Nashine et al. Fixed Point Theory and Applications 2012, 2012:203 ® Fixed Point Theory and App|icati0n5
http://www.fixedpointtheoryandapplications.com/content/2012/1/203 a SpringerOpen Journal

RESEARCH Open Access

Modified yr-contractive mappings in ordered
metric spaces and applications

Hemant Kumar Nashine', Zoran Golubovi¢? and Zoran Kadelburg®”

“Correspondence:
kadelbur@matfbg.ac.rs

3Faculty of Mathematics, University
of Belgrade, Studentski trg 16,
Beograd, 11000, Serbia

Full list of author information is
available at the end of the article

@ Springer

Abstract
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complete ordered metric spaces. To demonstrate our results, we give some examples
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type and we prove an existence theorem for solutions of a system of integral
eqguations.
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1 Introduction and preliminaries

The celebrated Banach’s contraction mapping principle [1] is one of the cornerstones in
the development of nonlinear analysis. Fixed point theorems have applications not only in
the various branches of mathematics, but also in economics, chemistry, biology, computer
science, engineering, and other areas. In particular, such theorems are used to demon-
strate the existence and uniqueness of solutions of differential equations, integral equa-
tions, functional equations, partial differential equations and others. Owing to the mag-
nitude, the generalizations of the Banach fixed point theorem have been explored heavily
by many authors (see, e.g., [2] and references cited therein).

Browder and Petryshyn [3] introduced the concept of orbital continuity as well as of
asymptotic regularity of a self-map at a point in a metric space. Ciri¢ [4] introduced the
concept of an orbitally complete metric space. Sastry et al. [5] extended these concepts
to two and three mappings and employed them to prove common fixed point results for

commuting mappings. In what follows, we collect such definitions for three maps.

Definition1 Let S, T, R be three self-mappings defined on a metric space (X, d).

1. If for a point xy € X, there exits a sequence {x,} in X such that Rxy,,1 = Sxy,,
Rxonsa = Txons1, n=0,1,2,..., then the set O(xg; S, T,R) = {Rx,:n=1,2,...}is
called the orbit of (S, 7T, R) at xo.

2. The space (X, d) is said to be (S, 7, R)-orbitally complete at x if every Cauchy
sequence in O(xy; S, T, R) converges in X.
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3. The map R is said to be orbitally continuous at %y if it is continuous on
O(x0; S, T, R).

4. The pair (S,7) is said to be asymptotically regular (in short a.r.) with respect to R at
xg if there exists a sequence {x,} in X such that Rxy,41 = Sx2,, Raxous2 = T X241,
n=0,1,2,...,and d(Rx,, Rx,,1) — 0 as 1 — o0.

5. If R is the identity mapping on X', we omit “R’ in respective definitions.

On the other hand, fixed point theory has developed rapidly in metric spaces endowed
with a partial ordering. The foremost result in this direction was given by Ran and Reur-
ings [6] who presented its applications to matrix equations. Subsequently, Nieto and
Rodriguez-Lépez [7] extended this result for nondecreasing mappings and applied it to ob-
tain a unique solution for a first-order ordinary differential equation with periodic bound-
ary conditions. From then on, a number of authors have obtained many fixed point theo-
rems in ordered metric spaces. For more details, see, e.g., [8—12] and the references cited
therein. Many good quality works have been produced by the authors like Aydi, Karapinar,
and Shatanawi in this area. Very recently, Chen [13] introduced -contractive mappings
(see Definition 5) and proved some fixed point theorems in an ordered metric space, thus
extending and improving the results given in [14]. One of the main results in [13] is the

following theorem.

Theorem 1 Let (X,d, X) be a complete partially ordered metric space such that for each
nondecreasing sequence {x,} in X convergingtoz € X, x, < z holds for each n € N. Suppose
that T : X — X is a nondecreasing r-contractive self-map. If there exists an xo € X such
that xo < Txo, then T has a fixed point in X.

In this paper, we extend the results of Chen [13] (and hence some other related common
fixed point results) in two directions. The first is treated in Section 3, where the notion of
a Y s-contractive condition is introduced in metric spaces. The existence and (under ad-
ditional assumptions) uniqueness of common fixed points is obtained under the assump-
tions that respective mappings are strictly weakly isotone increasing and that they satisfy
the ¥.s-contractive condition. In Section 4, we consider the case of three self-mappings
S, T, R where the pair (S, T) is R-relatively asymptotically regular and relatively weakly
increasing, while the new contractive condition, named s r -contraction, is established.

We supply appropriate examples to make the validity of the propositions of our results
obvious. To end with, as applications of the presented theorems, we achieve common fixed
point results for generalized contractions of integral type and we prove the existence the-
orem for solutions of a system of integral equations.

2 Notation and definitions
All the way through this paper, by R* we designate the set of nonnegative real numbers,
while N is the set of natural numbers and Ny = NU {0}.

First, we introduce some further notation and definitions that will be used later.

If (X, <) is a partially ordered set, then x,y € X are called comparable if x <y or y <x
holds. A subset K of & is said to be totally ordered if every two elements of X are compa-
rable. If 7: X — X is such that, for x,y € X', x < y implies 7x < Ty, then the mapping T
is said to be nondecreasing.
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Definition 2 Let (X, <) be a partially ordered setand S,7 : X — &X.

1. [15,16] The pair (S, T) is called weakly increasing if Sx < 7Sx and Tx < ST« for all
xeX.

2. [15-17] The mapping S is said to be 7 -weakly isotone increasing if for all x € X', we
have Sx < TSx < ST Sx.

3. [18] The mapping S is said to be T -strictly weakly isotone increasing if for all x € X
such that x < Sx, we have Sx < TSx < ST Sx.

4. [11] Let R: X — X be such that 7X C RX and SX C RX, and denote
RYx):={u e X:Ru=x}forx e X. Wesay that T and S are weakly increasing with
respect to R if for all x € X', we have

Tx=<Sy, VyeR ™ (Tx) and Sx<Ty, VyeR(Sx).
5. [19] The mapping 7 is called dominating if x < 7x for each x in X.

Remark 1 (1) None of two weakly increasing mappings need to be nondecreasing. There
exist some examples to illustrate this fact in [20].

(2)IfS,T : X - X are weakly increasing, then S is 7 -weakly isotone increasing and
hence S can be T -strictly weakly isotone increasing.

(3) S can be T -strictly weakly isotone increasing, while some of these two mappings
can be not strictly increasing (see the following example).

(4) If R is the identity mapping (Rx = x for allx € X'), then 7 and S are weakly increasing
with respect to R if and only if they are weakly increasing mappings.

Examplel Let X = [0, +00) be endowed with the usual ordering and define S,7 : X — &
as

2x, ifx€[0,1], 2, ifx €[0,1],
Sx = [0.1] Tx= (0.1]
3x, ifx>1; 2x, ifx>1.

Clearly, we have x < Sx < TSx < ST Sx for all x € X, and so, S is T -strictly weakly

isotone increasing; 7 is not strictly increasing.

Definition 3 ([21,22]) Let (X,d) be a metric space and f,g: X — X. The mappings f and
g are said to be compatible if lim,,_, o d(fgx,, gfx,) = 0, whenever {x,} is a sequence in X
such that lim,,_,  fx,, = lim,_, .o gx,, = £ for some t € X.

Definition 4 Let X be a nonempty set. Then (X, d, <) is called an ordered metric space
if

(i) (&X,d) is a metric space,

(i) (X, =) is a partially ordered set.
The space (X, d, <) is called regular if the following hypothesis holds: if {z,} is a nonde-
creasing sequence in X’ with respect to < such thatz, - z € X as n — oo, then z, < z.

3 Common fixed points for generalized ¥ s-contractive mappings
Inspired by the notion of a y-contractive mapping given in [13], we first introduce the
notion of 1 s-contractive mappings in metric spaces.
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For convenience, we denote by F the class of functions  : R* — R* satisfying the fol-
lowing conditions:

(C1) o is astrictly increasing and continuous function in each coordinate, and
(Cy) for all t € R\ {0}, ¥(¢¢t,¢£0,2t) < t, ¥(tt,¢t2t0) < t, ¥(0,0,¢¢£0) < £, (0,0,
0,t)<t,and ¥ (£,0,0,¢t,t) < t.

The following are some easy examples of functions from class F:

ta L
W (t1, by, t3, Ly, 15) = kmax{h;tz,ts, 5“, 55 } for k € (0,1);

ty + ¢
Yt t, t3, L4, b5) = kmax{tl,tz, t3, 475 5 5 }, for k € (0,1);

t t
(4, b, 3, b4, 15) = Aty + Bty + Cts + D25 for A,B,C,D>0,A+B+C+D<1.
2

Definition 5 Let (X,d, <) be an ordered metric space, and let 7,5 : X — X'. The map-
pings 7, S are said to be {s-contractive if

d(Tx,Sy) < w(d(x,y),d(x, Tx),d(y,Sy),d(x,Sy),d(y, Tx)) for x >y, (3.1)
where € F.

For & = T, this definition reduces to the definition of a 1 -contractive mapping from [13].
It is easy to acquire the following examples of y/s-contractive mappings.

Example2 Let X = R* be endowed with usual metric and ordering, and let ¢ : R* — R*
be given by

3 ty + L5
W(tli by, 3,4, tS) = Z max\ t, Iy, L3, .

If 7,8: X — X are defined by Tx = 1x and Sx = 1, then T, S are ¥s-contractive map-
pings.

Example 3 Let X = R* x R* be endowed with the coordinate ordering (i.e., (x1,1) <
(%02,92) © x1 < x5 and y; < y,) and with the metricd: X x X — R* given by

d(x,y) = o1 —y1l + [x2 = yal,  forx = (x1,%2),y = (y1,92) € X.
Let ¢ :R** — R* be given by

Ly t5

3
t, £y, L3, t4,15) = — max\ &y, £, L3, —, — ¢,
¢(12345)4 {12322}

and 7,5 : X — X be given by

1 1 1 1
T(x,y):(gx, §y> and S(x,y):(ix, Ey)

Then T, S are ¥ s-contractive mappings.

Page 4 of 18
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Now, we state and prove our first result.

Theorem 2 Let (X, d, <) be a complete ordered metric space. Suppose that T,S : X — X
are two mappings satisfying the \s-contractive condition (3.1) for all comparable x,y € X.

We assume the following hypotheses:

(i) S is T -strictly weakly isotone increasing;

(ii) there exists an xg € X such that xo < Sxo;

(i) S or T is continuous at xy.
Then S and T have a common fixed point. Moreover, the set of common fixed points of S,
T is totally ordered if and only if S and T have one and only one common fixed point.

Proof First of all, we show that if S or 7 has a fixed point, then it is a common fixed point
of S and 7. Indeed, let z be a fixed point of S. Assume that d(z,Tz) > 0. If we use the
inequality (3.1), for x = y = z, we have

d(Tz2z)=d(Tz8z) < Iﬁ(d(z, 2),d(z,Tz),d(z,5z),d(z,5z),d(z, Tz))
= ¥(0,d(z,T2),0,0,d(z, T2)) < d(z, T 2),
which is a contradiction. Thus, d(z, 7 z) = 0 and so z is a common fixed point of S and 7.
Analogously, one can observe that if z is a fixed point of 7, then it is a common fixed point
of Sand 7.
Let xg be such that xg < Sxg. We can define a sequence {x,} in X as follows:
Kope1 = Sx9,  and Koo = Tao, forme{0,1,...).

Since S is T -strictly weakly isotone increasing, we have

X1 = Sxo < TS?C() = Txl =Xy < STS?C() = STxl = ng = X3,
x3 =8y < TSxy =Tx3=x4 <STSxy=8T x3 = Sx4 = x5,

and continuing this process, we get
Xl <Ky <o <Xy <Kyl < v+ . (3.2)
Now, we claim that for all # € N, we have
A(%p11,%ns2) < A%y %11)- (3.3)

Suppose to the contrary that, e.g., d(x2,, X2141) < d(%2141,X24+2) for some n € N. From (3.2)

we have that x,, < x5, for all n € N. Then from (3.1) with x = xy,,,; and y = x,,,, we get

d(Xoni2,%2n41) = A(T %2011, Sx2)
=< Iﬁ (d(x2n+1: x2n): d(x2n+1: 7-5'62n+1)7 d(xva SxZn)r
d(x2n+1v SxZn)’ d(xZny Tx2n+1))
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= Y (d(®2n41,%20) A (X215 X2ms2)s A2 X2a1)s
d(X2n11,%2n11), (X2, x2n+2))
< U (d(Xane1s X2n)s A1, X2n42)s A Ky Xani1),
0, d(%2n X2n41) + A (X241, %2042))
< Y (doni1 X2me2)s A (K21, K2n42), A X215 X225 0, 20 (K241, X2142))

< d(x2n+1r x2n+2)x

a contradiction. Hence, we deduce that for each 7 € N,

A(Xons2s Xone1) < A(Xone1,%20).

Similarly, we can prove that d(x,41, ¥24) < d(%24, %2,-1) for all n > 1. Therefore, we conclude
that (3.3) holds.

Let us denote ¢, = d(x,.1,%,). Then from (3.3), ¢, is a nonincreasing sequence and
bounded below. Thus, it must converge to some ¢ > 0. If ¢ > 0, then similarly as above

(e.g., for n = 2k), we have
cni1 = Y (Cns Custs iy 0, 2C0).
Passing to the limit as # — 0o, we have
c<vYl(ccc0,2c) <,
which is a contradiction. Hence,
lim d(x,.1,%,) = 0. (3.4)
n—>00

Next, we claim that {x,} is a Cauchy sequence. From (3.4), it will be sufficient to show
that {x,,} is a Cauchy sequence. We proceed with negation and suppose that {x,,} is not
Cauchy. Then we can find a § > 0 such that for each even integer 2k, there exist even

integers 2my > 2ni > 2k such that

AKX, Xom) =8 forke{1,2,...}. (3.5)
We may also assume

AKXy s Xomy—2) < 8 (3.6)

by choosing 2m to be the smallest number exceeding 27, for which (3.5) holds. Now (3.4),
(3.5), and (3.6) imply

0 < 8 < d(won Xomy) < AWKy Bomp—2) + A(Xomy 25 Xy 1) + A X2y -1, %2m; )

< 8 + d(@2mp—2, X2mp—1) + AKXy -1, %2m;, ) — 8, as k — 00,
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and hence
lim d(X2;, %2m,) = 8.
k—o00
Also, by the triangular inequality,
|d(x2nk:x2mk—l) - d(xan:ernk)| < dXomy-1%2m; )
and

’d(x2nk+l:x2mk—l) - d(xan:mek)|

< dXomp-1,%omy) + AKX, X2 41)-
Therefore, we get
lim d (x5 Xomy-1) = 8
k—o00
and
lim d(x2nk+1,x2mk71) =4.
k—o00
Since T, S are ¥ s-contractive mappings, we also have

8 < d(x2nk’x2mk)
= d(x2nk¢x2nk+l) + d(x2nk+lr x2mk)
= d(xznk1x2nk+l) + d(Tmekflr Sxan)
= d(xanr x2nk+1) + 1;0 (d(xZWlk—lr x2nk)’ d(mek—l: Xomy, ))
d(xanMCanJrl); d(mek—l» x2nk+1), d(mek,xan))'
Passing to the limit as k — oo, we get
8§ <0+v(5,0,0,4,8) <4,
a contradiction. It follows that {x,} must be a Cauchy sequence.
Since X is complete, there exists z € X such that lim,,_, o x,, = z. Moreover, the continu-
ity of T implies that
z= lim x,,1 = lim Tx, =Tz
n—00 n— 00
Similarly, if S is continuous, we have that Sz = z. Using the argument from the beginning
of the proof, we conclude that S and 7 have a common fixed point.

Now, suppose that the set of common fixed points of 7 and S is totally ordered. We
claim that there is a unique common fixed point of 7 and S. Assume to the contrary that
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Su=Tu=uand Sv="Tv=v,but u #v. By supposition, we can replace x by # and y by v
in (3.1), and by the continuity of v/, we obtain
d(v,u) = d(Tv,Su) <y (d(v,u),d(v, Tv),d(u, Su),d(v, Su),d(u, Tv))
<Y (dv,u),0,0,d(v,u),d(u,v)) < d(v,u),

a contradiction. Hence, u = v. The converse is trivial. So, we have completed the proof.
O

We are also able to prove the existence of a common fixed point of two mappings without
using the continuity of S or 7. More precisely, we have the following theorem.

Theorem 3 Let (X,d, <) and S, T : X — X satisfy all the conditions of Theorem 2, except
that the condition (iii) is substituted by

(iii") X is regular.

Then the same conclusions as in Theorem 2 hold.

Proof Following the proof of Theorem 2, we have that {x,} is a Cauchy sequence in (X, d)
which is complete. Then there exists z € A" such that

lim x, =z.

n—00

Now suppose that d(z, Sz) > 0. From regularity of X', we have x5, < z for all » € N. Hence,
we can apply the considered contractive condition. Then setting x = x5,,; and y = zin (3.1),
we obtain
d(xan12,82) = d(Txan41,S2)
S W (d(x2n+1; Z); d(x2n+17 7-962n+1); d(Z; SZ);
d(x2n+lr SZ): d(Z, Tx2n+1))
<y (d(x2n+1; 2), d(Xon41, X2n42), (2, Sz),
d(x2n+1! SZ), d(zr x2n+2))'

Passing to the limit as # — oo and using the properties of i, we have
d(z,S8z) < w(O, 0,d(z,S2),d(z, Sz),O) <d(z,8z),

and this is a contradiction. Hence, d(z,Sz) = 0, i.e., z = Sz. Analogously, for x = z and
¥ = %y, one can prove that 7z = z. It follows that z = Sz = Tz, that is, 7 and S have a
common fixed point. d

Corollary 1 Let (X,d, <) be a complete ordered metric space. Suppose T,S : X — X are
two mappings satisfying the s-contractive condition for all comparable x,y € X .
We assume the following hypotheses:

(") S andT are weakly increasing;
(iii") X is regular.
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Then S and T have a common fixed point. Moreover, the set of common fixed points of S,
T is totally ordered if and only if S and T have one and only one common fixed point.

Putting S =T in Theorem 2 and Theorem 3, we obtain easily the following result.

Corollary 2 Let (X,d, X) be a complete ordered metric space. Suppose T : X — X isa
mapping satisfying the vr-contractive condition for all comparable x,y € X. Also suppose
that Tx < T (Tx) for all x € X such that x < Tx. If there exists an xo € X such that xy <
T xo and the condition

T is continuous, or X is regular

holds, then T has a fixed point. Moreover, the set of fixed points of T is totally ordered if
and only if it is a singleton.

We present an example showing how our results can be used.

Example 4 Let the set X’ = [0, +00) be equipped with the usual metric d and the order
defined by

x=xy <= x=yV(nyel0,1]Ax>y).
Consider the following self-mappings on A’

24 Ly 0<x<l,

Tx=1° 2 Sx=1{2
3x-2, x>1, 2x—-1, x>1.

x, 0<x<1,

Take € F given by

5 ta + t
w(tl,t2,t3,t4,t5):gmax{tl,tz,tg, 4 5}.

Then it is easy to show that all the conditions of Theorem 2 are fulfilled. The contractive
condition (3.1) is trivially satisfied if x = y. Suppose that x > yand 0 <x,y <1, i.e., x <}y.
Then (3.1) takes the form

1 1 1

’5*?‘?’

<émax{|x—y|,%|x—1|,1|y—1|,1|:x—l—ly + y—%—lx:“.
-6 3 2 2 2 2 3 3

Using substitutionx=1-&,y=1-£¢,0 <& <1, ¢ > 0, the last inequality reduces to

)

and can be checked by discussion on possible values for £ > 0. Hence, all the conditions

21 1[|1
|3t —2| <5maxy|1—-¢t], =, =t, =| |zt—-1] +
3°2°2((2

of Theorem 2 are satisfied and S, 7 have a common fixed point (which is z = 1).
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4 Common fixed points for ¥ s r -contractive mappings
In this section, we generalize and improve the results of Section 3 (hence results given
in [13]) for three maps (under additional conditions).

For this, we first introduce the notion of s % -contraction in metric spaces.

Definition 6 Let (X, d) be a metric space. Mappings 7,5, R : X — X are called ¥s -
contractive if

d(Tx,Sy) < ¥ (d(Rx, Ry),d(Rx, Tx),d(Ry, Sy), d(Rx, Sy), d(Ry, Tx)), (4.1)
for Rx > Ry, where s € F.
It is easy to acquire the following example of 15 % -contractive mappings.

Example 5 Let X’ = R* be endowed with standard metric and order. Let  : R+ — R* be
given by

3 t ts
Y (t, b, t3,ta, t5) = Z maxj t, Iz, t3, 32 [

andlet 7,S, R : X — X be defined as

1 1
Tx= gx, Sx = Ex and Rx =10x.

Then 7T, S, R are ¥s,r -contractive mappings.
Now, we state and prove our second main result.

Theorem 4 Let (X,d, <) be an ordered metric space, and let T, S, and R be self-maps
on X satisfying the Vs r-contractive condition for every pair (x,y) € O(x¢;S,T,R) x
O(x0; S, T, R) (for some xy) such that Rx and Ry are comparable.
We assume the following hypotheses:
(i) (S,T) isa.r. with respect to R at xy € X;
(i) X is (S, T,R)-orbitally complete at x;
(iii) 7 and S are weakly increasing with respect to R;
(iv) T and S are dominating maps.
Assume either
(a) S and R are compatible; S or R is orbitally continuous at xy or
(b) T and R are compatible; T or R is orbitally continuous at xy.
Then S, T, and R have a common fixed point. Moreover, the set of common fixed points
of S, T, and R is well ordered if and only if S, T, and R have one and only one common
fixed point.

Proof Since (S,T) is a.r. with respect to R at xp in X, there exists a sequence {x,} in X
such that

Rxons1 = Sxon, Rixonsa = Thone1, Yn €Ny, (4.2)
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lim d(Rxy, Rxps1) = 0 (4.3)
Hn—0Q
holds. We claim that
R\xn i R\xn+1) Vn € NO. (4.4‘)

To this aim, we will use the increasing property with respect to R satisfied by the mappings
T and S. From (4.2), we have

Rux; = Sxg < Ty, Vy e R’I(Sxo).
Since Rx1 = Sxg, x1 € R71(Sxp) and we get
R?Cl = Sxo =< Tx1 = sz.
Again,
Rxy=Tx1 <S8y, Vye RN Tx).
Since x, € RH(Txy1), we get
Rxy = Tar < Sxy = Raxs.
Hence, by induction, (4.4) holds. Therefore, we can apply (4.1) for x = x, and y = x, for all
pandgq.

Next, we claim that {Rx,} is a Cauchy sequence. From (4.3), it will be sufficient to show
that {Rxy,} is a Cauchy sequence. We proceed with negation and suppose that {Rxy,} is
not Cauchy. Then we can find a § > 0 such that for each even integer 2k, there exist even
integers 2my > 2ny > 2k such that

A(RXop Rtom,) =8 fork e (1,2,...}. (4.5)
We may also assume

A(Rxon,, Rom,—2) < 6 (4.6)

by choosing 2m1; to be the smallest number exceeding 2n; for which (4.5) holds. Now
(4.3), (4.5), and (4.6) imply

0 < 8 < d(Rxou Rxom,)
< d(R%on, R¥omg—2) + A(RXomy—2, Romp-1) + A(RXomy -1, Rxom, )
< 8 + d(Rxomy-2, Rxamp-1) + d(Rxomy-1, Rxom,) — 8,  ask — oo,
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and hence

kli)nolod(sz,,k,Rxmk) = 4.
Also, by the triangular inequality,

|d(Rx2nk’ Rxomy-1) — d(sznk»szmk)| < d(Rxom;-1, R¥om; )
and

|d(Rx2nk+1’ Rmek—l) - d(RxZHk; Rmek)|
=< d(RxZVnk—l’ Rmek) + d(sznk! sznk+l)~

Therefore, we get
lim d(sznk, szmk—l) =4
k— o0
and
lim d(Rx2 41, RXom—1) = 6.
k—o00
Since T, S, R are ¥ s, -contractive mappings, we also have

8 < d(Rxyny, Rxom) < d(Rxony, Rxop 1) + A(RXom 1, RXoymy)
= d(Rxan, Rxans1) + A(T X2y —1, Sxom,)
< d(Rxom, Roton 1) + ¥ (d(Roomy -1, Rty ), d(Rx2m -1, Ro¥om,)»
A(Rxames Rton 1), d(Rxom 1, R¥am 1) A(RXamy RXam))-

Passing to the limit as k — oo, we get
8 <0+1v(5,0,0,6,8) <3,

a contradiction. It follows that {Rx,} must be a Cauchy sequence.
Since X is (S, 7T, R)-orbitally complete at x, there exists some z € X’ such that

Rx,—> 2z asn— 0.

We will prove that z is a common fixed point of the three mappings S, T, and R.
We have

Rxops1 =Sxoy — 2z asn— 00
and

Rxopss =T Xope1 — 2z aS 1 —> 00.

(4.7)

Page 12 0of 18
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Suppose that (a) holds; e.g., let R be orbitally continuous. Since S and R are compatible,

we have
lim SRx5,.5 = lim RS%y,,.5 = Rz. (4.8)
n— 00 n— 00

From (4.7) and the orbital continuity of R, we have
R(Rx,) — Rz asn— oo. (4.9)
Also, 941 < T X241 = RX242. Now

A(SRx212, Txon1) < Y (A(Rx2041, RR%2s2), A(Rkms1, T Xomsn)s
d(RRx2n+21 SRxZnJrZ)r d(RxZ;le Sszn+2))
d(RRx2VI+2’ Tx2n+1))~ (410)

Passing to the limit as # — oo in (4.10), using (4.8) and (4.9), and the continuity of v, if
Rz # z, we obtain

d(Rz,z) < 1//(d(7€z, 2),0,0,d(Rz,z),d(Rz, z)) <d(Rz2),
a contradiction, hence
Rz =z (4.11)

Now, x9,41 < T %2441 and T x2,41 — z as 1 — 00, so by the assumption, we have xy,,1 <z
and (4.1) gives

d(Sz, Txop1) <Y (d(R‘x2n+l’ Rz), d(Rx2p41, T%2n41), d(Rz, Sz),
d(Rx2n+1’ 'SZ)¢ d(RZr Tx2n+1))-

Passing to the limit as # — oo in the above inequality and using (4.11) and the continuity
of v, it follows that if Sz # z,

d(Sz,2) < ¥(0,0,d(Sz,2),d(Sz,2),0) < d(Sz 2),
which is impossible. Hence,
Sz=z
Now, since x;, < Sxy, and Sx,, — z as n — oo implies that x, < z, from (4.1)

d(Sxy, Tz) < Y (d(RZ, Rxon), d(Rz, T z), d(Rxa,, Sxan),
d(Rz,Sxy,), d(Rxo,, ’Tz)).
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Passing to the limit as # — oo, and the continuity of v, we obtain that if 7z # z,
d(z,Tz) < ¥(0,d(z,T2),0,0,d(z, Tz)) < d(z, T2),

which gives that
z=Tz

Therefore, Sz = Tz = Rz = z, hence z is a common fixed point of R, S, and 7. The proof
is similar when S is orbitally continuous.

Similarly, the result follows when the condition (b) holds.

Now, suppose that the set of common fixed points of S, 7, and R is totally ordered. We
claim that there is a unique common fixed point of S, 7 and R. Assume to the contrary
that Su=Tu=Ru=uand Sv="Tv="Rv=v,butu#v. By supposition, we can replace x
by u and y by v in (4.1), and by the lower semi-continuity of v, we obtain

dv,u) = d(Tv,Su) < W(d(Rv, Ru), d(Rv, Tv),d(Ru, Su), d(Rv, Su), d(u, 'TV))
< lp(d(v, u),0,0,d(v,u),d(u, v)) <d(u,v),

a contradiction. Hence, u = v. The converse is trivial. O

Let Z be the identity mapping on X. Putting R = Z in Theorem 4, we obtain easily the

following result.

Corollary 3 Let (X,d, X) be an ordered metric space, and let T and S be self-maps on
X satisfying Vrs-contractive conditions for every pair (x,y) € O(xo; S, T) x Olxo; S, T) (for
some xq) such that x and y are comparable.
We assume the following hypotheses:
(i) (S,T) is a.r. at some point xy € X;
(i) X is (S, T)-orbitally complete at xy;
(iii) 7 and S are weakly increasing;
(iv) T and S are dominating maps;
(v) SorT isorbitally continuous at xy.
Then S and T have a common fixed point. Moreover, the set of common fixed points of T
and S is totally ordered if and only if T and S have one and only one common fixed point.

If S =T in Theorem 4, we obtain easily the following consequence.

Corollary 4 Let (X,d, <) be an ordered metric space, and let T and R be self-maps on X
satisfying

d(Tx,Tx) < ¥ (d(Rx, Ry), d(Rx, Tx),d(Ry, Ty), d(Rx, Ty),d(Ry, T x))

for every pair (x,y) € O(x0; T, R) x O(xo; T, R) (for some xy), where € F such that Rx
and Ry are comparable.
We assume the following hypotheses:
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(i) T is a.r. with respect to R at xy € X;
(i) X is (T, R)-orbitally complete at xo;
(iii) T is weakly increasing with respect to R;
(iv) T is a dominating map;
(v) T or R is orbitally continuous at xy.
Then T and R have a common fixed point. Moreover, the set of common fixed points of T
and R is totally ordered if and only if T and R have one and only one common fixed point.

Let Z be the identity mapping on &'. Putting R = Z in Corollary 4, we obtain easily the

following consequence.

Corollary 5 Let (X,d, <) be an ordered metric space, and let T be a self-map on X satis-
Jying

d(Tx, Tx) < ¥ (d(x,y), dx Tx),dy, Ty),dx, Ty),d(y, Tx))

for every pair (x,y) € O(xo; T) X O(xo; T) (for some xy) such that x and y are comparable.
We assume the following hypotheses:
(i) T is a.r. at some point xy € X;
(i) X is T-orbitally complete at xo;
(iii) Tx < T (Tx) forallx € X;
(iv) T is a dominating map;
(v) T is orbitally continuous at xo.
Then T has a fixed point. Moreover, the set of fixed points of T is totally ordered if and only

if it is a singleton.
The following example demonstrates the validity of Theorem 4.

Example 6 Let the set X = [0, +00) be equipped with the usual metric d and the order
defined by

xXy <= x:y\/(x,ye[O,l]szy).

Consider the following self-mappings on X:

1 1 1
1 <x<l 1 <x<1
Rx = 6x Sx=1%" 0=%=2 Tx= 0 0=x=3
= 6, = =
X  x>3, X x>3.

Take xg = % Then it is easy to show that all the conditions (i)-(iv) and (a)-(b) of Theorem 4
are fulfilled (the condition (iii) on O(xg; S, T, R)). Take y : R* - R* given by

w(t to, 3,14, ) = —maxj b, by, 3, — —
182,863,444, 182,83, ’ ’
1,625,635 84, 05 3 1,62, L3 2 2

and ¥ € F. Then the contractive condition (4.1) takes the form

1
—X
2

1 1
Zx—Z
3)’

1 17 1 1
2

1
< —max{ 6%~ 6y], -, —y, = |6x — -
_6max{|x Y| 2x 3y2 x 3y

I

16
,231
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for x,y € O(x¢; S, T, R). Using substitution y = tx, t > 0, the last inequality reduces to

1 1
;_6t__ )
sl

and can be checked by discussion on possible values for ¢ > 0. Hence, all the conditions

1 17 1 1
|3 -2t| <max{6|1-¢t|, —, —t =6 — =t
2°3 2 3

of Theorem 4 are satisfied and S, 7, R have a common fixed point (which is 0).

5 Existence of a common solution of integral equations
Consider the system of integral equations:

ult) = [ Kit,s,uls))ds, tel0,T],

T (5.1)
u(t) = [y Ka(t,s,u(s))ds, tel0,T],

where 7' > 0 and K3, K; : [0; T] x [0; T] x R — R are continuous functions. The purpose
of this section is to give an existence theorem for a solution of (5.1).
We consider the set C(I,R) (I = [0, T]) of real continuous functions defined on I. This
set with the metric given by
d(u,v) = malx|u(t) - V(t)|, Yu,v e C(I,R),
te
is a complete metric space. C({,R) can also be equipped with the partial order < given by

u,ve C(LR), u=<xv < ul)=<v), Vtel

Moreover, in [7] it is proved that (C(Z,R), d, <) is regular.
Consider the mappings 7,S : C(I,R) — C(I,R) defined by

T
Tu(t) = / Ki(t,s,u(s))ds, forall CU,R),tel,
0
T
Sult) = / Ky(t,5,u(s))ds, forall CULR), el
0

Clearly, u is a solution of (5.1) if and only if it is a common fixed point of 7 and S.
We shall prove the existence of a common fixed point of 7 and S under certain condi-
tions.

Theorem 5 Suppose that the following hypotheses hold:
(H1) forallt,s € I, u € C(I,R), we have

T
K (t, s, u(s)) <K, (t, s,/ K (s, T, u(t)) dt);
0

(H2) forall t,s € I, u € C(I,R), we have

T
K, (t,s, u(s)) <K <t, S, / K, (s, T, u(r)) dr);
0
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(H3) there exist a continuous function o : I x I — R* and € F such that

|K1 (t,5,%(5)) — K (2,5, ¥(5)) |

= Ol(t,S)l/f(d(x:y), d(x, Tx), d()/, Sy)r d(x, Sy)»d(% Tx))

forallt,selandx,ye C(I,R) such that x > y;
(H4) sup,; fOToz(t, s)ds < 1.
Then the system of integral equations (5.1) has a solution u” € C(I,R).

Proof Let u € C(I,R). Using (H1), for all ¢ € I, we have

T
T u(t) :/0 Kl(t,s,u(s)) ds

T T
5/ K (t,s,/ I(l(s,t,u(r)) dt) ds
0 0

T

:/ Kz(t,s, ’Tu(s)) ds
0

= STu(t).

Similarly, using (H2), for all ¢ € I, we have

T
Su(t) :/ Kz(t,s, u(s)) ds
0

T T
5/ Kl<t,s,/ Ky(s, 7, u(t)) dr) ds
0 0

T
:/ Kl(t,s,Su(s))ds
0

= TSu(t).

Then we have Tu < STu and Su < T Su for all u € C(I,R). This implies that 7 and S are

weakly increasing.
Now, for all ,v € C(I,R) such that v < i, by (H3) and (H4), we have

| Tu(t) - Sv(?)]
T
< / ‘Kl (t, s, u(s)) -K (t, s, V(s)) ’ ds
0
T
< / a(t, )y (du,v), d(w, Tu),d(v,Sv),d(u, Sv),d(v, Tu)) ds
0
T
= (/ a(t,s) ds>1p(d(u, V), d(u, Tu),dv,Sv),d(u, Sv),d(v, Tu))
0
< ¥ (d(u,v),d(u, Tu),d(v,Sv),d(u, Sv),d(v, Tu)).
Hence, we have proved that for all u,v € C(I, R) such that u > v, we have

d(Tu,Sv) < w(d(u, v),d(u, Tuw),d(v,Sv),d(u, Sv),d(v, Tu)).

Page 17 of 18
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Now, all the hypotheses of Corollary 1 are satisfied. Then 7 and S have a common fixed
point u” € C(I,R), that is, u is a solution of the system (5.1). O
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