaircraft
surfaced, problems with the point mass projectile dynamic model
mounted. The basic point mass model was not able to account for
swerve due to the yaw of repose or drag and lift caused by yawing of
elongated projectiles. Moreover, the point mass model did not pro-
vide a basis for stability of a round in flight. To eliminate some of the
problems associated with point mass projectile dynamic modeling,
the modified point mass model was developed, which included yaw
of repose in an approximate manner.1

More than 80 years ago, pioneering English ballisticians Fowler,
Gallop, Lock, and Richmond constructed the first rigid six-degree-
of-freedom projectile exterior ballistics model.2 Their model con-
tained a reasonably complete aerodynamic force and moment ex-
pansion for a spinning shell and included aerodynamic damping
along with Magnus force and moment. Guided by an extensive
set of yaw card firings, these researchers also created the first ap-
proximate analytic solution of the six-degree-of-freedom projectile
equations of motion by introducing a set of simplifications based
on the relative size of different dynamic quantities of a stable pro-
jectile and based on clever linearization by artificially separating
the dynamic equations into uncoupled groups. The resulting theory
is commonly called projectile linear theory. Refinements and im-
provements to projectile linear theory were made by Kent,3 Neilson
and Synge,4 Kelley and McShane,5 and Kelley et al.6 Projectile
linear theory has proved an invaluable tool in understanding basic
dynamic characteristics of projectiles in atmospheric flight, for es-
tablishing stability criteria for fin- and spin-stabilized projectiles,
and for extracting projectile aerodynamic loads from spark range
data. Various authors have extended projectile linear theory to ac-
commodate asymmetric mass properties,7 fluid payloads,8,9 moving
internal parts,10−12 ascending flight,13 lateral force impulses,14,15 and
dual-spin projectiles.16,17

Whereas point mass and approximate rigid-projectile solutions
provide qualitatively correct trajectories, impact point prediction
errors can be relatively large, particularly for high launch angles
and long-range trajectories. For the design of some smart weapon
flight control systems, prediction of the impact point during flight is
an integral part of a complex control law.18 When an array of differ-
ent sensors is used, an observer is used first to obtain an estimate of
the projectile state at a given time instant. Miss distance is then esti-
mated by projecting the bullet from an arbitrary state to impact us-
ing a dynamic model solution. Common methods for predicting im-
pact point include numerical integration of three-degree-of-freedom
point mass models, numerical integration of four-degree-of-freedom
modified point mass models, and approximate analytical solutions of
six-degree-of-freedom rigid-projectile models. The work reported
here documents several modifications to standard projectile linear

theory that significantly improve accuracy of impact point predic-
tion while still maintaining low computation overhead required for
real-time implementation of a smart weapon control law. Results
using the modified projectile linear theory trajectory generator are
contrasted against other common trajectory generation techniques.

Projectile Dynamic Model
A six-degree-of-freedom rigid-projectile model is employed to

predict the dynamics of a projectile in flight. These equations as-
sume a flat Earth. The six degrees of freedom comprise the three
translational components describing the position of the projectile’s
center of mass, and the three Euler angles describing the orientation
of the projectile with respect to Figs. 1 and 2 provide a visualiza-
tion of the degrees of freedom. The equations of motion for the
six-degree-of-freedom model, derived in the no-roll frame, are






ẋ

ẏ

ż





=





cθ cψ −sψ sθ cψ

cθ sψ cψ sθ sψ

−sθ 0 cθ










ũ

ṽ

w̃





(1)






φ̇

θ̇

ψ̇





=





1 0 tθ
0 1 0

0 0 1/cθ










p̃

q̃

r̃





(2)

Fig. 1 Projectile position coordinate definitions.

Fig. 2 Projectile orientation definitions.
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1008 HAINZ AND COSTELLO






˙̃u
˙̃v
˙̃w





=






X̃/m

Ỹ/m

Z̃/m





+






r̃ ṽ − q̃w̃

−tθ r̃w̃ − r̃ ũ

q̃ ũ + tθ r̃ ṽ





(3)






˙̃p
˙̃q
˙̃r





= [I ]−1











L̃

M̃

Ñ





−





0 −r̃ q̃

r̃ 0 r̃ tθ
−q̃ −r̃ tθ 0



 [I ]






p̃

q̃

r̃









 (4)

The force acting on the projectile in Eq. (3) comprises the weight
force W and the aerodynamic force. The aerodynamic force is split
into a standard A and Magnus M aerodynamic force. The combi-
nation of forces is






X̃

Ỹ

Z̃





=






X̃w

Ỹw

Z̃w





+






X̃ A

ỸA

Z̃ A





+






X̃ M

ỸM

Z̃ M





(5)

The weight force in the no-roll coordinate system is expressed as





X̃w

Ỹw

Z̃w





= mg






−sθ

0

cθ





(6)

The aerodynamic force in the no-roll coordinate system, which acts
on the projectile at the aerodynamic center of pressure, is






X̃ A

ỸA

Z̃ A





= −π

8
ρV 2

A D2






CX0 + CX2α
2 + CX2β

2

CY 0 + CY B1β

CZ0 + CZ A1α





(7)

The Magnus force in the no-roll coordinate system, which acts on
the projectile at the Magnus force center of pressure is






X̃ M

ỸM

Z̃ M





= π

8
ρV 2

A D2






0
p̃DCN P Aα

2VA

− p̃DCN P Aβ

2VA






(8)

Equations (7) and (8) are based on Mach number-dependent coeffi-
cients, the aerodynamic angles of attack given in Eqs. (9) and (10),
and the total aerodynamic velocity given in Eq. (11) as follows:

α = tan−1(w̃A/ũ A) (9)

β = tan−1(ṽA/ũ A) (10)

VA =
√

ũ2
A + ṽ2

A + w̃2
A (11)

The moment acting on the projectile in Eq. (4) comprises the
moment due to the standard aerodynamic force A, the moment due
to the Magnus aerodynamic force M , and the unsteady aerodynamic
moment (UA),






L̃

M̃

Ñ





=






L̃ A

M̃A

ÑA





+






L̃ M

M̃M

ÑM





+






L̃UA

M̃UA

ÑUA





(12)

The moment due to the aerodynamic force is





L̃ A

M̃A

ÑA





=





0 −R⊕C AZ R⊕C AY

R⊕C AZ 0 −R⊕C AX

−R⊕C AY R⊕C AX 0










X̃ A

ỸA

Z̃ A





(13)

The moment due to the Magnus force is






L̃ M

M̃M

ÑM





=





0 −R⊕C M Z R⊕C MY

R⊕C M Z 0 −R⊕C M X

−R⊕C MY R⊕C M X 0










X̃ M

ỸM

Z̃ M





(14)

The unsteady aerodynamic moments acting on the projectile are






L̃UA

M̃UA

ÑUA





= π

8
ρV 2

A D3






CDD + p̃DCL P

2VA

q̃ DCM Q

2VA

r̃ DCN R

2VA






(15)

The coefficients used in this model are projectile-specific func-
tions of the Mach number of the projectile. For fin-stabilized pro-
jectiles, Magnus force and moment are typically ignored because
their effect is rather small for slowing rolling projectiles.

The dynamic equations of motion (1–15) are highly nonlinear.
Thus, numerical integration is commonly used to obtain solutions
to this initial value problem.

Modified Projectile Linear Theory
Mathematically, the projectile dynamic model just discussed con-

sists of 12 highly nonlinear ordinary differential equations. These
equations are not amenable to a closed-form solution. Simplifica-
tions to the dynamic equations have been identified over time that
yield an analytically solvable set of quasi-linear differential equa-
tions that enable rapid trajectory construction. Projectile linear the-
ory provides reasonably accurate trajectory prediction for flat fire
short trajectories. For high quadrant elevation shots or long-distance
trajectories, qualitatively correct trajectories are generated. How-
ever, in these cases, significant impact point prediction errors are
noticed with conventional projectile linear theory. To improve tra-
jectory prediction, the solution procedure is altered, and the typ-
ical assumption of small Euler pitch angle is relaxed. To develop
the modified projectile linear theory equations, the following set of
simplifications are employed:

1) The station line velocity ũ, roll rate p̃, and roll angle φ are
large in relation to the side velocities ṽ and w̃, yaw angle ψ , pitch
and yaw rates q̃ and r̃ , and wind velocity components ũW , ṽW , and
w̃W . Products of small values and derivatives of small values are
treated as negligible.

2) The yaw angle ψ is small, allowing the simplifications

sin(ψ) ≈ ψ, cos(ψ) ≈ 1 (16)

to hold.
3) The aerodynamic angles of attack are also small in magnitude,

allowing the angles of attack to be as

α ≈ w̃/V (17)

β ≈ ṽ/V (18)

instead of Eqs. (9) and (10).
4) The Magnus force components are small in comparison with

the weight and aerodynamic force components, and so they are
treated as negligible in the modified linear theory force computa-
tions. The Magnus force does create a nonnegligible moment, and
so it is maintained in the moment computations.

5) The projectile is geometrically symmetrical about the station
line. This allows the inertia matrix to be simplified as

IXY = IY Z = IX Z = 0 (19)

IY Y = IZ Z (20)
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HAINZ AND COSTELLO 1009

6) The projectile is aerodynamically symmetric. This allows the
aerodynamic coefficients to be simplified as

CM Q = CN R (21)

CY 0 = CZ0 = 0 (22)

CY B1 = CZ B1 = CN A (23)

This also allows for a simplification in the expressions of the dis-
tances from the center of mass to both the standard aerodynamic
and Magnus centers of pressure as

R⊕C AX = RMC P , R⊕C M X = RMC M

R⊕C AY = R⊕C AZ = 0, R⊕C MY = R⊕C M Z = 0 (24)

7) The wind velocity component ũW parallel to the projectile
station line is negligible in comparison to the projectile total velocity.

8) A change of variables is introduced in which the station line
velocity ũ is replaced by the projectile total velocity V the projectile
total velocity and the application of assumption 1 is expressed as

V =
√

ũ2 + ṽ2 + w̃2 ≈ ũ (25)

The time derivative of the total velocity and the application of as-
sumption 1 is expressed as

V̇ = (ũ ˙̃u + ṽ ˙̃v + w̃ ˙̃w)/V ≈ ˙̃u (26)

9) Another change of variables is performed to convert the in-
dependent variable from time t to dimensionless arc length s. The
arc length is dimensionless and expresses the projectiles downrange
travel in calibers:

s = 1

D

∫ t

0

V dτ (27)

The following equations express the relationships between time
derivatives and arc-length derivatives in terms of an example vari-
able ζ , where prime terms are used to denote arc-length derivatives
and dotted terms denote time derivatives:

ζ̇ = (V/D)ζ ′ (28)

ζ̈ = (V/D)2(ζ ′′ + ζ ′V ′/V ) (29)

Applying the previous assumptions and transformations to the
no-roll frame six-degree-of-freedom equations yields

x ′ = cθ D (30)

y′ = cθ Dψ + D

V
ṽ (31)

z′ = −Dsθ + Dcθ

V
w̃ (32)

φ′ = D

V
p̃ (33)

θ ′ = D

V
q̃ (34)

ψ ′ = D

V cθ

r̃ (35)

V ′ = −πρD3

8m
CX0V − Dg

V
sθ (36)

ṽ′ = −πρD3

8m
CN A(ṽ − ṽW ) − Dr̃ (37)

w̃′ = −πρD3

8m
CN A(w̃ − w̃W ) + Dq̃ + Dgcθ

V
(38)

p̃′ = πρV D4

8IX X
CDD + πρD5

16IX X
CL P p̃ (39)

q̃ ′ = πρD4 RMC M

16IY Y V
CY P A p̃(ṽ − ṽW ) + πρD3 RMC P

8IY Y
CN A(w̃ − w̃W )

+ πρD5

16IY Y
CM Qq̃ − IX X D

IY Y V
p̃r̃q (40)

r̃ ′ = −πρD3 RMC P

8IY Y
CN A(ṽ − ṽW ) + πρD4 RMC M

16IY Y V
CY P A p̃(w̃ − w̃W )

+ IX X D

IY Y V
p̃q̃ + πρD5

16IY Y
CM Qr̃ (41)

Equations (30–41) form the modified linear theory equations of
motion for a projectile. These equations, although not strictly linear,
are in a form that makes an approximate analytical closed-form
solution possible. In standard projectile linear theory, the additional
assumption of small Euler pitch angle is made, leading to sin θ ≈ θ
and cos θ ≈ 1.

Analytical Closed-Form Solution
The closed-form solutions of Eqs. (30–41) are aided by making

the following assumptions:
1) The aerodynamic coefficients are constant.
2) The total velocity V is slowly changing with relation to the

other variables. It is only treated as a dynamic variable in the solution
of the total velocity equation (36).

3) The roll rate p̃ is slowly changing in relation to the other angular
rates. It is treated as a dynamic variable in the solution of the roll rate
equation, but as a constant in the solution of the epicyclic equations.
With these assumptions, the equations of motion decouple into five
groups of equations that are largely uncoupled, namely, the total
velocity, roll rate, epicyclic, Euler angle, and swerve equations. The
solution process assumes that the epicyclic variables change most
rapidly, followed by the total velocity and roll rate.

Total Velocity Solution
The total velocity solution is found by treating the pitch angle as

a constant and then integrating Eq. (36):

V (s) =
√(

V 2
0 + bV /aV

)
e−2aV s − bV /aV (42)

The coefficients appearing in Eq. (42) are

aV = (πρD3/8m)CX0, bV = gD sin(θ0) (43)

Roll Rate Solution
The roll rate solution is

p̃(s) = Cpe1eC pe2s − Cp0 (44)

where

Cp0 = 2CDD V0

DCL P
, Cpe1 = p̃0 + 2CDD V0

DCL P
, Cpe2 = πρD5

16IX X
CL P

(45)

Epicyclic Solution
The remaining velocity and angular rate equations (37) and (38)

and (40) and (41) form a set of coupled nonhomogeneous differential
equations referred to as the epicyclic equations. If the pitch angle,
total velocity, and roll rate are treated as constant, these equations
are linear and can be compacted into the form






ṽ′

w̃′

q̃ ′

r̃ ′






=







−A 0 0 −D

0 −A D 0

B/D C/D E −F

−C/D B/D F E












ṽ

w̃

q̃

r̃






+






Fv

Fw

Fq

Fr






(46)

The coefficients appearing in Eq. (46) are expressed in

A = πρD3

8m
CN A (47)
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1010 HAINZ AND COSTELLO

B = πρD5 RMC M

16IY Y V0
CY P A p̃ (48)

C = πρD4 RMC P

8IY Y
CN A (49)

E = πρD5

16IY Y
CM Q (50)

F = IX X D

IY Y V0
p̃ (51)

Fv = Aṽwind (52)

Fw = Aw̃wind + Dgcθ0

V0
(53)

Fq = − B

D
ṽwind − C

D
w̃wind (54)

Fr = − B

D
w̃wind + C

D
ṽwind (55)

The eigenvalues for this system split into two complex pairs,
commonly called the fast and slow modes. The coupled set of dif-
ferential equations is solved using matrix Laplace transformation.
The closed-form solutions for the side velocities, pitch rate, and yaw
rate are

ṽ(s) = Cv0 + eσF s[Cv f c cos(�F s) + Cv f s sin(�F s)]

+ eσS s[Cvsc cos(�Ss) + Cvss sin(�Ss)] (56)

w̃(s) = Cw0 + eσF s[Cw f c cos(�F s) + Cw f s sin(�F s)]

+ eσS s[Cwsc cos(�Ss) + Cwss sin(�Ss)] (57)

q̃(s) = Cq0 + eσF s[Cq f c cos(�F s) + Cq f s sin(�F s)]

+ eσS s[Cqsc cos(�Ss) + Cqss sin(�Ss)] (58)

r̃(s) = Cr0 + eσF s[Cr f c cos(�F s) + Cr f s sin(�F s)]

+ eσS s[Crsc cos(�Ss) + Crss sin(�Ss)] (59)

The expressions for the coefficients expressed in Eqs. (56–65) are
extensive and not included in this paper due to length restrictions.
However, these coefficients are algebraic equations that are easily
evaluated inside a computer code.

Euler Angle and Swerve Solution
The remaining states are computed through integration of the

solutions expressed in Eqs. (42), (44), and (56–59). The variables
appear in a linear fashion, after applying the earlier discussed as-
sumptions, with the exception of pitch angle θ , which is operated
on by trigonometric functions and appears in terms with other inde-
pendent variables. In terms in which a trigonometric function of the
pitch angle appears as the only independent variable, the integral is
approximated by the trapezoid method. When pitch angle appears
in a term containing another independent variable, pitch angle is
treated as a constant,

φ(s) = Cφ0 + Cφ1s + Cφe1eCφe2s (60)

θ(s) = Cθ0 + Cθ1s + eσF s[Cθ f c cos(�F s) + Cθ f s sin(�F s)]

+ eσS s[Cθsc cos(�Ss) + Cθss sin(�Ss)] (61)

ψ(s) = Cψ0 + Cψ1s + eσF s[Cψ f c cos(�F s) + Cψ f s sin(�F s)]

+ eσS s[Cψsc cos(�Ss) + Cψss sin(�Ss)] (62)

x(s) = x0 + 1
2 Ds{cos[θ(s)] + cos(θ0)} (63)

y(s) = Cy0 + Cy1s + Cy2s2 + eσF s[Cy f c cos(�F s)

+ Cy f s sin(�F s)] + eσS s(Cysc cos(�Ss) + Cyss sin(�Ss)] (64)

z(s) = Cz0 + Cz1s − 1
2 Ds{sin[θ(s)] + sin(θ0)}

+ eσF s[Cz f c cos(�F s) + Cz f s sin(�F s)]

+ eσS s[Czsc cos(�Ss) + Czss sin(�Ss)] (65)

Solution Implementation
Because of the variation of coefficient values (Ci , �i , etc.) that are

treated as constant in the closed-form solution, inaccuracies build
in the solution, especially when considering long-range indirect fire
trajectories. To minimize these inaccuracies, the model is periodi-
cally updated along the trajectory. In this process, the last trajectory
point computed is treated as the initial conditions for a new trajectory
segment. Before the new trajectory segment is computed, all con-
stants in the model are recomputed using the new initial condition
data.

Current models employed for rapid trajectory prediction in-
clude three-degree-of-freedom point mass models, four-degree-of-
freedom modified point mass models, and conventional projectile
linear theory. These methods are limited in their ability to predict ac-
curately a projectile trajectory under general conditions. Point mass
models account for high launch angle trajectories, but ignore rota-
tional dynamics, leading to poor swerve prediction. The standard
linear theory solution includes rotational dynamics, but is limited to
low launch angles. The modified linear theory closed-form solution
expressed in Eqs. (42), (44), and (56–65) allows rapid and accurate
calculation of long-range trajectories with large pitch angles.

Results
The capabilities of modified projectile linear theory trajectory

generation are highlighted using simulation for two example sce-
narios. Although not intended to be exhaustive, these scenarios un-
derline the merit of the reported approach. In each case the results of
modified linear theory are compared to results generated by existing
models to allow a baseline for comparison. The first case simulates
the short-range trajectory of a fin-stabilized projectile launched at
low pitch angle. The second case simulates a relatively long-range
trajectory of a spin-stabilized projectile launched at high pitch angle.
For each case, typical trajectories were computed using five meth-
ods: numerical integration of the nonlinear six-degree-of-freedom
rigid-projectile equations, numerical integration of the four-degree-
of-freedom modified point mass equations, numerical integration of
the three-degree-of-freedom point mass equations, analytic solution
of the six-degree-of-freedom approximate equations from standard
projectile linear theory, and analytic solution of the six-degree-of-
freedom approximate equations from modified projectile linear the-
ory. The nonlinear six-degree-of-freedom numerical simulation is
used as the truth model for validating the other methods. This projec-
tile dynamic model has been previously shown to agree favorably
with spark range data.19 The three-degree-of-freedom point mass
model treats the projectile as a point mass and applies the zero-angle-
of-attack axial aerodynamic force component directly opposing the
aerodynamic velocity. The four-degree-of-freedom modified point
mass model is an extension of the three-degree-of-freedom point
mass model that adds the uncoupled roll equation to the model and
also adds a forcing term in point mass equations to account for
yaw of repose. The yaw of repose forcing term is extracted from
the standard projectile linear theory swerve equations. The standard
projectile linear theory solution is derived and computed similarly
to the described modified projectile linear theory solution with dif-
ferences in the determination of the closed-form solutions stemming
from the assumption of small Euler pitch angle. Note that standard
projectile linear theory does include yaw of repose. In Ref. 1, de-
tails are provided on all models discussed except for the modified
projectile linear theory solution detailed earlier.

Whereas Euler pitch and yaw angles are undefined for point mass
models, a good approximation is to assume that angle of attack is
zero and the longitudinal axis of the projectile is tangent to the path.

Low Launch Angle Trajectory
The projectile used in this simulation is a representative direct

fire fin-stabilized projectile 25 mm in diameter with six fins. The
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projectile weight, mass center measured along the stationline, roll
inertia, and pitch inertia are 1.84 N, 0.118 m, 1.15 × 10−5 kg · m2,
and 2.78 × 10−4 kg · m2, respectively. The projectile initial condi-
tions are as follows: x = 0.0 m, y = 0.0 m, z = 0.0 m, φ = 0.0 deg,
θ = 2.0 deg, ψ = 0.0 deg, ũ = 762 m/s, ṽ = 0.0 m/s, w̃ = 0.0 m/s,
p̃ = 10.0 rad/s, q̃ = 0.0 rad/s, and r̃ = 0.0 rad/s. The projectile is
traveling through standard atmosphere without atmospheric wind.

Figures 3–6 show comparisons of the trajectories generated by
the five prediction methods discussed. The standard linear theory
and modified linear theory trajectories were computed using a di-
mensionless arc length step size of 100 calibers, which corresponds
to a step of 2.5 m for this round and an initial time step of 0.003 s
at the launch velocity. The six-degree-of-freedom and three-degree-
of-freedom solutions were computed by using a time step size of
1.0 × 10−5 s.

Fig. 3 Altitude vs range for low launch angle trajectory.

Fig. 4 Cross range vs range for low launch angle trajectory.

Fig. 5 Velocity vs range for low launch angle trajectory.

Fig. 6 Angle of attack vs range for low launch angle trajectory.

Fig. 7 Range vs time for high launch angle trajectory.

Figure 3 shows altitude vs downrange distance for each method.
Both linear theory models and the three-degree-of-freedom model
track the trajectory of the projectile predicted by the six-degree-of-
freedom model quite well. Figure 4 shows cross range vs downrange
distance for each method. The linear theory models track projectile
swerve predicted by the six-degree-of-freedom model, whereas the
three-degree-of-freedom model predicts no swerve due to the ex-
clusion of yaw of repose. Figure 5 shows velocity vs downrange
distance, showing the linear theory models and the three-degree-
of-freedom model match velocity predicted by the six-degree-of-
freedom model. Figure 6 shows angle of attack vs downrange dis-
tance. The modified and the standard linear theory models predict
angle of attack well, whereas the three-degree-of-freedom model
provides no angle-of-attack computation.

High Launch Angle Trajectory
The projectile used in this simulation is a representative in-

direct fire spin-stabilized projectile with a diameter of 155 mm.
The projectile weight, mass center measured along the stationline,
roll inertia, and pitch inertia are 422 N, 0.324 m, 0.147 kg · m2,
and 1.893 kg · m2, respectively. The projectile initial conditions
are as follows: x = 0.0 m, y = 0.0 m, z = 0.0 m, φ = 0.0 deg,
θ = 45.0 deg, ψ = 0.0 deg, ũ = 853.4 m/s, ṽ = 0.0 m/s, w̃ = 0.0 m/s,
p̃ = 1800.0 rad/s, q̃ = 0.0 rad/s, and r̃ = 0.0 rad/s. The projectile is
traveling through standard atmosphere with a 6.1-m/s mean horizon-
tal wind blowing from an angle of 57.3 deg from the down range
direction.

Figures 7–14 show a comparison of trajectories obtained by the
five prediction methods discussed. Standard linear theory and mod-
ified linear theory trajectories were computed using a dimensionless
arc length step size of 100 calibers, which corresponds to a step of
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1012 HAINZ AND COSTELLO

Fig. 8 Altitude vs range for high launch angle trajectory.

Fig. 9 Cross range vs range for high launch angle trajectory.

Fig. 10 Pitch angle vs range for high launch angle trajectory.

15.5 m for this round and an initial time step of 0.018 s at launch
velocity. The six-degree-of-freedom and three-degree-of-freedom
numerical trajectories were computed by using a time step size of
1.0 × 10−5 s.

For the high-angle shot, modified linear theory is able to predict
the trajectory with reasonable accuracy, as shown in Figs. 7–14.
Figures 7–9 show modified linear theory is able to predict the range,
altitude, and projectile swerve in wind. Figures 10, 11, and 14 show
it accurately accounts for high pitch angles, picks up yaw angle ex-
cursions, and predicts angle of attack. Figures 12 and 13 show that
modified linear theory accurately predicts velocity and roll rate.
Standard linear theory, limited by a low launch angle assumption,
is unable to predict accurately the simulated trajectory, as seen in
Figs. 7–14. One of the contributing factors for the inaccuracy of

Fig. 11 Yaw angle vs range for high launch angle trajectory.

Fig. 12 Velocity vs range for high launch angle trajectory.

Fig. 13 Roll rate vs range for high launch angle trajectory.

standard projectile linear theory is the assumption of small Euler
pitch angle. When pitch angle is not small, gravity tends to reduce
total velocity of the round during ascent and increase total velocity
during descent. The point mass models do not include rotational
dynamics, and so any aerodynamic jump due to winds, initial pitch
rate, initial yaw rate, etc., is not included in the trajectory results.
In the high launch angle case, the atmospheric winds disturbance
induces translational and angular rates to the projectile that in total
tend to yaw the projectile to the right. The point mass models only
include the effect of translational rates that tend to push the projectile
left. In this case, projectile swerve is sensitive to angular rates lead-
ing to relatively large trajectory errors. The three-degree-of-freedom
model is able to predict the range, altitude, and velocity reasonably
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HAINZ AND COSTELLO 1013

Fig. 14 Angle of attack vs range for high launch angle trajectory.

Fig. 15 Yaw angle vs range for a high launch angle with a large step
size.

Fig. 16 Angle of attack vs range for a high launch angle with a large
step size.

well, as seen in Figs. 7, 8, and 12, but is unable to generate proper
projectile swerve as seen in Fig. 9, provides no information about
the projectile’s orientation as seen in Figs. 10 and 11, and angular
rates, or angle of attack as shown in Fig. 14.

To highlight modified linear theory’s ability to compute a trajec-
tory rapidly, the high launch angle trajectory was recomputed using
modified linear theory with a step size of 1000 calibers, or 155 m.
Figures 15 and 16 show a comparison of the yaw angle and the
angle of attack predicted by the large step size modified linear the-
ory case to those predicted by the nonlinear six-degree-of-freedom
rigid-projectile model for the first 3000 m of the trajectory. The

modified linear theory data in Figs. 15 and 16 is plotted as the dis-
crete points calculated by each step. Figures 15 and 16 show that
modified projectile linear theory can predict the trajectory using a
step size that is large enough to skip over yaw cycles present in
the projectile’s motion. By not being limited in step size by system
oscillations, modified projectile linear theory is able to compute
rapidly future states, such as the impact point, using a small number
of steps. This is due to the trajectory solution being generated from
an approximate analytic closed-form solution and not numerical in-
tegration. Modified linear theory, although not quite as accurate as
numerical integration of the nonlinear six-degree-of-freedom rigid-
projectile model at small step sizes, is able to compute fairly accurate
trajectories at step sizes much larger than those at which numeric
integration becomes unstable. The modified projectile linear the-
ory solution does not become unstable as the step size it increases.
Rather, error in impact point prediction steadily increases.

To verify the computational efficiency of modified linear theory, a
series of high launch angle trajectories were computed by modified
projectile linear theory and a fourth-order Runge–Kutta numerical
simulation of the six-degree-of-freedom model at different step sizes
and the run times were recorded. A comparison of the times showed
that for equivalent step sizes, the modified linear theory model com-
puted the trajectory nearly twice as fast as the six-degree-of-freedom
model.

Conclusions
This paper establishes a method for rapid and accurate computa-

tion of the trajectory of a projectile. Several other accurate methods
exist for rapidly constructing projectile trajectories when the weapon
is fired at low gun elevation angle. However, all existing methods
exhibit relatively large trajectory errors for high gun elevation shots
typical for indirect fire weapons. The modified projectile linear the-
ory trajectory generator reported here should prove useful to smart
weapon flight control system designers requiring real time in flight
impact point estimates to determine control action.
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