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Abstract: This paper proposes a modified quasi-opposition-based grey wolf optimization (mQOGWO)
method to solve complex constrained optimization problems. The effectiveness of mQOGWO is ex-
amined on (i) 23 mathematical benchmark functions with different dimensions and (ii) four practical
complex constrained electrical problems that include economic dispatch of 15, 40, and 140 power
generating units and a microgrid problem with different energy sources. The obtained results are
compared with the reported results using other methods available in the literature. Considering
the solution quality of all test cases, the proposed technique seems to be a promising alternative for
solving complex constrained optimization problems.

Keywords: quasi-opposed learning; grey wolf optimizer; mathematical benchmark; electrical benchmark;
box plot analysis; microgrid

1. Introduction

Optimization is finding the best solution in terms of the highest performance under
the given constrained or most cost-effective solution for a variable of a specific problem to
maximize/minimize an objective function. The solution to practical optimization problems
is very difficult as it is restricted by the lack of complete information and time to evaluate it.
Researchers have applied various traditional optimization methods (TOM) such as non-
linear programming (NLP), dynamic programming (DP), and geometrical programming
(GP) for the solution of practical constrained optimization problems. Although traditional
optimization methods have performed well for various practical cases, they have some
limitations related to their search mechanism. The strategy related to the search mechanism
generally depends on the objective function and associated constraints. The solution of the
objective function also depends on the dimension of the problem, the nature of the objective
function (convex or non-convex), and the initial solution of the selected problem. TOM does
not provide a simple solution approach that can be utilized for the solution of a problem
where different types of variables, objective functions, and related constraints are used.
Real-world optimization problems have multiple variables and complex operational con-
straints that influence the modeling, making objective function non-linear, multimodal and
discontinuous. These types of problems cannot be solved efficiently by TOM. Researchers
have been conducting studies in this field, and nature-inspired optimization (NIO) has been
suggested as an alternative to deal with such practical complexity. These non-traditional
methods (metaheuristics) can guarantee faster convergence than TOM but may not always
guarantee a global optimum. Therefore, various advanced optimization methods came
into existence and became popular in recent decades [1]. All metaheuristics utilize some
or other kind of randomization to find a set of solutions, and it has two common phases:
exploration and exploitation. A metaheuristic will be successful on a given optimization
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problem if it can provide a proper balance between exploration and exploitation [2]. The
main criteria to differentiate one metaheuristic from the other is how an algorithm achieves
this balance. The existing metaheuristic may be grouped into broad categories as evolution-
ary algorithms (EA) [3,4], swarm intelligence-based algorithms (SIA) [5–13], ecology-based
algorithms (ECOA) [14–16], and physical science-based algorithms (PSA) [17–21].

EAs utilize the concept of biological evolution as reproduction, mutation, recombina-
tion, and selection. The genetic algorithm [3] and the differential evolution [4] are EAs. SIAs
utilize the concept of self-organized and group behavior during the optimization process.
Popular examples of SIAs are ant colony optimization (ACO) [5], which is based on the
process of ants seeking the shortest path between colony and food source; particle swarm
optimization (PSO) [6,7], inspired by the social behavior of fish schooling or bird flocking;
artificial bee colony (ABC) optimization [8], inspired by the intelligent foraging behavior
of honey bee swarm; the firefly algorithm (FFA) [9], inspired by the flashing behavior of
fireflies; the krill herd algorithm (KHA) [10] simulates the heading behavior of krill; the
bacterial foraging algorithm (BFA) [11], inspired by the social foraging behavior of E Coli
bacteria; whale optimization (WO) [12] simulates the bubble-net hunting mechanism of
humpback whales; grey wolf optimization (GWO) [13] simulates the leadership and social
hierarchy of grey wolf when hunting prey.

The concept of migration of species between habitats is utilized in biogeography-based
optimization [14], the idea of a variable rate of pulse emission and loudness is used in the
bat algorithm [15], and the flower pollination algorithm mimics the pollination process of
flowers [16]. All of these are examples of ECOAs [14–16].

The physical process of heating and slowly lowering the temperature to minimize
material defects is utilized in modeling of the simulated annealing (SA) algorithm [17]. The
gravitation search algorithm (GSA) uses the Newtonian law of gravity [18]. teacher learner-
based optimization (TLBO) [19,20] simulates the teaching and learning phenomenon in
a classroom. The chemical reaction optimization (CRO) [21] simulates the process of
transforming the molecules through a sequence of reactions into a product. All of these are
examples of PSAs.

Grey wolf optimization (GWO) is a SIA that was proposed by Mirjalili et al. in 2014 [13].
Its analytical model imitates the collective behavior in a group of individuals and the
leadership hierarchy of grey wolves for hunting prey. Numerous variants of GWO have
been proposed to solve complex constrained practical optimization problems. GWO and its
variants have been successfully applied to solve several real-world optimization problems
related to science and technology [22]. These are summarized in Table 1 below.

Table 1. Variants of GWO over the years along with the domain of application.

Method Modification Domain of Application

GWO N.A.

Mathematical benchmark, welded beam design,
pressure vessel design, optical buffer design [13],

economic dispatch (ED) [23], short-term
hydro-thermal scheduling (STHTS) [24], combined

heat and power (CHP) with ED [25], microgrids [26],
distribution generator (DG) placement [27],

controller design [28–30], wireless networks [31,32],
image processing [33,34], regular design [35], and

parameter estimation [36].

Complex-Valued Encoding
Grey Wolf

Optimizer (CGWO)

DE/best/2 mutation strategy is embedded
with GWO.

Mathematical benchmark and infinite impulse
response (IIR) model identification [37].

Powell Local
Optimization-Based Grey
Wolf Optimizer (PGWO)

Powell method is embedded with GWO. Mathematical benchmark and Data Clustering [38].
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Table 1. Cont.

Method Modification Domain of Application

Hybrid Grey Wolf
Optimizer (HGWO)

DE/best/1 and dynamic crossover rate are
implanted in GWO. ED [39].

Modified Grey Wolf
Optimizer (mGWO)

Exponential decay of ‘a’ is utilized here in
place of linear decay.

Mathematical benchmark and cluster head selection
problem in Wireless Sensor Networks (WSNs) [40].

Chaos-Based Grey Wolf
Optimizer (Ch-GWO)

Tent and Singer map is used to enhance
global search capability. Position control of a robotic manipulator [41].

Mean Grey Wolf
Optimizer (MGWO)

Encircling the pray phase of GWO is
carried out by considering the mean

distance of grey wolves from the prey.

Mathematical benchmark and real-life dataset
problems [42].

Ameliorated Grey Wolf
Optimizer (Am-GWO)

Exploratory search mechanism to ensure
the right direction of each wolf;

opposite-based learning (OBL) maintains a
good and diverse population; local search

mechanism for fine-tuning is unlisted.

ED [43].

Opposition-Based Grey Wolf
Optimizer (OGWO)

OBL is incorporated to find a better
candidate solution. Mathematical benchmark and ED [44].

Inspired Grey Wolf
Optimizer (In-GWO)

Logarithmic decay characteristics of
parameter ‘α′ are introduced and the

position updating mechanism is carried out
based on pbest and gbest of PSO.

Mathematical benchmark, pressure vessel design,
welded beam design, spring design, and load

forecasting [45]

Binary Hybrid GWO and
PSO (BGWOPSO)

A binary version of hybrid GWO and PSO
is utilized here.

18 standard University of California Irvine (UCI)
benchmark datasets [46].

B–GWO GWO is hybridized with β–hill climbing. ED [47].

Orthogonal Grey Wolf
Optimizer (Or-GWO)

Orthogonal Array Design (OAD) is
incorporated for updating the position

of leader wolves.

Mathematical benchmark and clustering
datasets [48].

Accelerated Grey Wolf
Optimizer
(A-GWO)

An acceleration factor and uniform
distribution are used to boost exploration

and exploitation.

Mathematical benchmark, gear design, frequency
modulated, beam design, and cost minimization of a

life support system [49].

Grey Wolf Optimizer
Based on Weighted Distance

(GWO-WD)

The weighted distance concept is used to
modify the position-updating mechanism;
elimination and repositioning strategy is

employed to reposition the worst
search agents.

Mathematical benchmark, pressure vessel design,
welded beam design, and gear design [50].

Work in [51] combines the concept of quasi-opposition-based learning with GWO for
solving ED problems. However, the strategy is only used for conventional generators, and
no prior testing is performed on benchmark functions. In this paper, an efficient and novel
version of GWO has been proposed, namely modified quasi-opposition-based grey wolf
optimization (mQOGWO), which includes (i) quasi-opposition-based learning and (ii) a
sinusoidal truncated function for variable ′α′ in GWO. Quasi-opposition-based learning is
applied to increase the convergence speed and the non-linear variation in ′α ′ is adopted
for a better trade-off between the exploration and exploitation of the objective function.
To analyze the effectiveness of the proposed approach, it is tested on (i) 23 mathematical
benchmark functions and (ii) economic dispatch (ED) problems of 15, 40, and 140 power-
generating units and a microgrid problem with different energy sources.

The layout of MG consists of diesel generators, fuel cells, and wind turbine generators
schematically illustrated in Figure 1.
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Figure 1. The layout of MG.

The remaining paper is structured as follows. Section 2 describes the formulation of
the ED problem and MG. In Section 3, the working of GWO, IGWO [52], and the proposed
mQOGWO is explained. The simulation results are discussed in Section 4, which includes
a description of test cases and a comparative study of outcomes. Finally, the conclusions of
this paper are compiled in Section 5.

2. Problem Formulation
2.1. Economic Dispatch Problem

The objective function of the ED problem for operational cost is represented as:

Minimise FCost
t = ∑Ng

i=1 fi(Pi) (1)

where
fi(Pi) = ciP2

i + bi Pi + ai; i = 1, 2, 3 . . . Ng (2)

Considering the valve point loading (VPL) effect, the cost function can be written as:

fi(Pi) = ciP2
i + bi Pi + ai +

∣∣∣ei sin
(

fi

(
Pmin

i − Pi

))∣∣∣ (3)

Here, Pi is the active power output and ai, bi, ci, ei, and fi are cost coefficients of the
ith generating unit. Pmin

i is the minimum power output of the ith generating unit.
FCost

t should be minimized and subjected to the following operational constraints:

(i) Power Balance

∑Ng
i=1 Pi = Pd + Pl (4)

Using Kron’s formula, Pl can be calculated as:

Pl = ∑Ng
i=1 ∑Ng

j=1 PiBijPj + ∑Ng
i=1 Bi0 Pi + B00 (5)

Here, Pd is the power demand, Pl is the power loss and Bij, Bi0, and B00 are transmis-
sion loss coefficients.

(ii) Generator Capacity Limit

Pmin
i ≤ Pi ≤ Pmax

i i ∈ Ng (6)

where Pmin
i and Pmax

i are the minimum and maximum power output of the ithgenerating unit.

(iii) Ramp Rate Limit (RRL)

Pi − Po
i ≤ URi ; and Po

i − Pi ≤ DRi (7)
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The inclusion of ramp rate limits modifies the generator operation constraints (6) as
given below:

max
(

Pmin
i , Po

i − DRi

)
≤ Pi ≤ min(Pmax

i , Po
i + URi) (8)

URi and DRi are the upper ramp and down ramp rates for the ith generating unit; Po
i

is the active power output of the ith generating unit in the previous time interval compared
with the time interval of Pi.

(iv) Prohibited Operating Zones (POZs)

Every generator has some fixed restricted zones due to the limitations of machine
components or an instability point of view, where operation is avoided. POZs make
the objective function discontinuous. The feasible operating zones of the generator are
represented as follows:

Pi =


Pmin

i ≤ Pi ≤ Pi.1
Pi,j−1 ≤ Pi ≤ P

i.j; j = 2, 3, ni
Pi,ni ≤ Pi ≤ Pmax

i

(9)

Pi.j and Pi,j are the lower and upper limits of the jth prohibited zone for the ith unit
and ni is the number of prohibited zones of the unit i. Pmin

i and Pmax
i are the maximum and

minimum power outputs of the ith generating unit.

2.2. The Microgrid Scheduling Problem

The microgrid problem considered for analysis combines diesel generators, fuel cells,
and wind turbines as energy resources. It is tested for the optimal generation schedule with
dynamic load variation over 24 h of a day.

The fuel cost of diesel generators is a convex polynomial expressed as in (10):

CD(P) = ∑24
t=1 ∑Nd

i=1

{
ci × P2

i (t) + bi × Pi(t) + ai

}
i = 1, 2, . . . . . . . Nd (10)

where ai, bi, and ci are the cost coefficients of the ith generator producing power Pi.
The fuel cell is among the most efficient systems that utilize hydrogen energy for

power generation (PFC). The cost of fuel cells is dependent on the efficiency of the fuel cell(
ηp
)

and cost coefficient
(

βp
)
, represented as [53]:

CFC(PFC) =
24

∑
t=1

(
βp

Nf

∑
p=1

PFC,it

ηp

)
p = 1, 2, . . . . . . . Nf (11)

The power output for wind turbine units is dependent on wind speed, which is
stochastic. In the literature, the authors of [54] show that the wind speed profile at a given
location follows a Weibull distribution over time, which is given by (12).

fv(v) =
(

k
c

)(v
c

)k−1
e−(vc)k

0 < v < ∞ (12)

The output for a wind power system with a given wind velocity (PW) is given by (13):

PW =


0 For 0 ≤ v < vci& v > vco

Wrated
(

v−vci
vr−vci

)
For 0 ≤ v < vci

Wrated For vr ≤ v < vco

(13)

where Wrated is the rated capacity of the wind turbine, vci is the cut-in velocity, vco is the
cut-out velocity, vr is the rated velocity, and v is the wind velocity (in m/s). Cost calculation
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for wind power units (CW(PW)) is given as (14), where βW is the cost coefficient of the
wind power output.

CW(PW) = ∑24
t=1

(
βW ∑Nw

q=1 PW

)
q = 1, 2, . . . . . . . Nw (14)

The objective of the MG scheduling problem is to minimize the total operational cost
to an optimal cost, which is expressed as [53]:

Min(C) = CD(P) + CFC(PFC) + CW(PW) (15)

3. Optimization
3.1. Grey Wolf Optimizer

GWO is a population-based optimization technique that is an SIA, with four types—
alpha, beta, delta, and omega. Its analytical model imitates collective group behavior as
well the leadership hierarchy of grey wolves when hunting prey. The position of the grey
wolf signifies distinct position variables, and the distance between the prey and the wolf
helps to obtain the fitness value of the objective function. As the simulation progresses, the
wolf changes position and moves closer to the best position.

Three phases demonstrate the well-organized collective behavior of GWO: (i) en-
trapment of prey, (ii) hunting of prey, and (iii) attacking the prey to reach prey via the
shortest route.

I. Entrapment of Prey

The initial population is generated randomly within the upper limit (UL) and the
lower limit (LL).

Initially, X (t) denotes the current position of a wolf and its updated position to encircle
the prey positioned at XP(t), computed by adjusting vectors A and C. The r1 and r2 of
each ∈ (0, 1) are the random vectors that help wolves to adjust the values of A and C. The
updated position (t + 1) and the initial phase of GWO are controlled using (16)–(19).

X (t + 1) = XP(t)−A×D (16)

where
A = 2αr1 − α (17)

D = |C × XP(t)−X (t)| (18)

C = 2r2 (19)

II. Hunting of Prey

In the leadership hierarchy, the alpha wolf is supposed to be the nearest one (best
solution), followed by the beta and gamma wolf. The position of the omega will vary as
per the current best position. The final position is defined concerning the position of alpha,
beta, and delta in the search space, and it is represented as below:

X (t + 1) =
1
3
× (X1 +X2 +X3) (20)

where

X1 = Xα(t)−A1 ×Dα, X2 = Xβ(t)−A2 ×Dβ, X3 = Xδ(t)−A3 ×Dδ (21)

and
Dα = |C1.Xα −X |, Dβ =

∣∣C2.Xβ −X
∣∣, Dδ = |C3.Xδ −X | (22)
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III. Attacking the Prey

This is the last phase of optimization, which takes place after the location of the prey is
identified, and the wolf approaches to attack it. This approach is mathematically simulated
by varying parameter ′α′, using (23). ′α′ is the crucial parameter in GWO that decreases
from 2 to 0 linearly as iteration progresses and is mainly responsible for the exploration
and exploitation of the search space.

α = 2− (t).
(

2
T

)
(23)

The steps associated with GWO are as below:

• Search agent position vectors are initialized randomly within the lower and upper limits.
• The fitness value of each agent is evaluated based on three categories of wolves (alpha,

beta, and delta) among the population. They adjust their position to catch the prey
using Dα, Dβ and Dδ, as per (22).

• Search agents update their position by (23).
• The steps of fitness calculation and update mechanism are repeated to reach the

specified termination criteria.

3.2. Intelligent Grey Wolf Optimizer

Intelligent GWO (IGWO) is a variant of GWO that utilizes two mathematical frame-
works: (i) an opposition-based learning (OBL) mechanism for better exploration and
exploitation, and (ii) a sinusoidal truncated function for variable ′α′ [52].

The OBL mechanism helps improve the convergence of a population-based algo-
rithm [55] and utilizes the concept of opposite numbers and points. The opposite number
is a mirror point of the solution in terms of extreme points. They are the lower limit (LL),
the upper limit (UL), and the center of the search space, denoted as:

χo = LL + UL− χ (24)

For the point P (χ1, χ2, . . . χi..χd), its opposite point OP
(
χo

1, χo
2 . . . χ0

i . . . .χo
d
)

is ex-
pressed as [55]:

χo
i = LLi + ULi − χi ∀ (25)

where d is the dimension of search space.
In IGWO, search agent positions are initialized randomly using half of the population

and the remaining using the opposite population. Here, the movement of the wolf is
controlled by parameter ′α′ that utilizes the truncated sinusoidal function represented as:

α = 2×
(

1− sin2∅
2

)
(26)

where
∅ = π × Current iteration

Max iteration
(27)

3.3. Modified Quasi-Opposition-Based Grey Wolf Optimization (mQOGWO)

Two mathematical concepts, (i) quasi-opposition-based learning and (ii) a non-linear
decreasing function ′a′, are incorporated in basic GWO,

(i) Quasi-Opposition-Based Learning

Quasi-opposition-based learning (QOBL) is a modified version of OBL and is more
effective than OBL [56,57]. The quasi-opposite number (χqo), between the center of the
search space and the opposite number, is denoted as:

χqo = rand
(

LL + UL
2

, χo
)

(28)
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Similarly, quasi-opposite point (χqo
i ) in the d dimensional search space is denoted as:

χ
qo
i = rand

(
LLi + ULi

2
, χo

i

)
f or i = 1, 2, 3 . . . . . . . . . . . . . . . d (29)

(ii) Non-Linear Decreasing Function ′a′
Instead of linearly decreasing “α” as given in (23), a non-linear decreasing control strategy

is used in this proposed algorithm. This newly updated function “α” is represented as (30):

a = 2·
(

1−
(

Current iteration
Max iteration

)m)n

(30)

For simulation purposes, m = 3.98 and n = 3.9 are considered here [58].
Figure 2 illustrates the effect of “α” on convergence using three different types of

functions used for GWO, IGWO, and mQOGWO over 500 iterations.

Figure 2. Variation in parameter ′α′ for different algorithms.

4. Simulation Results

To analyze the feasibility, GWO, IGWO and the proposed mQOGWO are applied
and tested in two sections. The first section deals with mathematical benchmarks, and
the second deals with four practical cases of ED problems with different dimensions and
complexity levels. The program has been written in MATLAB R2013a and executed on
an Intel core i7 processor with a 3.40 GHz computer with 2 GB RAM. For the simulation
analysis, the number of search agents was considered 30 for mathematical benchmarks and
100 for ED problems, respectively.

4.1. Mathematical Benchmark Functions

It contains classical mathematical benchmark functions, including unimodal, multi-
modal, and fixed-dimension benchmarks [59,60]. These are the minimization functions
listed in Appendix A as Tables A1 and A2. dim represents the dimension of the problem,
range is the upper and lower limits of the search space and fmin represents the optimum
value of the function. For each benchmark function with a fixed dimension, proposed
algorithms were run for 30 repeated trials. The statistical results in terms of the average
value (Ave) and the standard deviation (SD) are tabulated in Table 2 for unimodal and
Table 3 for multimodal functions. To analyze the effect of the proposed modification in the
exploration and exploitation phases, all three variants, i.e., GWO, IGWO, and mQOGWO,
are applied to each benchmark, and a fair comparison of the convergence curves is drawn,
presented in Figures 3–5, respectively. The 3D plot gives the graphical interpretation of all
the functions and the convergence curves indicate the speed and the optimum average val-
ues. Table 4 shows the wilcoxon p− value of mQOGWO with respect to GWO and IGWO
for benchmark functions, which defines the statistical uniqueness of the proposed algo-
rithm. A significance level of 5% is selected, and a wilcoxon p− value less than 0.05 implies
the superiority of one algorithm over the other.
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Table 2. Results of the unimodal and multimodal benchmark functions.

Unimodal Benchmark

f
mQOGWO IGWO [52] GWO [13] PSO [13] GSA [13] DE [13]

Ave SD Ave SD Ave SD Ave SD Ave SD Ave SD

F1 0 0 5.55 × 10−26 1.00 × 10−25 6.59 × 10−28 6.34 × 10−5 0.000136 0.000202 5.30 × 10−17 9.67 × 10−17 8.20 × 10−14 5.90 × 10−14

F2 1.39 × 10−200 0 7.75 × 10−16 7.82 × 10−16 7.18 × 10−17 0.029014 0.042144 0.045421 0.055655 0.194074 1.50 × 10−9 9.90 × 10−10

F3 0 0 9.93 × 10−5 0.000763 3.29 × 10−6 79.14958 70.12562 22.11924 896.5347 318.9559 6.80 × 10−11 7.40 × 10−11

F4 3.08 × 10−176 0 1.08 × 10−6 1.05 × 10−6 5.61 × 10−7 1.315088 1.086481 0.317039 7.35487 1.741452 0 0

F5 25.7884 0.1090 27.0042 0.642515 26.81258 69.90499 96.71832 60.11559 67.54309 62.2253 0 0

F6 0.7541 0.0818 0.6677 0.31327 0.816579 0.000126 0.000102 8.28 × 10−5 2.50 × 10−16 1.74 × 10−16 0 0

F7 7.983 × 10−5 1.27 × 10−5 0.00182 0.001074 0.002213 0.100286 0.122854 0.044957 0.089441 0.04339 0.00463 0.0012
Multimodal Benchmark

F8 −4614.8 261.8496 −5991.23 950.3294 −6123.1 −4087.44 −4841.29 1152.814 −2821.07 493.0375 −11,080.1 574.7

F9 0 0 1.270284 2 2.7344 0.310521 47.35612 46.70423 11.62938 25.96841 7.47006 69.2 38.8

F10 2.664 × 10−15 3.243 × 10−16 1.64 × 10−13 44.31 × 10−14 1.06 × 10−13 0.020734 0.276015 0.50901 0.062087 0.23628 9.70 × 10−8 4.20 × 10−8

F11 0 0 0.001994 0.005099 0.004485 0.006659 0.009215 0.007724 27.70154 5.040343 0 0

F12 0.0481 0.0036 0.042402 0.052673 0.053438 0.020734 0.006917 0.026301 1.799617 0.95114 7.90 × 10−15 8.00 × 10−15

F13 0.7591 0.0618 0.551296 0.21782 0.654464 0.004474 0.006675 0.008907 8.899084 7.126241 5.10 × 10−14 4.80 × 10−14
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Table 3. Results of fixed-dimension benchmark functions.

Fixed Dimension Benchmark

f
mQGWO IGWO [52] GWO [13] PSO [13] GSA [13] DE [13]

Ave SD Ave SD Ave SD Ave SD Ave SD Ave SD

F14 4.6806 0.8197 4.038 3.7415 4.0424 4.2527 3.6271 2.5608 5.8598 3.8312 0.99 3.3 × 10−16

F15 4.054 × 10−4 1.760 × 10−5 4.158 × 10−4 1.813 × 10−5 0.000337 0.000625 0.000577 0.000222 0.003673 0.001647 4.50 × 10−14 0.00033

F16 −1.0316 1.4024 × 10−5 −1.0316 7.765 × 10−12 −1.03163 −1.03163 −1.03163 6.25 × 10−16 −1.03163 4.88 × 10−16 −1.03163 3.1 × 10−13

F17 0.3982 1.7518 × 10−4 0.3993 5.156 × 10−6 0.397889 0.397887 0.397887 0 0.397887 0 0.397887 9.9 × 10−9

F18 3.0000 3.9096 × 10−6 3.0000 7.693 × 10−6 3.000028 3 3 1.33 × 10−15 3 4.17 × 10−15 3 2 × 10−15

F19 −3.8616 3.6947 × 10−4 −3.8614 4.054 × 10−4 −3.86263 −3.86278 −3.86278 2.58 × 10−15 −3.86278 2.29 × 10−15 N/A N/A

F20 −3.2735 0.0119 −3.2453 0.0139 −3.28654 −3.25056 −3.26634 0.060516 −3.31778 0.023081 N/A N/A

F21 −10.1532 3.6926 × 10−11 −10.1532 2.583 × 10−8 −10.1514 −9.14015 −6.8651 3.019644 −5.95512 3.737079 −10.1532 0

F22 −10.4029 3.2452 × 10−11 −10.4029 4.353 × 10−8 −10.4015 −8.58441 −8.45653 3.087094 −9.68447 2.014088 −10.4029 3.9 × 10−7

F23 −10.5364 2.0493 × 10−11 −10.3561 0.1772 −10.5343 −8.55899 −9.95291 1.782786 −10.5364 2.60 × 10−15 −10.5364 1.9 × 10−7

Table 4. Wilcoxon p-values comparison of mQOGWO with IGWO and GWO on benchmark functions.

Functions
Unimodal

F1 F2 F3 F4 F5 F6 F7
IGWO 7.06 × 10−18 5.01 × 10−11 9.06 × 10−8 1.12 × 10−10 3.59 × 10−5 3.50 × 10−9 0.0156
GWO 2.56 × 10−34 3.02 × 10−11 3.82 × 10−9 7.44 × 10−9 4.64 × 10−5 1.43 × 10−8 6.07 × 10−11

Functions
Multimodal

F8 F9 F10 F11 F12 F13
IGWO 0.0079 0.011 7.93 × 10−13 0.0214 1.29 × 10−9 4.08 × 10−11

GWO 3.52 × 10−7 1.19 × 10−12 1.15 × 10−12 0.0215 5.00 × 10−9 3.16 × 10−10

Functions F14 F15 F16 F17 F18 F19 F20 F21 F22
IGWO 0.0029 0.0212 2.62 × 10−5 0.0173 0.0292 0.03478 0.0121 0.0344 0.0044
GWO

Fixed
Dimension

0.0059 0.0042 5.35 × 10−6 0.0221 0.0109 0.02789 0.0288 1.24 × 10−7 6.47 × 10−8



Energies 2022, 15, 5704 11 of 29

Figure 3. A 3D plot of the unimodal function and a comparison of the convergence curves.
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Figure 4. A 3D plot of the multimodal function and a comparison of the convergence curves.

Figure 5. Cont.
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Figure 5. A 3D plot of the fixed-dimension function and a comparison of the convergence curves.

4.2. Economic Dispatch Problems

The proposed mQOGWO, IGWO, and GWO algorithms have been applied to solve
ED problems. Four test systems are considered here for analysis with different dimensions
and complexity. Test system I, II, and III are analyzed with a fixed load demand, whereas
test system IV is a microgrid analyzed with dynamic variation in load demand over 24 h
of a day.

Test System I: A 15 Unit System

This problem has fifteen thermal generating units with convex fuel cost characteristics.
The total load demand of the system is considered as 2630 MW. The generator data and
B-loss coefficient matrix are taken similarly to [40]. The complexity such as ramp rate
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limits (RRLs) and prohibited operating zones, which makes the system discontinuous, are
also considered here. The comparison of the cost convergence curves obtained using the
above three algorithms is illustrated in Figure 6. After the 30 repeated trials, the statistical
comparison of operational costs is presented in Table 5. The optimal generation schedule
corresponding to the best cost is listed in Appendix A Table A3. Table A3 shows that all
three variants efficiently manage the specified operational constraints.

Figure 6. Convergence curves for QOGWO, IGWO, and GWO for test system I.

Test System II: A 40 Unit System

The system contains forty thermal generating units with valve point loading (VPL)
effects. VPL makes the function multimodal and non-convex in nature. The fuel cost
coefficient data of generating units is adopted from [39]. The total load demand on the
system is 10,500 MW. The transmission loss is also considered here [61]. The optimal
generation schedule, including loss, is presented in Appendix A Table A4. Here, the
operational constraints associated with it are fully satisfied. The statistical comparison of
costs is presented in Table 6. The comparison of cost convergence curves obtained by GWO,
IGWO, and mQOGWO is represented in Figure 7.

Figure 7. Convergence curves for QOGWO, IGWO, and GWO for test system II.

Test System III: A 140 Unit System (Korean Power System)

Experiments are conducted on the Korean power system to investigate the feasibility
of the proposed algorithm for large-scale power systems [62]. This system is analyzed
under two operating conditions. Test system III-A contains one hundred and forty thermal
generating units with convex characteristics as given in (2) with RRLs. The total power
demand is set to 49,342 MW. Test system III-B has one hundred and forty thermal generating
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units with non-convex characteristics as given in (3) with RRLs and POZ constraints. As
it is the largest standard test system, the three abovementioned algorithms are applied
and tested over thirty repeated trials, and the statistical results are tabulated, presented in
Table 6. The optimal generation schedule corresponding to the best cost solution for test
systems III-A and III-B are shown in Appendix A as Tables A5 and A6, respectively.

Table 5. Comparison of the results for test system I (a 15 unit system).

Methods Min Cost
(USD/h)

Ave Cost
(USD/h)

Max Cost
(USD/h) SD Ave CPU

Time (s)
AIS [63] 32,854.00 32,873.25 32,892.00 10.81 NA

SA [64] 32,786.40 32,869.51 33,038.95 112.32 71.25

GA [64] 32,779.81 32,841.21 33,041.64 81.22 48.17

TSA [64] 32,762.12 32,822.84 33,041.64 60.59 26.41

PSO [64] 32,724.17 32,807.45 32,841.38 21.24 13.25

MTS [64] 32,716.87 32,767.21 32,796.15 17.51 3.65

DSPSO-TSA [65] 32,715.06 32,724.63 32,730.39 8.40 2.30

Jaya [66] 32,712.65 32,743.46 32,822.99 47.03 3.80

Jaya-SML [66] 32,706.36 32,706.68 32,707.29 2.32 5.14

CJaYa [67] 32,710.08 32,740.07 32,828.66 NA NA

MP-Cjaya [67] 32,706.52 32,706.72 32,708.87 NA NA

GWO 32,702.12 32,703.31 32,704.58 1.48 8.23

IGWO 32,693.19 32,694.74 32,695.61 1.38 7.16

mQOGWO 32,692.23 32,692.40 32,692.60 1.09 3.28

Table 6. Comparison of the results for test system II (a 40 unit system).

Methods Min Cost
(USD/h)

Ave Cost
(USD/h)

Max Cost
(USD/h) SD Ave CPU

Time (s)

HGWO [39] 136,681.00 136,684 NA NA NA

OGWO [44] 136,440.62 136,442.26 136,445.98 0.1003 NA

BBO [68] 137,026.82 137,116.58 137,587.82 NA 40.00

DE/BBO [68] 136,950.77 136,966.77 137,150.77 NA 32.00

ORCCRO [69] 136,855.19 136,855.19 136,855.19 NA 14.00

SCA [69] 136,653.02 136,653.02 136,653.10 NA 28.00

OIWO [70] 136,452.68 136,452.68 136,452.68 NA 10.70

GWO 136,447.39 136,541.34 136,588.22 25.48 11.34

IGWO 136,444.30 136,462.93 136,510.15 17.12 10.78

QOGWO 136,437.81 136,440.70 13,663.40 5.46 9.86

Test System IV: Simulation Results of the Dynamic ED Problem of a Microgrid

Uncertain wind velocity and dynamic variation in load demand over 24 h of a day
makes the makes the objective function of microgrid system probabilistic and much more
complex to solve. This microgrid test system combines two diesel generators, three fuel
cells, and two wind turbines as energy resources [53]. mQOGWO, IGWO, and GWO are
implemented and analyzed with the number of search agents and a maximum iteration
of 100. The comparison of the cost convergence of the above three algorithms is illustrated
in Figure 8. For validation purposes, a comparison of the results in terms of the best cost
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solution is made with the reported results using the cuckoo search algorithm (CSA) [53],
differential evolution (DE) [53], and particle swarm optimization (PSO) [53] and presented
in Figure 9. Here, the best operational cost of USD 30,690.42 is obtained by mQOGWO
followed by USD 31,912.49 by IGWO and USD 32902.49 by GWO.

Figure 8. Convergence curves for mQOGWO, IGWO, and GWO for test system IV.

Figure 9. Comparison of the optimal cost of test system IV (DED problem of a microgrid) [53].

4.3. A Comparative Study

Best solutions: A comparison of the statistical results is also made in two sections.
The first section deals with comparison results for benchmark functions with unimodal,
multimodal, and fixed dimensions, listed in Tables 1 and 2, respectively. As GWO was
initially proposed by Mirjalili [13] and IGWO by Saxena et al. [52], they have provided
the statistical results for the above benchmarks and validated them with well-established
methods such as DE [13] and PSO [13]. Therefore, their results are considered here for
a fair comparison. After analyzing the results of the above table, it is clearly observed
that mQOGWO provides the minimum average values in most of the unimodal func-
tions (except F6). It also provides the lowest average value of benchmark functions for a
few multimodal (F9 to F11) and for a few fixed-dimension functions (F21 to F23). From
Figures 4 and 5, it can be seen that, in most cases, QOGWO converges faster. This shows
the efficacy of QOGWO for solving single objective problems.

For the practical test system I, a comparison of the results in terms of cost and compu-
tational time is made with AIS [61], DSPSO-TSA [63], Jaya-SML [64], and MP-Cjaya [65]
in Table 5. Here, the minimum cost obtained by QOGWO as 32,692.23 USD/h with a
standard deviation (SD) of 1.09 USD/h is the best among all reported methods considered
for comparison.
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Similarly, for the 40 unit non-convex ED problem (test system II), a comparison of
the results is made in Table 6 with the reported results by HGWO [39], OGWO [44],
DE/BBO [67], OIWO [69] and the obtained results by GWO, IGWO, and mQOGWO.
Here, even the average cost of 136,440.70 USD/h attained by mQOGWO is better than the
minimum cost obtained by others.

For the large-dimension ED problem with 140 power-generating units, analysis was
carried out using GWO, IGWO and mQOGWO considering convex (test system III-A)
and non-convex (test system III-B) fuel cost characteristics. Table 7 shows the statistical
comparison of the results with the reported results using other methods. Here, the obtained
best result using mQOGWO, 1,655,679.43 USD/h, is almost comparable to that obtained
with HHE [71] and CQGSO [72] but slightly inferior to the reported result by MFPA [70],
1,655,679.39 USD/h, for the convex system.

Table 7. Comparison of the results for test system III (a 140 unit system).

Methods Min Cost
(USD/h)

Ave Cost
(USD/h)

Max Cost
(USD/h) SD Ave CPU

Time (s)
Test System III-A (Convex Characteristics)

FPA [73] 1,655,685.80 1,655,709.06 1,655,732.32 24.86 10.24

MFPA [73] 1,655,679.39 1,655,679.42 1,655,679.43 0.02 5.57

CCPSO [62] 1,655,685.00 1,655,685.00 1,655,685.00 NA 42.90

CQGSO [72] 1,655,679.43 1,655,679.43 1,655,679.43 NA 18.61

HHE [71] 1,655,679.41 NA NA NA 8.23

GWO 1,655,685.80 1,656,187.78 1,656,575.94 20.02 5.45

IGWO 1,655,679.57 1,655,965.60 1,656,498.17 24.9 5.54

QOGWO 1,655,679.43 1,655,869.64 1,656,018.68 2.96 6.76
Test System III-B (Non-Convex Characteristics)

GSO [72] 1,728,151.17 1,745,515.00 1,753,229.56 NA NA

BBO [68] 1,665,478.25 1,667,548.32 1,669,536.35 NA NA

DE/BBO [68] 1,660,215.65 1,661,257.35 1,662,349.58 NA NA

ORCCRO [68] 1,659,654.83 1,659,725.96 1,659,823.97 0.16 NA

SCA [69] 1,658,384.88 1,658,384.25 1,658,386.57 0.1 NA

CQGSO [72] 1,657,962.73 1,657,962.74 1,657,776.00 NA 31.67

CCPSO [64] 1,657,962.73 1,657,962.73 1,657,962.73 0.00 150.00

HHE [71] 1,657,962.71 NA NA NA 8.80

FPA [73] 1,657,962.77 1,658,051.90 1,658,570.77 228.84 12.67

MFPA [73] 1,657,962.69 1,657,962.75 1,657,962.82 0.06 5.71

GWO 1,657,962.89 1,658,612.89 1,659,262.89 40.11 5.70

IGWO 1,657,962.76 1,658,027.76 1,658,092.76 25.31 5.75

QOGWO 1,657,962.73 1,657,969.23 1,657,975.73 4.03 6.89

For the non-convex objective function, with RRLs and POZ, test system III-B, the best
cost solution of QOGWO is 1,657,962.73 USD/h, which is similar to the reported result by
CCPSO [73] and CQGSO [72]; and very close to 1657962.69 USD/h obtained by MFPA [70].

In test system IV, analysis for optimum generation scheduling of a microgrid com-
prised of three power-generating units is carried out with dynamic load variation over
24 h by GWO, IGWO and mQOGWO. Obtained simulation results are compared with the
reported results by the CSA [53], PSO [53] and DE [53] in Figure 9. Here, a decreasing
trend is clearly observed in the range of 20%–3% for PSO to IGWO while comparing the
minimum cost obtained by mQOGWO as USD 30,690.42. The optimal generation schedules
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obtained by GWO, IGWO are plotted in Figure A1, and that by mQOGWO is presented in
Table A7.

Computational efficiency: Tables 5–7 show the average CPU time (s) of various meth-
ods for test systems I, II, and III, respectively. For the 15-unit ED problem (Test systems I),
QOGWO takes 3.28 s, which is comparable to 3.65 s by MTS [62] and 3.80 s by Jaya [64] but
inferior to 2.80 s by DSPSO-TSA [63].

The average CPU time obtained by mQOGWO is 9.86 s for the forty-unit non-convex
system with transmission loss. Considering the dimension and complexity of test system II,
this computational time is quite obvious.

For test system III, with 140 power-generating units, a minimum computational time
of 8.24 s by mQOGWO is superior then that of 31.67 s by CQGSO [72] and 12.67 s by
FPA [70] but inferior to 5.71 s by MFPA [70].

From Figure 6, it is seen that QOGWO reaches the final value faster. It takes a smaller
number of iterations to explore and start the exploitation phase earlier than GWO and
IGWO. For the large-dimension non-convex test system, cost convergence was compared
in Figure 7. Here, GWO and IGWO reach the exploitation phase faster than mQOGWO but
have a small error in the region of the global optimal value. Comparing the computational
time and the rate of convergence of QWO, IGWO, and mQOGWO for all test systems, it is
evident that mQOGWO attained better results in all cases. However, the convergence rate
seems to depend on system size and complexity.

Solution quality: The solution quality in this paper is compared based on (i) standard
deviation, (ii) Wilcoxon’s p-value and (iii) degree of dispersion and skewness in the box
plot as below.

(i) Standard deviation

While solving classical benchmark functions, mQOGWO has shown appreciable
results in terms of minimum SD. mQOGWO has an almost negligible SD for all unimodal
functions. However, the results are comparable with other methods for multimodal and
fixed-dimension benchmark functions.

In test system I, mQOGWO has a minimum standard deviation, which suggests the
solutions obtained are more closely packed near the mean and have more precise results
than others. The SD of mQOGWO for test systems II and III is not the lowest of all
algorithms but it is still lower than that of GWO and IGWO when compared separately.

(ii) Wilcoxon’s p-value

The statistical significance of the algorithms was calculated using the obtained results
from the algorithms [74]. In this paper, the results are obtained by GWO, IGWO, and
mQOGWO on 23 mathematical benchmark functions. Wilcoxon’s p-value (probability
value) is calculated after taking the results of GWO and IGWO pairwise with the mQOGWO
results, tabulated in Table 4. A 5% significance level, a p-value of less than 0.05, implies the
superiority of mQOGWO over the other two. This characteristic shows that, statistically,
mQOGWO gives unique and better-quality solutions compared to GWO and IGWO.

(iii) Data dispersion and skewness in the box plot

For a more comprehensive analysis, the data dispersion and skewness of the obtained
results for GWO, IGWO, and mQOGWO are compared through a box plot as illustrated in
Figure 10. The box plots graphs show that the median of mQOGWO is the lowest in all
four cases. The interquartile range for mQOGWO is less as compared to GWO and IGWO,
which depicts less data dispersion and a more precise window for expected solutions. The
median for mQOGWO is equally spaced from the first and third quartile, implying normal
distribution of solution results. Additionally, the length of whiskers in Figure 10a,b,d,e for
mQOGWO is equal, which implies that solution distribution is not skewed.

Comparing the solution sets for GWO, IGWO, and mQGWO on factors such as
standard deviation and box plots, it is clear that solutions obtained by mQOGWO are
statistically more appealing, with the least data dispersion and minimum skewness.
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Figure 10. Box plots for (a) test system I, (b) test system II, (c) test system III-A, (d) test system III-B,
and (e) test system IV.

5. Conclusions

In this paper, a modified quasi-opposition-based grey wolf optimization method is
proposed and successfully implemented to solve mathematical benchmark, convex and
non-convex ED problems, including the microgrid scheduling problem with complex
operational constraints. Considering the simulation results of the proposed method for all
test cases, it is evident that mQOGWO has the ability to converge to a better-quality solution.
The average computation time and the statistical results are also analyzed considering the
dimension and complexity of the problem, which supports its efficacy while dealing with a
complex optimization problem. Application and analysis of mQOGWO on multiobjective
problems can be the scope of a future study.
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Appendix A

Table A1. Unimodal and multimodal benchmark functions.

Fi Name Function dim Range fmin
Unimodal Benchmark

F1 Sphere f (x) =
n
∑

i=1
xi

2 30 [−100,100] 0

F2
Schwe f el′s

Problem 2.22
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30 [−10,10] 0

F3
Schwe f el′s

Problem 1.20
n
∑

i=1

(
i

∑
j=1

xj

)
30 [−100,100] 0

F4
Schwe f el′s

Problem 2.21 max{|xi |, 1 ≤ i ≤ n} 30 [−100,100] 0

F5
Generalized
Rosenbrock

n−1
∑

i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30,30] 0

F6 Step
n
∑

i=1
|xi + 0.5|2 30 [−100,100] 0

F7 Noise
n
∑

i=1
ixi

4 + random[0, 1) 30 [−1.28,1.28] 0

Multimodal Benchmark

F8 Schwe f el′s 2.26
n
∑

i=1
−xi sin

(√
|xi |
)

30 [−500,500] −12,569.5

F9 Rastrigin
n
∑

i=1

[
x2

i − 10 cos(2Πxi) + 10
]

30 [−5.12,5.12] 0

F10 Aukley
−20e

(−0.2

√
1
n

n
∑

i=1
x2

i ) − e
( 1

n
n
∑

i=1
cos2Πxi )

+ 20 + e
30 [−32,32] 0

F11 Griewank 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30 [−600,600] 0

F12
Generalized
Penalized 1

Π
n

{
10sin2(Πyi) +

n−1
∑

i=1
(yi − 1)2[1 + 10sin2(Πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

Where yi = 1 + 1
4 (xi + 1)

and, u(xi , a, k, m) =
k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0

F13
Generalized
Penalized 2

0.1
{

sin2(3Πxi) +
n−1
∑

i=1
(xi − 1)2[1 + sin2(3Πxi+1)

]
+ (xn − 1)sin2(2Πxn)

}
+

n
∑

i=1
u(xi , 5, 100, 4)

were

u(xi , a, k, m) =
k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0
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Table A2. Fixed-dimension benchmark functions.

Fi Name Function dim Range fmin
Fixed Dimension Benchmark

F14 Shekel’s Foxholes

f (x) =

[
1

500 +
25
∑

j=1

1

∑2
i=1

(
xi−aij

)6

]−1

where aij =[
−32 −16 0 16 32 · · · · · · 32 16 0 16 32
−32 −32 −32 −32 −32 · · · · · · 32 32 32 32 32

] 2 [−65.536,
65,536] 1

F15 Kowalik

f (x) =
11
∑

i=1

[
ai +

x1(bi
2+bi x2)

b2
i +bi x3+x4

]2

where aj = [ 0.1957 0.1947 0.1735 0.16 0.084 0.0627
0.0456 0.0342 0.0323 0.0235 0.0246]

bi = [0.25 0.5 1 2 4 6 8 10 12 15 16 ]

4 [−5,5] 0.003075

F16
Six Hump Camel

Back f (x) = 4x2
1 + 2.1x4

1 +
1
3 x3

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.0316285

F17 Bramin f (x) =
(

x2 − 5.1
4Π2 x2

1 +
5
Π x1

)2
+ 10

(
1− 1

8

)
cos(x1) + 10 2 [−5, 10]×

[0,10] 0.398

F18 Goldstein− Price f (x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×
[
30 + (2x1 − 3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)]
2 [−2,2] 3

F19 Hartman′s Family f (x)= −∑4
i=1 ciexp

[
−∑3

j=1 aij
(
xj − pij

)2
]

4 [0,1] −3.86

F20

f (x)= −∑4
i=1 ciexp

[
−∑6

j=1 aij
(
xj − pij

)2
]

where aij =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3
17

3.5
8

1.7 10 17 8
0.05 10 0.1 14

, ci =

 1
1.2
3

3.2



pij =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348
0.4047

0.1415
0.8828

0.3522 0.2883 0.3047 0.6650
0.8732 0.5743 0.1091 0.0381


6 [0,1] −3.32

F21 f (x) = −
5
∑

i=1

[
(x− ai)(x− ai)

T + ci

]−1
4 [0,10] −10

F22 f (x) = −
7
∑

i=1

[
(x− ai)(x− ai)

T + ci

]−1
4 [0,10] −10

F23

Shekel′s Family f (x) = −
10
∑

i=1

[
(x− ai)(x− ai)

T + ci

]−1

ai =


4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 5 1 2 3.6
4 1 8 6 3 2 3 8 6 7

4 1 8 6 7 9 3 1 2 3.6


ci = [0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5 ]

4 [0,10] −10
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Table A3. Optimal generation schedule for test system I (a 15 unit system).

Units(MW) mQOGWO IGWO GWO

P1 455.000 454.994 455.000

P2 380.000 380.003 380.000

P3 130.000 130.000 130.000

P4 130.000 130.000 130.000

P5 170.000 169.942 170.000

P6 460.000 459.999 460.000

P7 430.000 429.978 430.000

P8 69.476 87.951 116.554

P9 60.108 41.841 45.883

P10 160.000 160.000 127.412

P11 80.000 80.000 80.000

P12 80.000 80.000 80.000

P13 25.000 25.000 25.000

P14 15.000 15.001 15.000

P15 15.000 15.004 15.000

Ploss (MW) 29.585 29.717 29.849

Fcost (USD/h) 32,692.230 32,693.190 32,702.120

Table A4. Optimal generation schedule for test system II (a 40 unit system).

Units(MW) QOGWO IGWO GWO Units QOGWO IGWO GWO

P1–P3 114.00 114.00 114.00 P21 523.28 523.32 523.63

P4 179.73 181.37 180.12 P22 523.30 550.00 550.00

P5 87.80 88.18 88.81 P23–P24 523.28 523.28 523.28

P6 140.00 140.00 140.00 P25 523.28 523.30 524.44

P7–P8 300.00 300.00 300.00 P26 523.28 523.30 523.37

P9 289.89 300.00 300.00 P27–P29 10.00 10.00 10.00

P10 279.60 279.60 279.60 P30 87.80 87.80 87.80

P11 243.60 243.60 243.42 P31 190.00 190.00 190.00

P12 94.00 94.00 94.00 P34–P35 200.00 200.00 200.00

P13–P16 484.04 484.04 484.04 P36 164.80 164.80 164.80

P17–P18 489.28 489.28 489.28 P37–P39 110.00 110.00 110.00

P19–P20 511.28 511.28 511.30 P40 550.00 511.90 511.34

Ploss (MW) 972.20 973.00 973.22

Fcost (USD/h) 136,437.81 136,444.30 136,447.39

Table A5. Optimal generation schedule for test system III-A.

Units QOGWO IGWO GWO Units QOGWO IGWO GWO

P1 119.00 119.00 119.00 P82 56.00 56.00 56.00

P2 164.00 164.00 164.00 P83–P85 115.00 115.00 115.00

P3–P6 190.00 190.00 190.00 P86–P87 207.00 207.00 207.00
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Table A5. Cont.

Units QOGWO IGWO GWO Units QOGWO IGWO GWO

P7–P8 490.00 490.00 490.00 P88–P89 175.00 175.00 175.00

P9–P12 496.00 496.00 496.00 P90 180.43 180.49 180.49

P13 506.00 506.00 506.00 P91 175.00 175.00 175.00

P14 509.00 509.00 509.00 P92 575.40 575.40 575.40

P15 506.00 506.00 506.00 P93 547.50 547.50 547.50

P16 505.00 505.00 505.00 P94 836.80 836.80 836.80

P17–P18 506.00 506.00 506.00 P95 837.50 837.50 837.50

P19–P24 505.00 505.00 505.00 P96 682.00 682.00 682.00

P25–26 537.00 537.00 537.00 P97 720.00 720.00 720.00

P27–28 549.00 549.00 549.00 P98 718.00 718.00 718.00

P29 501.00 501.00 501.00 P99 720.00 720.00 720.00

P30 499.00 499.00 499.00 P100 964.00 964.00 964.00

P31–P34 506.00 506.00 506.00 P101 958.00 958.00 958.00

P35–P36 500.00 500.00 500.00 P102 947.90 947.90 947.90

P37–P38 241.00 241.00 241.00 P103 934.00 934.00 934.00

P39 774.00 774.00 774.00 P104 935.00 935.00 935.00

P40 769.00 769.00 769.00 P105 876.50 876.50 876.50

P41–P42 3.00 3.00 3.00 P106 880.90 880.90 880.90

P43–P50 250.00 250.00 250.00 P107 873.70 873.70 873.70

P51–54 165.00 165.00 165.00 P108 877.40 877.40 877.40

P55–P56 180.00 180.00 180.00 P109 871.70 871.70 871.70

P57 103.00 103.00 103.00 P110 864.80 864.80 864.80

P58 198.00 198.00 198.00 P111 882.00 882.00 882.00

P59 312.00 312.00 312.00 P112–P114 94.00 94.00 94.00

P60 308.60 308.59 308.59 P115–P117 244.00 244.00 244.00

P61 163.00 163.00 163.00 P118–P119 95.00 95.00 95.00

P62 95.00 95.00 95.00 P120 116.00 116.00 116.00

P63 511.00 503.05 503.05 P121 175.00 175.00 175.00

P64 511.00 511.00 511.00 P122 2.00 2.00 2.00

P65 490.00 490.00 490.00 P123 4.00 4.00 4.00

P66 256.84 256.80 256.80 P124 15.00 15.00 15.00

P67–P68 490.00 490.00 490.00 P125 9.00 9.00 9.00

P69 130.00 130.00 130.00 P126 12.00 12.00 12.00

P70 294.56 294.58 294.58 P127 10.00 10.00 10.00

P71 141.59 141.67 141.67 P128 112.00 112.00 112.00

P72 365.92 365.95 365.95 P129 4.00 4.00 4.00

P73 195.00 195.00 195.00 P130–P131 5.00 5.00 5.00

P74 217.10 204.67 204.67 P132 50.00 50.00 50.00

P75 217.89 241.27 241.27 P133 5.00 5.00 5.00

P76 258.68 257.86 257.86 P134–P135 42.00 42.00 42.00

P77 403.29 400.96 400.96 P136 41.00 41.00 41.00
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Table A5. Cont.

Units QOGWO IGWO GWO Units QOGWO IGWO GWO

P78 330.00 330.00 330.00 P137 17.00 17.00 17.00

P79–80 531.00 531.00 531.00 P138–P139 7.00 7.00 7.00

P81 542.00 542.00 542.00 P140 26.00 26.00 26.00

Fcost (USD/h) 1,655,679.43 1,655,679.57 1,655,685.80

Table A6. Optimal generation schedule for test system III-B.

Units QOGWO IGWO GWO Units QOGWO IGWO GWO

P1 119.00 119.00 119.00 P82 56.00 56.00 56.00

P2 164.00 164.00 164.00 P83–P84 115.00 115.00 115.00

P3–P4 190.00 190.00 190.00 P86–P87 207.00 207.00 207.00

P5 168.54 168.54 168.54 P88–P89 175.00 175.00 175.00

P6 190.00 190.00 190.00 P90 180.41 180.42 180.62

P7–P8 490.00 490.00 490.00 P91 175.00 175.00 175.00

P9–P12 496.00 496.00 496.00 P92 575.40 575.40 575.40

P13 506.00 506.00 506.00 P93 547.50 547.50 547.50

P14 509.00 509.00 509.00 P94 836.80 836.80 836.80

P15 506.00 506.00 506.00 P95 837.50 837.50 837.50

P16 505.00 505.00 505.00 P96 682.00 682.00 682.00

P17–P18 506.00 506.00 506.00 P97 720.00 720.00 720.00

P19–P24 505.00 505.00 505.00 P98 718.00 718.00 718.00

P25–P26 537.00 537.00 537.00 P99 720.00 720.00 720.00

P27–P28 549.00 549.00 549.00 P100 964.00 964.00 964.00

P29 501.00 501.00 501.00 P101 958.00 958.00 958.00

P30 499.00 499.00 499.00 P102 947.90 947.90 947.90

P31–P34 506.00 506.00 506.00 P103 934.00 934.00 934.00

P35–P36 500.00 500.00 500.00 P104 935.00 935.00 935.00

P37–P38 241.00 241.00 241.00 P105 876.50 876.50 876.50

P39 774.00 774.00 774.00 P106 880.90 880.90 880.90

P40 769.00 769.00 769.00 P107 873.70 873.70 873.70

P41–P42 3.00 3.00 3.00 P108 877.40 877.40 877.40

P43–P50 250.00 250.00 250.00 P109 871.70 871.70 871.70

P51–P54 165.00 165.00 165.00 P110 864.80 864.80 864.80

P55–P56 180.00 180.00 180.00 P111 882.00 882.00 882.00

P57 103.00 103.00 103.00 P112–P114 94.00 94.00 94.00

P58 198.00 198.00 198.00 P115–P117 244.00 244.00 244.00

P59 312.00 312.00 312.00 P118–P119 95.00 95.00 95.00

P60 308.59 308.59 308.73 P120 116.00 116.00 116.00

P61 163.00 163.00 163.00 P121 175.00 175.00 175.00

P62 95.00 95.00 95.00 P122 2.00 2.00 2.00

P63–P64 511.00 511.00 511.00 P123 4.00 4.00 4.00
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Table A6. Cont.

Units QOGWO IGWO GWO Units QOGWO IGWO GWO

P65 490.00 490.00 490.00 P124 15.00 15.00 15.00

P66 256.75 256.81 257.47 P125 9.00 9.00 9.00

P67–P68 490.00 490.00 490.00 P126 12.00 12.00 12.00

P69 130.00 130.00 130.00 P127 10.00 10.00 10.00

P70 339.44 339.44 339.44 P128 112.00 112.00 112.00

P71 141.59 141.59 141.82 P129 4.00 4.00 4.00

P72 388.33 388.33 388.33 P130–P131 5.00 5.00 5.00

P73 195.00 195.00 195.00 P132 50.00 50.00 50.00

P74 196.23 214.74 195.10 P133 5.00 5.00 5.00

P75 196.10 175.00 175.00 P134–P135 42.00 42.00 42.00

P76 257.97 258.57 262.69 P136 41.00 41.00 41.00

P77 400.95 402.89 417.18 P137 17.00 17.00 17.00

P78 330.00 330.00 330.00 P138–P139 7.00 7.00 7.00

P79–P80 531.00 531.00 531.00 P140 26.00 26.00 26.00

P81 542.00 542.00 542.00 Fcost
(USD/h) 1,657,962.73 1,657,962.76 1,657,962.89

Figure A1. Optimal generation for test system IV obtained using (a) GWO and (b) IGWO.
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Table A7. Optimal generation schedule for test system IV obtained using mQOGWO.

D1 (kW) D2 (kW) FC1 (kW) FC2 (kW) FC3 (kW) W1 (kW) W2 (kW)

134.76 83.08 72.96 55.29 40.87 133.52 133.52

81.21 105.20 54.34 47.58 57.03 102.32 102.32

101.16 153.55 82.55 45.61 46.40 107.87 107.87

119.89 152.48 72.88 35.49 49.74 128.76 128.76

157.25 248.01 57.25 46.59 49.20 142.35 142.35

183.20 408.02 88.68 47.62 64.13 163.17 163.17

285.25 405.09 89.80 52.50 67.15 212.61 212.61

241.02 451.45 89.76 68.34 45.75 248.84 248.84

248.55 519.03 80.72 55.62 42.84 240.62 240.62

244.58 452.48 109.14 66.71 57.25 231.42 231.42

200.82 473.70 74.38 56.16 44.68 194.13 194.13

216.78 315.30 80.32 56.78 48.31 183.26 183.26

229.70 312.38 62.48 42.34 50.21 167.45 167.45

169.26 363.63 68.49 38.10 57.06 150.73 150.73

249.75 393.50 77.99 42.64 49.32 135.41 135.41

210.96 328.56 68.45 56.19 53.62 157.11 157.11

234.01 404.81 80.35 54.71 58.82 142.66 142.66

251.32 545.20 90.02 55.13 59.57 187.38 187.38

329.19 672.45 103.10 56.86 49.57 228.42 228.42

296.41 640.66 95.03 55.11 51.63 256.58 256.58

264.04 645.94 91.95 74.59 65.01 246.24 246.24

355.50 517.98 89.65 53.49 54.89 195.25 195.25

268.85 461.29 141.94 65.76 53.27 175.44 175.44

222.58 370.71 90.00 56.34 55.16 135.61 135.61
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