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Abstract Modified Rodrigues parameters (MRPs) are tri-

plets in R
3 bijectively and rationally mapped to quaternions

through stereographic projection. We present here a com-

pelling case for MRPs as a minimal degree-of-freedom

parameterization of orientation through novel solutions to

prominent problems in the fields of 3D vision and com-

puter graphics. In our primary contribution, we show that

the derivatives of a unit quaternion in terms of its MRPs

are simple polynomial expressions of its scalar and vector

part. Furthermore, we show that updates to unit quater-

nions from perturbations in parameter space can be computed

without explicitly invoking the parameters in the computa-

tions. Based on the former, we introduce a novel approach

for designing orientation splines by configuring their back-

projections in 3D space. Finally, in the general topic of

nonlinear optimization for geometric vision, we run perfor-

mance analyses and provide comparisons on the convergence

behavior of MRP parameterizations on the tasks of abso-

lute orientation, exterior orientation and large-scale bundle

adjustment of public datasets.
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1 Introduction

Orientation or attitude is a prominent facet of problems per-

taining to disciplines such as computer graphics, computer

vision, photogrammetry, robotics and augmented reality. A

typical example of such a problem in computer animation

is the interpolation of orientation during a process known as

key-framing, the main objective of which is to achieve esthet-

ically pleasing results in the representation of the motion of a

rigid object not only in terms of translation, but also in terms

of the changes in its orientation [66].

In an inverse fashion, 3D computer vision deals with

3D reconstruction, also often referred to as structure from

motion estimation (SfM). This consists in using sets of

images depicting an unknown scene and captured from

unknown locations, in order to automatically extract a 3D

geometric representation of the imaged scene plus the cam-

era intrinsic parameters and their poses, i.e., positions and

orientations [26,45]. Several solutions to the SfM problem

involve the estimation of the sought parameters by iteratively

minimizing the total geometric error pertaining to overdeter-

mined sets of image measurements. Considering that a 3D

rotation matrix has nine elements but only three degrees of

freedom (DoF), suitable (and preferably minimal) parameter-

izations of rotation are thus necessary in order to intrinsically

incorporate orthonormality constraints on rotations during

the optimization.

The modified Rodrigues parameters (MRPs) constitute a

minimal rotation parameterization with attractive properties.
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Despite being well-established in the field of aerospace engi-

neering, MRPs are, to the best of our knowledge, unheard-of

in the computer graphics, vision and robotics communities.

MRPs are essentially the stereographic coordinates of quater-

nions and, as such, they are mapped rationally and bijectively

to the quaternion sphere. This paper studies the representa-

tion of orientation via MRPs. An important finding is that

the Jacobian of a quaternion is a polynomial function of

its scalar and vector parts, thereby yielding simple expres-

sions in rotation derivatives. Furthermore, it is shown that

quaternions can be updated from a given perturbation in

parameter space without explicitly using the MRPs. These

two findings are very important for iterative optimization,

because they allow both Jacobian computation and orienta-

tion updates to be carried out using exclusively quaternion

components in simple additions and multiplications. As a

consequence, iterative optimization completes with fewer

calculations in less time. The paper also demonstrates the

applicability of MRPs in problems related to orientation

interpolation and pose estimation and provides experimental

evidence that their use leads to new solutions or the simplifi-

cation of existing ones and, in most cases, the improvement

of performance.

The rest of the paper is structured as follows. A brief

overview of orientation representations with respect to vari-

ous applications is given in Sect. 2, followed by descriptions

of common problems involving parameterized orientation

and respective solutions in Sect. 3. A derivation of the

MRPs based on stereographic projection is provided in

Sect. 4, whereas Sect. 5 discusses special properties of

MRPs as vectors parallel to the rotation axis; such prop-

erties include the relationship with axis-angle and Gibbs

vectors as well as the Cayley transform from MRPs to

rotation matrices. Section 6 focuses on the differentiation

properties of the MRP parameterization. In Sect. 7, the prob-

lem of smooth interpolation on the quaternion sphere is

examined and a general method for spline based fitting is

presented. Experimental results comparing the performance

of MRPs against different parameterizations of rotations are

given in Sects. 8 and 9 summarizes the contributions of the

paper.

2 Rotation Representations

The literature provides many representations of rotation

using 3 × 3 matrices and vectors of three or four com-

ponents. Representing spatial rotations is challenging due

to their non commutativity and the fact that their topology

does not permit a smooth embedding in Euclidean 3D space.

Besides, different practical uses of rotations have different

requirements. This section briefly presents the representa-

tions most commonly employed in the fields of graphics,

robotics and vision, and discusses their strengths and weak-

nesses.

2.1 Rotation Matrices

Rotation matrices are 3 × 3 orthonormal matrices that

arguably constitute the most intuitive representation of ori-

entation. The reason for this is that ordinary linear algebra

can be employed to express common operations involving

rotations. For example, a point can be rotated using standard

matrix-vector multiplication, two rotations can be composed

via matrix multiplication, whereas a rotation can be inversed

via matrix transposition. A rotation matrix consists of nine

elements but has only three DoFs due to the six independent

constraints imposed by orthonormality.

Being quadratic, these constraints are cumbersome to

impose, typically in the context of a Lagrangian function.

This, however, does not render the representation entirely

unattractive. For instance, Carlone et al. [7], Olsson and

Eriksson [43] as well as Briales and Jimenez [6] make explicit

use of matrix orthonormality constraints to formulate the

Lagrangian of the camera pose registration problem. The

advantage of this approach is that it provides measures for

the optimality of solutions of relaxations by monitoring the

duality gap in the original problem.

In overall, rotation matrices are typically used to represent

rotations when transformations of objects such as points and

lines are involved but not very often used in other operations

such as interpolation and estimation. For future reference, the

set of all rotation matrices is the 3D rotation group, denoted

SO(3).

2.2 Euler Angles

Euler angles define a rotation in terms of three consecutive

elemental rotations around the orthogonal axes of a Carte-

sian coordinate system. There exist twelve possible sets of

Euler angles, depending on the chosen, non commutative

order of rotation axes. Even for a particular axes sequence,

Euler angles are not unique since supplementary and/or

negative angles can yield the same overall rotation [58].

Although an easily conceptualized and minimal DoF encod-

ing, there exist several arguments as to why Euler angles

are a parameterization scheme unsuitable for most applica-

tions [16,28,51].

Notwithstanding their ambiguity, the primary drawback

of Euler angles is that they suffer from singularities near

which infinitesimal changes in orientation can cause large

jumps in the values of their elemental constituent rota-

tions [51,58]. When represented with Euler angles, every

orientation is at most 90 degrees away from a singularity.

Such a singularity, known as gimbal lock from its phys-

ical manifestation in gyroscopes, occurs when two of the
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three rotation axes coincide and results in the loss of one

degree of freedom, i.e., one rotation having no effect [44].

Since gimbal lock is a discontinuity in the Euler angle

representation, it might have undesirable side-effects such

as ill-conditioning or instabilities in applications involving

rotation operations like iterative optimization, filtering, aver-

aging or interpolation. Thus, the use of Euler angles in

describing large and especially arbitrary rotations is lim-

ited. Furthermore, the kinematic differential equations of

Euler angles are fairly nonlinear, involving computationally

expensive trigonometric functions [51]. On the other hand,

being more understandable to humans, Euler angles are com-

monly used in user interfaces for 3D rotations in graphics and

CAD software. Another favorable application concerns the

use of Euler angles with a linear Kalman filter for position

and orientation tracking, as they maintain a linear process

model.

2.3 Axis-Angle

Every rotation can be represented as a revolution by an angle

θ around an axis parallel to a unit 3-vector u. The vec-

tor ω = θu is the angle-axis representation of a rotation.

This representation is not unique, since an equivalent repre-

sentation for the same rotation is −(2π − θ)u. The matrix

representation in SO(3) of an axis-angle rotation ω is given

by the infinite series

exp
(

[ω]×
)

= I +
∞
∑

n=1

1

n!
[ω]n

× , (1)

where [ω]× is the cross-product skew symmetric matrix asso-

ciated with ω
def=

[

ω1 ω2 ω3

]T
:

[ω]× =

⎡

⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

Equation 1 is referred to as the exponential map and can be

evaluated with Rodrigues’ formula for θ = ‖ω‖ [48]:

R(ω) = exp
(

[ω]×
)

= I +
sin(θ)

θ
[ω]× +

1 − cos(θ)

θ2
[ω]2

×

(2)

The axis-angle representation is a many-to-one mapping and

has singularities at θ = 2nπ , n ≥ 1. Furthermore, although

the formula converges to the identity matrix for very small

values of θ , in practice it presents numerical issues which

call for approximating sin(θ) and cos(θ) with their Taylor

series expansions near the origin and using them to simplify

the two fractions in Eq. 2. On the other hand, it is surjective,

i.e., every rotation has a representation as the exponential of

a skew symmetric matrix. Since it is minimal and does not

require any additional constraints, the axis-angle representa-

tion is very often employed in vision and robotics problems.

The terms axis-angle and exponential map are used inter-

changeably.

Although the exponential map is periodic, a rotation

matrix logarithm1 from rotation matrices to axis-angle vec-

tors can be defined for θ ∈ (−π, π):

log R =
θ

2 sin θ

(

R − RT
)

(3)

θ = arccos

(
Tr (R) − 1

2

)

, (4)

where Tr() denotes a square matrix’s trace, i.e., the sum of its

diagonal elements. Evidently, the rotation matrix logarithm

converges to the zero vector at the identity, but in practice it

is necessary to resort to approximations in order to avoid the

effects of very small numbers in the denominator.

In the specific case where Eq. 4 yields θ = π , the axis-

angle vector cannot be recovered with Eq. 3. Instead, we

initially obtain the absolute values of the components of ω

as follows:

|ωi | =
√

ri i + 1

2
, (5)

where i ∈ {1, 2, 3} and ri j is the element of R in the ith row

and jth column. Since ω is sign-ambiguous, we may choose

the component which has the largest absolute value to be

positive. The remaining two components can be recovered

from the off-diagonal elements of R as follows:

ω j =
rk j

ωk

, (6)

where k = arg maxi {|ωi |} and j ∈ {1, 2, 3} − {k}.

2.4 Unit Quaternions

One of the most popular ways to unambiguously represent

orientation in 3D is with the Euler–Rodrigues parameters,

as a location on the unit sphere in 4D. The modern formal-

ism for Euler–Rodrigues parameters are unit quaternions,

which form a multiplicative group that fully describes 3D

rotations. Unit quaternions constitute a redundant parame-

terization which does not suffer from gimbal lock. However,

their numerical estimation in practice is complicated by the

need to incorporate a unit-norm constraint; more details on

this are provided in Sect. 3.2.

1 The formula in Eq. 3 is readily obtained by taking the difference

R − RT using Rodrigues’ formula. Similarly, the angle in Eq. 4 is

obtained by taking the trace of R + RT .
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For consistency of notation throughout the rest of the

paper, the field of quaternions will henceforth be denoted

with H, and an arbitrary quaternion q ∈ H will be written in

the form

q = ρ + υT ϕ, (7)

where ρ ∈ R is the scalar part, υ ∈ R
3 is the vector part

and ϕ =
[

i j k
]T

is the vector of the 3 imaginary units (also

referred to as fundamental quaternion units). The reader is

referred to [16,29,44,61,64] for more detailed introductions

on quaternions and their properties.

A quaternion q ∈ H such that ‖q‖ = 1, is called a unit

quaternion. Unit quaternions lie on the unit sphere in 4D (also

known as the quaternion sphere in kinematics or 3-sphere S
3

in topology) and form a group under multiplication which

precisely describes the group of rotations. In particular, pro-

vided a quaternion q = ρ + υT ϕ such that ρ2 + υT υ = 1,

it can be shown that it corresponds to the following rotation

matrix [41]:

R =
(

ρ2 − υT υ
)

I3 + 2υυT + 2ρ[υ]× (8)

It is worth noting that the formula in Eq. 8 implies that the

elements of the rotation matrix are polynomial expressions of

the unit quaternion components. It is also evident from Eq. 8

that the same rotation matrix corresponds to quaternions q

and −q. Thus, when treated as elements of the special 3 × 3

orthogonal group, antipodal unit quaternions represent the

same rotation.

In direct analogy to the exponential map from the space of

skew-symmetric matrices to the group of rotation matrices,

there exists an exponential map from the space of axis-angle

vectors to unit quaternions:

exp

(
1

2
ωT ϕ

)

= cos
θ

2
+ sin

θ

2

(ω

θ

)T

ϕ, (9)

where ω ∈ R
3 is the axis-angle vector or the rotation

associated with q and θ = ‖ω‖. Note that the right-hand

side of Eq. 9 can be obtained with the Taylor expansion of

exp
(

1
2
ωT ϕ

)

, provided the observation
(

ωT ϕ
)2 = −θ2.

As in the case of rotation matrices, unit quaternions can

be mapped to the corresponding axis-angle vectors via a log-

arithmic function:2

log q =
θ

2 sin θ
2

(q − q) (10)

θ = 2 arccos

(
q + q

2

)

, (11)

where q denotes the conjugate of q, i.e., q = ρ − υT ϕ.

2 Formulas are derived from Eq. 9 by considering q − q and q + q

respectively.

3 Common Problems and Standard Solutions

This section briefly describes prevalent problems involving

parameterized orientation along with the most common solu-

tions employed and their typical shortcomings. Although

applications may vary, these problems essentially fall under

two major categories, namely interpolation of orientation

and estimation of rotation parameters.

3.1 Interpolation of Orientation

The problem of interpolating rotational motion from a

sequence of key orientations often arises in computer anima-

tion, computer-aided design and robot kinematics applica-

tions [11,27,30,49,53,59]. Since quaternions conveniently

possess the properties of a metric space (i.e., R
4), it is very

common to perform this task on the unit sphere in 4D where

properties such as smoothness, length and curvature can be

measured and manipulated with standard calculus.

Suppose that a sequence of key orientations is given in

the form of unit quaternions q0, q1, . . . , qn, . . . and the

goal is to interpolate the sequence with a smooth spherical

curve. Possibly the most popular tool for elementary inter-

polation on a great arc between two successive quaternions

is Shoemake’s classic formula for spherical linear interpo-

lation (abbreviated as slerp) [56]:

slerp(qn qn+1; u) =
sin (1 − u) Φ

sin Φ
qn +

sin uΦ

sin Φ
qn+1, (12)

where u ∈ [0, 1] is the interpolation parameter, Φ =
arccos (qn · qn+1) is the angle between qn , qn+1 and · denotes

the dot product between quaternions as vectors in R
4.

Interpolation of more than two key orientations is a far

more challenging task, primarily because the constituent seg-

ments of the curve have to be pieced smoothly at the data

points. A popular solution is Shoemake’s spherical quadran-

gle interpolation (squad) [57]. In a nutshell, squad is the

spherical analog of parabolic blending between quaternions

qn and qn+1:

squad (qn, qn+1; u) = slerp

(

slerp (qn, qn+1; u) ,

slerp (αn, αn+1; u (1 − u))

)

, (13)

where u ∈ [0, 1] is the interpolation parameter and αn , αn+1

are auxiliary points chosen specifically to impose smoothness

at the key points that can be computed with the following

formula:

αi = qi exp

(

−
log

(

q i qi−1

)

+ log
(

q i qi+1

)

4

)

(14)
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Shortly after Shoemake’s contribution, Duff followed with

[20], introducing a B-spline spherical curve interpolating

the data similarly to planar B-splines. More recently, a con-

struction scheme in R
3 for smooth quaternion curves was

proposed in [32]. The main shortcoming associated with the

aforementioned methods is the lack of a general strategy to

enforce arc length and curvature minimization constraints,

owing to the complexity of the corresponding expressions

for the spherical polynomial derivatives. In their thorough

report on Shoemake’s work, Dam et al. [13] show that

finding a generic, curvature minimizing smooth exponen-

tial curve on the sphere is highly impractical, primarily

due to the complicated derivatives of the curve. Another

ramification of the generally intractable differentiation is

that in most cases, speed adjustment is performed purely

numerically (cf. the chord-length approximation method

[67]).

Following Shoemake’s work, several solutions for ori-

entation interpolation have been introduced, taking matters

from a different perspective. For instance, Johnstone and

Wiliams [31] introduced a rational function mapping 4D

Bézier curves onto the quaternion sphere. Although they

were unaware at the time, this mapping is the general-

ized form of stereographic projection [17], which, without

any precautions will cause distortions on the sphere. Other

geometric methods were proposed in [3,46,47]. With the

exception of the method by Roberts et al. [47], these

approaches focus on minimizing functionals defined on

characteristics of the curve such as tangential velocity or

centrifugal acceleration primarily by making approximations

to the actual expressions. The common drawback of these

approaches is that they are relatively complex to implement

and not so flexible to configure under different circum-

stances.

An interesting alternative to the mainstream is the work

of Boumal [5], which optimizes a cost function directly

over rotation matrices. Since it is difficult to fit a para-

metric function on matrices with orthonormal constraints,

Boumal defines a cost function over a sequence of rota-

tions with penalty terms on chordal distance3 from the

key-rotations as well as on first- and second-order finite

differences in SO(n) to impose smoothness. To iteratively

optimize the cost function on the rotation manifold, ana-

lytical expressions for the Riemanian derivatives of the

penalty terms are obtained as orthogonal projections of

Euclidean matrix derivatives onto the tangent space of

the current rotation estimates [1]. The method can be

adapted either for interpolation or regression and applies

to problems involving orthogonal matrices of arbitrary

dimensionality.

3 The Frobenius norm of the difference of rotation matrices.

3.2 Estimation of Orientation and Rotation Matrix

Differentiation

At the very core of several key problems in computer

graphics, vision and robotics lies the problem of estimating

orientation. The typical formulation of orientation estima-

tion problems involves a cost function which is a sum of

positive (by means of a suitable metric) error terms, in

which the unknown rotation matrices act on vectors mea-

sured in different coordinate frames. The usual method of

minimizing such a cost function is by setting its deriva-

tives equal to zero and solving the resulting equations. The

Jacobian of the rotation matrix is therefore crucial to the

estimation.

It becomes evident from the exponential map expres-

sion in Eq. 1 that differentiation of the rotation matrix R

with respect to the axis-angle vector ω is not trivial and

the associated Jacobian contains complicated transcendental

expressions. Most importantly, the derivative of the expo-

nential map presents a “malignant” singularity at the origin,

owed to the presence of an angle in the denominator. A com-

plete list of analytic expressions for these derivatives can be

found in a report by Diebel [16].

Recently, Gallego and Yezzi [23] have discovered a rea-

sonably compact expression for the Jacobian of the rotation

matrix:

∂ R

∂ωi

=
ωi [ω]× + [ω × (I3 − R) ei ]×

θ2
R, (15)

where i ∈ {1, 2, 3} indexes the components of ω and ei is

the ith canonical basis vector of R
3. It should be stressed that

despite the denominator θ2 in Eq. 15, the derivatives of the

rotation matrix are continuous at the origin, ω =
[

0 0 0
]T

and are equal to the cross-product skew symmetric matrices

associated with the canonical vectors ei (also known as the

infinitesimal generators of the Lie algebra so(3) and denoted

Gi ) [54]:

∂ R

∂ωi

∣
∣
∣
∣
ωi =0

= [ei ]×
def=Gi (16)

Gallego and Yezzi’s formula in Eq. 15 is a significant

improvement, yet it still is not simple enough, let alone it

entails the evaluation of a few trigonometric expressions. Fur-

thermore, the singularity at the origin must still be accounted

for with the aid of Taylor approximations.

The alternative to computing the actual derivatives of the

rotation matrix with respect to the axis-angle vector is either

the use of finite differences or incremental rotations with ana-

lytical derivatives at the identity. Suppose, for example, that

we are attempting to optimize the parameters of a rotation

matrix in the context of an iterative method. The idea is to
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replace the rotation matrix R at step k with another rotation

R′ given by the product of the current estimate and a per-

turbing rotation matrix exp
(

[u]×
)

which is initially equal to

the identity. Thus, instead of taking the actual derivative of

R with respect to its current axis-angle parameters as given

in Eq. 15, the much simpler derivative of R′ in terms of u is

taken at the origin:

∂ R′

∂ui

= R
∂ exp

(

[u]×
)

∂ui

∣
∣
∣
∣

ui =0

= RGi (17)

The workaround of Eq. 17 found early advocates such as

Taylor [60], or Drummond and Cipolla [18] and is popu-

lar in practice [19,33]. On the other hand, by all accounts,

it is not the actual derivative of the rotation in terms of

the axis-angle parameters, but rather the derivative of an

expression that has a corrective effect on the current esti-

mate. As such, it is a mapping that has the characteristics

of a retraction from the tangent space of R to SO(3) as

defined by Absil et al. [1] and can therefore be used to

provide a valid direction of descent on the rotation mani-

fold. The latter suggests that the application scope of this

approach is limited only to problems involving iterative opti-

mization.

A special class of problems which involve the recovery of

orientation and have attracted considerable attention recently

is that of rotation averaging [10,12,24,25]. The objective in

this case is to recover the absolute or relative orientation

most consistent with many estimates. Typically, these prob-

lems are solved iteratively and require the determination of

a direction of descent either in parameter space or directly

on the rotation manifold. Several solutions to rotation aver-

aging problems presented by Hartley [25] incorporate the

incremental rotation approach of Eq. 17 to establish descent

directions.

Another approach for obtaining the derivatives of a rota-

tion matrix is to parametrize it with a unit quaternion.

Although practical by virtue of the rotation matrix expression

in terms of a quaternion in Eq. 8, this approach unfortunately

requires imposing a hard unit-norm constraint on the quater-

nion components. To impose this constraint in the context

of Euclidean bundle adjustment, Lourakis and Argyros [37]

optimize only the vector part υ of a quaternion and implicitly

obtain the scalar part as ρ =
√

1 − υT υ (cf. Eq. 7). Clearly,

this does not allow for negative scalar parts and, therefore,

the rotation must be limited to the range [−π/2, π/2]. To

overcome this, the initial orientation of every camera before

the optimization is retained and only the difference from the

initial orientation is optimized. This local update is certain

to lie within the aforementioned range, and the approach

is also referred to as an incremental update in Sect. 6.2.2

of [59].

4 Derivation of Modified Rodrigues Parameters

with Stereographic Projection

Stereographic projection is a rational, bijective mapping from

a sphere to a plane often encountered in complex anal-

ysis, topology, quantum computing, etc. However, it has

been largely overlooked in the computer graphics and vision

communities as a practical means of parameterizing ori-

entation. In contrast, aerospace engineering literature has

several notable references to the potential of this formalism,

also known as the modified Rodrigues parameters (MRPs),

e.g., [40,50,58,63,68].

4.1 Derivation of Projection/Back-Projection Maps

To establish notation for the rest of the paper, a brief deriva-

tion of the stereographic projection formulas is in order at

this point. Consider a unit quaternion q = ρ +υT ϕ such that

ρ ∈ R and υ ∈ R
3 with ρ2 + υT υ = 1. We designate the

“South Pole” of the sphere to be the unit quaternion S = −1.

Let now r (t) be the ray parameterized by t ∈ R passing

through q and a purely imaginary quaternion ψT ϕ:

r (t) = S + t
(

ψT ϕ − S
)

, (18)

where ψ ∈ R
3. Thus, the subspace of purely imaginary

quaternions can be regarded as an equatorial hyperplane

that “slices” the 4D unit sphere along 3 canonical directions

through the origin and the “South Pole” as the center of pro-

jection, through which, the unit quaternion q is projected onto

ψT ϕ in the hyperplane. A visualization of this projection is

provided in Fig. 1.

When the ray intersects the sphere, the resulting quater-

nions should have a unit norm, i.e., |r (t) |2 = 1. Substituting

the expression of r (t) from Eq. 18 into the unit-norm con-

straint yields a solution for the parameter t when the ray

intersects q:

t =
2

1 + ‖ψ‖2
(19)

The unit quaternion can now be expressed in terms of ψ by

substituting Eq. 19 into Eq. 18:

q =
1 − ‖ψ‖2

1 + ‖ψ‖2
+

2

1 + ‖ψ‖2
ψT ϕ (20)

Conversely, it is fairly easy to project a unit quaternion onto

the equatorial hyperplane. It suffices to solve first for ‖ψ‖2

in terms of the quaternion scalar part, ρ:

‖ψ‖2 =
1 − ρ

1 + ρ
(21)
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Fig. 1 A visualization of stereographic projection in 3D. The unit

quaternion S = −1 is the center of projection and ψT φ is a quaternion

in the equatorial plane. The ray r (t) = S + t
(

ψT ϕ − S
)

intersects the

unit sphere at q

Thus, ψ can be expressed in terms of the components of q

using Eqs. 20 and 21:

ψ =
υ

1 + ρ
(22)

It should be stressed here that the components of ψ can

assume infinite values. Thus, more rigorously, ψ ∈ R
3
,

where R = R ∪ {−∞,+∞} is the affinely extended set of

real numbers and this notation will be used throughout the

rest of this paper.

4.2 Related Parameterizations: The Gibbs Vector

For completeness, we remark that a representation closely

related to to MRPs is the Gibbs or classical Rodrigues param-

eter vector g [25,51,58]. The Gibbs vector is defined by the

projection of the quaternion parameters from the center of the

unit sphere onto the hyperplane tangent to its “South Pole”,

given algebraically as:

g =
υ

ρ
(23)

Classical Rodrigues parameters provide a minimal DoF rep-

resentation that is singular and discontinuous at the angle

of rotation π . Using the axis-angle parameterization ρ =
cos

(
θ
2

)

and υ = sin θ
2

θ
ω, it is straightforward to derive a rela-

tionship between g and ω [58]:

g =
tan θ

2

θ
ω (24)

As demonstrated in Sect. 5, the relationship between the

Gibbs vector and the axis-angle vector given in Eq. 24

becomes particularly useful in deriving a Cayley transform

from the space of MRP vectors to the respective rotation

matrices.

5 Modified Rodrigues Parameters as Vectors

Parallel to the Rotation Axis

Depending on the choice of projection center, the resulting

expressions for the coordinates of the projected quaternion on

the equatorial plane will vary. In order for these coordinates

to be valid modified Rodrigues parameters, the projection

center should lie on the real axis4 as is the case with the

derivation of Sect. 4. To state this more clearly, consider a

unit quaternion q = ρ + υT ϕ where ϕ =
[

i j k
]T

and its

axis-angle parameterization, such that:

ρ = cos
θ

2

υ =
sin θ

2

θ
ω

with ω ∈ R
3 and ‖ω‖ = θ . The vector of modified Rodrigues

parameters associated with q is the triplet of stereographic

coordinates ψ that back-projects to the corresponding spher-

ical point in the following way:

1 − ‖ψ‖2

1 + ‖ψ‖2
= ρ = cos

θ

2
(25)

2ψ

1 + ‖ψ‖2
= υ =

sin θ
2

θ
ω (26)

Thus, the vector part of the quaternion is always represented

by 2ψ/(1 + ‖ψ‖2), which is collinear with the parameter

vector.

With ψ being parallel to υ, it follows from Eq. 26 that it is

also parallel to the rotation axis. This implies that MRPs are

a member of the so-called family of vectorial parameteriza-

tions [4]. In particular, MRPs and Gibbs vectors belong to the

tangent family, which enjoys certain important properties,

the most prominent of them being the inter-connections in

terms of the Cayley transform explained in Sect. 5.1. Using

Eqs. 25 and 26, the relationship between the axis-angle vec-

tor ω and the MRPs of a rotation is straightforward for a

rotation angle θ ∈ [0, 2π) [40,58]:

ψ =
tan θ

4

θ
ω (27)

4 In other words, it should be either 1 or −1.
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Thus, comparing Eq. 27 to the corresponding relationship for

Gibbs vectors in Eq. 24, it can be inferred that the MRP vector

ψ has twice the rotational range of the classical Rodrigues

parameters g. In the special case where θ = 2π , any MRP

vector ψ with at least one of its coordinates equal to “infinity”

will back-project to -1 on the quaternion sphere. More details

on this representation peculiarity are given in Sect. 5.2.

Furthermore, using Eqs. 26 and 25, it is easy to derive a

composition rule between MRP vectors based on quaternion

multiplication. Specifically, for the unit quaternion product

q3 = q1q2, we obtain the following corresponding relation-

ship in MRP space [58]:

ψ3 =
(

1 − ‖ψ2‖2
)

ψ1 +
(

1 − ‖ψ1‖2
)

ψ2 − 2ψ1 × ψ2

1 + ‖ψ1‖2‖ψ2‖2 − 2ψ1 · ψ2

(28)

5.1 MRPs and the Cayley Transform

The Cayley transform is a mapping from the space of skew-

symmetric matrices directly to the group of rotation matrices.

In particular, it is straightforward to show that the Cayley

transform maps the skew symmetric matrix [g]× of a Gibbs

vector to the respective rotation matrix as follows [40,62]:

R =
(

I3 + [g]×
) (

I3 − [g]×
)−1

(29)

where I3 is the 3 × 3 identity matrix. It is relatively easy

to show that both factors in the product commute and are

invertible5 for any skew-symmetric matrix [g]×. The inverse

Cayley transform maps a rotation matrix to its corresponding

Gibbs vector as follows:

[g]× = (R − I3) (R + I3)
−1 (30)

The transformation from an MRP skew-symmetric matrix

[ψ]× to the corresponding rotation matrix is a so-called

second-order Cayley transform, given by the following map-

ping [62]:

R =
(

I3 + [ψ]×
)2 (

I3 − [ψ]×
)−2

(31)

It is worth outlining here the rationale behind the derivation

of the Cayley transform for MRPs as expounded by Schaub et

al. [52]. The idea is to observe the relationship between classi-

cal Rodrigues parameters (Gibbs vectors) and MRPs through

axis-angle vectors as given in Eqs. 24 and 27. Evidently, the

rotation matrix obtained by employing the first-order (stan-

dard) Cayley transform formula of Eq. 29 on [ψ]× yields a

5 One way of showing this is to observe that matrices I3 + [ψ]× and

I3−[ψ]× have same eigenvectors and non-vanishing complex conjugate

corresponding eigenvalues.

rotation matrix with half the angle of the actual rotation that

corresponds to the MRP triplet. This can be demonstrated

with the aid of exponential notation:

exp

(
1

2
[ω]×

)

=
(

I3 + [ψ]×
) (

I3 − [ψ]×
)−1

, (32)

where R = exp
(

[ω]×
)

. Thus, since matrices I3 − [ω]×

and
(

I3 − [ω]×
)−1

commute, squaring both sides in Eq. 32

yields the second-order Cayley transform for MRPs given in

Eq. 31. Schaub et al. report that, unlike classical Rodrigues

parameters, there exists no similar expression for the inverse

mapping from rotation matrices to MRPs [52].

5.2 Negated Quaternions and Shadow MRPs

Two antipodal (i.e., opposite) quaternions q and −q represent

the same rotation. Nevertheless, the stereographic coordi-

nates of these two quaternions will differ. Markley calls the

stereographic coordinates of the negated quaternion shadow

MRPs [40]. Shadow coordinates can be easily worked-out

from Eq. 20:

η = −
ψ

‖ψ‖2
(33)

It should be noted that the last formula is not valid for

ψ = (0, 0, 0), in which case the shadow quaternion coin-

cides with the center of projection (i.e., the chosen “South

Pole”) and the rotation has a single representation at the ori-

gin of the hyperplane. As the MRP vector moves far away

from the origin of the hyperplane, the corresponding quater-

nions converge asymptotically to q = −1 at the projection

center. This is a direct consequence of the fact that the line

y = −1 is the asymptote at both +∞ and −∞ of function

(1−t2)/(1+t2), i.e., the quaternion’s scalar part from Eq. 25,

as shown in Fig. 2. The plot clearly indicates that decay is

fast and for |t | ≥ 15, the function is already very close to

−1; it becomes even closer for larger values. For example,

the deviation of the function from −1 for t = 102 is in the

order of 10−4.

The above observation suggests that it is possible to

approach the projection center with high accuracy using MRP

vectors whose components are well within the nominal float-

ing point range. Hence, this is a reasonable alternative to

representing the quaternion at the center of projection without

resorting to shadow coordinates which could cause discon-

tinuities in applications such as interpolation. However, as

will be explained in the following sections, our analysis is

focused on the quaternion sphere, while MRPs are essentially

used to provide the theoretical underpinning that allows us

to work with unit quaternions without the need to impose

the norm constraint. Thus, with the exception of interpola-
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Fig. 2 Plot of function (1 − t2)/(1 + t2) for |t | ≤ 20 shown in solid

blue. The horizontal asymptote y = −1 is shown with a red dashed line

(Color figure online)

tion, unit quaternions can be directly manipulated in terms

of their MRPs, without having to explicitly switch parameter

domain.

6 Differential Properties of Unit Quaternions with

Respect to Modified Rodrigues Parameters

It is clear from Eqs. 26, 25 that the derivatives of a unit

quaternion with respect to its MRPs are rational functions of

ψ . This is an advantageous fact not only from the aspect of

computational efficiency but, most importantly, in terms of

the complexity of the resulting expressions in the Jacobian

[61]. In this section, we will provide a very important novel

observation regarding these derivatives, which will not only

simplify the computation of the Jacobian of a rotation matrix

(refer to “Appendix A” for a complete set of formulas), but

will also provide simple relationships between the derivatives

of curves on the hyperplane and the derivatives of their back-

projections on the sphere.

6.1 Quaternion Jacobian

Proposition 1 Let q = ρ + υT ϕ where ϕ =
[

i j k
]T

be a

unit quaternion. Then, the Jacobian ∇q of q with respect to

its modified Rodrigues parameters is:

∇q = ∇
[

υ

ρ

]

= −
[

υυT − (1 + ρ) I3

(1 + ρ) υT

]

(34)

Proof Let ψ ∈ R
3

be the MRPs of the unit quaternion. It

follows from Eq. 26 that the derivative of the vector part υ

with respect to ψ will be:

∂υ

∂ψ
=

∂
2ψ

1+‖ψ‖2

∂ψ
= −

2ψ
∂
(

1 + ‖ψ‖2
)

∂ψ
(

1 + ‖ψ‖2
)2

+
2

1 + ‖ψ‖2

∂ψ

∂ψ

= −
2ψ2ψT

(

1 + ‖ψ‖2
)2

+
2

1 + ‖ψ‖2
I3

= −
(

2ψ

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)

+
2 + ‖ψ‖2 − ‖ψ‖2

1 + ‖ψ‖2
I3

= −
(

2ψ

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)

+
(

1 +
1 − ‖ψ‖2

1 + ‖ψ‖2

)

I3

= −υυT + (1 + ρ) I3

Similarly, using Eq. 25, the derivative of the scalar part in

terms of ψ will be:

∂ρ

∂ψ
= −

(

1 − ‖ψ‖2
) ∂

(

1 + ‖ψ‖2
)

∂ψ
(

1 + ‖ψ‖2
)2

+

∂
(

1 − ‖ψ‖2
)

∂ψ

1 + ‖ψ‖2

=
∂

1−‖ψ‖2

1+‖ψ‖2

∂ψ
= −

(

1 − ‖ψ‖2
)

2ψT

(

1 + ‖ψ‖2
)2

−
2ψT

1 + ‖ψ‖2

= −
(

2

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)

= −
(

1 +
1 − ‖ψ‖2

1 + ‖ψ‖2

)(
2ψT

1 + ‖ψ‖2

)

= − (1 + ρ) υT

The Jacobian formula of Eq. 34 is very important because

it has low complexity of expressions and involves only the

quaternion components in simple additions and multiplica-

tions without the need of additional constraints. This means

that, by virtue of the rotation matrix expression in terms

of a unit quaternion given in Eq. 8, the components of the

rotation matrix Jacobian tensor will in turn comprise simple

polynomial expressions of the quaternion components (see

“Appendix A”). In other words, the computation of the rota-

tion matrix derivatives entails exclusively multiplications and

additions on previously stored quantities.

6.2 Quaternion Updates from Perturbations in MRPs

Although the Jacobian of a unit quaternion with respect to

MRPs can be expressed without the explicit presence of the

parameters in the respective expressions, it will, however,

produce a perturbation in parameter space during iterative

optimization. Thus, it would appear that, in order to obtain
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the new quaternion estimate, one is required to convert it to

MRPs, then perform the update in R
3 and eventually, convert

the resulting parameters to the new quaternion estimate. In

Proposition 2, we show that the current estimate of a quater-

nion can be updated without alternating among parameter

spaces.

Proposition 2 Consider a perturbation δ ∈ R
3

in the modi-

fied Rodrigues parameters of a unit quaternion q = ρ+υT ϕ.

Then, the scalar and vector part of the unit quaternion

q ′ = ρ′ + υ ′T ϕ corresponding to the perturbed MRPs can

be obtained as follows:

υ ′ =
υ + (1 + ρ) δ

1 + υ · δ + 1
2

(1 + ρ) ‖δ‖2
(35)

ρ′ =
ρ − υ · δ − 1

2
(1 + ρ) ‖δ‖2

1 + υ · δ + 1
2

(1 + ρ) ‖δ‖2
(36)

Proof Let ψ be the MRP triplet associated with q. Then,

taking the stereographic projection formula in Eq. 26 for υ ′,
we have:

υ ′ =
2 (ψ + δ)

1 + ‖ψ + δ‖2
=

2(ψ+δ)

1+‖ψ‖2

1+(ψ+δ)·(ψ+δ)

1+‖ψ‖2

=
2ψ

1+‖ψ‖2 + 2
1+‖ψ‖2 δ

1 +
(

2ψ

1+‖ψ‖2

)

· δ + 1
2

(
2

1+‖ψ‖2

)

‖δ‖2

=
2ψ

1+‖ψ‖2 +
(

1 + 1−‖ψ‖2

1+‖ψ‖2

)

δ

1 +
(

2ψ

1+‖ψ‖2

)

· δ +
(

1 + 1−‖ψ‖2

1+‖ψ‖2

)

‖δ‖2

=
υ + (1 + ρ) δ

1 + υ · δ + (1+ρ)
2

‖δ‖2

Similarly, taking the stereographic projection formula in

Eq. 25 for ρ′, yields:

ρ′ =
1 − ‖ψ + δ‖2

1 + ‖ψ + δ‖2
=

1−(ψ+δ)·(ψ+δ)

1+‖ψ‖2

1+(ψ+δ)·(ψ+δ)

1+‖ψ‖2

=
1−‖ψ‖2

1+‖ψ‖2 −
(

2ψ

1+‖ψ‖2

)

· δ − 1
2

(
2

1+‖ψ‖2

)

‖δ‖2

1 +
(

2ψ

1+‖ψ‖2

)

· δ + 1
2

(
2

1+‖ψ‖2

)

‖δ‖2

=
1−‖ψ‖2

1+‖ψ‖2 −
(

2ψ

1+‖ψ‖2

)

· δ − 1
2

(

1 + 1−‖ψ‖2

1+‖ψ‖2

)

‖δ‖2

1 +
(

2ψ

1+‖ψ‖2

)

· δ + 1
2

(

1 + 1−‖ψ‖2

1+‖ψ‖2

)

‖δ‖2

=
ρ − υ · δ − 1

2
(1 + ρ) ‖δ‖2

1 + υ · δ + 1
2

(1 + ρ) ‖δ‖2

Propositions 1 and 2 have a significant impact in the way

rotations parameterized with MRPs are updated during iter-

ative optimization. In particular, Proposition 1 ensures that

the elements of the rotation matrix Jacobian are computed

with a few multiplications and additions of previously stored

numbers (i.e., the four quaternion components); furthermore,

Proposition 2 ensures that the updated rotation matrix in each

step of the iterative method can be obtained without having to

compute the MRPs of the previous estimate. In other words,

both the Jacobian computation as well as the update of the

rotation matrix do not explicitly require the use of MRPs and

both can be computed with a few primitive operations on

previously stored numbers.

6.3 Arc Length of Quaternion Curves parameterized

with MRPs

Being a rational map, stereographic projection can be used

to back-project smooth 3D curves on the sphere. The result-

ing spherical curves have certain differential attributes which

could be useful in manipulating their properties in the more

familiar space R
3.

Lemma 1 For any unit quaternion q, the Gram matrix of the

Jacobian with respect to its MRPs is a scalar multiple of the

3 × 3 identity matrix:

(∇q)T ∇q = (1 + ρ)2 I3 (37)

Proof Using the result of Proposition 1, we have:

(∇q)T ∇q =
[

υυT − (1 + ρ) I3

(1 + ρ) υT

]T [

υυT − (1 + ρ) I3

(1 + ρ) υT

]

=
[

υυT − (1 + ρ) I3 (1 + ρ) υ
]
[

υυT − (1 + ρ) I3

(1 + ρ) υT

]

=
(

υT υ − 2 (1 + ρ) + (1 + ρ)2
)

υυT + (1 + ρ)2 I3

=

⎛

⎜
⎝ρ2 + υT υ
︸ ︷︷ ︸

1

− 1

⎞

⎟
⎠ υυT + (1 + ρ)2 I3

= (1 + ρ)2 I3

A direct consequence of Lemma 1 is that the columns of

the quaternion Jacobian must be orthogonal for every unit

quaternion q �= −1. More formally:

Corollary 1 For any unit quaternion q �= −1 , the columns

of the Jacobian of q with respect to its MRPs constitute

an orthogonal basis of the tangent space of the quaternion

sphere at q.

Lemma 2 Let ψ (t) = (x (t) , y (t) , z (t)) : R → R
3

be a smooth curve. Then the unit quaternion function

q (t) = ρ (t)+(υ (t))T ϕ obtained as the stereographic back-

projection of ψ (t) on the quaternion sphere is also smooth

and the arc length s (t) of q (t) is given by the following

expression:
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s (t) = 2

∫ t

0

1

1 + ‖ψ (u) ‖2

∥
∥
∥

dψ

du

∥
∥
∥ du (38)

Proof It naturally follows from Proposition 1 that, by means

of the chain rule, the first derivative will be a product of

smooth functions and consequently, higher order derivatives

will be the sum of such products. Thus, the spherical back-

projection of ψ (t) will be smooth. Another way of arriving

at this conclusion is to simply consider that stereographic

projection is a rational mapping and therefore maps smooth

functions to smooth functions.

To prove Eq. 38, we make use of Lemma 1, starting from

the standard formula for the arc length of q (t):

s (t) =
∫ t

0

√
(

dq

du

)T
dq

du
du

=
∫ t

0

√
(

∇q
dψ

du

)T (

∇q
dψ

du

)

du

=
∫ t

0

√
√
√
√
√

(
dψ

du

)T

(∇q)T ∇q
︸ ︷︷ ︸

=(1+ρ(u))2 I3

dψ

du
du

=
∫ t

0

(1 + ρ (u))

∥
∥
∥

dψ

du

∥
∥
∥ du

It can be easily inferred from Eq. 25 that 1 + ρ (u) =
2

1+‖ψ(u)‖2 . Thus,

s (t) =
∫ t

0

2

1 + ‖ψ (u) ‖2

∥
∥
∥

dψ

du

∥
∥
∥ du

7 Quaternion Interpolation

Quaternion interpolation is ubiquitous in the fields of com-

puter graphics, robotics and aerospace engineering [8,21,22,

44,55]. Generating smooth orientation paths between key

orientations is a very challenging task, primarily because we

wish to attach linear interfaces onto steering mechanisms

which, by definition, manipulate objects (i.e., rotations) that

reside in a spherical manifold. In other words, the desired

attributes of the generated sequences are hard to attain, due

to the topological nonlinearities of the group of rotations.

Stereographic projection is a smooth, bijective mapping

from R
3 to the unit sphere in R

4. Consequently, lines in 3D

become distorted on the sphere to account for the incompat-

ibility between the two topological spaces. In this section,

we provide a simple solution to cope with the distortion

caused by perspective projection, while designing the spher-

ical curve in the hyperplane. The idea is to interpolate the

derivative of the spherical curve, in addition to interpolating

the data.

7.1 Configuring Unit Quaternion Derivatives on the

Hyperplane

Suppose we wish to establish a relationship between the

derivative of a parametric unit quaternion curve q (t) =
ρ (t) + (υ (t))T ϕ and the derivative of the corresponding

MRP curve ψ (t). The chain rule for q (t) yields:

q ′ (t) = ∇q ψ ′ (t) , (39)

where ψ ′ (t) =
dψ

dt
and ∇q is the Jacobian of the quaternion

curve at ψ . Clearly, Eq. 39 defines a 4 × 3 linear system of

equations in the components of ψ ′ (t). We claim that for

q (t) �= −1 this system has the following unique solution:

ψ ′ (t) =
1

(1 + ρ)2
(∇q)T q ′ (t) (40)

Lemma 3 For the unit quaternion q = ρ + υT ϕ, examine

the 4 × 3 linear system ∇q ξ = b, where b ∈ R
4 and ∇q

is the Jacobian of q with respect to its modified Rodrigues

parameters.

(a) For q �= −1, consider the vector:

ξ =
1

(1 + ρ)2
(∇q)T b (41)

(i) If b lies in the tangent space of q, then ξ is the unique

solution of the system.

(ii) if b is not in the tangent space of q, then ξ is the least

squares minimizer of the system and consequently,

∇q ξ is the projection of b on the tangent space of q.

(b) For q = −1:

(i) If b �= 0, the system has no solutions.

(ii) If b = 0, any ξ ∈ R
3 is a solution.

Proof The proof is trivial for q = −1. For q �= −1, we

multiply by ∇q on the left to get the 3×3 equivalent system:

(

(∇q)T ∇q
)

ξ = (∇q)T b

From Lemma 1, we know that the Gram matrix of the gradient

will be a non-zero scalar multiple of the identity:

(1 + ρ)2 ξ = (∇q)T b

⇔ ξ =
1

(1 + ρ)2
(∇q)T b

The solution of the 3×3 overdetermined system in Eq. 41 will

satisfy all the original equations because b is in the tangent
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Fig. 3 Standard Catmull–Rom interpolation. The tangents at the data

points pn and pn+1 (shown as black solid lines) are parallel to the linear

segments defined by pn−1, pn+1 and pn , pn+2 (shown with dashed lines)

space of q and we know from Corollary 1 that it can be

expressed as a linear combination of the columns of ∇q.

7.2 Spherical Catmull–Rom Splines manufactured in 3D

Equation 41 provides the means to configure the differential

properties of a 4D spherical curve by manipulating its pro-

jection in R
3. To demonstrate how effective this approach

is in terms of eliminating projective distortion, we present a

sample scheme for designing spherical Catmull–Rom splines

[9].

Standard Catmull–Rom splines are composed of polyno-

mial segments with end-point derivatives that match the slope

of the linear segments that connect data points immediately

preceding and trailing the end-points (see Fig. 3). We con-

sider an analog of Catmull–Rom splines on the sphere in

which we require the derivative of the spherical curve at a spe-

cific data-point to be collinear to the tangent-space projection

of the linear segment defined by the trailing and preceding

data points (Fig. 4).

To interpolate between two key points qn and qn+1 accord-

ing to the spherical analog of Catmull–Rom splines described

in this section, we must solve for the coefficients of a

cubic polynomial ψ (t) = b3t3 + b2t2 + b1t + b0, where

b0, b1, b2, b3 ∈ R
3 and t ∈ [0, 1]. It follows that ψ (t) should

interpolate the projections of two data points at ψn and ψn+1

for t = 0 and t = 1, respectively. Hence, the following

conditions should apply:

b0 = ψn (42)

b3 + b2 + b1 + b0 = ψn+1 (43)

Furthermore, we require that the tangents at the spherical

points are parallel to the chords that connect the trailing and

Fig. 4 Spherical Catmull–Rom interpolation. The tangents of the

spherical curve at qn and qn+1 are parallel to the projections of lin-

ear segments qn−1 qn+1 and qn qn+2 onto the tangent spaces of qn and

qn+1, respectively

preceding data points, as shown in Fig. 4. Thus, two addi-

tional constraints are obtained on the coefficients of the cubic:

b1 =
λ (∇qn)T (qn+1 − qn−1)

(1 + ρn)2
(44)

3b3 + 2b2 + b1 =
λ (∇qn+1)

T (qn+2 − qn)

(1 + ρn+1)
2

, (45)

where ρi is the scalar part of qi and λ is a user-defined positive

scalar. Using Eqs. 42, 43, 44 and 45, the coefficients of ψ (t)

can be computed in the following order:

τ1 =
(∇qn)T (qn+1 − qn−1)

(1 + ρn)2
(46)

τ2 =
(∇qn+1)

T (qn+2 − qn)

(1 + ρn+1)
2

(47)

b0 = ψn (48)

b1 = λτ1 (49)

b3 = λτ2 + b1 − 2 (ψn+1 − b0) (50)

b2 = ψn+1 − b3 − b1 − b0 (51)

It should be noted that the scheme for designing spherical

Catmull–Rom splines is intended as an example of a more

general methodology for eliminating perspective distortion

by configuring the planar curve to produce a back-projection

that matches the desired differential properties on the sphere.

The result of Eq. 41 is a tool with multiple uses when design-

ing spherical splines on the plane.

Figure 5 illustrates an 8-point spherical Catmull–Rom

spline along with the corresponding spherical quadrangle

interpolation (squad) curve. Clearly, both curves fulfill the
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Fig. 5 Spherical Catmull–Rom (blue) and squad interpolation (red)

for 8 key-quaternions (black dots) (Color figure online)

primary requirement of smoothness. Still, a more careful

observation reveals that the spherical Catmull–Rom spline

achieves a generally shorter distance between the key points

in comparison with squad. Obtaining shorter arc lengths in

orientation interpolants is important in robotic and anima-

tion applications [14,27,49,53] because they yield reduced

torque in the rotational motion. For similar reasons, minimal

curvature is an equally important attribute [13]. Particularly

in the case of animation, approximately constant speed in

spherical curves is desirable because it can be warped into any

desirable acceleration profile (e.g., trapezoidal moves) [66].

In summary, it would appear that connected great arcs can be

loosely regarded as the “ideal” interpolants in terms of the

aforementioned attributes (minimal arc length, minimal cur-

vature and constant speed) if we could somehow overlook the

lack of smoothness at the end-points. In Sect. 8.1, we study

the characteristics of generated Catmull–Rom and squad

curves and use the great arcs between data points as a bench-

mark to obtain quantifiable measures on their performance.

8 Experimental Results

This section presents experimental results comparing the per-

formance of MRPs in various applications against alternative

parameterizations of rotation.

8.1 Spherical Catmull–Rom Splines as Orientation

Interpolants

The method proposed in Sect. 7.2 for the design of spherical

Catmull–Rom (SCR) splines was merely a demonstration

of the ways that the properties of a spherical curve can be

configured in the hyperplane. However, the resulting curve,

although not optimal in all aspects, exhibits, besides smooth-

ness, significant improvements in terms of arc length and

curvature when compared to the one produced by squad.

Furthermore, it approximates the great arcs between the key

points better than squad in the majority of cases.

For demonstration, we performed comparisons on three

sequences of eight key quaternions each, generated by suc-

cessive random “jumps” in polar coordinates. In particular,

the angles of each jump are uniformly sampled from a spec-

ified range in degrees. The range from which the angles are

sampled determines the density of the key points which in

turn affects the behavior of the interpolants. To observe the

qualitative characteristics of the spherical curves in datasets

of varying sparsity, the angular jumps used in the three gen-

erated sequences were sampled from the intervals [10◦, 40◦],

[10◦, 70◦] and [10◦, 100◦], respectively. Figures 6, 7, 8 illus-

trate arc length, speed and distance from great arc for both

spherical Catmull–Rom splines and squad in the three afore-

mentioned sequences.

(a) (b) (c)

Fig. 6 Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps in the interval [10◦, 40◦] (to be

viewed in color). a Arc length, b speed, c distance from great arc
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(a) (b) (c)

Fig. 7 Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps in the interval [10◦, 70◦]. a Arc

length, b speed, c distance from great arc

(a) (b) (c)

Fig. 8 Arc length, speed and distance from the great arcs for a sequence of 8 points generated using polar jumps in the interval [10◦, 100◦]. a Arc

length, b speed, c distance from great arc

The results indicate that SCR splines produce curves

that are often much more proximal to great arcs than those

obtained from squad, with generally shorter arc lengths, sug-

gesting that the quality of interpolation attains similar, if not

higher standards. The latter is an indication that perspective

distortion is either not present or minimal as a direct conse-

quence of configuring spherical derivatives in the hyperplane.

On the other hand, squad presents speed patterns that match

slerp closer than SCR splines. This is not necessarily a bad

trait, primarily because SCR curves consistently produce a

symmetric bell-shaped speed profile, which can be perceived

as a smooth trapezoidal pattern. It should be noted that squad

is twice differentiable at the key points, while SCR curves are

only continuous in the first derivative, a direct consequence

of the definition of Catmull–Rom splines. In summary, SCR

curves are smooth interpolants presenting little distortion on

the sphere and bell-shaped symmetric speed patterns which

can be easily warped to produce other speed profiles. On the

other hand, velocity is not differentiable at the key points, a

fact which may bear consequences, depending on the applica-

tion. It should be noted, however, that the underlying general

interpolation rationale involving the interpolation of deriva-

tives side-to-side with data points is a method successful in

producing spherical interpolants which are devoid of distor-

tion and can be adapted to suit spherical interpolation based

on more general planar curves such as B-splines, for instance.

8.2 Descent Behavior of MRPs

Aiming to assess the descent behavior of MRPs in a situation

involving a single unknown rotation, we chose to employ

absolute orientation [29] as a test problem. It is widely

known that this problem can be dealt with non-iteratively,

e.g., [15,28,29,36]. However, our objective in this experi-

ment was not to provide yet another solution, but rather to

benchmark how MRPs compare against other parameteriza-

tion schemes in the context of a basic, quadratic minimization

problem in only the rotation parameters. Specifically, the

parameterization schemes compared with MRPs were axis-

angle, normalized quaternion and incremental rotation.

Given two 3 × N matrices X and Y comprised of N cor-

responding points in two different reference frames with the

same origin, absolute orientation requires determining the

rotation R(p∗), where

p∗ = arg min
p

∥
∥R (p) Y − X

∥
∥

2
, (52)
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p ∈ R
3 is the orientation parameter vector and ‖.‖ denotes

the Frobenius norm for matrices.6

In our experimental setup, the dataset comprises 100 cor-

respondences, i.e., matrices X and Y have size 3 × 100.

The unrotated points X were sampled from a 3D Gaussian

with a covariance matrix 102 I3, thus producing a “spread”

of roughly 10 metric units. The ground-truth rotation matrix

was synthesized by uniformly sampling the 3 Euler angles

from the interval [20◦, 80◦]. This rotation was then applied

to every row of X to yield Y .

To study the descent behavior of MRPs against alter-

native parameterizations across multiple levels of noise,

the optimization was carried out for 100 incremental stan-

dard deviation levels of noise from 0 to 2.5 using the

Levenberg–Marquardt algorithm [34,42]. The noise is pre-

sumed Gaussian and was added to Y , which, by virtue of

the property of linear propagation of covariance, is statisti-

cally equivalent to contaminating the relative position of the

correspondences.

For each noise level, the same experiment (i.e., using the

same ground-truth data) was repeated 40 times from a ran-

dom starting point to convergence and the error in each step

was recorded, as well as the overall steps to convergence

(or maximum permissible iterations). Since we know that

the absolute orientation cost function has 4 stationary points

which are the eigenvectors of a data-dependent matrix, we

would expect the process to occasionally get stuck in one of

the 3 suboptimal points. In practice, we observed that this

rarely happens. However, to ensure that the descent observa-

tions are not biased by the occasional convergence to local

minima, we used median values for the error and the number

of steps to convergence. Figure 9 illustrates plots of steps-

to-convergence versus standard deviation of Gaussian noise.

It should be noted that the iterative process terminates when

any of the following conditions are met: (a) squared error

below 10−6, (b) change in squared error below 10−12 and,

(c) the process has reached 100 iterations.

The incremental rotation approach employed here has

been adopted by several notable pieces of work in vision,

e.g., [18,33,39,60]. The rationale behind this approach is to

take advantage of the fact that the tangent space of a rotation

matrix R comprises all matrices RS× where S× is a skew-

symmetric matrix. It is therefore possible to devise a very

simple retraction [1] R′, which maps the tangent space of R

onto SO(3) by applying a perturbing rotation on the right7

of R:

6 Solving absolute orientation amounts to estimating a rotation and a

translation. Yet, as explained by Horn in [28], the problem can be re-

formulated to an equivalent one involving only rotation. Historically,

this rotation-only formulation was originally introduced in astronautics

as a satellite attitude estimation problem by Wahba [65].

7 Could also be applied on the left.

Fig. 9 Steps to convergence for added Gaussian noise up to 2.5 in a

synthetic point-set with spread over 10 metric units

R′(S×) = R exp (S×) (53)

It can be easily shown that R′ is a retraction, since the expo-

nential map is smooth and R′ ([0]×
)

= Rexp
(

[0]×
)

= R.

Most importantly, R′ satisfies the local rigidity requirement,

since the directional derivative

d R′ (tU×)

dt

∣
∣
∣
∣
]t=0

= RU×

is the identity mapping in the tangent space of R for any skew-

symmetric matrix Ux . Consequently, the 3 descent directions

on the manifold are RG1, RG2, RG3, and they are obtained

by differentiating R′ at the origin.

The results of Fig. 9 clearly indicate that MRPs and incre-

mental rotations consistently reach a converged state within

10 to 20 iterations, while normalized quaternions and axis-

angle parameters require roughly between 20 to 60 iterations.

We conjecture that the incremental approach combined with

MRPs would most likely improve the number of steps to

convergence, but the gain would be marginal. This con-

jecture is based on the observation (using the formulas in

“Appendix A”) that the derivatives of a rotation matrix with

respect to MRPs at the origin are the scaled multiples of

infinitesimal rotations, 4G1, 4G2, 4G3.

The evolution of error during the entire Gauss-Newton

process is consistent with the convergence rates of Fig. 9.

Indicative plots of how the error evolves throughout the

Gauss-Newton process for three different added Gaussian

noise levels (standard deviation 0, 1.5 & 2.5) are shown in

Fig. 10. The error in each step is obtained as the median esti-

mate of the error values in the same step across 20 distinct

Gauss-Newton executions. It is clear that MRPs and incre-
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(a) (b) (c)

Fig. 10 Median error versus iteration in the Gauss-Newton method for added Gaussian noise with standard deviation 0, 1.5 and 2.5. a Noise level

0, b noise level 1.5, c noise level 2.5

mental rotations present a similar error curve with a very

steep slope, as opposed to the axis-angle parameters and,

to a lesser extent, normalized quaternion; furthermore, this

pattern is consistent throughout the various levels of noise.

We attribute this behavior primarily to the numerical stabil-

ity of the rotation derivatives associated with the MRPs and

the incremental rotation. In contrast, axis-angle and normal-

ized quaternion Jacobians contain variable quantities in the

denominator and very small/large values in these quantities

may produce unstable descent patterns.

The noticeable abrupt “dives” in the error curves in Fig. 10

most likely correspond to periods in which the Levenberg–

Marquardt damping factor grows upon successive steps in

order to shorten the step size in the search for a better solution.

This would account for the occasional nearly-constant error

values for certain periods. Subsequently (but not in all cases),

the error curve introduces a steep “dive” that corresponds to

a step size that reached-out to an improved solution lying in

a steeper region of the search surface.

8.3 Sparse Bundle Adjustment

Given a set of images depicting a number of 3D points from

several different viewpoints, bundle adjustment (BA) is the

problem of simultaneously refining the 3D coordinates of

these points, as well as the parameters of the relative motion

and possibly the optical characteristics of the camera(s)

employed to acquire the images, according to an optimality

criterion involving the cumulative image reprojection error

of all points. BA amounts to a large, nonlinear optimiza-

tion problem on the 3D structure and viewing parameters

(i.e., camera pose and possibly intrinsic calibration and radial

distortion). It is employed as the last step of most feature-

based 3D reconstruction pipelines, since its solution yields a

reconstruction which is optimal in the MLE sense under the

assumption that the noise pertaining to the observed image

features is zero-mean Gaussian [37].

BA constitutes a special type of a nonlinear least squares

problem, since the lack of interaction among parameters

for different 3D points and cameras results in the underly-

ing normal equations having a special “arrowhead” sparse

block structure [35]. sba [37] is a software package that

efficiently solves BA using a sparse variant of the Levenberg–

Marquardt algorithm that exploits the particular zero pattern

of the underlying normal equations.

With the aid of publicly available, real-world datasets

from [2], we tested different rotation parameterizations

applied to BA. These datasets originate from incremental

3D reconstruction for large-scale community photo collec-

tions. More specifically, we used the first two data files from

each of the “Ladybug”, “Trafalgar Square”, “Dubrovnik”,

“Venice” and “Final” datasets. The sba [37] package was

used to optimize those datasets using its default, quaternion-

based local rotation parameterization described in Sect. 3.2.

We also adapted sba to employ a global rotation parameter-

ization based on the MRPs and compared it against the local

quaternion parameterization. The results of the comparison

are illustrated in Fig. 11, which shows the execution times

and the number of iterations for the two rotation parameter-

izations.

In all applications ofsba, the default convergence param-

eters were employed; in particular, the maximum number

of iterations was set to 150. With the exception of the last

data file (namely ‘394-100368’), both parameterizations con-

verged to the same global minimum. In the last dataset, the

parameterization employing MRPs required roughly four

times more iterations but converged to a better minimum,

which corresponded to over 60% lower average reprojection

error compared to that obtained with quaternions. For the

majority of datasets, both parameterizations required very

similar numbers of iterations to converge. However, MRPs

converged with noticeably fewer iterations for two datasets.

The execution times were generally lower for the parame-

terization based on MRPs, owing to the simpler calculations

involved in the evaluation of the image projections and their
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Fig. 11 Execution times for various BA datasets and two rotation

parameterizations (orange for MRPs and blue for quaternions). Notice

the logarithmic scale in the vertical axis. Following [2], each dataset

in the horizontal axis is labeled as C-P, C and P being, respectively,

the numbers of cameras and 3D points it involves. The actual execution

times are shown in bold near the top of every bar. The numbers in ital-

ics near the bar bottoms are the iterations needed for convergence. The

increased execution time required by MRPs for the rightmost dataset

is due to that they required 4 times more iterations but converged to a

much better minimum (Color figure online)

derivatives. Still, we note that the execution time for each

iteration of sba is dominated by the time needed for the

linear algebra operations involved in the solution of the nor-

mal equations (in particular, the Cholesky factorization of

the Schur complement, cf. [37]), which does not depend on

the choice of rotation parameterization.

8.4 Exterior Orientation

Exterior orientation refers to the estimation of the position

and orientation of a camera given its intrinsic parameters and

a set of n ≥ 3 correspondences between known 3D points

and their 2D image projections. This problem, also known

as the PnP or camera resection problem,8 has received much

attention due to is applicability in various domains. Exterior

orientation is typically dealt with by embedding minimal-

size PnP solvers to robust regression frameworks such as

RANSAC (see [38] and references therein). However, as

minimal solutions ignore much of the redundancy present

in the data, they suffer from inaccuracies. To remedy this, an

additional step comprised of nonlinear optimization with the

Levenberg–Marquardt algorithm is employed to minimize

the reprojection error pertaining to all inliers [38].

Starting with the datasets employed for bundle adjustment

in Sect. 8.3, we extracted the 3D points projecting to their first

frames. Then, those 3D points along with their projections

8 Strictly speaking, camera resectioning is slightly different since

photogrammetrists define it as determining the projection matrix corre-

sponding to a set of 3D–2D correspondences, i.e., the camera intrinsics

are unknown.

Fig. 12 Execution times for exterior orientation problems correspond-

ing to the first frames of the datasets employed in Sect. 8.3, using two

rotation parameterizations (orange for MRPs and blue for axis-angle).

The actual execution times are shown in bold near the top of every bar,

whereas the number of iterations are in italics at the bar bottoms (Color

figure online)

in the first frame of each dataset were used for estimating

the corresponding camera poses using the posest library

implementing [38]. We also modified the nonlinear refine-

ment step of posest to employ a rotation parameterization

based on MRPs and compared it with its native axis-angle

parameterization. Since the execution times for pose estima-

tion are in most cases very small, and in order to accurately

measure them, each pose estimation was run 100 times and

the elapsed time scaled accordingly.

Figure 12 shows the execution times and the number of

iterations for both rotation parameterizations. Similarly to the

BA experiment described above, all optimizations converged

to the same poses for both parameterizations. However, the

execution times pertaining to MRPs are shorter, despite that

the number of iterations is occasionally slightly higher com-

pared to those spent for the exponential parameterization.

Compared to the BA experiment, the difference between the

execution time performance of the two parameterizations is

more evident. This is due to the small size of the nonlin-

ear minimization of the single view reprojection error and its

consequent low computational cost, and clearly demonstrates

the performance benefits gained by the use of MRPs.

9 Conclusion

Modified Rodrigues parameters is a formalism for the repre-

sentation of orientation based on stereographic projection,

originally introduced in the field of aerospace engineer-

ing by Wiener [68] in 1962. Stereographic projection is

a well-established mathematical construct with primarily

theoretical applications in complex analysis, topology and

projective geometry. However, the practical significance of

this mapping in applied fields such as computer vision, graph-

ics and robotics has been overlooked.
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This paper has advocated the use of MRPs for parameter-

izing rotations in problems arising in the fields of computer

graphics and vision. Its primary objective is to familiarize the

community with this formalism from the aspect of practical

applications involving the recovery and/or interpolation of

orientation by emphasizing its graceful properties not only

as a rational parameterization but also in terms of differenti-

ation.

In particular, it was shown that the Jacobian of a quater-

nion is not only a rational function of its MRPs, but also

a polynomial function of its scalar and vector part. This

is favorable from the perspective of nonlinear optimization

problems involving the recovery of orientation, considering

that the Jacobians corresponding to parametric unknowns

such as normalized quaternions or axis-angle vectors yield

occasionally highly complicated and non-rational expres-

sions. In addition to the succinct Jacobian, it was shown that

the update of a quaternion from a perturbation in its MRPs

does not require the use of the actual parameter vector. This

means that there is no need to move through parameter spaces

in iterative optimization, which is also an important benefit

from a numerical and algorithmic standpoint. To support our

claims, this paper has also provided experimental evidence

regarding the practical advantages stemming from the use of

MRPs in small as well as large-scale iterative optimization

in classic problems in 3D computer vision.

Further advantages of MRPs include the flexibility in

constructing smooth quaternion curves with minimal dis-

tortion in more intuitive ways. Specifically, we presented a

novel general strategy for designing quaternion splines in

the hyperplane by interpolating not only the key points, but

also the derivatives of the spherical curve while working on

its projection in the hyperplane. This yields smooth ratio-

nal interpolants with minimal perspective distortion that are

very competitive with popular algorithms such as spherical

quadrangle interpolation (squad).

Concluding, we briefly summarize the benefits of MRPs

and stereographic projection as an orientation parameterizing

scheme. It is a multi-purpose tool with convenient proper-

ties that allows for less complicated solutions in otherwise

difficult, nonlinear or even intractable problems and offers

efficiency up-to and beyond the standards of existing solu-

tions as well as simplicity of design and implementation. C++

and Matlab code implementing most formulas in the paper

is available in the following repository: https://github.com/

terzakig/Quaternion.
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Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix A: Rotation Matrix Jacobian Tensor with

Respect to MRPs

The derivatives of the elements of a rotation matrix R =
[

ri j

]

in terms of MRPs are simple quadratic expressions of the

quaternion components, ρ and υ =
[

υ1 υ2 υ3

]T
and they

are obtained via the chain rule, using Eqs. 8 and 34. Since

the Jacobian is a 3 × 3 × 3 tensor, it is more convenient to

give the gradient of each element separately:
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