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Abstract: Using control of the growth of the transfer matrices, we discuss the spectral
analysis of continuum and discrete half-line Schrödinger operators with slowly decaying
potentials. Among our results we show ifV (x) =

∑∞
n=1 anW (x − xn), whereW has

compact support andxn/xn+1 → 0, thenH has purely a.c. (resp. purely s.c.) spectrum
on (0, ∞) if

∑
a2

n < ∞ (resp.
∑

a2
n = ∞). For λn−1/2an potentials, wherean are

independent, identically distributed random variables withE(an) = 0, E(a2
n) = 1, and

λ < 2, we find singular continuous spectrum with explicitly computable fractional
Hausdorff dimension.

1. Introduction

In this paper, we will study continuum and discrete Schrödinger operators on the half-
line (while we don’t always make them explicit, given theory in [10, 26, 32], many of
our results extend to suitable whole-line problems). Explicitly, we are interested in the
spectral analysis of operatorsH onL2(0, ∞; dx) and oǹ 2([1, ∞)) given by

(Hu)(x) = − d2

dx2
+ V (x) (1.1)

in the continuum case and

(Hu)(n) = u(n + 1) +u(n − 1) +V (n)u(n) (1.2)

in the discrete case.
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Suitable boundary conditions are set atx (or n) = 0, so thatH is self-adjoint (since
in all our examplesV is limit point at infinity, a boundary condition is not needed
there). We are interested in the spectral properties of such operators in situations where
|V (n)| → 0 asn → ∞, but so slowly that the usual scattering theory will not apply. Our
main theme in this paper is that there are perturbation techniques of remarkable power
for such operators based on two ideas.

The first is that one can use the transfer matrix to analyze spectral properties. The
transfer or fundamental matrix is a 2× 2 unimodular matrix defined in the continuum
case for anyE by

TE(x, 0)

(
a

b

)
=

(
u′(x)
u(x)

)
, (1.3)

where−u′′ + V u = Eu, u′(0) = a, u(0) = b. In the discrete case

TE(n, 0)

(
a

b

)
=

(
u(n + 1)

u(n)

)
, (1.4)

whereu(1) = a, u(0) = b, andu(n + 1) +u(n − 1) +V (n)u(n) = Eu(n).
The second idea is that one can control the transfer matrix by controlling the norms

of two solutions of−u′′ + V u = Eu and that the critical equations are ones that involve
those norms.

Two of us [22] have recently found several new criteria for singular or absolutely
continuous spectra in terms of transfer matrices, and these criteria will make some of our
results here possible. The perturbation equations we will use have not been systematically
used in this context except in the paper of Kotani-Ushiroya [21] whose techniques have
some overlap with this paper. But they didn’t control the discrete case and their method
is so entwined with certain Martingale inequalities that it is unclear how to use them in
other contexts.

While we were writing up the work for this paper, we received a preprint from
Remling [29] that uses this two-pronged approach and has considerable overlap with
our Sects. 5 and 6. We will discuss the connection shortly.

Here are some of the theorems that we will use that relate spectral properties to
behavior ofT (n). The first is from [22]:

Theorem 1.1. Suppose that there is a fixed sequenceni → ∞ andS is a subset ofR
so that for a.e.E ∈ S, limi→∞ ‖TE(ni, 0)‖ = ∞. Thenµac(S) = 0, whereµac is the
absolutely continuous part of the spectral measure forH.

Remarks.1. The interesting aspect of this theorem is thatni is arbitrary. The result
actually allows a more general sequence‖TE(ni, mi)‖.

2. In typical applications,S is an interval in the essential spectrum.

In the other direction, one has the following pair of results:

Theorem 1.2. SupposeS is a set so that for a.e.E ∈ S, limx→∞ ‖TE(x, 0)‖ < ∞.
Thenµac(Q) > 0 for anyQ ⊂ S with |Q| > 0 where| · | = Lebesgue measure.

Theorem 1.3. Suppose there is a sequenceni → ∞ so that
∫ b

a
‖TE(ni, 0)‖4 dE < ∞.

Then(a, b) ⊂ spec(H) and the spectral measure is purely absolutely continuous on
(a, b) andµac(Q) > 0 for anyQ with |Q ∩ (a, b)| > 0.
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Remarks.1. That Theorem 1.2 is implied by the Gilbert-Pearson [11] theory was noted
by Stolz [36]. A simple proof can be found in [33]. Last-Simon [22] prove a stronger
variant in which‖TE(x, 0)‖ is replaced by

∫ 1
−1 ‖TE(x + y, 0)‖ dy andlim by lim.

(The discrete analog holds with limand without any local integration.)

2. Theorem 1.3 is from Last-Simon [22] although the method used there is not much
more than what is in Carmona [1].

As to distinguishing dense pure point from singular continuous spectrum, in one
direction we have the following elementary result from Simon-Stolz [35].

Theorem 1.4. If
∑

n ‖TE(n, 0)‖−2 = ∞ in the discrete case or
∫ ∞

0 ‖TE(x, 0)‖−2 dx =
∞ in the continuum case, thenHu = Eu has no solution which isL2 at infinity.

The paradigm of results that guarantees a solutionL2 at∞ is Ruelle’s proof [30] of
Osceledec’s theorem. His argument is abstracted in [22]. We will need the following in
Sect. 8:

Theorem 1.5. If limn→∞[log ‖TE(n, 0)‖/nα] exists and lies in(0, ∞) for someα > 0,
thenHu = Eu has anL2 solution.

[22] also has a general abstract result on power decay which, to get anL2 solution,
requires

lim
n→∞

log‖TE(n, 0)‖
logn

>
3
2

.

[22] also has an example where the limit is3
2 and there is nò2 solution. But there are

stronger results that hold a.e. in certain probabilistic situations, so we won’t discuss the
power decay result here. In Sect. 8, we will discuss the probabilistic result.

As for the technique to control the growth of solutions, in the continuum case we
will use modified Pr̈ufer variables defined forE > 0 by

u′(x) =
√

E R(x) cos(θ(x)), (1.5a)

u(x) = R(x) sin(θ(x)). (1.5b)

One finds these obey the differential equations (withk =
√

E)

dθ

dx
= k − V (x)

k
sin2(θ(x)), (1.6)

d logR(x)
dx

=
1

2k
V (x) sin(2θ(x)). (1.7)

Two features of these equations are immediately noteworthy:

(a) They separate in the sense that (1.6) does not involveR and after solving it, one
obtainsR by integration. ThatR drops out of (1.6) and the right side of (1.7) is an
expression of the linearity of the initial equations.

(b) If V = 0 in some region (a, b), then in that regionR is constant andθ(x) = θ(a) +
k(x − a). It is this fact that leads one to take the factor

√
E in (1.5a). The addition

of this
√

E is what distinguishes this from ordinary Prüfer transformations.
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There is a third significant feature which we will turn to momentarily.
Given how common these continuum equations are, we would have expected their

discrete analogs would have been rediscovered and used many times, but even after some
efforts at tracking various literature, we’ve found them in a single chain of four papers
(and we are a fifth in this chain, since we learned of them from the fourth paper!).

The original discoverer of the correct equation was Thomas Eggarter [9] in 1971.
He was not looking at an explicit difference equation but rather a continuum equation
with V (x) = V0

∑n
i=1 δ(x − xi). By integrating modified Pr̈ufer variables across the

δ-functions, he was led to the transforms (E = 2 cos(k)),

u(n) − cos(k)u(n − 1) = R(n) cos(θ(n)), (1.8b)

sin(k)u(n − 1) = R(n) sin(θ(n)), (1.8b)

in which case we have, after some calculation (see Sect. 2),

cot(θ(n + 1)) = cot(k + θ(n)) − (sin(k))−1V (n), (1.9)

R(n + 1)2

R(n)2
= 1− V (n)

sin(k)
sin(2θ(n) + 2k) +

V (n)2

sin2(k)
sin2(θ(n) + k). (1.10)

Actually, he had only an equation of the form (1.9). The definition ofθ(n) and precise
(1.9) is in a 1975 paper of Gredeskul-Pastur [13] who followed up on Eggarter’s work.

[9, 13] focus on (1.9) because they use the transform to study the integrated density
of states. Pastur-Figotin [26] definedR and exploited (1.10) to study the Lyapunov
exponent. In recognition of these seminal works, we call (1.8) the EFGP transform.
Their approach was further exploited in Chulaevsky-Spencer [2]. It will often be useful
to use an equivalent form of (1.9) that appears as (2.14).

Notice that (1.9), (1.10) have the two critical properties (a), (b) mentioned for (1.6),
(1.7) in the continuum case. In particular, ifV (n) = 0 for n in some interval [n0, n1],
then in that regionR(n) is constant and

θ(n) = θ(n0) + k(n − n0).

While the EFGP transform was obtained by integrating a continuumδ-function
model, it could also be found by looking for a transform with property (b). We will
explain this in Sect. 2.

[9, 13, 26, 2] all considerV ’s with no decay asn → ∞ but with a small coupling
so that any calculations are only asymptotic in coupling constant. It turns out that the
methods are especially well suited whenV (n) → 0 at infinity and one obtains results
that are exact for a fixedV . For example, in Sect. 8, we will find exact formulas for the
local Hausdorff dimensions of certain singular continuous spectral measures.

The third critical factor of the modified Prüfer and EFGP transforms is a major theme
of this paper, namely, that first-order terms inV are oscillatory while the second-order
term has a strong tendency to be strictly positive. This idea is already seen in [26, 2],
whereγ(E) is O(g2) with g a coupling constant because the first-order terms drop out.

Let us be explicit about this idea. In (1.6), one might think the positivity comes via
the square in sin2(θ(x)) but that is wrong! Indeed, in writing sin2(θ) = 1

2 − 1
2 cos(2θ), it

is the cos(2θ) that is critical! Formally, (1.6) says

θ(x) = kx + θ0 − V (x)
k

sin2(kx + θ0) + O(V 2) ≡ kx + θ0 + δθ + O(V 2),
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and then using

sin(2θ) = sin(2kx + 2θ0) + 2 cos(2kx + 2θ0)δθ + O(V 2),

we get
d logR

dx
= t1 + t2 + O(V 3),

where

t1 =
1

2k
V (x) sin(2(kx + θ0)) − 1

2k2

(
V (x)

∫ x

x0

V (y) dy

)
cos(2(kx + θ0))

is the oscillatory term that is often unimportant, while

t2 =
1

4k2

d

dx

[ ∫ x

x0

V (y) cos(2ky + 2θ0) dy

]2

has a positive integral, second order inV .
In explicit cases, it is more subtle to prove the second order is strictly positive

and, indeed, for examples likeV (x) = x−α, α < 1
2, where the spectrum is absolutely

continuous (by Weidmann [37]), the second-order terms do not cause divergences. This
means that results that depend on a finite second-order term should hold more generally
than those that depend on an infinite second-order term. Indeed, we

Conjecture.If V is bounded and inL2(R, dx) (or `2(Z+)), then the essential support of
the a.c. part of the spectrum is all of (0, ∞) (or (−2, 2) in the discrete case).

Our idea is that for almost all (but not all; see, e.g., [24, 25, 34])k, the oscilla-
tions should kill the first-order term, and so theL2 condition should suffice to give a
bounded transfer matrix for a.e.k and so the stated conclusion about the a.c. spectrum
by Theorem 1.2.

After discussing the modified Prüfer and EFGP transforms and their relation to the
growth of the transfer matrix in Sect. 2, we turn to two warm-up problems in Sects. 3
and 4. In Sect. 3, we show these transforms can replace the Harris-Lutz [15] method
in many cases where that method is applicable. In Sect. 4, we look at potentialsV
with lim x|V (x)| finite and show that for such potentials their positive eigenvalues can
only coalesce atE = 0. Since examples are known with countable many eigenvalues
embedded in (0, ∞), this result is interesting.

In Sects. 5–7, we study sparse potentials.

Definition. A Pearson potential is one of the form

V (x) =
∞∑
n=1

anW (x − xn), (1.11)

whereW is a bounded, non-negative function of compact support,an → 0, and1 ≤
x1 < x2 < x3 < · · ·,

xn

xn+1
→ 0. (1.12)
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The name is in honor of David Pearson who considered potentials of the form (1.11)
where

∑∞
n=1 a2

n = ∞ andxn went to infinity sufficiently fast. To make things precise,
think of the examplexn = n!.

Our major goal in Sects. 5–6 is to prove the following:

Theorem 1.6. LetV be a Pearson potential. Then

(1) If
∑∞

n=1 a2
n < ∞, the spectrum of− d2

dx2 + V (x) is purely absolutely continuous on
(0, ∞) for any boundary condition at0.

(2) If
∑∞

n=1 a2
n = ∞, the spectrum of− d2

dx2 + V (x) is purely singular continuous on
(0, ∞) for any boundary condition at0.

In Sect. 5, we will actually prove a stronger version of (1):

Theorem 1.6′. LetV have the form(1.11)where

lim
xn

xn+1
< 1. (1.13)

Then(1) holds.

Pearson [27, 28] proved a weak version of (2) in that if
∑∞

n=1 a2
n = ∞, there exists

some set ofxn’s so that the spectrum is purely singular continuous. In [27], there are
hints that a result of type (1) (again withxn sufficiently large) should hold, but nothing
explicit.

As noted at the end of Sect. 5, for (1) the bumpsW (x − xn) can ben-dependent.
At the end of Sect. 6, for [a, b] ≡ S ⊂ (0, ∞), we construct Pearson-like potentials

(bumps whose width grows withn) so that there is purely a.c. spectrum onS and purely
s.c. spectrum on (0, ∞)\S.

In a recent paper, coincident with our work, Remling [29] obtained results related
to Theorem 1.6(1) using similar methods. He only obtains the existence of absolutely
continuous spectrum (his results are consistent with simultaneous singular continuous
spectrum while we prove there is none), and he needs at least exp(3

2n logn) growth on
thexn (whereas, iff (n) is a monotone function withf (m) → ∞ no matter how slowly,
thenxn = exp(nf (n)) obeys (1.12) andxn = exp(an) obeys (1.13)).

After this manuscript was completed, we obtained a preliminary version of a preprint
of Molchanov [23] with considerable overlap with our results in Sects. 5 and 6.

In Sect. 7, we will prove

Theorem 1.7. Letxn ∈ Z obeyxn/xn+1 → 0. LetV be the potential with

V (xn) = an,

V (x) = 0 x 6= xn for anyn.

Then,

(1) If
∑

a2
n < ∞, the discrete Schrödinger operator with potentialV has purely

a.c. spectrum for(−2, 2).

(2) If
∑

a2
n = ∞, the operator has purely singular continuous spectrum on(−2, 2).
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In Sects. 8 and 9, we discuss models with randomness and decay, first studied by
Simon [31] and then by Delyon, et al. [7], Delyon [6], and Kotani-Ushiroya [21]. Typical
of the models discussed in these sections is (g is positive constant)

V (n) = gn−αan,

where thean are independent, identically distributed random variables, uniformly dis-
tributed in [−1, 1]. We prove

(i) If α > 1
2, the spectrum is almost surely purely absolutely continuous in (−2, 2).

(ii) If 0 < α < 1
2, the spectrum is almost surely dense pure point in (−2, 2).

(iii) If α = 1
2, the spectrum is almost surely purely singular continuous in the region

|E| < (4 − 1
3g2)1/2 and dense pure point in the region (4− 1

3g2)1/2 ≤ |E| < 2 (if
g2 > 12, interpret (4− 1

3g2)1/2 as 0).

(iv) In caseα = 1
2 andg2 < 12, in the region|E| < (4 − 1

3g2)1/2, the spectrum has

fractional Hausdorff dimension with local dimension (4− E2 − g2

3 )/(4 − E2).

Section 8 handles the discrete case, and Sect. 9 the continuum case.
For sparse potentials, we give the details in the continuum case and sketch the

discrete case; while for random decaying potentials, we give details in the discrete case
and sketch the continuum case.

A.K. would like to thank the hospitality of I.H.E.S., and B.S. the hospitality of
Hebrew University where some of this work was done.

2. Modified Prüfer and EFGP Transforms

We will be interested in solutions of

−u′′(x) + V (x)u(x) = k2u(x). (2.1)

Change variables to

u′(x) = kR(x) cos(θ(x)), (2.2a)

u(x) = R(x) sin(θ(x)). (2.2b)

These are called modified Prüfer variables. The 2π ambiguity inθ is fixed by choosing
θ(0) ∈ [0, 2π) and demandingθ(x) be continuous inx.

Then a straightforward calculation shows (2.1) is equivalent to the pair of equations

dθ

dx
= k − V (x)

k
sin2(θ(x)) (2.3)

d(logR)(x)
dx

=
1

2k
V (x) sin(2θ(x)). (2.4)

This change of variables is so very useful because ifV = 0, thenθ(x) = θ0 + kx,
R(x) = R0. We will be able to studyV as a perturbation about this solution.

As explained in the introduction, one needs to study the asymptotic behavior of the
norm of the transfer matrixT (x, 0). For anyθ0 in [0, π), let θ(x, θ0) solve (2.3) with
initial conditionθ(0) = θ0. Then letR(x, θ0) solve (2.4) withR(0, θ0) = 1. Then
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Theorem 2.1. For anyα, β ∈ (0, ∞) andθ1 6= θ2, there exists non-zero, finite constants
C1 andC2 (independent ofx andV ) so that

C1 max(R(x, θ1), R(x, θ2)) ≤ ‖T (x, 0)‖ ≤ C2 max(R(x, θ1), R(x, θ2)) (2.5)

for all k ∈ (α, β).

Proof. Define‖(a, b)‖2
k = (ka)2 + b2. Then min(1, k)‖(a, b)‖ ≤ ‖(a, b)‖k ≤ max(1, k)

‖(a, b)‖. So defining operator norms in terms of‖ · ‖k, we see min(k, k−1)‖T (x, 0)‖k ≤
‖T (x, 0)‖ ≤ max(k, k−1)‖T (x, 0)‖k, so it suffices to prove (2.5) with‖ · ‖k rather than
‖ · ‖. But

‖T (x, 0)‖k ≥ max(R(x, θ1), R(x, θ2))

is trivial and

‖T (x, 0)‖k ≤ {min[sin(1
2 |θ1 − θ2|), cos(12 |θ1 − θ2|)]}−1 max(R(x, θ1), R(x, θ2))

by the lemma below. �

If |θ1 − θ2| ≤ π
2 (which can be done by replacingθ1 by π + θ, if need be), then this

proof shows we can take

C1 = min(α, β−1),

C2 = max(β, α−1)[sin(1
2 |θ1 − θ2|)]−1.

Lemma 2.2. LetA be a unimodular matrix. Letuθ = (cos(θ), sin(θ)). Then if|θ1−θ2| ≤
π
2 ,

‖A‖ ≤ sin(1
2 |θ1 − θ2|)−1 max(‖Auθ1‖, ‖Auθ2‖).

Proof. There existsθ0 so that

‖Auθ‖2 ≥ ‖A‖2 sin2(θ − θ0).

If |θ1 − θ2| < π
2 , for any θ0 at least one of| sin(θ0 − θi)| is larger than or equal to

| sin(1
2(θ1 − θ2)|. �

Remark.One might worry that the lemma involves‖ · ‖ and not‖ · ‖k but ‖A‖k =∥∥∥∥(
k 0
0 1

)
A

(
k 0
0 1

)−1
∥∥∥∥ and this product is also unimodular.

For the discrete case, we are interested in solutions of (0≤ k ≤ π)

u(n + 1) +u(n − 1) +V (n)u(n) = 2 cos(k)u(n). (2.6)

EFGP variablesR(n), θ(n) are defined by

R(n) cos(θ(n)) = u(n) − cos(k)u(n − 1), (2.7a)

R(n) sin(θ(n)) = sin(k)u(n − 1). (2.7b)

A priori θ(n) is only determined mod (2π). We will fix this ambiguity later. Noticing
that

R(n) sin(k + θ(n)) = sin(k)u(n), (2.8)

u(n)
u(n − 1)

=
sin(k + θ(n))

sin(θ(n))
. (2.9)
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Similarly,
R(n) cos(k + θ(n)) = cos(k)u(n) − u(n − 1). (2.10)

Thus,

cot(k + θ(n)) =
cos(k)u(n) − u(n − 1)

sin(k)u(n)
,

where by definition,

− cot(θ(n + 1)) =
cos(k)u(n) − u(n + 1)

sin(k)u(n)
.

Thus, (2.6) is equivalent to

cot(θ(n + 1)) = cot(k + θ(n)) − V (n)
sin(k)

. (2.11)

Writing θ̄(n) ≡ θ(n) + k, we see, using first (2.7) and then (2.8)/(2.9):

R(n + 1)2 = sin2(k)u(n)2 + (u(n + 1)− cos(k)u(n))2

= sin2(k)u(n)2 + (u(n − 1) − cos(k)u(n) + V (n)u(n))2

= R(n)2 sin2(θ̄(n)) + R(n)2

(
cos(̄θ(n)) − V (n)

sin(k)
sin(θ̄(n))

)2

= R(n)2

[
1 − V (n)

sin(k)
sin(2θ̄(n)) +

V (n)2

sin2(k)
sin2(θ̄(n))

]
.

We can summarize with the EFGP equations:

νk(n) ≡ − V (n)
sin(k)

; θ̄(n) = θ(n) + k, (2.12a)

cot(θ(n + 1)) = cot(̄θ(n)) + νk(n), (2.12b)

R(n + 1)2

R(n)2
= 1 +νk(n) sin(2θ̄(n)) + νk(n)2 sin2(θ̄). (2.12c)

We will fix the ambiguity inθ by demandingθ(n+1)− θ̄(n) ∈ [−π, π). Equation (2.12)
can be regarded as analogs of modified Prüfer equations in that ifV = 0,R(n) = constant,
andθ(n) = θ(0) +kn.

As noted in the introduction, Eggarter arrived at the first version of the EFGP trans-
form by looking at continuum models withδ-function potential ((2.12b) is especially
transparent in this mode). But one could have arrived at it by noting that whenV (n) ≡ 0,

the transfer matrix is powers of
(

2 cos(k) −1
1 0

)
. This matrix has eigenvaluese±ik and so it

must be similar to
(

cos(k) sin(k)
− sin(k) cos(k)

)
. That similarity transformation will make the powers

simple. Indeed,( 0 sin(k)
1 − cos(k)

) ( 2 cos(k) −1
1 0

)
=

( cos(k) sin(k)
− sin(k) cos(k)

) ( 0 sin(k)
1 − cos(k)

)
so the transform (2.7) precisely realizes the similarity.

There is an analog of Theorem 2.1. DefineR(n, θ) by requiringR(1) = 1,θ(1) = θ
in [0, π). Then
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Theorem 2.3. For anyα ∈ (0, π
2 ) andθ1 6= θ2, there exists non-zero, finite constants

C1 andC2 (independent ofx andV ) so that for allk ∈ (α, π − α),

C1 max(R(n, θ1), R(n, θ2)) ≤ ‖T (n − 1, 0)‖ ≤ C2 max(R(n, θ1), R(n, θ2)). (2.13)

Because of the arccot, (2.12b) is somewhat awkward to deal with. Pastur-Figotin
[26] have noted an equivalent form of (2.12b) which is straightforward from

e2iϕ = 1 +
1
2

1
1 + i cot(ϕ)

viz.,

e2iθ(n+1) = e2iθ̄(n) +
iνk(n)

2

(
(e2iθ̄(n) − 1)2

1 − iνk(n)
2 (e2iθ̄(n) − 1)

)
. (2.14)

As an application of (2.14) we have

Proposition 2.4. If |νk(n)| < 1
2 , then

|θ(n + 1)− θ̄(n)| ≤ π|νk(n)|. (2.15)

Proof. If |νk(n)| < 1
2, then (2.14) implies that

|e2iθ(n+1) − e2iθ̄(n)| ≤ |νk(n)|
2

4
1
2

= 4|νk(n)|.

Since|eiη − 1| ≥ 2|η|
π , we get

|θ(n + 1)− θ̄(n)| ≤ π

4
|e2iθ(n+1) − e2iθ̄(n)|,

and so the claimed result. �

Note. Kiselev, Remling, and Simon [20] present a way of definingR, θ that makes the
analogy to the continuum case transparent, makes (2.14) transparent, improves (2.15),
and extends to more generalh0.

3. Conditional Integrals and A.C. Spectrum

It follows from [11, 16, 17] that for both continuum and discrete Schrödinger operators
on [0, ∞), we have (see also [33] for a quick proof):

Proposition 3.1. If S is a set of reals so that for eachλ ∈ S, supx ‖Tλ(x, 0)‖ < ∞,
thenH has purely a.c. spectrum onS in the sense that

(i) For any boundary conditionθ and anyT ⊂ S with |T | > 0, we haveρac
θ (T ) > 0.

(ii) For any boundary conditionθ, ρsing
θ (S) = 0.

Thus, bounded transfer matrices have important spectral consequences. By Theo-
rems 2.1 and 2.3, if we can showR( · , θ) remains bounded for two initialθ’s, we have
boundedness ofT . From this and (2.4), (2.12c), one easily obtains the well-known re-
sult that if

∫ |V (x)| dx < ∞, (resp.
∑ |V (n)| < ∞), then the spectrum is purely a.c. in

(0, ∞) (resp. (−2, 2)). Here is a result allowing more general decay, first in the continuum
case.
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Theorem 3.2. Fix k 6= 0. Suppose thatlimβ→∞
∫ β

x
V (y)e2iky dy exists and that

Wk(x) =
∫ ∞

x

V (y)e2iky dy (3.1)

obeys ∫
|V (x)Wk(x)| dx < ∞. (3.2)

Then
lim

x→∞ ‖T (x, 0)‖ < ∞. (3.3)

Remarks.1. This result is not new; it is essentially due to Harris-Lutz [15]. This is a
new proof.

2. This result implies that ifV (x) =
∑N

m=1 am sin(kmx)/xβ , β > 1
2, andk 6= ± 1

2km for
anym, then (3.3) holds, and so by Proposition 3.1, the spectrum is purely a.c. except
for possible positive eigenvalues of{ 1

4k2
m}.

3. In [19], Kiselev proved that ifV (x) = O(x− 3
4−ε), then (3.2) holds off a set of Lebesgue

measure zero.

Proof. We will show for anyθ0, R(x, θ0) is bounded, and then one can appeal to Theo-
rem 2.1 to complete the proof of (3.3). Writeθ(x) = kx + ϕ(x), so by (2.3),ϕ obeys

dϕ

dx
= −V (x)

k
sin2(kx + ϕ). (3.4)

By (2.4) (andR(0) = 1),

logR(x) =
∫ x

0

1
2k

Im

[(
dWk

dx

)
e2iϕ

]
dx

= Im

[
1
2k

[Wk(x)e2iϕ(x) − Wk(0)e2iθ0] − 2i

2k

∫ x

0
Wk

dϕ

dx
e2iϕ

]
dx

if we integrate by parts. By hypothesis,Wk(x) is bdd so using (3.4),

| logR(x)| ≤ bdd +
1
k

∫ x

0
|Wk(y)V (y)| dy

is bounded by (3.2). �

Remark.A similar argument proves that

lim
x→∞ θ − kx − 1

2k

∫ x

0
V (y) dy

exists. This in turn lets one prove there are complex solutionsη±(k, x) with

η±(k, x) exp

(
(∓i

(
kx − 1

2k

∫ x

0
V (y) dy

))
→ 1,

η′
±(k, x) exp

(
∓i

(
kx − 1

2k

∫ x

0
V (y) dy

))
→ ik.
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Notice that ifV ∈ L2,

kx − 1
2k

∫ x

0
V (y) dy =

∫ x

0

√
k2 − V (y) dy + Q(x),

where limx→∞ Q(x) exists. So ifV ∈ L2, this says that WKB-type solutions exist. This
is also what the Harris-Lutz method gives [19].

We are heading toward a proof of

Theorem 3.3. Fix k 6= 0, π. SupposeV (n) is a discrete potential with

lim
B→∞

B∑
m=n

V (m)e2ikm = Wk(n)

exists and that ∞∑
n=1

|V (n)Wk(n)| + |V (n)Wk(n + 1)| < ∞. (3.5)

Then
lim

n→∞ ‖T (n, 0)‖ < ∞.

Given a functionf on {1, 2, . . .}, define (δf )(n) = f (n + 1) − f (n) and note that
summation by parts takes the form

b∑
m=a

g(m)(δf )(m) = −
b∑

m=a

f (m + 1)(δg)(m) + (fg)(b + 1)− (fg)(a).

Lemma 3.4. If (3.5)holds for somek, then
∑∞

n=1 |V (n)|2 < ∞.

Proof. SinceW exists,V → 0 at ∞ and soV is bounded. Thus, writingV (n) =
−e−2ikn(δWk)(n), and summing by parts,

B∑
n=1

V (n)2 = bdd +
B+1∑
n=2

V (n)Wk(n)e−2ikn −
B∑

n=1

V (n)Wk(n + 1)e−2ikn

is bounded by (3.5). �

Lemma 3.5. Suppose that{an}∞
n=1 is a real sequence so that

an → 0 as n → ∞ (3.6)

and
N∑

n=1

an is bounded. (3.7)

Then
∏N

n=1(1 +an) is bounded.

Proof. By (3.6),|an| → 0, so without loss we can suppose that|an| < 1. Then|1+an| ≤
1 +an ≤ ean and (3.7) implies the result. �
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Proof of Theorem3.3. By (2.12c), Lemma 3.4, and Lemma 3.5, it suffices to prove that

N∑
n=1

νk(n)e2iθ̄(n) ≡ G(N ) (3.8)

is bounded. Define

ϕ(n) = θ(n) − k(n − 1) = θ̄(n) − kn.

Proposition 2.4 and Lemma 3.4 imply that forn large

|(δϕ)(n)| ≤ π|νk(n)|. (3.9)

By the definition (3.8),

G(N ) = −
N∑

n=1

δWk(n)(sink)−1e2iϕ(n)

= bdd + (sink)−1
N∑

n=1

Wk(n + 1)δ(e2iϕ)(n).

But |δ(e2iϕ)| ≤ 2|δϕ|, so by (3.9)

|G(N ) − bdd| ≤ C1

N∑
n=1

|Wk(n + 1)νk(n)|

≤ C1

[ N∑
n=1

|Wk(n)νk(n)| + |νk(n)|2
]

< ∞.

�

Sometimes it is better to use slightly different Prüfer variables. For example, ifR, θ
are defined by

u′(x) =
√

E − V (x) R(x) cos(θ(x)),

u(x) = R(x) sin(θ(x)),

then

d log(R)
dx

=
1
2

∂V

∂x
cos2(θ(x)),

from which we see ifV (x) → 0 at infinity and∂V
∂x ∈ L1, then solutions are bounded.

(This is essentially the proof of Weidmann’s theorem [37] in [33].) If one tries out an
integration by parts argument, one needs both∂V

∂x ∈ L1 andV ∈ L2.
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4. Bound States forO(x−1) Potentials

If |V (x)| = o(x−1), Eastham-Kalf [8] show that− d2

dx2 +V (x) has no positive eigenvalues;
more generally, iflim x|V (x)| = C < ∞, they show any eigenvalueλmust obeyλ ≤ C2.

On the other hand, Naboko [24] and Simon [34] have constructedV (x) decaying
arbitrarily slower thanx−1 with eigenvalues dense in [0, ∞). In fact, Simon [34] con-
structedV (x) with V (x) = O(x−1) so that there are infinitely many eigenvalues with
λi → 0 as long as

∑ √
λi < ∞. In this section, we will handle the borderline case and

improve Eastham-Kalf [8] by showing:

Theorem 4.1. Let V (x) obeyC = limx→∞ x|V (x)| < ∞. Then there are at most
countably many positive eigenvaluesλn for which there are solutionsun of

−u′′
n + V (x)un = λnun

andun ∈ L2. Moreover, ∑
n

λn ≤ C2

2
. (4.1)

Remarks.1. We donot specify boundary conditions onV , that is, (4.1) is a bound on
all possible boundary conditions at once.

2. There areλn so that (4.1) holds, but
∑ √

λn = ∞ (e.g.,λn = 3C2

π2n2 ) so there is
a gap between Simon’s examples and what our bounds allow. We believe the optimal
result would be to prove that

∑
n

√
λn ≤ C.

Without loss of generality by slightly increasingC and looking at [x, ∞), we can
suppose that

|V (x)| ≤ C(1 + |x|)−1 (4.2)

which we henceforth do.

The following is standard (see, e.g., Eastham-Kalf [8]):

Lemma 4.2. If V is bounded andu solves−u′′ + V u = λu andu ∈ L2, thenu′ ∈ L2.
In particular, R(x, θ0) ∈ L2 for thatθ0 with (u(0), u′(0)) = (R0 sin(θ0), kR0 cos(θ0)).

Proof. ∫ N

0
|u′|2 dx = u′u

∣∣∣∣N
0

−
∫ N

0
u′′u dx

= u′u
∣∣∣∣N
0

+
∫ N

0
(λ − V )u2 dx,

so if limN→∞
∫ N

0 |u′|2 dx = ∞, then limN→∞ u′u = ∞, but that impliesu2(N ) =

u(0)2 + 2
∫ N

0 u′u dx → ∞, contradicting the fact thatu ∈ L2. �

Lemma 4.3. Letf andg beC1 functions on[1, ∞) so that

|g′f | + |f ′| ∈ L1.

Then
∫ N

0 f (x)ei(kx+g(x)) dx is bounded asN → ∞ for anyk 6= 0.
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Proof. Write eikx = 1
ik

d
dxeikx and integrate by parts to see that∣∣∣∣∫ N

1
f (x)ei(kx+g(x)) dx

∣∣∣∣ ≤ |f (N )|
|k| +

|f (1)|
|k| +

1
|k|

∫ N

1
(|f ′| + |fg′|) dx.

Noting that|f (N )| = |f (1)| +
∫ N

1 |f ′(y)| dy, we see that the integral is bounded. �

Remark.If f (x) → 0 at infinity, this argument shows that limN→∞
∫ N

1 f (x)ei(kx+g(x)) dx
exists.

Lemma 4.4. Let{ei}N
i=1 be a set of unit vectors in a Hilbert spaceH so that

α ≡ N sup
i6=k

〈ei, ej〉 < 1. (4.3)

Then
N∑
i=1

|〈g, ei〉|2 ≤ (1 +α)‖g‖2 (4.4)

for anyg ∈ H.

Proof. Let A be then × n matrix with aij = 〈ei, ej〉. Note that the Hilbert-Schmidt
norm ofA − 1 is bounded by (

∑
i6=j〈ei, ej〉2)1/2 ≤ α so (4.3) says thatA is invertible.

If B is its inverse, then
fi =

∑
Bijej (4.5)

obeys〈fi, ej〉 = δij , and thus∑
〈g, ei〉fj ≡ Proj ofg to the span of thee’s,

and so

‖g‖2 ≥
∥∥∥∥∑

〈g, ei〉fi

∥∥∥∥2

.

By (4.5),〈fi, fj〉 = Bij and since〈h, A−1h〉Cn ≥ ‖A‖−1〈h, h〉Cn , we see that

n∑
i=1

|〈g, ei〉|2 ≤ ‖A‖
∑
i,j

〈g, ei〉 〈fi, fj〉〈g, ej〉

≤ ‖A‖ ‖g‖2,

which is (4.4). �
Proof of Theorem4.1. It obviously suffices to show for each fixedN < ∞ that

N∑
n=1

λn ≤ C2

2
.

DefineRn(x) to be theR corresponding to theL2 solutionu(x, λn). Normalizeu
soRn(0) = 1. By Lemma 4.2,
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N∑
n=1

|Rn(x)|2 ∈ L1

so

lim x
N∑

n=1

|Rn(x)|2 = 0

(for if not, eventually
∑N

n=1 |Rn(x)|2 ≥ Cx−1 is notL1). Thus, we can findBj → ∞
so that forn = 1, . . . , N ,

Rn(Bj) ≤ B
−1/2
j

or ∫ Bj

0

d

dx
(logRn(y)) dy ≤ −1

2
ln Bj ,

so by (2.4), ∫ Bj

0
V (x) sin(2θn(y)) dy ≤ −

√
λn logBj . (4.6)

Now consider the Hilbert spaces

Hj = L2((0, Bj), (1 +x) dx).

In Hj , we have

‖V ‖2
Hj

≤
∫ Bj

0
C2(1 + |x|)−2(1 +x) dx = C2 log(Bj) + O(1). (4.7)

Let

e(j)
n (y) =

sin(2θn(y))
(1 + |y|)

1√
N (j)

n

χ[0,Bj ] (y),

where

N (j)
n =

∫ Bj

0

sin2(2θn(y))
(1 + |y|) dy.

Notice that 4θn(y) − 4
√

λn and 2(θn ± θm) − 2(
√

λn ± √
λm) have derivatives that

areO(x−1) by (2.3). Thus by Lemma 4.3,∫ Bj

0

sin(2θn(y)) sin(2θm(y)) − 1
2δnm

(1 + |y|) dy

are bounded. We conclude that

N (j)
i = 1

2 logBj + O(1), (4.8)

〈e(j)
i , e(j)

k 〉 = O((logBj)−1) i 6= k. (4.9)

Equations (4.6) and (4.8) imply that

〈V, e(j)
n 〉Hj ≤ −

√
2λn (logBj)1/2 + O(1). (4.10)

Since the numberN of eigenfunctions is fixed, butBj → ∞ for j large, Lemma 4.4
applies and
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N∑
n=1

|〈V, e(j)
n 〉Hj

|2 ≤ (1 +O((logBj)−1)‖V ‖2
Hj

. (4.11)

But (4.10) and (4.7) then say that

2

( N∑
n=1

λn

)
log(Bj) ≤ C2 log(Bj) + O(1),

so
N∑

n=1

λn ≤ C2

2
.

�

5. Sparse Potentials: The Continuum, Absolutely Continuous Case

Our goal in this section is to prove assertion (1) in Theorem 1.6 and Theorem 1.6′. The
idea will be to control‖T (x)‖4 and then use Theorem 1.3. As explained in Sect. 1, the
key is oscillations in sin(2θ(x)) for θ(x) ∼ kxn+1 for x nearxn+1. We will realize this
using an integration by parts so we need a priori control on objects liked‖T (xn)‖

dk .
Fix a Pearson potential;an is assumed to obeyan → 0 andxn+1 > xn + 21.

Fix θ0 and solve the modified Prüfer equations for eachk ∈ (0, ∞) to get functions
θ(x, k) andR(x, k) (with initial conditionsθ(x = 0, k) = θ0, R(x = 0, k) = 1). Fix1 so
supp(W ) ⊂ [−1, 1].

We need two propositions to prepare for bounds in an integration by parts:

Proposition 5.1. Suppose thatlim xn+1/xn > 1. For eacha, b > 0, there exists a
constantC so that for eachk ∈ (a, b),∣∣∣∣∂θ

∂k
(xn + 1)

∣∣∣∣ ≤ Cxn (5.1)

and ∣∣∣∣∂2θ

∂k2
(xn + 1)

∣∣∣∣ ≤ Cx2
n. (5.2)

Moreover, uniformly fork ∈ (a, b),

lim
x→∞

1
x

∂θ

∂k
(x) = 1, (5.3)

lim
x→∞

1
x2

∂2θ

∂k2
(x) = 0. (5.4)

Proof. Let

β = inf
n

xn+1

xn
> 1 (5.5)

by hypothesis.
As a preliminary, note that ifh, g, f are functions on [a, b], h is C1 and

h′(x) = f (x) + g(x)h(x). (5.6)
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Then
|h(b)| ≤ (|h(a)| + (b − a)‖f‖∞)e(b−a)‖g‖∞ (5.7)

as follows from the exact solution of (5.6):

h(x) = h(x)e
∫ x

a
g(y) dy +

∫ x

a

f (y)e
∫ x

y
g(z) dz

dy.

Now leth(x) = ∂θ
∂k (x). From (2.3),

∂h

∂x
= 1 +

V (x)
k2

sin2(θ(x)) − V (x)
k

sin(2θ(x))h. (5.8)

This means forx ∈ (xn−1 + 1, xn − 1), we have that

∂h

∂x
= 1. (5.9)

By (5.7) and (5.8),

|h(xn + 1)| ≤ e2C|an|1[|h(xn − 1)| + 21 + 2C|an|1] (5.10)

≤ e2C|an|1[|h(xn−1 + 1)| + (xn − xn−1) + 2C|an|1], (5.11)

where we used (5.9) to go from (5.10) to (5.11). In these equations,C is a constant only
depending on (a, b). Throughout this proof,C is such a constant whose value can vary
from one equation to the next.

Let β > 1 be given by (5.5). Pickn0 so large that forn ≥ n0:

β−1e2|an|C1 ≤ 1
2 (1 +β−1) (5.12)

and (
1 +

2C|an|1
xn

)
e2anC1 ≤ 1 +

(
1 − β−1

2

)
. (5.13)

Sinceβ > 1 andan → 0, such ann0 exists. Next, pickD ≥ 2 so

|h(xn0−1 + 1)| ≤ Dxn0−1. (5.14)

We claim inductively that forn ≥ n0 − 1, we have that

|h(xn + 1)| ≤ Dxn (5.15)

for by (5.14), this holds forn = n0 − 1, and if it holds forn − 1, then by (5.11) and
xn−1 ≤ β−1xn,

|h(xn + 1)| ≤ [Dxn−1 + xn − xn−1 + 2C|an|1]e2C|an|1

≤ xn

[
(D − 1)β−1 + 1 +

2C|an|1
xn

]
e2C|an|1

≤ xn

[
(D − 1)

(
1
2

)
(1 +β−1) + 1 +

(
1 − β−1

2

)]
(by (5.12)/(5.13))

= xn

[
D − (D − 2)

(
1 − β−1

2

)]
≤ Dxn
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sinceD ≥ 2. Thus, we’ve proven (5.15).
Next, letH(x) = h(x) − x, so (5.8) implies that∣∣∣∣∂H

∂x

∣∣∣∣ ≤ C|an|(1 + |H|) (5.16)

on (xn −1, xn +1). Using (5.7) and (5.15), we conclude (recall the constantC changes
from one equation to the next!)

|H(xn + 1) − H(xn − 1)| ≤ C|an|xn.

SinceH(xn−1 + 1) = H(xn − 1), we have that forn ≥ n0,∣∣∣∣H(xn + 1)
xn + 1

∣∣∣∣ ≤ C

xn + 1
+

n∑
m=n0

am
xm

(xn + 1)

≤ C

xn + 1
+

n∑
m=n0

amβ−(n−m) → 0

asn → ∞ sinceβ > 1 andam → 0. From this and (5.16), we see that|H(x)
x | → 0 as

x → ∞, which proves (5.1).

To prove (5.2), letg = ∂h
∂k = ∂2θ

∂k2 . Then differentiating (5.8) with respect tok, we see
that

∂g

∂x
= 0 on (xn−1 + 1, xn − 1) (5.17a)

∂g

∂x
= A(x) + B(x)h(x) + D(x)g(x) + E(x)h2(x) on (xn − 1, xn + 1) (5.17b)

whereA, B, D, E are uniformly bounded byCan on this interval withC uniformly
bounded ask runs through (a, b).

Now use (5.7) and (5.1) to see that

|g(xn + 1)| ≤ e2Can1[g(xn−1 + 1) + Canx2
n1].

As above, ifn is so large that

β−2e2Can1 ≤ 1
2 (1 +β−1) and (Can1)e2Can1 ≤ 1

2 (1 − β−1)

then inductively,

g(xn + 1) ≤ Cx2
n

for n large. This is (5.2). Plugging this into (5.17b), we see that

g(xn + 1) ≤ C

(
1 +

n∑
m=1

amx2
m

)
, (5.17c)

which yields limn→∞ g(xn + 1)/x2
n = 0 from which (5.4) is immediate. �
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Proposition 5.2. For anya, b > 0, there is aC so that for allk ∈ (a, b),

logR(xn + 1) ≤ C
n∑

m=1

|am|, (5.18)

∂ logR

∂k
(xn + 1) ≤ C

n∑
m=1

|amxm|. (5.19)

Proof. By (2.4), logR(x) is constant forx ∈ (xn−1 + 1, xn − 1) and

| logR(xn + 1) − logR(xn − 1)| ≤ 2k−1|an|
∫

W (y) dy,

so (5.18) holds withC = 2 min(k)−1
∫

W (y) dy.
From (2.4), we have

∂

∂x

∂

∂k
(k logR) = V (x) cos(2θ(x))

∂θ

∂k
,

so that the bound (5.1) implies (5.9). �

As a final preliminary, we note that

Lemma 5.3. Suppose thatlim xn+1/xn > 1. Then for a constantC,

∞∑
n=1

∑
m≤n

|anam| xm

xn
≤ C

∞∑
n=1

a2
n.

Proof. Let β = lim xn+1/xn. Pick 1< γ < β. Then form ≤ n, xm/xn ≤ Cγ−|m−n|.
Thus, the lemma follows from Young’s inequality that

T (a)n ≡
∑
m

γ−|m−n|am

is bounded from̀2 to `2 for anyγ > 1. �
Proof of Theorem1.6′. Let g be a non-negativeC∞-function compactly supported on
(0, ∞). We will prove that

sup
n

∫
g(k)R(k, xn + 1)4 dk < ∞. (5.20)

Proving this for two values ofθ0 and appealing to Theorem 2.1 gets a uniform bound
on

∫
g(k)‖T (0, xn + 1)‖4 dk. Theorem 1.3 then proves pure absolute continuity of the

spectrum on (0, ∞).
Let Bn =

∫
g(k)R(xn + 1)4 dk. Notice that by (2.4),R(xn−1 + 1) = R(xn − 1)

and
R(xn + 1)4 = R(xn − 1)4 exp(Qn), (5.21)

where

Qn =
2
k

∫ 1

−1

anW (y) sin(2θ(xn + y)) dy.

Sincek−1 andan are bounded,Qn is uniformly bounded inn, and so
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exp(Qn) ≤ 1 +Qn + CQ2
n

≤ 1 +Qn + Ca2
n

(5.22)

(where againC is a constant that varies from formula to formula).
Fory ∈ (−1, 1), we have by (2.3)

|θ(xn + y) − θ̃n(y)| ≤ Can,

where
θ̃n(y) = θ(xn−1 + 1) + k(xn + y − xn−1 − 1),

so ∣∣∣∣Qn − 2
k

∫ 1

−1

anW (y) sin(2θ̃n(y)) dy

∣∣∣∣ ≤ Ca2
n. (5.23)

By (5.21)–(5.23),
Bn ≤ Bn−1(1 +Ca2

n) + En, (5.24)

where

En = an

∫ 1

−1

dy

∫
2g(k)

k
R(xn−1 + 1, k)4W (y) sin(θ̃n(y)) dk.

Notice that we’re implementing our basic strategy: We separate out the second-order
terms (which will present no problem since

∏∞
n=1(1 + Ca2

n) < ∞) and need to control
the first-order terms where we have an explicit highly oscillatory factor sinceθn ∼ kxn.

Now
∂θ̃n

∂k
(y) = xn + y − xn−1 − 1 +

∂θ(xn−1 + 1)
∂k

>
1
2

xn (5.25)

for n large by the bound (5.3).
Thus, we can write

sin(θ̃n(y)) =
1

∂θ̃n

∂k

∂

∂k
(− cos(̃θn(y)))

and integrate by parts.
After integration by parts, we have three terms

E(1)
n coming from

∂[k−1g(k)]
∂k

,

E(2)
n coming from

∂R4

∂k
,

E(3)
n coming from

∂

∂k

(
1
∂θ̃
∂k

)
.

For theE(1)
n term, we can boundR4 as follows using (5.18) and

xn ≥ Cβn. (5.26)

By (5.10), forn large,
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R4 ≤ C exp

(
C

n∑
m=1

am

)
≤ C exp

(
n

2
ln(β)

)
,

sincean → 0. Thus, by (5.19) and (5.26),

E(1)
n ≤ Cβn/2β−n = Cβ−n/2. (5.27)

For theE(2)
n term, we use∂R4

∂k = R4 ∂ logR
∂k , (5.19), and (5.25) to see that

E(2)
n ≤ CBn−1bn,

where

bn =
n−1∑
m=1

anam
xm

xn
.

Note now that by
∑

a2
n < ∞ and Lemma 5.3, we have

∞∑
n=1

bn < ∞. (5.28)

For theE(3)
n term, we use (5.25) and (5.17c) to see that

E(3)
n ≤ Bn−1cn,

where

cn = Can
(1 +

∑n−1
m=1 amx2

m)
x2

n

.

As in the proof of Lemma 5.3, ∑
cn < ∞. (5.29)

By (5.24) and the above estimates onE(i)
n ,

max(Bn, 1) ≤ (1 +Ca2
n + Cbn + Ccn + Cβ−n/2) max(Bn−1, 1). (5.30)

By hypothesis,
∑

a2
n < ∞, and by (5.28–5.29),

∑
bn + cn < ∞. Thus

N∏
n=1

(1 +Ca2
n + Cbn + Ccn + Cβ−n/2)

is bounded and consequently, so isBn. �
It is easy to see that the methods of this section extend to prove:

Theorem 5.4. SupposeV (x) =
∑

Wn(x − xn), where

(i) lim xn/xn+1 < 1,

(ii) suppWn ⊂ [−1, 1] for some fixed1,

(iii)
∑

n

∫ |Wn(y)|2 dy < ∞.

Then− d2

dx2 + V (x) has purely a.c. spectrum on(0, ∞).
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6. Sparse Potentials: The Continuum, Singular Continuous Case

In this section, we will prove assertion (2) in Theorem 1.6. The idea will be to force
‖T (k2, xn)‖ to infinity for almost allk and suitablexn. To do this, we will need to
isolate a strictly positive second-order term and show that these second-order terms then
dominate the first-order terms because of oscillations.

Here is a warm-up problem to show this cancellation mechanism. LetXn be inde-
pendent, identically distributed random variables taking the values±1 with probability
1
2. Let ε > 0 and letan be a sequence going to zero asn → ∞. Finally, let

Yn =
n∑

m=1

(εa2
m + amXm).

Suppose that
∑

a2
n = ∞. We claim there exists a subsequencen(i) → ∞, so with

probability 1,
lim

i→∞
Yn(i) = ∞. (6.1)

The reason (6.1) holds is that by the central limit theorem
∑n

m=1 anXn is typically
not more negative thanO

( − √∑
a2

n

)
and, because of the square root, this is smaller

thanε
∑n

m=1 a2
n.

To make a proof, notice that since
∑n

m=1 a2
m → ∞, we can choosen(i) so that∑n(i)

m=1 a2
m ≥ i2. By a Tschbechev inequality,

Prob

( n(i)∑
1

amXm ≥ ε

2

n(i)∑
1

a2
m

)
≤ ‖ ∑n(i)

1 amXm‖2

( ε
2

∑n(i)
1 a2

m)2
=

4
ε2

1∑n(i)
1 a2

m

≤ 4
ε2i2

.

∑ 1
i2 < ∞, so by the Borel-Cantelli lemma, with probability 1, eventually

n(i)∑
1

amXm ≤ ε

2

n(i)∑
1

a2
n,

and thus eventually,

Yn(i) ≥ ε

2

n(i)∑
1

a2
m

diverges.
The usual Kolmogorov stopping argument that lets one prove things without sub-

sequences isn’t obviously applicable here in a situation where we assume no regularity
on theam’s (see Sect. 8 for the caseam = m−α). Since a subsequence suffices for our
application, we have not tried to push the argument through to get limYn = ∞, even in
the toy problem.

Notice that independence of theXn’s was not needed; rather, it suffices to have
enough control ofE(XnXm) to show that the first-order term is small compared to the
second-order term. In the case at hand, we will use integration by parts ink as we did
in the last section to get this control.

We summarize the key to the above argument with

Lemma 6.1. LetPn, Qn be random variables so that
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(i) Pn(x) ≥ αn > 0 for a.e.x and positive realsαn,

(ii)
∑

α−1
n Exp(|Qn|) < ∞,

(iii) lim n→∞ αn = ∞.

ThenPn(x) + Qn(x) → ∞ for a.e.x. If (ii) is replaced with

(ii ′) limn→∞ α−1
n Exp(|Qn|) = 0, then there exists a subsequencen(i) so thatPn(i)(x)+

Qn(i)(x) → ∞ for a.e.x.

Proof. If (ii ′) holds, we can find a subsequence so that (ii) holds. Thus, it suffices to
prove the result assuming (ii).

By (ii),
∑

α−1
n |Qn(x)| < ∞ for a.e.x. In particular,α−1

n Qn(x) → 0 soPn +Qn ≥
αn[1 − α−1

n |Qn(x)|] → ∞. �

We will also need the following lemma:

Lemma 6.2. Suppose thatBn, αn, βn ≥ 0 are real numbers and that

Bn ≤ Bn−1 + 2αn

√
Bn−1 + βn (n ≥ 1). (6.2)

Then, √
Bn ≤

√
B0 +

n∑
k=1

αk +

√√√√ n∑
k=1

βk . (6.3)

Proof. We give a proof by induction. Equation (6.2) holds forn = 0. Letan =
∑n

k=1 αk,
bn =

∑n
k=1 βk. By the induction hypothesis,√

Bn−1 ≤
√

B0 + an−1 +
√

bn−1 . (6.4)

Equation (6.2) implies that

Bn ≤
(√

Bn−1 + αn

)2
+ βn.

So by (6.4),

Bn ≤
(√

B0 + an +
√

bn−1

)2
+ βn

≤
(√

B0 + an

)2
+ bn + 2

√
bn−1

(√
B0 + an

)
≤

(√
B0 + an +

√
bn

)2
,

proving (6.3) inductively. �

So fix a Pearson potential with
∑

a2
n = ∞. Fix θ0 and letR(x, k) be the solution of

(2.3/2.4). Let
Yn(k) = logR(xn + 1, k)

and
δYn(k) = Yn(k) − Yn−1(k).

By (2.4),
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δYn(k) =
an

2k

∫ 1

−1

W (y) sin 2θ(xn + y) dy. (6.5)

As in Sect. 5, we write

θ̃n(y) = θ(xn−1 + 1) + k(xn + y − xn−1 − 1).

But we expandθ to the next order by letting

θ(1)
n (y) = −an

k

∫ y

−1

W (y) sin2(θ̃n(y)) dy. (6.6)

Then by (2.3),
θ(xn + y) = θ̃n(y) + θ(1)

n (y) + O(a2
n),

so by (6.5),

δYn(k) = anX (1)
n + a2

nSn + O(a3
n), (6.7a)

X (1)
n =

1
2k

∫ 1

−1

W (y) sin(2θ̃n(y)) dy, (6.7b)

Sn =
1
k

∫ 1

−1

W (y) cos(2̃θn(y))

[
θ(1)

n (y)
an

]
. (6.7c)

In the formula forθ(1)
n , use

sin2(θ̃n(y)) = 1
2(1 − cos(2̃θn(y))).

The cos term from this formula when plugged into (6.7c) gives

1
2

k2
∫ 1

−1

W (y) cos(2̃θn(y))

( ∫ y

−1

W (s) cos(2̃θn(s))

)
dy

=
1

4k2

( ∫ 1

−1

W (y) cos(2̃θn(y)) dy

)2

.

(6.8)

We lump the contribution of the12 term with the first-order term. DefiningX(y) =∫ y

−1
W (s) ds, we find

δYn(k) = [a2
nZn(k) + anXn(k)] + O(a3

n), (6.9)

where

Zn(k) =
1

4k2

( ∫ 1

−1

W (y) cos(2̃θn(y)) dy

)2

,

Xn(k) =
1

2k

∫ 1

−1

[
W (y) sin(2θ̃n(y)) − anW (y)X(y)

2k
cos(2̃θn(y))

]
dy.

In (6.9), theO(a3
n) means an error bounded byCa3

n, whereC is a finite constant for
k ∈ [a, b] any compact subinterval of (0, ∞).

Define

W̃ (k) =
∫ 1

−1

W (y)e2iky dy.
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Then,

Zn(k) =
1

8k2
|W̃ (k)|2 + X̃n(k), (6.10)

where

X̃n(k) =
1

8k2
|W̃ (k)|2 cos(4(̃θn(0, k) + ϕ(k)), (6.11)

whereϕ(k) = 1
2Arg(W̃ (k)).

For let θ̃n(y) = θ̃n(0) +ky. If W̃ (k) = |W̃ (k)|e2iϕ(k), then

Zn(k) =
1

4k2

(
Re

∫ 1

−1

W (y)e2i(θ̃n(0)+ky) dy

)2

=
1

4k2
|W̃ (k)|2 cos2(2(θ̃n(0, k) + ϕ(k))).

Proof of Theorem1.6, Part (2). Let

Pn(k) =
1

8k2
|W̃ (k)|2

n∑
m=1

a2
m,

Qn(k) = Yn(k) − Pn(k); δQn(k) = Qn(k) − Qn−1(k),

so
δQn(k) = a2

nX̃n(k) + anXn(k) + O(a3
n).

Let g be aC∞-function compactly supported in{k ∈ (0, ∞) | W̃ (k) 6= 0}. Let

Bn =
∫

g(k)

∣∣∣∣ n∑
m=1

amXm(k)

∣∣∣∣2

dk,

B̃n =
∫

g(k)

∣∣∣∣ n∑
m=1

a2
mX̃m(k)

∣∣∣∣2

dk.

We will prove that √
Bn

/ n∑
m=1

a2
m → 0 (6.12)

asn → ∞, and similarly forB̃n. Since
∑n

m=1 a3
m/

∑n
m=1 a2

m → 0 (on account of
an → 0 and

∑n
m=1 a2

m → ∞), (6.12) and the Schwartz inequality imply that∫
g(k)|Qn(k)| dk

/ n∑
m=1

a2
m → 0,

so by Lemma 6.1 and infk∈suppg
|W̃ (k)|

8k2 > 0 implies that there is a subsequencen(i)
so thatYn(i)(k) → ∞ for a.e.k in suppg. By doing this for two values ofθ0 and using
Theorem 2.1 and Theorem 1.1, we conclude there is no a.c. spectrum on suppg.

SinceW̃ is an entire function, it has isolated zeros and thus, this argument showsσac
is empty. By Theorem 1.4,σpp ∩ (0, ∞) is empty, and an elementary argument proves
thatσ(H) ⊃ [0, ∞). So the spectrum on (0, ∞) is purely singular continuous. It thus
suffices to prove (6.12) (the proof for̃Bn is essentially identical).
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Let Mn−1(k) =
∑n−1

m=1 amXm(k). Then

Bn ≤ Bn−1 +

∣∣∣∣∫ g(k)Mn−1(k)anXn(k)

∣∣∣∣ + Ca2
n

for a suitable constantC. NowXn has cos(2̃θn(y)) and sin(2̃θn(y)) terms. As in the last
section, we write those as a suitable [dθ̃n(y, k)/dk]−1 d

dk [. . .] and integrate by parts and
get three terms:

One coming from∂[k−1g(k)]
∂k ∂k. Noting that|Mn(k)| ≤ Cn, we have that this is

bounded byCn
xn

.

One coming from∂Mn(k)
∂k . Using (5.1), this term is bounded by

C

n−1∑
m=1

anam
xm

xn
.

One coming fromLn = [ ∂2θn

∂k2 ]/[ ∂θn

∂k ]2. As in the last section, thisLn is bounded by

C(
∑n−1

m=1 amx2
m)/x2

n. We can use the Schwartz inequality to control
∫

g(k)|Mn(k)| dk,
and so bound this term byC

√
Bn−1 an

∑n−1
m=1 amx2

m/x2
n. The net result is the bound

Bn ≤ Bn−1 + 2αn

√
Bn−1 + βn, (6.13)

where

αn = C
n−1∑
m=1

|anam| x2
m

x2
n

and

βn = C

[
a2

n +
n

xn
+

n−1∑
m=1

anam
xm

xn

]
.

By the argument in Lemma 5.3 withxn−1/xn → 0 and
∑∞

m=1 a2
n → ∞, we see

that
n∑

m=1

αm

/ n∑
m=1

a2
m → 0, (6.14)

and that
n∑

m=1

βm ≤ C

(
1 +

n∑
m=1

a2
m

)
,

so √√√√ n∑
m=1

βm

/ n∑
m=1

a2
m → 0. (6.15)

Lemma 6.2 and (6.13–6.15) imply (6.12). �
One can modify this construction to make examples of decaying potentials for which

the associated Schrödinger operator has regions of a.c. spectrum and regions of s.c. spec-
trum. The idea is to arrange that̃W (k) vanishes in a whole interval so that even though
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an /∈ `2, we have a.c. spectrum for thosek. Of course,̃W (k) cannot vanish ifW has com-
pact support, so we will take the bump functions of increasing support converging toward
a function whose Fourier transform vanishes in an interval. So, letS = [a, b] ⊂ (0, ∞).
Let f be an even Schwartz class function that vanishes ifk2 ∈ S and is strictly positive
on [0, ∞)\S.

Let an = n−1/2, xn = (n!)2, 1n = n−1/12. Notice that
∑

a2
n = ∞. Define

f̃ (x) =
1

4π

∫
exp(−2ikx)f (k) dk,

Wn(x) = f̃ (x)χ(−1n,1n)(x)

and
V (x) =

∑
n

anWn(x − xn).

We are heading toward:

Theorem 6.3. The half-axis Schr̈odinger operator− d2

dx2 + V (x) has purely singular
spectrum on(0, ∞)\S and purely a.c. spectrum onS.

Lemma 6.4. For anym > 0, there exists a constantCm with∣∣∣∣f (k) −
∫

e2ikxWn(x) dx

∣∣∣∣ ≤ Cmn−m. (6.16)

Proof. Let fn(k) =
∫

e−2ikxWn(x) dx. Then

fn(k) =
1

2π

∫
sin(1n(k − k′))

(k − k′)
f (k′) dk′,

so the left side of (6.16) is

1
2π

∣∣∣∣∫ sin1n(k − k′)
k − k′ [f (k) − f (k′)] dk′

∣∣∣∣,
which has the form ∣∣∣∣∫ g(y, k) sin1ny dy

∣∣∣∣,
whereg(y, k) is Schwartz space iny with bounds (including bounds on derivatives)
uniform ink. If we integrate by parts 12m times, we will get (6.16). �

Proposition 5.1 extends with no change. In the region wheref (k) 6= 0, the analysis
earlier in this section shows that logR(xn(i) + 1n(i)) → ∞ for a.e.k and a suitable
subsequencexn(i), so we know the spectrum in (0, ∞)\S is purely singular continuous.

On the other hand, ifg is C∞ supported inS, we claim that

sup
n

∫
g(k)R(k, xn + 1n)4 dk < ∞. (6.17)

The proof is similar to that in the last section. In place of (5.22), we need to use

exp(Qn) ≤ 1 +Qn + 1
2 Q2

n + O(a3
n).
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As in this section,Q2
n has a terma2

n|W̃n(k)|2/8k2 and oscillatory terms that we can
integrate by parts. Noting that

n−1∑
m=1

anam
xm

xn
≤ n−2n−1/2

n−1∑
m=1

m−1/2 ≤ Cn−2

is still summable and that
∑

a2
n|W̃n(k)|2 is summable by Lemma 6.4, we obtain (6.17).

�

7. Sparse Potentials: The Discrete Case

In this section, we will sketch the proof of Theorem 1.7. The proof follows closely that
in the last two sections with (2.12) replacing (2.3/2.4). We will make use of (2.14), the
Pastur-Figotin form of (2.12b).

Fix α > 0 and pickk ∈ (α, π−α) and thenN so large that for all suchk, |νk(n)| < 1
2

for n ≥ N0. Equation (2.14) can then be effectively used to prove the analogs of (5.1/5.2),
that is, ∣∣∣∣∂θ

∂k
(xn)

∣∣∣∣ ≤ Cxn

∣∣∣∣∂2θ

∂k2
(xn)

∣∣∣∣ ≤ Cx2
n. (7.1)

Equation (2.12c) can be rewritten

logR(n + 1)− logR(n) = 1
2 log(1 +νk(n) sin(2θ̄) + νk(n)2 sin2(θ̄)). (7.2)

This implies the bound

logR(xn) ≤ C
n∑

m=1

|am|. (7.3)

Next notice that

1 +α sin(2θ) + α2 sin2(θ) = (1 + 1
2 α sin(2θ))2 + α2 sin4(θ).

This provides a uniform bound on the argument of the log(·) in (7.2), and so allows one
to prove ∣∣∣∣ ∂

∂k
logR(xn)

∣∣∣∣ ≤ C
n∑

m=1

anxm. (7.4)

With these tools, the proof of assertion (1) of Theorem 1.6 is similar to that in Sect. 5,
only a little simpler since (2.12c) implies

R(n + 1)4 ≤ R(n)4(1 +νk(n) sin(2θ̄(n)) + Cna2
n).

The same integration by parts used in Sects. 5 and 6 shows that∫
g(k)R(n, k)4νk(n) sin(2θ(n)) dk = C(bn + cn + B−n/2)

(
1 +

∫
g(k)R(n, k)4 dk

)
with bn =

∑n−1
m−1 anam xm/xn andcn is like bn with x2

m/x2
n replacingxm/xn. As in

Sect. 5, this proves assertion (1) in Theorem 1.7.
To prove assertion (2), we must identify a strictly positive second-order term. We

write



30 A. Kiselev, Y. Last, B. Simon

log(1 +α sin(2θ) + α2 sin2(θ))

= α sin(2θ) + α2(sin2(θ) − 1
2 sin2(2θ)) + O(α3) (7.5)

= α sin(2θ) + 1
4 α2 cos(4θ) − 1

2 α2 cos(2θ) + 1
4 α2 + O(α3). (7.6)

This lets us write
logR(n + 1)− logR(n) = 1

2 a2
n + anXn,

and, as in Sect. 6, use the integration by parts machine to prove(∫ ( N∑
n=1

anXn

)2

g(k) dk

)1/2/ ∑
a2

n → 0

and complete the proof as there.
In this case, we don’t need to worry about zeros ofW̃ (k) since the analog ofW here

is δn0 and sõW (k) = 1.

8. Random Decaying Potentials: The Discrete Case

In this section, we consider discrete situations where theV (n) are independent random
variables of zero mean and decaying variance. The results that imply a.c. spectrum
require no regularity inE(V (n)2), while those for singular spectrum require some kind
of regular decay, as we will explain.

The results for a.c. spectrum are so general yet so simple to prove that they are a
paradigm of the usefulness of the EFGP transform.

Theorem 8.1. SupposeVω(n) are independent random variables withE(Vω(n)) = 0
and ∑

n

E(Vω(n)2) + E(Vω(n)4) < ∞. (8.1)

Then for a.e.ω, hω has purely a.c. spectrum on(−2, 2).

Remarks.1. ForE(V 2
ω )1/2 ≤ Cn−α with V bounded andα > 1

2, we get a.c. spectrum
recovering results of Delyon, et al. [7].

2. If theVω(n) are uniformly bounded, thenE(Vω(n)4) ≤ CE(Vω(n)2) and so (8.1)
becomes

∑
n E(Vω(n)2) < ∞; we state the general bound because unboundedV ’s are

so easy to accommodate.
3. The caseE(Vω(n)2)1/2 = n−1/2 log(n)−1 is of some interest. This sequence is

`2 so if V is bounded, the theorem proves a.c. spectrum. Kotani-Ushiroya [21] cannot
handle such borderline cases.

Proof. Fix θ0. ThenRω(n) andθω(n) become random variables which are measurable
functions of{Vω(j)}j≤n−1 and so independent of{Vω(j)}j≥n.

By (2.12c),

R(n + 1)4 = R(n)4

(
1 +

Vω(n)
sink

sin(2θ̄ω(n)) + O(V 2
ω + V 4

ω )

)
.

SinceVω(n) is independent of̄θ(n) andR(n), we have

E(Rω(n)4Vω(n) sin(2θω(n) )) = E(Vω(n))E(R4
ω(n) sin(2θ̄ω(n))) = 0.
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Using independence to boundE(R(n)4V j
ω ) by E(R(n)4)E(V j

ω ), we see that

E(Rω(n + 1)4) ≤ [1 + CE(V 2
ω (n) + V 4

ω (n))]E(R4
ω(n)),

whereC is uniformly bounded fork in any (α, π − α) with α > 0. It follows that

E

( ∫ π−α

α

Rω(n, k)4 dk

)
< ∞.

By Fatou’s lemma, for a.e.ω,

lim
∫ π−α

α

Rω(n, k)4 dk < ∞,

and by Theorem 1.3, the spectrum is purely a.c. on (−2 cos(α), 2 cos(α)). �

For the case where
∑∞

n=1 E(V (n)2) = ∞, we need some regularity of the fall-off.
Rather than try to find complicated general conditions, we consider the case where
E(V (n)2) ∼ n−2α with α ≤ 1

2. The same method can handle a case likeE(V (n)2) =
[n log(n+1)]−1 (which always has singular continuous spectrum of Hausdorff dimension
1) by the kind of arguments we will discuss in the caseα = 1

2; in this case for typical
energies‖T (0, n)‖ grows like log(n).

Explicitly, we suppose

(i) E(Vω(n)2)1/2 = λn−α 0 < α ≤ 1
2; λ > 0,

(ii) E(Vω(n)) = 0,

(iii) For someε > 0, supω |Vω(n)| ≤ Cn−(2α/3)−ε,

(iv) Vω(n) is independent of{Vω(j)}n−1
j=1 .

Remarks.1. Think of the case discussed in [26, 7], whereVω(n) = n−αXn(ω) with Xn

identically distributed bounded, independent random variables. IfE(X) = 0 andX is
bounded, then (i)–(iv) hold.

2. With some extra effort, we could allow unbounded distributions, and only require
that limn→∞ n+αE(Vω(n)2)1/2 exists and be non-zero.

Theorem 8.2. Suppose(i)–(iv) hold. Fixk in (0, π) with k 6= π
4 , 2π

4
3π
4 . Then for a.e.ω,

lim
n→∞

log‖T2 cos(k)(n, 0)‖
(
∑n

j=1 j−2α)
=

λ2

8 sin2(k)
.

Remark.In caseα < 1
2, this says‖T (n, 0)‖ ∼ exp(Cn1−α) with C = λ2

8(1−2α) sin2(k) . If

α = 1
2, this says‖T‖ ∼ nC with C = λ2

8 sin2(k) .

Proof. By Theorem 2.3, we need only prove this result withR(n) replacingT for each
θ0. So fixk andθ0, and letθω(n), Rω(n) solve (2.12). By (2.12c),

logR(n + 1)− logR(n) = 1
2 log(1 +νk(n) sin(2θ̄(n)) + νk(n)2 sin2(θ̄(n))). (8.2)

Since supω νk(n) → 0 asn → ∞, we can use

log(1 +x) = x − x2

2
+ O(x3). (8.3)
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We also use
sin2 θ − 1

2 sin2(2θ) = 1
4 − 1

2 cos(2θ) + 1
4 cos(4θ).

The net result is

logR(n) =
1
8

n∑
j=1

E(Vω(n)2)

sin2(k)
+ C1 + C2 + C3 + C4,

where the corrections have the form

C1 = − 1
2 sin(k)

n∑
j=1

Vω(j) sin(2θ̄ω(j)),

C2 =
1

2 sin2(k)

n∑
j=1

[Vω(j)2 − E(Vω(j)2)]

[
sin2(θ̄ω(j)) − 1

2
sin2(2θ̄ω(j))

]
,

C3 =
1

2 sin2(k)

n∑
j=1

E(Vω(j)2)

[
1
2

cos(2̄θω(j)) − 1
4

cos(4̄θω(j))

]
,

C4 =
n∑

j=1

O(Vω(j)3 + Vω(j)4).

The theorem follows if we prove that for eachq = 1, 2, 3, 4 and a.e.ω,

lim
n→∞

|Cq(ω)|∑n
j=1 j−2α

= 0. (8.4)

Equation (8.4) forq = 4 is an immediate consequence of hypothesis (iii).
C1, C2 clearly have zero expectation values and variances that decay properly for us

to hope (8.4) holds; the key to the proof will be a Martingale inequality.C3 will depend
on the fact that cos(θ) has zero average and the slow variation ofE(Vω(n)2).

We break the proof to present some needed lemmas. For the first two of these lemmas,
let X0, X1, . . . , XN be independent random variables, whereX0 can be vector valued.
Suppose that forj = 1, . . . , N ,

Zj = Xjfj(X1, . . . , Xj−1; X0) (8.5)

with fj a measurable function, and that

E(Xj) = 0. (8.6)

The following is a variant of a standard Martingale inequality; we provide a proof for
the reader’s convenience:

Lemma 8.3.

E

(
sup

n=1,2,...,N
|Z1 + · · · + Zn| ≥ r

)
≤ 1

r2
E

( N∑
j=1

Z2
j

)
. (8.7)
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Proof. Define

Yn =
n∑

j=1

Zj , Qn =
N∑

j=n+1

Zj

and let
Aj = {ω | |Y1| ≤ r, |Y2| ≤ r, . . . , |Yj | > r}.

Thenχn, the characteristic function ofAn, is a function only ofX0, X1, . . . , Xn and
thus, ifk > n,

E(ZkYnχAn ) = E(Xk)E(fk(X1, . . . , Xk−1, X0)YnχAn ) = 0.

Thus,
E(χnY 2

n ) ≤ E(χn(Yn + Qn)2),

since the cross term has zero expectation when we expand the square. Thus,

r2
n∑

j=1

E(χj) ≤
N∑
j=1

E(χjY
2
j ) ≤

N∑
j=1

E(χjY
2
N ) ≤ E(Y 2

N ),

which is (8.7). �

Lemma 8.4. SupposeE(Z2
n) ≤ Cn−2α. Then for a.e.ω:

(1) If α < 1
2 andβ > 1

2(1 − 2α), then

lim
n→∞

∣∣∣∣ n∑
j=1

Zj

∣∣∣∣ n−β = 0.

(2) If α = 1
2 andβ > 1

2 , then

lim
n→∞

∣∣∣∣ n∑
j=1

Zj

∣∣∣∣(logn)−β = 0.

(3) If α > 1
2 ,

lim
n→∞

n∑
j=1

Zj = Y∞

exists, and for anyβ < α − 1
2 ,

lim
n→∞ n+β

∣∣∣∣ ∞∑
j=n

Zj

∣∣∣∣ = 0.

Remark.Naively, fluctuations should behave as (
∑n

j=1 j−2α)1/2. This lemma shows they
are not much worse. Since we only need that they are small compared to

∑n
j=1 j−2α,

the lemma suffices.
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Proof. (1) Pickβ1 soβ > β1 ≥ 1
2(1 − 2α). By Lemma 8.3,

E

(
sup

j=1,...,2n−1

∣∣∣∣ 2n−1+j∑
k=2n−1+1

Zk

∣∣∣∣ ≥ 2nβ1

)
≤ C 2−2nβ12(n−1)2−2(n−1)α

≤ C 2−(n−1)(2α+2β1−1)

(8.8)

is summable inn by the choice ofβ1. Therefore, by the Borel-Cantelli lemma, for a.e.ω,
there is ann0(ω0) so that the sup inside (8.8) is less than 2nβ1 if n ≥ n0. Let j be larger
than 2n0−1 and pickn so that 2n−1 + 1 ≤ j ≤ 2n. Then

|Z1 + · · · + Zj | ≤ |Z1 + · · · + Z2n0 | +
n∑

k=1

2kβ1

≤ |Z1 + · · · + Z2n0 | +
2nβ1

2β1 − 1

≤ |Z1 + · · · + Z2n0 | +
2β1

2β1 − 1
jβ1.

Thus,lim j−β1|Z1 + · · · + Zj | < ∞. Sinceβ > β1, the limit for β is 0.
(2) Pickβ1 with β > β1 > 1

2 and define

Kn =

{
ω

∣∣∣∣ sup
j=1,...,2n

∣∣∣∣ j∑
m=1

Zj

∣∣∣∣ ≥ nβ1

}
.

Then by Lemma 8.3,

E(Kn) ≤ n−2β1

2n∑
1

1
j

≤ n−2β1(1 +n log 2) ≤ Cn1−2β1,

since
∑k

1
1
j ≤ 1 + logk.

Pick an integerm som(2β1 − 1) > 1. Then

∞∑
n=1

E(Knm ) < ∞.

So by the Borel-Cantelli lemma, for a.e.ω, there isn0(ω), so ifn ≥ n0, thenω /∈ Knm .
If j > 2nm

0 , pick n so that
2(n−1)m < j ≤ 2nm

.

Then

|Z1 + · · · + Zj | ≤ (nm)β1 ≤ 2mβ1(n − 1)mβ1 ≤ 2mβ1(log 2)−β1(logj)β1.

(3) Pickβ1 soβ < β1 < α − 1
2. Then

E

(
sup

j=1,...,2n−1

∣∣∣∣ 2n−1+j∑
k=2n−1+1

Zk

∣∣∣∣ ≥ 2−nβ1

)
≤ C 2−2nβ12n−12−2(n−1)α

≤ C 22β12−2(n−1)[α−1/2−β1]
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is summable. Thus, for a.e.ω, there is ann0(ω) so that forn ≥ n0(ω), the sup is bounded
by 2−nβ1. Thus, ifj1 ≥ j2 ≥ 2n2−1 ≥ 2n0−1,∣∣∣∣ j2∑

k=j1

Zk

∣∣∣∣ ≤
∞∑

n=n2

2−nβ1 → 0

asn2 → ∞. So the sum is convergent (i.e., the partial sums are Cauchy). Moreover, if
j ≥ 2n0−1 andn is picked so 2n−1 ≤ j ≤ 2n, then∣∣∣∣ ∞∑

k=j

Zk

∣∣∣∣ ≤
∞∑

m=n

2−mβ1 =
2−nβ1

1 − 2−β1
≤ j−β1

1 − 2−β1
,

and thus, if we multiply byjβ , the limit is 0. �

Lemma 8.5. Suppose thatk ∈ R is not inZπ. Then there exist integersq` → ∞ so that
for anyθ0, . . . , θq`

, ∣∣∣∣ q∑̀
j=1

cos(θj)

∣∣∣∣ ≤ 1 +
q∑̀
j=1

|θj − θ0 − kj|.

Remark.In essence, we show| ∑q
j=1 cos(θ0 +kj)| ≤ 1 a stronger result than the ergodic

theory result that| 1
q

∑q
j=1 cos(θ0 + kj)| → 0. The weaker ergodic theory result suffices

for our application, but the proof of this lemma is easy so we give it.

Proof. By general number theory considerations [14], we can findp`, q` so that∣∣∣∣k − πp`

q`

∣∣∣∣ ≤ 1
q2
`

(8.8)

andp`/q` /∈ Z if k /∈ Zπ. For anyp/q /∈ Z and anyθ0,

q∑
j=1

cos

(
θ0 +

jpπ

q

)
= 0. (8.9)

Thus ∣∣∣∣ q∑̀
j=1

cos(θj)

∣∣∣∣ =

∣∣∣∣ q∑̀
j=1

cos(θj) − cos

(
θ0 +

jp`π

q`

)∣∣∣∣
≤

q∑̀
j=1

∣∣∣∣(θj − θ0 − jp`π

q`

)∣∣∣∣
≤

q∑̀
j=1

|θj − θ0 − kj| +
q∑̀
j=1

j

∣∣∣∣k − πp`

q`

∣∣∣∣
≤ q`(q` + 1)

2q2
`

+
q∑̀
j=1

|θj − θ0 − kj|.

�
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Conclusion of the Proof of Theorem8.2. We need to verify (8.4) forq = 1, 2, 3.
Vω(n) sin(2θ̄ω(n)) ≡ Zn has the form (8.5) andE(Z2

n) ≤ Cn−2α, so by Lemma 8.4,
for a.e.ω,

|C1(ω)| = o

( n∑
j=1

j−2α

)
.

[Vω(n)2 − E(Vω(n)2)][sin2(θ̄) − 1
2 sin2(2θ)] also has the form of (8.4) sinceE(V 2

ω −
E(V 2

ω )) = 0. SinceV is bounded,

E((V 2 − E(V 2))2) ≤ CE(V 2).

Thus, for a.e.ω,

|C2(ω)| = o

( n∑
j=1

j−2α

)
also.

Finally, we will show

n∑
j=1

j−2α cos(4̄θω(j)) = o

( n∑
j=1

j−2α

)
,

which proves (8.4) forq = 3. By hypothesis onk, 4k /∈ Zπ so Lemma 8.5 applies. Let
q` be as in that lemma. Note next that by hypothesis (iii) and Proposition 2.4 forj large,

|θω(j + 1)− θω(j) − k| ≤ C0j
−2α/3. (8.10)

Pickn0 so
n0 ≥ q2

` (8.11)

and
4C0n

−2α/3
0 ≤ q−2

` . (8.12)

SupposeN = n0 + Kq`. Then∣∣∣∣ N∑
j=n0+1

j−2α cos(4θω(j))

∣∣∣∣ =

∣∣∣∣ K∑
m=0

q∑̀
j=1

(n0 + mq` + j)−2α cos(4θω(mq` + j))

∣∣∣∣
= A1 + A2,

whereA1 is what we get by replacing (n0 + kq` + j)−2α by (n0 + kq`)−2α andA2 is the
difference. By Lemma 8.5, (8.10), and (8.12),

A1 ≤
K∑

k=0

(n0 + kq`)
−2α[1 + 1],

while using

|(n0 + kq` + j)−2α − (n0 + kq`)
−2α| ≤ (n0 + kq`)

−2αjn−1
0

and (8.11),
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A2 ≤
K∑

k=0

(n0 + kq`)
−2αq2

`n
−1
0 ≤

K∑
k=0

(n0 + kq`)
−2α.

Thus for anyN , ∣∣∣∣ N∑
1

j−2α cos(4θω(j))

∣∣∣∣ ≤ C` + 3q−α
`

N∑
j=1

j−2α,

and so

lim
N→∞

( N∑
j=1

j−2α

)−1∣∣∣∣ N∑
1

j−2α cos(4θω(j))

∣∣∣∣ ≤ 3q−α
`

uniformly in ω. Since we can takeq` → ∞ by Lemma 8.5, thelim is 0. �

Theorem 8.6. Suppose that(i)–(iv) hold withα < 1
2 but we considerV (1) as a contin-

uous parameter. Then for a.e.ω:

(1) For a denseGδ of values ofV (1), Hω has purely singular continuous spectrum in
(−2, 2).

(2) For Lebesgue a.e. value ofV (1), Hω has dense pure point spectrum in(−2, 2) and
the eigenfunctions obeyHωu = 2 cos(km)u with

lim
n→∞

log(|u(n)2 + u(n + 1)2|1/2)
|n|1−2α

= − (1 − 2α)λ2

8 sin2(km)
. (8.13)

If we consider a whole-line problem with independentVω(n), where both{Vω(n)}∞
n=1

andṼω(n) ≡ Vω(−n), n = 1, 2, . . . obey hypotheses(i)–(iv) andVω(0) has a purely
a.c. density, then for a.e.ω, Hω has dense pure point spectrum in(−2, 2) and(8.13)
holds as|n| → ∞.

Remark.This strengthens the result originally proven in [31] and improved in [7] in two
ways. First, we get the explicit constant in (8.13). Second, we only require oneVω( · ) to
have an a.e. distribution.

Proof. By Theorem 8.2 and Fubini’s theorem for a.e.ω, we have for a.e.k ∈ (0, π),

lim
n→∞

log‖T (n)‖
n1−2α

=
(1 − 2α)λ2

8 sin2(k)
.

Thus by Theorem 8.3 of [22], there is anL2-solution obeying (8.13). The theorem follows
from general principles on rank one perturbations [12, 4, 5, 28].�

The caseα = 1
2 has an extra subtlety we will need to deal with, using an argument

modeled on Kotani-Ushiroya [21]. The following replaces an explicit but complex for-
mula they use for the projection onto a decaying solution (and fills in a gap in their
argument):

Lemma 8.7. Let uθ = (cosθ, sinθ) in R2. For any unimodular matrixA with ‖A‖ >
1, let θ(A) be the uniqueθ ∈ (−π

2 , π
2 ] with ‖Auθ‖ = ‖A‖−1. Define ρ(A) =

‖Au0‖/‖Auπ/2‖. Let An be a sequence of unimodular matrices with‖An‖ → ∞
and‖An+1A

−1
n ‖/‖An‖‖An+1‖ → 0 asn → ∞. Letρn = ρ(An), θn = θ(An). Then:
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(i) θn has a limitθ∞ if and only if limn→∞ ρn ≡ ρ∞ exists (ρ∞ = ∞ is allowed, but
then we only have|θn| → π

2 ).

(ii) Supposeθn has a limitθ∞ 6= 0, π
2 (equivalently,ρ∞ 6= 0, ∞). Then

lim
n→∞

log‖Anu∞‖
log‖An‖ = −1 (8.14)

if and only if

lim
n→∞

log |ρn − ρ∞|
log‖An‖ ≤ −2. (8.15)

Remark.Consider

An =
( cosh(n) (−1)n sinh(n)

(−1)n sinh(n) cosh(n)

)
.

Thenρ(An) ≡ 1 and‖An‖ → ∞ butθn = (−1)n+1(π
4 ) does not have a limit. This shows

that the condition‖An+1A
−1
n ‖/‖An‖‖An+1‖ → 0 is required. Indeed, in this case that

limit is 1. Kotani-Ushiroya miss this issue.

Proof. (i) Note first that

‖Anuθ‖2 = ‖An‖2 sin2(θ − θn) + ‖An‖−2 cos2(θ − θn). (8.16)

Thus,

ρn =
tan2(θn) + ‖An‖−4

1 +‖An‖−4 tan2(θn)
. (8.17)

It follows thatρn has a finite limitρ∞ if tan2(θn) has a finite limit. By writing

ρ−1
n =

cot2(θn) + ‖An‖−4

1 +‖An‖−4 cot2(θn)
,

this is true also forρn → ∞ and tan2(θn) → ∞.
Pick η ∈ [0, π

2 ] so tan2(θn) → tan2(η). If η = 0, thenθn → 0, and ifη → π
2 , then

|θn| → π
2 because of the continuity of tan(θ) on [−π

2 , π
2 ]. If 0 < η < π

2 , we only have
|θn| → η and have to worry about the sign (see the remark above).

In (8.16), takeθ = θn+1 and see that

sin2(θn+1 − θn) ≤ ‖An‖−2‖AnA−1
n+1‖2‖An+1uθn+1‖2

= ‖An‖−2‖An+1‖−2‖An+1A
−1
n ‖2

sinceAnA−1
n+1 is unimodular, and thus‖AnA−1

n+1‖ = ‖An+1A
−1
n ‖. Thus by hypothesis,

sin2(θn+1 − θn) → 0.

This, together with|θn| → η ∈ (0, π
2 ), implies thatθn has a limit.

(ii) By (8.16), we have that (8.14) holds if and only if

lim
n→∞

log |θn − θ∞|
log‖An‖ ≤ −2. (8.18)

Sinceθ∞ 6= 0, π, this is true if and only if
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lim
n→∞

log | tan2(θn) − tan2(θ∞)|
log‖An‖ ≤ −2.

By (8.17) andθ∞ 6= π,

|| tan2(θn) − tan2(θ∞)| − |ρn − ρ∞|| ≤ C‖An‖−4.

Thus, (8.18) holds if and only if (8.15) holds. �

Lemma 8.8. Suppose the hypotheses of Theorem8.2hold withα = 1
2 andk 6= π

4 , 2π
4 , 3π

4
is fixed. Then for a.e.ω, there exists an initial conditionuθ(ω) so that

lim
n→∞

log‖T2 cos(k)(n, 0)uθ(ω)‖
log(n)

= − λ2

8 sin2(k)
.

Remark.As noted in [22] (and gotten incorrectly in [21]), Ruelle’s deterministic argu-
ment doesn’t ever suffice in this‖T‖ ∼ nγ case. IfAn is a sequence of unimodular
matrices with limn→∞ log‖An‖/ log(n) = γ, then [22] has explicit examples (even
coming from deterministic Schrödinger operators) for eachγ > 1

2 where the decay-
ing solution only obeys limn→∞ log‖Anu∞‖/ log(n) = −γ + 1. It also appears one
needsγ > 3

2 to be sure of the existence of decaying solutions. But following [21], the
probabilistic argument here can replace Ruelle’s argument.

Proof. Let β = λ2

8 sin2(k) . Let R1(n) andR2(n) be theR’s associated toθ = 0 andθ = 1
2.

By the proof of Theorem 8.2 for a.e.ω,

lim
n→∞

log‖Ri(n)‖
log(n)

= β. (8.19)

Let θi(n) be the corresponding EFGP angles. By (2.7),

R1(n)R2(n) sin(θ1(n) − θ2(n)) = sin(k)[u1(n)u2(n − 1) − u1(n − 1)u2(n)] = −1

(by the initial conditionsR1(1) = R2(1) = 0,θ1(1) = 0,θ2(1) = π
2 ) and constancy of the

Wronskian. Thus by (8.19) for a.e.ω,

lim
n→∞

log |θ1(n) − θ2(n)|
log(n)

= −2β. (8.20)

Let ρn = R1(n)
R2(n) . Then by (2.12c),

Lω(n) ≡ [log ρ(n + 1)− logρ(n)] = log(1 +A1(n)) − log(1 +A2(n)),

where

Ai(n) = −Vω(n)
sin(k)

sin(2θi,ω(n)) +
Vω(n)2

sin2(k)
sin2(θi,ω(n)).

Define
F (a, θ) = log(1− a sin(2θ) + a2 sin2(θ)).

By a finite Taylor expansion,

F (a, θ) =
J−1∑
j=1

ajPj(θ) + O(aJ )
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with P1(θ) = sin(2θ) and theP ’s, C∞ in θ. Fix ε > 0 so forn large, use (8.20) to see
that|θ1 − θ2| = o(n−2β+ε). ChoosingJ son−J/3 = o(n−2β−1), we see that

Lω(n) = −Vω(n)
sin(k)

[sin(2θ1(n)) − sin(2θ2(n))] + O(n−2β−1+ε).

Sinceθj(n) depend only on{Vω(k)}k≤n−1, we can apply part (3) of Lemma 8.4 (with
2α = 1 + 2β − ε) to see that for a.e.ω,

lim
N→∞

N∑
1

Lω(n) (8.21)

exists and ∣∣∣∣ ∞∑
N

Lω(n)

∣∣∣∣ ≤ CωN−2β+ε. (8.22)

By (8.21), lim R1(n)
R2(n) ≡ ρ∞ exists and is different from 0 and∞. Moreover, by (8.22),

lim
log |ρ(n) − ρ(∞)|

log(n)
≤ −2β.

Lemma 8.7 completes the proof. �

Theorem 8.9. Suppose(i)–(iv) hold withα = 1
2 . Then,

(1) For a.e.ω, the essential spectrum ofHω is [−2, 2] and the absolutely continuous
spectrum ofHω is empty.

(2) If |λ| ≥ 2 andVω(1) has an absolutely continuous distribution, then for a.e.ω, Hω

has dense point spectrum and only dense point spectrum in(−2, 2).

(3) If |λ| < 2 andVω(1) has an absolutely continuous distribution, then for a.e.ω, Hω

has purely singular continuous spectrum in{E | |E| < (4−λ2)1/2} and only dense
pure point spectrum in{E | (4 − λ2)1/2 < |E| < 2}.

In either case(2) or (3), in the region of point spectrum, there are almost surely
eigenvectors of power decayn−β with

β =
λ2

8 − 2E2
. (8.23)

Remark.This theorem extends results of Delyon, et al. [7], Delyon [6], and Kotani-
Ushiroya [21]. In particular, [7] conjectured that there is a region of point spectrum near
E = ±2 no matter how smallλ is.

Proof. By Theorem 8.2, limn→∞ ‖Tω(0, n)‖ = ∞ for a.e.E for a.eω, so by The-
orem 1.1, we conclude (3). By Lemma 8.8, for a.e. pairs (ω, E), there is a unique
decaying solution with rate of decayn−β with β = λ2

8−2E2 . If β > 1
2, this is`2 and we

have potential point spectrum. Ifβ < 1
2, there is nò 2 solution. The general theory of

rank one perturbations ([32, 5]) then yields (2) and (3). �

We can compute the precise Hausdorff dimension of the singular continuous spectral
measures in this case:
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Theorem 8.10. Fix λ < 2 and a model obeying(i)–(iv) with α = 1
2 . In the region

|E| ≤ (4 − λ2)1/2, define

d(E, λ) =
4 − E2 − λ2

4 − E2
.

SupposeVω(1) has an absolutely continuous density. Then for a.e.ω, the spectral mea-
sure,µ, has dimensiond(E, λ) at E in the sense that for anyε, there is aδ so that
µ(A) = 0 if A is a subset of(E − δ, E + δ) of Hausdorff dimenion less than(d − ε), and
there is a subsetB of Hausdorff dimension less than(d+ε), soµ((E − δ, E +δ)\B) = 0.

Proof. Let ‖u‖L = (
∑L

j=1 u(j)2)1/2. By the general theory of rank one perturbations,
Theorem 8.2, Lemma 8.8, and the assumption ofVω(1) for a.e.ω, µ is supported on the
set of energies where most solutions grow asnβ and one decays asn−β , whereβ(E, λ)
is given by (8.23). The hypothesis for singular spectrum is preciselyβ < 1

2.
Sinceβ < 1

2, ‖u1‖L ∼ L−βL1/2 while ‖u2‖L ∼ LβL1/2, wherea ∼ b is shorthand
for lim log(a)

log(b) = 1. The Jitomirskaya-Last version [16, 17] of the Gilbert-Pearson [11]
theory says that the Borel transform of the spectral measure is supported on the set of
E’s, where

|m(E + iε)| ∼ ‖u2‖L

‖u1‖L
, (8.26)

andE is given by

‖u1‖L‖u2‖L =
1
2ε

(8.27)

(the∼ in (8.26) holds in the strong sense that the ratio lies in the interval (5− √
24, 5 +√

24 )). Thus,ε ∼ L−1 and (8.26) says that

|m(E + iε)| ∼ ε−2β .

Sinceβ is continuous, the theory in [3] then says that the local dimension is given
by 1− 2β as claimed. �

9. Random Decaying Potentials: The Continuum Case

Having done the discrete random case, we will only sketch the continuum case. We will
specialize to a situation where{V (x)}n≤x<n+1 are independent for differentn’s. Using
ideas from [21], one can presumably use Martingale methods to control asymptotically
independent situations.

Theorem 9.1. Let{Vω(x)}0≤x<∞ be a family of random variables and let

an(ω) =
∫ n+1

n

|Vω(y)| dy. (9.1)

Suppose

(i) E(Vω(x)) = 0 for eachx,

(ii)
∑

n E(a2
neCan ) < ∞ for all C > 0,

(iii) {V (x)}n≤x<n+1 are independent for differentn’s.
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Then for a.e.ω, − d2

dx2 + Vω(x) onL2(0, ∞) has purely absolutely continuous spectrum
on (0, ∞) for any boundary condition.

Remarks.1. Our methods imply for allE > 0 and a.e.ω, TE(n) is bounded, and that
implies− d2

dx2 +Vω(x) is limit point at infinity, so we need not worry about self-adjointness
issues.

2. A simple example where (ii) holds is if supω,x |Vω(x)| < ∞ andE(
∫ ∞

0 V (y)2 dy)
< ∞.

Proof. By (2.4),
R4(n + 1) = R4(n) exp(Bn(ω)), (9.2)

where

Bn(ω) =
2
k

∫ n+1

n

Vω(x) sin(2θω(x)) dx. (9.3)

By (2.3),

|θω(x) − θω(n) − k(x − n)| ≤ 2
k

an(ω). (9.4)

Using
|ex − 1 − x| ≤ 1

2x2ex,

we obtain from (9.2)–(9.4),

R4(n + 1) ≤ R4(n)(1 +Ca2
neCan ) + Qn, (9.5a)

Qn =
2
k

R4(n)
∫ n+1

n

Vω(x) sin(2θω(n) + 2k(x − n)) dx (9.5b)

for some constantC uniformly bounded fork in any compact of (0, ∞).
SinceVω(x) is independent of{Vω(y)}y≤n, it is independent ofR(n) andθω(n), and

soE(Qn) = 0.
Moreover,an is independent ofR(n), so (9.5) implies that

E(R4(n + 1)) ≤ E(R4(n))E(1 +Ca2
neCan ).

By condition (ii), we see that

lim
n→∞ E(R4(n)) < ∞

with bounds uniform ink on compacts of (0, ∞). Thus by Fatou’s lemma, for a.e.ω,
lim

∫ b

a
R4

ω(n, k) dk < ∞ and so the spectrum is purely absolutely continuous by Theo-
rem 1.3. �

Theorem 9.2. Letf be supported on(0, 1) and let

Vω(x) =
∞∑
n=0

(n + 1)−αXn(ω)f (x − n),

where{Xn(ω)} are independent, identically distributed bounded variables of mean zero
and0 < α ≤ 1

2 . Then for4k /∈ Zπ,

lim
n→∞

log‖T (n, 0)‖∑n
j=1 j−α

=
E(X2

n)
8k2

∣∣∣∣∫ 1

0
f (y)eiky dy

∣∣∣∣2

. (9.6)
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Remarks.1. This implies pure point spectrum for a.e.ω if α < 1
2.

2. If α = 1
2, we get singular continuous spectrum for largeE and pure point spectrum

for smallE (assuming
∫ 1

0 f (y) dy 6= 0 or
∫ 1

0 yf (y) dy 6= 0) and no a.c. spectrum.

Sketch.Defineθn(y) = θ(n) + ky and

δθn(y) = −(n + 1)−αXn

∫ y

0
f (y) sin2(θn(y)) dy. (9.7)

By (2.3),
|θn(n + y) − θn(y) − δθn(y)| = O(n−2α)

for y ∈ (0, 1).
Plugging this into (2.4), we find that

logR(n + 1)− logR(n) = Y (1)
n + Y (2)

n + O(n−2α),

where

Y (1)
n =

(n + 1)−αXn(ω)
2k

∫ 1

0
f (y) sin(2θn(y)) dy

and

Y (2)
n =

(n + 1)−αXn(ω)
2k

∫ 1

0
2f (y) cos(2θn(y))(δθn)(y) dy.

By using Lemmas 8.2 and 8.3, one sees that( n∑
j=0

(j + 1)−2α

)∣∣∣∣ n∑
j=0

Y (1)
j

∣∣∣∣ → 0

for a.e.ω. The same lemmas let us replaceXn(ω)2 by E(X2
n(ω)) in Y (2)

n . So if we let$
indicate equal up too(

∑n
j=0(j + 1)−2α) terms, we see that

logR(n) $
n−1∑
j=0

(Y (3)
n + Y (4)

n ),

where we use sin2(θn(y)) = 1
2 − 1

2 cos(2θn(y)) and letY (3)
n indicate the− 1

2 cos(2θ) terms
andY (4)

n the 1
2 terms. By an argument analogous to the one in the proof of Theorem 9.2

that used Lemma 8.5,
∑

Y (4)
n $ 0 becausek /∈ Zπ.

As in (6.5), we get

logR(n) $
n−1∑
j=0

(j + 1)−2αE(Xn(ω)2)
4k2

(∫ 1

0
f (y) cos(2θj(y)) dy

)2

.

As in the proof of Lemma 6.2, this last square is

1
2

∣∣∣∣∫ 1

0
f (y)eiky

∣∣∣∣2

plus a term that has cos(4θj(y)), which we can handle using Lemma 8.5. �
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