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1 IntroductionWe consider the monotone variational inequality problem of �nding an x� 2 X satisfyingF (x�)T (x� x�) � 0 8x 2 X; (1.1)where X is a closed convex set in <n and F is a monotone and continuous function from<n to <n. This problem, which we abbreviate as VI(X;F ), is well known in optimization(see [1, 6, 15]) and, in the special case where F is a�ne and X is the nonnegative orthant,reduces to the classical monotone linear complementarity problem (see [7, 34]).Many methods have been proposed to solve VI(X;F ). The simplest of these is theprojection method [44] (also see [1, 2, 3, 8, 26]) which, starting with any x 2 <n, iterativelyupdates x according to the formulaxnew := [x� �F (x)]+;where [�]+ denotes the orthogonal projection map onto X and � is a judiciously chosenpositive stepsize. However, the projection method requires the restrictive assumption thatF or F�1 be strongly monotone for convergence. The extragradient method [21] (also see[19, 20, 29] for extensions) overcomes this di�culty by the ingenious technique of updatingx according to the double projection formula:xnew := hx� �F �[x� �F (x)]+�i+ :This method, by virtue of its using only function evaluations and projection onto X, is easyto implement, uses little storage, and can readily exploit any sparsity or separable structurein F or in X, such as those arising in the applications considered in [3, 9, 36, 43]. Moreover,its convergence requires only that a solution exists [19], while its only drawback is its, at best,linear convergence. In contrast, the methods in [4, 8, 12, 26, 30, 31, 32, 36, 39, 46, 49] requirerestrictive assumptions on the problem (such as F or F�1 be strongly monotone or F bea�ne; for some of the methods, it is further required that F be continuously di�erentiablewith nonsingular Jacobian or X be bounded and polyhedral), while the matrix-splittingmethods in [10, 32, 45, 47] are applicable only when F is a�ne (and these methods also have,at best, linear convergence). And all these methods require more computation per iteration1



than the extragradient method. For the special case where X is the nonnegative orthant(the monotone nonlinear complementarity problem) or a box, many other solution methodsexist, but these methods tend to be ill-suited for large sparse problems and are not practicallyextendible to more general X. Thus, it can be said that, unless F has a special structure (For F�1 is strongly monotone or F is a�ne) and X has a special structure (X is polyhedral or,better still, just a box), the extragradient method is a very practical method (and sometimesthe only practical method) for solving VI(X;F ). And, even when F is a�ne, there aresituations where the extragradient method may be practical. As a case in point, suppose X isthe Cartesian product of simplices and ellipsoids and F is a�ne with an underlying matrixMthat is asymmetric, positive semide�nite, sparse, and having no particular structure (soM�1may be dense and impractical to compute). The extragradient method can be practicallyimplemented to solve this special case of VI(X;F ) since it requires only projection onto thesimplices and ellipsoids (for which many e�cient methods exist [40, 48]) and multiplicationof x by the sparse matrix M . In contrast, the matrix-splitting methods in [10, 32, 45, 47]require solving a nontrivial strongly monotone variational inequality problem overX at eachiteration. And even on structured problems such as the discrete-time deterministic optimalcontrol problem [43], the extragradient method may yet be practical since it is linearlyconvergent like the methods in [5, 10, 45, 50] while its iterations are simpler.In this paper, we propose a new class of methods for solving VI(X;F ) that are as versatileand capable of exploiting problem structure as the extragradient method and, yet, are evensimpler than the latter and have a scaling feature absent in the latter. And our preliminarycomputational experience suggests that the new methods are practical alternatives to theextragradient method. The idea of the new methods is to choose an n�n symmetric positivede�nite matrix P and, starting with any x 2 <n, to iteratively update x according to theformula xnew := x� P�1 �T�(x)� T� �[x� �F (x)]+�� ; (1.2)where  is a positive stepsize and either T� � I��F or, if F is a�ne with underlying matrixM , T� � I + �MT , with � 2 (0;1) chosen so T� is strongly monotone. These methodsare like the projection method except the projection direction [x� �F (x)]+ � x is modi�edby T� and P�1. Like the extragradient method, these methods use two function evaluationsper iteration and, as we shall show (see Theorems 2.1 and 3.2), their convergence requiresonly that a solution exists. Unlike the extragradient method, these methods require only one2



projection per iteration, rather than two, and they have an additional parameter, the scalingmatrix P , that can be chosen to help accelerate the convergence (see Sections 2 and 4 forexamples and further discussions). Thus, the new methods require less work per iterationthan does the extragradient method (assuming P is chosen so P�1 is easily computed andstored), with the savings being the greatest when the projection is expensive. Our computa-tional experience (Section 4) suggests that the new methods are practical alternatives to theextragradient method, especially when F is a�ne or when projection onto X is expensive.Although we will also present computational results to illustrate the practical behaviorof the new methods, the focus of our paper is on laying the theoretical foundations for thesemethods. In particular, we will present various convergence and rate of convergence resultsfor the new methods. Central to our rate of convergence analysis is the following growthcondition on the 2-norm of the projection residual function r : <n 7! <n, given byr(x) = x� [x� F (x)]+;near the solution set S of VI(X;F ) (i.e., S comprises all x� 2 X satisfying (1.1)): Thereexist positive constants � and � (depending on F;X only) such thatd(x; S) � �kr(x)k 8x with kr(x)k � �; (1.3)where k � k denotes the 2-norm and d(�; S) denotes the 2-norm distance to S. (It is wellknown that an x� 2 <n solves VI(X;F ) if and only if r(x�) = 0.) This growth conditionon kr(�)k (also called error bound) has been used in the rate of convergence analysis ofvarious methods [25, 24, 47] and is known to hold whenever X is polyhedral and eitherF is a�ne (see [24, 41]) or F has certain strong monotonicity structure (see [47, Theorem2]). Moreover, under additional assumptions on F , this condition holds with � = 1 (see[22, 23, 28, 37]). Our rate of convergence analysis, similar to that in [47], entails (roughly)showing that d(x; S)2 decreases by an amount in the order of kr(x)k2 per iteration, sokr(x)k must eventually decrease below �, at which time (1.3) yields that d(x; S)2 decreasesat a linear rate. The analysis is also similar in spirit to those for feasible descent methods(see [25, 24, 27]) but uses d(�; S)2, rather than the objective function, as the merit function.Our main results are as follows: In Section 2, we consider the special case of VI(X;F )where F is a�ne. We show that, for suitable choices of the stepsize , the iterates generatedby (1.2) with T� � I + �MT and � = 1 converge to a solution of VI(X;F ) and, under3



the assumption of (1.3) for some � and �, the convergence is linear (see Algorithm 2.1 andTheorem 2.1). We then extend this method by replacing the projection direction with a moregeneral matrix-splitting direction (see Algorithm 2.2 and Theorem 2.2). Also, we consider amodi�cation of this method whereby one of the \[x�F (x)]+" terms is replaced with x�F (x)and an extra projection step is taken (see Algorithm 2.3 and Theorem 2.3). In Section 3, weconsider the general case of VI(X;F ) and we analogously analyze the convergence of iteratesgenerated by (1.2) with T� � I � �F (see Algorithms 3.1, 3.2 and Theorems 3.1, 3.2). InSection 4, we report our preliminary computational experience with the new methods onsparse LPs, dense monotone LCPs, and linearly constrained variational inequality problems.In Section 5, we give some concluding remarks.Subsequent to the writing of this paper, we learned of the recently proposed methodsof He [17, 18] which may be viewed as special cases of Algorithm 2.1 in Section 2, withspeci�c choices of the scaling matrix P . He's convergence and rate of convergence resultsfor his methods are similar to ours for Algorithm 2.1 (Theorem 2.1), although He's rate ofconvergence results further require X to be an orthant.A few words about our notation. We denote by <n the space of n-dimensional realcolumn-vectors and by superscript T the transpose (of vectors and matrices). We denote byk � k the 2-norm (i.e., kxk = (xTx) 12 for all vectors x) and, for any n� n symmetric positivede�nite matrix P , by k � kP the 2-norm in <n scaled by P (i.e., kxkP = (xTPx) 12 for allx 2 <) and by P�1=2 the (unique) n � n symmetric positive de�nite matrix whose productwith itself is P�1. We denote by I either the identity matrix or the identity map and, byR-linear convergence and Q-linear convergence, we mean linear convergence in the root senseand in the quotient sense, respectively, as de�ned in [35].2 Algorithms for F A�neIn this section we consider the case of VI(X;F ) where F is monotone and a�ne, i.e.,F (x) = Mx+ qfor some n�n positive semide�nite (not necessarily symmetric) matrixM and some q 2 <n.We present and analyze three methods for solving this special case of VI(X;F ). The �rstmethod is our basic method (1.2) with T� � I+�MT and, for simplicity, � = 1. The second4



method is an extension of the �rst method in which the projection direction is replaced witha matrix-splitting direction. The third method is a modi�cation of the �rst method in whichthe projection operation is removed from one part and added to another part of the method.We describe the �rst method formally below.Algorithm 2.1 Choose any n � n symmetric positive de�nite matrix P and any x0 2 <n.Also choose a � 2 (0; 2). For i = 0; 1; :::, compute xi+1 from xi according to:xi+1 = xi � iP�1(I +MT )r(xi); (2.1)where i = �kP�1=2(I +MT )r(xi)k�2kr(xi)k2: (2.2)The parameters P and � are key to the performance of Algorithm 2.1. We can choose Pso that P�1 is easily computed and stored (e.g., P = I) or that kP�1=2(I +MT )k is small(e.g., P = (I + MT )(I + M)) so i is large. Below we show that this simple method isconvergent and, when the error bound (1.3) holds, is linearly convergent. The proof is basedon showing that (I +MT )r(x) makes an acute angle with x� x� for any solution x�, so thedistance from x to the solution set S, measured in the scaled 2-norm k � kP , decreases whenx is moved opposite the direction P�1(I +MT )r(x).Theorem 2.1 Assume that F (x) = Mx+ q for some n� n positive semide�nite matrix Mand some q 2 <n, and that the solution set S of VI(X;F ) is nonempty. Then any sequencefxig generated by Algorithm 2.1 converges to an element of S and, if (1.3) holds for some �and �, the convergence is R-linear.Proof. Let x� be any element of S. For each i 2 f0; 1; :::g, we have from (2.1) thatkxi+1 � x�k2P= kxi � x� � iP�1(I +MT )r(xi)k2P= kxi � x�k2P � 2i(xi � x�)T (I +MT )r(xi) + 2i kP�1=2(I +MT )r(xi)k2: (2.3)We bound below the next to last term in (2.3). Let zi = [xi�Mxi� q]+ (so r(xi) = xi� zi).By properties of the projection operator, we have0 � (y � zi)T (Mxi + q + zi � xi) 8y 2 X:5



Similarly, since x� is a solution of VI(X;F ), we have0 � (y � x�)T (Mx� + q) 8y 2 X:Taking y = x� in the �rst inequality and taking y = zi in the second inequality and thenadding the two resulting inequalities yields0 � (x� � zi)T (M(xi � x�) + zi � xi)= (x� � xi)TM(xi � x�) + (xi � x�)T (I +MT )(xi � zi)� kxi � zik2� (xi � x�)T (I +MT )(xi � zi)� kxi � zik2= (xi � x�)T (I +MT )r(xi)� kr(xi)k2;where the second inequality follows from the positive semide�nite property ofM . Using thisto bound the next to last term in (2.3) yields the key relationkxi+1 � x�k2P � kxi � x�k2P � 2ikr(xi)k2 + 2i kP�1=2(I +MT )r(xi)k2= kxi � x�k2P � �(2 � �)kP�1=2(I +MT )r(xi)k�2kr(xi)k4 (2.4)� kxi � x�k2P � �(2 � �)kP�1=2(I +MT )k�2kr(xi)k2; (2.5)where the equality follows from (2.2). The remaining argument is patterned after the proofof [42, Theorem 1] and of [47, Theorem 1].Since (2.5) holds for all i, it follows that kxi � x�kP is nonincreasing with i and thatkr(xi)k ! 0 as i ! 1. This shows that fxig is bounded and, by continuity of r(�), eachcluster point x1 satis�es r(x1) = 0 and hence is in S. Then, we can choose x� in (2.5) tobe x1 and conclude that kxi � x1kP ! 0 as i!1, i.e., fxig converges to x1.Assume that (1.3) holds for some � and �. Let  (x) = minx�2S kx � x�k2P (so  (x) �kPkd(x; S)2). Since (2.4) holds for all i and all x� 2 S, by choosing (for each i) x� to be theelement of S closest to xi in the norm k � kP , we obtain for all i, (xi+1) � kxi+1 � x�k2P� kxi � x�k2P � �(2 � �)kP�1=2(I +MT )r(xi)k�2kr(xi)k4=  (xi)� �(2 � �)kP�1=2(I +MT )r(xi)k�2kr(xi)k4 (2.6)�  (xi)� �kr(xi)k2; (2.7)6



where we let � = �(2 � �)kP�1=2(I +MT )k�2. Since kr(xi)k ! 0, we have kr(xi)k � � forall i greater than some �i, in which case (1.3) yields d(xi; S) � �kr(xi)k. Using this to boundthe righthand side of the above inequality yields (xi+1) �  (xi)� ��2d(xi; S)2 �  (xi)� ��2kPk (xi)for all i > �i, so f (xi)g converges Q-linearly to zero and, by (2.7), fr(xi)g converges R-linearly to zero. Since by (2.1), (2.2) and (2.6) we havekxi+1 � xikP = �kP�1=2(I +MT )r(xi)k�1kr(xi)k2 � �1=2(2� �)�1=2( (xi)�  (xi+1))1=2for all i, it follows from f (xi)g converging Q-linearly to zero that fkxi+1� xikPg convergesR-linearly to zero and hence fxig converges R-linearly.The above proof shows that we can alternatively choose i = � for all i in Algorithm 2.1,where � is any scalar satisfying0 < � < 2kP�1=2(I +MT )k�2:However, this constant stepsize choice is impractical since it is conservative and di�cult tocompute.Algorithm 2.1 can be further extended by replacing the projection term [x� (Mx+ q)]+in the de�nition of r(x) with a more general matrix splitting term. In particular, considerthe following method:Algorithm 2.2 Choose any n � n symmetric positive de�nite matrix P and any x0 2 <n.Also choose an n � n positive de�nite matrix B and a � 2 (0; 2). For i = 0; 1; :::, computexi+1 from xi according to: xi+1 = xi � iP�1(B +MT )(xi � zi); (2.8)where zi is the unique solution of the nonlinear equationszi = [zi � (B(zi � xi) +Mxi + q)]+; (2.9)and i is given byi = �kP�1=2(B +MT )(xi � zi)k�2(xi � zi)TB(xi � zi): (2.10)7



Notice if we choose B = I, then Algorithm 2.2 reduces to Algorithm 2.1. In general,we should choose B to be close to M (so that zi is close to S for fast convergence) and yetto have enough structure (e.g., lower/upper triangular or tridiagonal or block diagonal) sothat zi is easily computable. We have the following result whose proof is similar to that ofTheorem 2.1 and thus is omitted.Theorem 2.2 Assume that F (x) =Mx+ q for some n� n positive semide�nite matrix Mand some q 2 <n, and that the solution set S of VI(X;F ) is nonempty. Then any sequencefxig generated by Algorithm 2.2 converges to an element of S and, if (1.3) holds for some �and �, the convergence is R-linear.We note that Algorithm 2.2 is closely related to the following iterative method proposedin [11] xi+1 = arg minx2X � i(x) := (x� xi)T (Mx+ q) + �2kx� xik2� ; (2.11)where � is a positive scalar. For the speci�c choice of B =M +MT +�I, we have from (2.9)that zi = [zi � (B(zi � xi) +Mxi + q)]+= [zi � �(M +MT + �I)(zi � xi) +Mxi + q�]+= [zi � �(M +MT )zi �MTxi + q + �(zi � xi)�]+= [zi �r i(zi)]+;so that zi = argminx2X  i(x):Thus (2.9) generalizes (2.11). We note that in [11] no convergence result is given for (2.11).Theorem 2.2 shows that if the step (2.8) is added, the resulting method (2.8)-(2.10) convergesto a solution of VI(X;F ) and, if (1.3) holds (as in the case where X is also polyhedral), theconvergence is R-linear.Additional modi�cations of the preceding methods are possible. For example, we canpass each iterate through a nearest-point projection (with respect to the norm k � kP ) on toX. For Algorithm 2.1, this modi�cation would entail replacing (2.1) withxi+1 = [xi � iP�1(I +MT )r(xi)]+P ;8



where [y]+P denotes the point in X whose distance to y (measured in the norm k � kP ) is min-imal. To see that this does not a�ect the convergence (and, in fact, accelerates convergence)of the methods, we use the following fact about nearest-point projection:k[y]+P � x�k2P � ky � x�k2P � ky � [y]+Pk2P (2.12)for all y 2 <n and all x� 2 X (see, e.g., [29, Appendix]).We next present a modi�cation, rather than an extension, of Algorithm 2.1, in which weexpand out (I+MT )r(xi) = xi�[xi�(Mxi+q)]++MT r(xi) and replace the \[xi�(Mxi+q)]+"term with xi�(Mxi+q). In contrast to Algorithm 2.1, an extra projection on toX is needed.Algorithm 2.3 Choose any n � n symmetric positive de�nite matrix P and any x0 2 X.Also choose a � 2 (0; 2). For i = 0; 1; :::, compute xi+1 from xi according to:xi+1 = hxi � iP�1(Mxi + q +MT r(xi))i+P ; (2.13)where i is given by i = �kP�1=2(Mxi + q +MT r(xi))k�2kr(xi)k2: (2.14)The convergence properties of Algorithm 2.3 are stated in the following theorem, whoseproof is similar to that of Theorem 2.1.Theorem 2.3 Assume that F (x) = Mx+ q for some n� n positive semide�nite matrix Mand some q 2 <n, and that the solution set S of VI(X;F ) is nonempty. Then any sequencefxig generated by Algorithm 2.3 converges to an element of S.Proof. Let x� be any element of S. For each i 2 f0; 1; :::g, we have from (2.13) and (2.12)(with y = xi � iP�1(Mxi + q +MT r(xi))) thatkxi+1 � x�k2P � kxi � x� � iP�1(Mxi + q +MT r(xi))k2P= kxi � x�k2P � 2i(xi � x�)T (Mxi + q +MT r(xi))+ 2i kP�1=2(Mxi + q +MT r(xi))k2: (2.15)We bound below the next to last term in (2.15). Let zi = [xi�Mxi�q]+ (so r(xi) = xi�zi).By properties of the projection operator, we have0 � (y � zi)T (Mxi + q + zi � xi) 8y 2 X:9



Similarly, since x� is a solution of VI(X;F ), we have0 � (y � x�)T (Mx� + q) 8y 2 X:Taking y = xi in the �rst inequality and taking y = zi in the second inequality and thenadding the two resulting inequalities yields0 � (xi � zi)T (Mxi + q + zi � xi) + (zi � x�)T (Mx� + q)= (xi � x�)T (Mxi + q +MT (xi � zi)) + (xi � x�)TM(x� � xi)� kxi � zik2� (xi � x�)T (Mxi + q +MT (xi � zi))� kxi � zik2= (xi � x�)T (Mxi + q +MT r(xi))� kr(xi)k2;where the second inequality follows from the positive semide�nite property of M . Using thisto bound the next to last term in (2.3) yieldskxi+1 � x�k2P � kxi � x�k2P � 2ikr(xi)k2 + 2i kP�1=2(Mxi + q +MT r(xi))k2= kxi � x�k2P � �(2 � �)kP�1=2(Mxi + q +MT r(xi))k�2kr(xi)k4;where the equality follows from (2.14). The remainder of the proof is similar to that ofTheorem 2.1, but using the above relation instead of (2.5).Notice that Algorithm 2.3 requires two projections per iteration, the same as the extra-gradient method. However, unlike the extragradient method, Algorithm 2.3 does not appearto have linear convergence, even if (1.3) holds for some � and �.3 Algorithms for F Non-A�neIn this section we consider the general case of VI(X;F ) where F is monotone and contin-uous. We present and analyze two versions of our basic method (1.2) with T� � I ��F andwith � chosen so T� is strongly monotone. The �rst version, which uses a �xed �, is simplerbut requires F furthermore to be Lipschitz continuous. The second version, which chooses� dynamically, is more intricate but is more practical and solves the general problem.We describe the �rst method formally below. For this method to be applicable, we requireF furthermore to be Lipschitz continuous. 10



Algorithm 3.1 Choose any n � n symmetric positive de�nite matrix P and any x0 2 <n.Also choose any � 2 (0; 2) and any � 2 (0; 1=�), where � is a constant satisfying(x� z)T (F (x)� F (z)) � �kx � zk2 8x; z 2 <n: (3.1)(We can, for example, take � to be the Lipschitz constant of F .) For i = 0; 1; :::, computexi+1 from xi according to:xi+1 = xi � iP�1(xi � zi � �F (xi) + �F (zi)); (3.2)where zi and i are given by, respectively,zi = [xi � �F (xi)]+; (3.3)i = �(1 � ��)kP�1=2(xi � zi � �F (xi) + �F (zi))k�2kxi � zik2: (3.4)Algorithm 3.1 requires less computation per iteration than the extragradient method (inparticular, it avoids performing an extra projection step). Also, unlike the extragradientmethod, Algorithm 3.1 allows scaling of direction by P�1 without having to accordinglyscale the norm with respect to which projection is taken. In the case where F is a�ne, i.e.,F (x) = Mx+q for some n�n positive semide�nite matrixM and some q 2 <n, the formula(3.2) reduces to xi+1 = xi � iP�1(I � �M)(xi � zi);which is reminiscent of (2.1). If in addition M is skew symmetric (i.e., MT = �M) so that(3.1) holds with � = 0, we can choose � arbitrarily large and can reasonably choose P tobe P = (I � �M)(I � �MT ). In fact, for the choice of � = 1 (and using MT = �M), theformula (3.2) reduces precisely to (2.1).We show in the following theorem that Algorithm 3.1 has convergence properties similarto that of Algorithm 2.1. The proof of this theorem is patterned after that of Theorem 2.1.Theorem 3.1 Assume that F is monotone and Lipschitz continuous and that the solutionset S of VI(X;F ) is nonempty. Then any sequence fxig generated by Algorithm 3.1 convergesto an element of S and, if (1.3) holds for some � and �, the convergence is R-linear.11



Proof. Let x� be any element of S. For each i 2 f0; 1; :::g, we have from (3.2) thatkxi+1 � x�k2P = kxi � x� � iP�1(xi � zi � �F (xi) + �F (zi))k2P= kxi � x�k2P � 2i(xi � x�)T (xi � zi � �F (xi) + �F (zi))+ 2i kP�1=2(xi � zi � �F (xi) + �F (zi))k2: (3.5)We bound below the next to last term in (3.5). By (3.3) and properties of the projectionoperator, we have 0 � (y � zi)T (�F (xi) + zi � xi) 8y 2 X:Similarly, since x� is a solution of VI(X;F ), we have0 � (y � x�)TF (x�) 8y 2 X:Taking y = x� in the �rst inequality and taking y = zi in the second inequality and thenadding the two resulting inequalities yields0 � (x� � zi)T (�F (xi) + zi � xi) + �(zi � x�)TF (x�)= �(x� � zi)T (F (zi)� F (x�)) + (x� � xi)T (�F (xi)� �F (zi) + zi � xi)+ �(xi � zi)T (F (xi)� F (zi))� kxi � zik2� (x� � xi)T (�F (xi)� �F (zi) + zi � xi) + �(xi � zi)T (F (xi)� F (zi))� kxi � zik2� (x� � xi)T (�F (xi)� �F (zi) + zi � xi)� (1� ��)kxi � zik2;where the second inequality follows from the monotone property of F and the last inequalityfollows from (3.1). Using this to bound the next to last term in (3.5) yieldskxi+1 � x�k2P � kxi � x�k2P � 2i(1� ��)kxi � zik2 + 2i kP�1=2(xi � zi � �F (xi) + �F (zi))k2= kxi � x�k2P � �(2 � �)(1� ��)2kP�1=2(xi � zi � �F (xi) + �F (zi))k�2� kxi � zik4; (3.6)where the equality follows from (3.4).The remainder of the proof is similar to that of Theorem 2.1, but using (3.6) instead of(2.5). For the R-linear convergence result, we also use the observations (see (3.3) and (3.4))12



that kxi+1 � xikP = �(1 � ��)kP�1=2(xi � zi � �F (xi) + �F (zi))k�1kxi � zik2� �(1 � ��)kP�1=2k�1(1 + �L)�1kxi � zik� �(1 � ��)kP�1=2k�1(1 + �L)�1minf1; �gkr(xi)kfor all i, where L denotes the Lipschitz constant of F and the last inequality follows from[13, Lemma 1]. Thus, the rightmost term in (3.6) is bounded above by a positive constanttimes �kr(xi)k2 and, whenever this term converges R-linearly to zero as i ! 1, so doeskxi+1 � xik2P ; hence fxig converges R-linearly.Algorithm 3.1 is a conceptual method since in practice F need not be Lipschitz contin-uous or the constant � may be di�cult to estimate or a stepsize of less than 1=� may betoo conservative. Below we present a practical version of Algorithm 3.1 that chooses � dy-namically according to a novel Armijo-Goldstein-type rule. This practical version has all theconvergence properties of Algorithm 3.1 and requires F to be only monotone and continuousfor convergence (see Theorem 3.2).Algorithm 3.2 Choose any n � n symmetric positive de�nite matrix P and any x0 2<n and ��1 2 (0;1). Also choose any � 2 (0; 2), � 2 (0; 1), and � 2 (0; 1). Fori = 0; 1; :::, compute (xi+1; �i) from (xi; �i�1) according to: Choose �i to be the largest� 2 f�i�1; �i�1�; �i�1�2; :::g satisfying�(xi � zi(�))T (F (xi)� F (zi(�))) � (1� �)kxi � zi(�)k2; (3.7)and let xi+1 = xi � iP�1(xi � zi(�i)� �iF (xi) + �iF (zi(�i))); (3.8)where zi(�) and i are given by, respectively,zi(�) = [xi � �F (xi)]+ 8� 2 (0;1); (3.9)i = ��kP�1=2(xi � zi(�i)� �iF (xi) + �iF (zi(�i)))k�2kxi � zi(�i)k2: (3.10)The motivation for taking trial values of � starting at �i�1 comes from our empiricalexperience that, for i > 0, � = �i�1 either satis�es or comes close to satisfying (3.7), so13



in general only a few trial values of � are needed to �nd �i. The condition (3.7) may beviewed as a local approximation to the condition � < 1=� used in Algorithm 3.1. (If we let�i = (xi � zi(�))T (F (xi) � F (zi(�)))=kxi � zi(�)k2, then (3.7) reduces to � � (1 � �)=�i.)We had also considered choosing �i to be the largest � 2 f�; ��; ��2; :::g satisfying (3.7),where � 2 (0;1). It can be checked that the convergence results below still hold for thisalternative stepsize rule, but this rule is not as practical since it typically needs many moretrial values of � to �nd �i.Below we present the convergence results for Algorithm 3.2. The proof is patterned afterthat for Theorem 3.1 and, for simplicity, we supply only the key steps.Theorem 3.2 Assume that F is monotone and continuous and that the solution set S ofVI(X;F ) is nonempty. Then any sequence fxig generated by Algorithm 3.2 converges to anelement of S and, if (1.3) holds for some � and � and F is Lipschitz continuous on S + �Bfor some � > 0 (where B = fx j kxk � 1g), the convergence is R-linear.Proof. First, we claim that, for each i, (3.7) holds for all � su�ciently small, so �i is wellde�ned. To see this, note that zi(�)! [xi]+ as �! 0, so if xi 62 X, then the righthand sideof (3.7) would tend to a positive limit while the lefthand side of (3.7) would tend to zeroas � ! 0, implying the claim. If xi 2 X (so xi = [xi]+), then since F is continuous andzi(�)! [xi]+ = xi as �! 0, we havekF (xi)kkF (xi)� F (zi(�))k � (1 � �)kr(xi)k2for all � 2 (0; 1] su�ciently small. For any such �, we have�(xi � zi(�))T (F (xi)� F (zi(�))) = �([xi]+ � [xi � �F (xi)]+)T (F (xi)� F (zi(�)))� �2kF (xi)kkF (xi)� F (zi(�))k� �2(1 � �)kr(xi)k2� (1 � �)kxi � zi(�)k2;where the �rst inequality uses the Cauchy-Schwartz inequality and the nonexpansive propertyof [�]+; the last inequality uses � 2 (0; 1] and [13, Lemma 1]. Thus, the claim holds.To show that fxig converges to an element of S, let x� be any element of S. For eachi 2 f0; 1; :::g, we have by an argument analogous to the proof of Theorem 3.1, but with14



(3.1){(3.4) replaced by (3.7){(3.10) (and taking � = �i in (3.7)), that (cf. (3.6))kxi+1 � x�k2P � kxi � x�k2P � �(2 � �)�2kP�1=2(xi � zi(�i)� �iF (xi) + �iF (zi(�i)))k�2� kxi � zi(�i)k4: (3.11)Thus fxig is bounded and fkxi� zi(�i)kg ! 0. Also, f�ig is nonincreasing, so it has a limit�1. We claim that fxig has at least one cluster point in S. In the case where �1 > 0, thisfollows from fkxi � zi(�i)kg ! 0 and the the continuity of F and the projection operator,which imply that every cluster point x1 of fxig satis�esx1 = [x1 � �1F (x1)]+;and hence is in S. In the case where �1 = 0, we argue by contradiction by supposing thatevery cluster point of fxig is not in S. Since �1 = 0, there must exist a subsequence K off0; 1; :::; g satisfying �i < �i�1 for all i 2 K, and, by passing to a subsequence if necessary,we can assume that fxigi2K converges to some x1 62 S. Since x1 62 S, it follows from thecontinuity of F and our earlier argument showing that (3.7) holds for all � su�ciently smallthat, for all i 2 K su�ciently large (so that xi is near x1 and �i�1 is su�ciently small),� = �i�1 satis�es (3.7). This implies we would choose �i = �i�1 for all i 2 K su�cient large,contradicting our hypothesis on K. Thus, fxig has at least one cluster point, say x1, that isin S. Letting x� = x1 in (3.11), we obtain that the sequence fkxi � x1kg is nonincreasing.Since this sequence has a subsequence converging to zero, the entire sequence must convergeto zero.In the case where (1.3) holds for some � and � and F is Lipschitz continuous (withconstant L) on S+ �B for some � > 0, we note that since fxig converges to an element of S,we have xi and zi(�) inside S+�B for all � 2 (0; ��1] and all i exceeding some �i. For all suchi, (3.7) holds for all � 2 (0; (1� �)=L), so our choice of �i implies �i � minf��i; �(1� �)=Lg.Thus, f�ig is bounded away from zero. The R-linear convergence of fxig then follows froman argument analogous to the the proof of Theorem 3.1.4 Computational ExperienceTo better understand the behavior of the new methods in practice, we implementedAlgorithm 2.1 in Fortran to solve sparse LPs and dense monotone LCPs, and implemented15



Algorithms 2.1 and 3.2 in Matlab to solve linearly constrained variational inequality problems(using the quadratic-program solver qp.m from the Matlab optimization toolbox to performthe projection). For benchmark, we compared the performance of these implementationswith analogous implementations of the extragradient method as described in [29]. (We haveincluded LPs and dense monotone LCPs in our tests not because they are problems forwhich the new methods are designed to solve, but because these problems are well knownspecial cases of VI(X;F ) and tests on them give us a better overall understanding of thenew methods.) Though our results are preliminary, they suggest that the new methodsare practical alternatives to the extragradient method, especially when F is a�ne or whenprojection onto X is expensive. We describe the test details below.All Fortran codes were compiled by the DEC Fortran-77 compiler Version 4.2 using thedefault optimization option and were run on a Decstation 5000 under the operating systemUltrix Version 4.2A. All Matlab codes were ran on the same Decstation 5000 under Matlabversion 4.2a.Our �rst set of tests was conducted on sparse LP of the form: minf cTy j Ay = b; y � 0 g,where A is an m � l matrix, b 2 <m, and c 2 <l. We reformulated the LP as a VI(X;F )with X = <l+ � f0gm; F (x) = Mx+ q; M = " 0 �ATA 0 # ; q = " c�b # :Then we applied Algorithm 2.1 and the extragradient method to this VI(X;F ). The �rstsix test problems were randomly generated, with the entries of c uniformly generated from[1; 100], with the number of nonzeros per column of A �xed at 5% and the nonzeros uniformlygenerated from [�5; 5], and with b = A�x, where �x = (10=l; :::; 10=l). The seventh to ninthtest problems were taken from the Netlib library (see [14]). The performance of Algorithm2.1 is sensitive to the choice of P and � and, in our implementation of Algorithm 2.1, wechose P to be the diagonal part of (I +MT )(I +M) (which made P�1 easy to compute andstill yielded fast convergence) and chose � = :7 (which yielded much faster convergence thanwith � = 1). The parameters in the extragradient method were similarly tuned to optimizethe method's performance. The test results are summarized in Table 1 below. In general,Algorithm 2.1 required fewer iterations and less time than the extragradient method, withthe improvement most pronounced when l � 2m. However, both methods did very poorlyon the Netlib problems, which suggests that these methods are not well suited for solving16



small to medium-sized LP. For large-sized LP, these methods may yet be practical since theyhave low storage requirement and can exploit sparsity structure in the problem.Our second set of tests was conducted on dense monotone LCP, corresponding to VI(X;F )with X = <n+; F (x) = Mx+ q;for some n�n positive semide�nite matrixM and some q 2 <n. The �rst three (respectively,fourth to sixth) test problems were randomly generated withM = !EET + E � ET ;where ! = 0 (respectively, ! = 1) and every entry of the n � n matrix E was uniformlygenerated from [�5; 5], and with q = �M �x+�y, where each entry of �x has equal probability ofbeing 0 or being uniformly generated from [5; 10] and each entry of �y is 0 if the correspondingentry of �x is 0 and otherwise has equal probability of being 0 or being uniformly generatedfrom [5; 10] (so �x is a solution). The seventh to ninth test problems were deterministicallygenerated with M = EET ;where the (i; j)th entry of the n � n matrix E is 5(i � j)=n for all i and j, and withq = �M �x + �y, where the �rst n=2 entries of �x are 0 and the rest are 7:5 and the �rst n=4entries of �y are 5 and the rest are 0 (so �x is a solution). The remaining test problems wereborrowed from [16, Sec. 5]. In particular, the tenth (respectively, eleventh) test problem wasrandomly generated with M = AAT +B +D;where every entry of the n � n matrix A and of the n � n skew-symmetric matrix B isuniformly generated from (�5; 5) and every diagonal entry of the n � n diagonal B is uni-formly generated from (0; 0:3) (soM is positive de�nite), and with every entry of q uniformlygenerated from (�500; 500) (respectively, (�500; 0)). The twelveth test problem is one forwhich Lemke's method is known to run in exponential time, with the (i; j)th entry of Mequal to 2 (respectively, 1 and 0) if j > i (respectively, j = i and j < i) for all i andj (so M is positive semide�nite), and with every entry of q equal to �1. In our imple-mentation of Algorithm 2.1, we chose P to be (I + MT )(I + M) and chose � = 1 (soi = 1 for all i). The performance of Algorithm 2.1 also bene�ted substantially from a17



priori scaling of M and q and, in our test, we scaled M and q by multiplying both with10 � (maximum magnitude of entries of M and q)�1. (We did not need to scale M and q forthe extragradient method since the scaling is done automatically via its stepsize parameter�.) The test results are summarized in Table 2 below. In general, Algorithm 2.1 requiredfewer iterations and less time than the extragradient method, though both had di�culty onskew symmetric problems (the �rst three test problems). On the other hand, we caution thatthe performance of Algorithm 2.1 strongly depends on the scaling of M and q and �nding asuitable choice of scaling can be di�cult in general.Our third set of tests was conducted on VI(X;F ) where X is not an orthant or a box.The �rst test problem, used �rst by Mathiesen [33], and later in [38, 49], hasF (x1; x2; x3) = 264 :9(5x2 + 3x3)=x1:1(5x2 + 3x3)=x2 � 5�3 375 ; X = ((x1; x2; x3) 2 <3+ ����� x1 + x2 + x3 = 1x1 � x2 � x3 � 0 ) :We had trouble �nding more test problems from the literature, so we created �ve additionaltest problems of our own, in which X = fx 2 <n+ j x1 + � � � + xn = ng and F and n arespeci�ed as follows: For the �rst three problems, F is the function from, respectively, theKojima-Shindo NCP (with n = 4) and the Nash-Cournot NCP (with n = 5 and n = 10) [38,pp. 321-322]; for the fourth problem, F is a�ne and is generated as in the problem HPHardof Table 2, but with n = 20; for the �fth problem, we took the F from the fourth problemand added to its ith component the linear/quadratic term maxf0; xig2 for i = 1; :::; bn=2c.In our implementation of Algorithm 3.2, we chose P = I, ��1 = 1, � = 1:5, � = :1 and� = :3. On the Mathiesen problem, we used the same x0 as in [49]; on the other problems,we used x0 = (1; :::; 1). (The F from the Mathiesen problem and from the Nash-CournotNCP are de�ned on the positive orthant only.) The test results are summarized in Table3. In general, Algorithm 3.2 requires more iterations and function evaluations, but fewerprojections, than the extragradient method. (The performance of Algorithm 3.2 is also lesssensitive to the starting point than the extragradient method. Surprisingly, both methodssolved problems, such as the Kojima-Shindo problem, for which F is not monotone.) Thus,on problems where projection onto X is expensive, Algorithm 3.2 may be more practicalthan the extragradient method, as is reected in its lower CPU times on all problems exceptNash5. But if F is a�ne, Algorithm 2.1 may be more practical than either method (comparetheir CPU times on HPHard). In general, the performance of Algorithm 3.2 is insensitive to18



x0 or � or ��1, as long these parameters are reasonably chosen. We had also tried alternativechoices for P and more conservative choices for � and � (e.g., � = 1 and � = :7), but theresults were typically worse.5 Concluding RemarksWe have presented new iterative methods for solving monotone variational inequalityproblems and have established their convergence and rate of convergence under mild as-sumptions on the problem. Preliminary computational experience with the new methodssuggest the new methods are practical alternatives to the extragradient method.We mention in passing that Algorithms 2.1 and 3.1 may be generated by the followinggeneral approach: We set y in the inequality0 � (y � z)T (�F (x) + z � x) 8y 2 X;where z = [x� �F (x)]+, to x�; and we set y in the inequality0 � �(y � x�)F (x�) 8y 2 X;where x� 2 S, to z. Then we add the two inequalities and, by using the monotone propertyof F and, if necessary, the a�ne property of F , we reduce the resulting inequality to theform: 0 � (x� x�)TT (x) + (an expression involving �, F , x and z only)for some mapping T (depending on F and �) from <n to <n. Provided that the rightmostterm is negative, the method then updates x according to the formulaxnew := x� T (x):Algorithm 2.3, as well as the extragradient method, may be similarly generated except weset y in the �rst inequality to x instead. Then, we need x to be in X which is why an extraprojection on to X is needed. (We can also set y in the second inequality to x, but this doesnot appear to yield anything useful.) 19
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Algorithm 2.11 Extragradient2Problem (� = 10�2) (� = 10�3) (� = 10�2) (� = 10�3)Name m l iter.3 CPU4 iter.3 CPU4 iter.3 CPU4 iter.3 CPU4RanLP1 100 200 738 2.6 2776 12.3 1009 5.0 5056 31.5RanLP2 100 300 599 4.0 2811 15.1 867 6.3 8380 65.2RanLP3 100 400 697 5.1 3326 25.0 762 8.0 3058 31.8RanLP4 200 400 790 22.6 3174 81.9 759 28.4 3005 107.6RanLP5 200 600 691 14.7 2301 85.0 748 23.4 2980 82.8RanLP6 200 800 875 25.3 3215 97.3 861 38.0 4496 177.2Adlittle 56 138 56219 123.9 73804 163.9 {5 { { {Scorpion 388 466 1609 13.01 6058 56.8 3372 36.7 14277 159.3Bandm 305 472 1202607 12837.7 { { { { { {Table 1: Results for Algorithm 2.1 and extragradient method on LP.1 Algorithm 2.1 with P being the diagonal part of (I +MT )(I +M) and � = :7.2 The extragradient method as described in [29], with � = :7 and initial � = 1.3 For all methods, x0 = 0 and the termination criterion is kr(x)k � �.4 Time (in seconds) obtained using the intrinsic function SECNDS and with the codescompiled by the DEC Fortran-77 compiler and ran on a Decstation 5000; does not includetime to read problem data.5 kr(x)k � 2 � 10�2 after 50955000 iterations.25



Algorithm 2.11 Extragradient2Problem (� = 10�2) (� = 10�3) (� = 10�2) (� = 10�3)Name n iter.3 CPU4 iter.3 CPU4 iter.3 CPU4 iter.3 CPU4RanLCP1 100 5721 113.0 11600 233.7 36611 739.5 71491 1462.3RanLCP2 200 59744 5474.5 144157 15028.2 48013 7456.4 198282 18831.7RanLCP3 300 37769 8415.2 171963 46096.1 316489 13201.0 { {RanLCP4 100 2378 45.7 3149 60.4 7802 148.2 10369 195.0RanLCP5 200 1133 112.6 1412 138.1 3425 341.6 4276 444.3RanLCP6 300 748 200.4 944 246.2 2394 517.9 3033 713.4DetLCP1 100 32 2.1 36 2.2 136 2.9 157 2.9DetLCP2 200 37 16.5 42 16.7 156 18.1 178 19.6DetLCP3 300 40 50.9 45 52.8 167 36.4 189 43.6HPEasy 100 79 2.9 109 3.5 423 8.0 531 9.7HPHard 100 64 2.7 85 3.8 855 16.2 1115 20.9Lemke 100 1057 21.3 1107 22.0 1508 27.5 2261 44.3Table 2: Results for Algorithm 2.1 and extragradient method on LCP.1 Algorithm 2.1 with P = (I +MT )(I +M) and � = 1.2 The extragradient method as described in [29], with � = :7 and initial � = 1.3 For all methods, x0 = 0 and the termination criterion is kr(x)k � �.4 Time (in seconds) obtained using the intrinsic function SECNDS and with the codescompiled by the DEC Fortran-77 compiler and ran on a Decstation 5000; does not includetime to read problem data. 26



Algorithm 2.11 Algorithm 3.22 Extragradient3Name n iter.(nf=np)4 CPU5 iter.(nf=np)4 CPU5 iter.(nf=np)4 CPU5Mathiesen 3 { { 25(56=31) 3.9 260(524=524) 66.1{ { 18(40=22) 2.7 13(30=30) 3.2KojimaSh 4 { { 38(85=47) 3.9 16(36=36) 2.4Nash5 5 { { 74(155=81) 6.6 43(89=89) 5.5Nash10 10 { { 93(192=99) 10.6 84(172=172) 13.4HPHard 20 38(38=38) 31.5 286(579=293) 264.3 248(499=499) 395.2qHPHard 20 { { 274(555=281) 251.6 239(481=481) 380.4Table 3: Results for Algorithms 2.1, 3.2 and extragradient method on linearlyconstrained variational inequality problems.1 Algorithm 2.1 with P = (I +MT )(I +M) and � = 1:5.2 Algorithm 3.2 with P = I, ��1 = 1, � = 1:5, � = :1 and � = :3.3 The extragradient method as described in [29], with � = :7 and initial � = 1.4 For all methods, the termination criterion is kr(x)k � 10�4. (nf denotes the total numberof times F is evaluated and np denotes the total number of times a projection onto X isperformed.) On the Mathiesen problem, we ran each method twice with x0 = (:1; :8; :1) andx0 = (:4; :3; :3) respectively; on the other problems, we used x0 = (1; :::; 1).5 Time (in seconds) obtained using the intrinsic Matlab function etime and with the codesran on a Decstation 5000; does not include time to read problem data.27


