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Abstract

We consider the cubic nonlinear Schrödinger equation posed on the spatial domain R × Td . We

prove modified scattering and construct modified wave operators for small initial and final data

respectively (1 6 d 6 4). The key novelty comes from the fact that the modified asymptotic

dynamics are dictated by the resonant system of this equation, which sustains interesting dynamics

when d > 2. As a consequence, we obtain global strong solutions (for d > 2) with infinitely

growing high Sobolev norms H s .

2010 Mathematics Subject Classification: 35Q55

1. Introduction

The purpose of this work is to study the asymptotic behavior of the cubic

defocusing nonlinear Schrödinger (NLS) equation posed on the waveguide

manifolds R × Td :

(i∂t +∆)U = |U |2U, (1.1)
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where U is a complex-valued function on the spatial domain (x, y) ∈ R × Td .

In particular, we want to understand how this asymptotic behavior is related to

a resonant dynamic, in a case when scattering does not occur. Our results can

be directly extended to the case of a focusing nonlinearity (−|U |2U in the left-

hand side of (1.1)), but we will however be concerned with small data, so this

distinction on the nonlinearity will not be relevant. On the other hand, the result

of Corollary 1.4 providing solutions blowing up at infinite time is more striking

in the defocusing case, because in the focusing case one may have blow-up in

finite time (via the quite different mechanism of self-focusing).

1.1. Motivation and background. The question of the influence of the

geometry on the global behavior of solutions to the nonlinear Schrödinger

equation

(i∂t +∆)u = λ|u|p−1u, p > 1 (1.2)

dates back at least to [20]. The first natural question is the issue of global

existence of solutions, and many works have investigated this problem in

different geometric settings [3–5, 13, 18, 22–24, 29, 36, 49, 51, 56–61, 67, 69,

70, 75, 82, 87]. The conclusion that could be derived from these works is that the

geometry of the spatial domain turned out to be of importance in the context of

the best possible Strichartz inequalities or the sharp local in time well-posedness

results (see for example [5, 21, 22]). However, the analysis in [57–61, 75] seems

to indicate that, at least in the defocusing case (in the focusing case, and for large

data, it is likely that existence or nonexistence questions to elliptic problems also

plays an important role), the only relevant geometric information for the global

existence in the energy space is the ‘local dimension’, that is, the dimension of

the tangent plane.

The next natural question concerns the asymptotic behavior. There, the

geometry must play a more important role. This is the question in which we are

interested in this paper, focusing on the simpler case of noncompact quotients

of Rd .

When the domain is the Euclidean space, Rd , this question is reasonably well

understood, at least when the nonlinearity is defocusing and analytic (p odd

integer). In this case, global smooth solutions disperse and in many cases even

scatter to a linear state (possibly after modulation by a real phase when d = 1,

p = 3) [27, 29, 32, 34, 35, 54, 67, 68, 74, 79, 87, 89].

In contrast, much less is known for compact domains. The most studied

example is that of the torus Td . In this case, many different long-time behaviors

can be sustained even on arbitrarily small open sets around zero, ranging from

KAM tori [11, 37, 72, 78] to heteroclinic orbits [30, 45] and coherent out-of-

equilibrium frequency dynamics (interestingly, all these long-time results derive
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from an analysis of resonant interactions that will play a central role in this work

as well) [38]. One may also mention [6, 9, 19, 84], where invariant measures

for (1.1) are constructed, when the problem is posed on Td , d = 1, 2, or the

d-dimensional ball for d = 2, 3 (with radial data). These works establish the

existence of a large set of (not necessarily small) recurrent dynamics of (1.1).

In light of the above sharp contrast in behavior between Rd and its compact

quotient Td , considerable interest has emerged in the past few years to study

questions of long-time behavior on ‘in-between’ manifolds, like the ones

presented by the noncompact quotients of Euclidean space [51, 58, 59, 82, 83,

85].

In the generality of noncompact Riemannian d-manifolds M , it seems

plausible that a key role is played by the parameter α for which solutions to the

linear NLS equation ((1.2) with λ = 0) with smooth compactly supported initial

data decay like t−α/2. In light of the Euclidean theory on Rα, one can draw the

following hypothetical heuristics: (H1) when p > 1 + 4/α, global solutions

(sufficiently small in the focusing case) scatter, and no further information is

needed about the geometry ‘at infinity’; (H2) if p = 1 + 4/α, global solutions

scatter, but the geometry ‘at infinity’ plays an important role in the analysis

of certain sets of solutions (for example in the profile decomposition); (H3) if

p 6 1 + 2/α, no nontrivial solution can scatter; and (H4) if p = 1 + 2/α, global

solutions exhibit some ‘modified scattering’ characterized by a correction to

scattering on a larger time scale. We are interested in this latter regime to which

(1.1) belongs.

In support of the heuristic (H1), we cite the results in [3, 61, 65, 85, 86].

The second heuristic (H2) was put to test in [51], where the authors study the

quintic NLS equation on R × Td . There, a strong relation is drawn between

the large-data scattering theory for the quintic NLS equation and the system

obtained from its resonant periodic frequency interactions. The relevance of the

result in [51] to our work here lies in the following two important messages.

The first is that the asymptotic behavior of (1.2) on Rn × Td can be understood

through (i) the asymptotic dynamics of the same equation on Euclidean spaces,

and (ii) the asymptotic dynamics of a related resonant system corresponding

to the resonant interactions between its periodic frequency modes. The second

message from [51] is the insight that the resonant interactions in (1.1) will play

a vivid and decisive role in dictating the anticipated nonscattering asymptotic

dynamics of (1.1). Indeed, as [51, 85] show that quintic interactions lead to

scattering behavior for small data, and since nonresonant interactions in (1.1)

can be transformed, at least formally, into quintic interactions via a normal form

transformation, it is up to the resonant interactions alone to drive the system

away from scattering. This is the content of our main result.
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The fact that resonant interactions describe the long-time dynamics of the

system has very important consequences. Most notably, it allows one to construct

solutions of (1.1) that exhibit infinite cascades of energy from low frequencies

toward high frequencies based on earlier constructions for the resonant system

(see Corollary 1.4). Such cascades are expected on Td (that is, without the

noncompact component), but a similar strategy fails there, precisely because no

such description of the asymptotic behavior in terms of resonant interactions can

be made.

The other interesting feature of the asymptotic dynamics of (1.1) as opposed

to previous modified scattering results is that the modification dictated by its

resonant system is not simply a phase correction term when d > 2, but rather a

much more vigorous departure from linear dynamics. As we argue below, this

will pose a new set of difficulties in comparison to previous modified scattering

results in the literature, but, on the plus side, will lead us to several interesting

and new types of asymptotic dynamics.

1.2. Statement of the results. Consistent with the heuristics above, we show

that the asymptotic dynamic of small solutions to (1.1) is related to that of

solutions of the resonant system

i∂τG(τ ) = R[G(τ ),G(τ ),G(τ )],
FR×Td R[G,G,G](ξ, p) =

∑

p1+p3=p+p2

|p1|2+|p3|2=|p|2+|p2|2

Ĝ(ξ, p1)Ĝ(ξ, p2)Ĝ(ξ, p3).

(1.3)

Here, Ĝ(ξ, p) = FR×Td G(ξ, p) is the Fourier transform of G at (ξ, p) ∈ R×Zd .

Noting that the dependence on ξ is merely parametric, the above system is none

other than the resonant system for the cubic NLS equation on Td . Equation (1.3)

is globally well posed thanks to Lemma 4.1 below.

More precisely, our main results are as follows. Below, N > 30 is an arbitrary

integer, and S and S+ denote Banach spaces whose norms are defined in (2.8)

later. They contain all the Schwartz functions.

THEOREM 1.1. Let 1 6 d 6 4. There exists ε = ε(N , d) > 0 such that, if

U0 ∈ S+ satisfies
‖U0‖S+ 6 ε,

and if U (t) solves (1.1) with initial data U0, then U ∈ C((0,+∞) : H N ) exists

globally and exhibits modified scattering to its resonant dynamics (1.3) in the

following sense: there exists G0 ∈ S such that, if G(t) is the solution of (1.3)

with initial data G(0) = G0, then

‖U (t)− ei t∆
R×Td G(π ln t)‖H N (R×Td ) → 0 as t → +∞.
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Moreover,

‖U (t)‖L∞
x H1

y
. (1 + |t |)−1/2.

A similar statement holds as t → −∞, and a more precise one is contained in

Theorem 6.1. It is worth pointing out that, for d = 4, even the global existence

claim in the above theorem is new, due to the energy-supercritical nature of (1.1)

in this dimension. However, the main novelty is the modified scattering statement

to a nonintegrable asymptotic dynamics, given by (1.3).

In addition, we construct modified wave operators in the following sense.

THEOREM 1.2. Let 1 6 d 6 4. There exists ε = ε(N , d) > 0 such that, if

G0 ∈ S+ satisfies

‖G0‖S+ 6 ε,

and G(t) solves (1.3) with initial data G0, then there exists U ∈ C((0,∞) : H N ),

a solution of (1.1) such that

‖U (t)− ei t∆
R×Td G(π ln t)‖H N (R×Td ) → 0 as t → +∞.

REMARK 1.3. It is worth mentioning that a slight modification of the proof of

Theorems 1.1 and 1.2 shows that similar statements hold if Td is replaced by

the sphere Sd, d = 2, 3 (with a suitably modified resonant system). Indeed, the

largest part of the analysis is exploiting the one-dimensional dispersion. In the

case of Sd, d = 2, 3, the spectrum of the Laplace–Beltrami operator satisfies the

nonresonant condition needed for the normal form analysis, and the H 1 well-

posedness analysis on the sphere of [22, 24] provides the needed substitute of

Lemma 7.1. We note however that a good understanding of the corresponding

resonant system is still lacking. Modifications of the proof also hold in the

case of a partial harmonic confinement, and there the resonant system is better

understood (see [52]). On the other hand, the extension of our analysis to an

irrational torus is less clear, because of the appearance of small denominators in

the normal form analysis.

As a consequence of Theorem 1.2, as detailed in Remark 4.4, all the behaviors

that can be isolated for solutions of the resonant system (1.3) have counterparts in

the asymptotic behavior of solutions of (1.1). Most notably, given the existence

of unbounded Sobolev orbits for (1.3) as proved in [50] for d > 2 (see

Theorem 4.8 for an explicit construction with quantitative lower bounds on the

growth), we have the following.

COROLLARY 1.4 (Existence of infinite cascade solutions). Let d > 2 and s ∈ N,

s > 30. Then for every ε > 0 there exists a global solution U (t) of (1.1) such
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that

‖U (0)‖H s (R×Td ) 6 ε, lim sup
t→+∞

‖U (t)‖H s (R×Td ) = +∞. (1.4)

More precisely, there exist a sequence tk → +∞ and a constant C such that

‖U (tk)‖H s (R×Td ) & (log log tk)
C .

REMARK 1.5. These infinite cascades do not occur when d = 1 on R × T (nor

when d = 0 on R), at least not for small smooth localized solutions. In fact (see

(4.8)), the asymptotic dynamic of small solutions to (1.1) is fairly similar on R

and on R × T, in sharp contrast with the case when d > 2.

REMARK 1.6. The growth in the above corollary only happens over a sequence

of times tk → ∞. It would be interesting to investigate whether this growth can

be made uniform (if this were possible at all).

Corollary 1.4 gives a partial solution to a problem posed by Bourgain [16,

page 43–44] concerning the possible long-time growth of the H s , s > 1 norms

for the solutions of the cubic nonlinear Schrödinger equation. This growth

of high Sobolev norms is regarded as a proof of the (direct) energy cascade

phenomenon in which the energy of the system (here, the kinetic energy) moves

from low frequencies (large scales) toward arbitrarily high frequencies (small

scales). Heuristically, the solution in Corollary 1.4 can be viewed as initially

oscillating at scales that are O(1), but at later times it exhibits oscillations at

arbitrarily smaller length scales. This energy cascade is a main aspect of the out-

of-equilibrium dynamics predicted for (1.1) by the vast literature of physics and

numerics falling under the theory of weak (wave) turbulence (see [73, 90]).

The corresponding result on Td does not directly follow from Corollary 1.4

(nor does it imply it). This is somehow surprising, because one would naturally

expect that adding a dispersive direction to Td would drive the system closer

to nonlinear asymptotic stability, and further from out-of-equilibrium dynamics

(this is indeed the case if we study the equation on Rn × Td for n > 2, as

was shown by the scattering result in [85]). Our construction draws heavily

on [30, 45, 50], where unbounded Sobolev orbits are constructed for the resonant

system and applied to get finite-time amplifications of the Sobolev norms on

T2. However, in the case of the torus, nonresonant interactions do not disappear

and feed back into the dynamics after a long but finite time. This is precisely

where the more dispersive setting of R × Td makes a difference: in this case,

nonresonant terms are transformed into quintic terms which scatter, and hence,

at least heuristically, do not modify the long-term dynamics.
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Previous results in the spirit of Corollary 1.4 may be found in [14, 15]

for linear Schrödinger equations with potential, [30, 45, 71] for finite-time

amplifications of the initial H s norm, [7, 10, 50] for NLS with suitably chosen

nonlocal nonlinearities, and [39–41, 76, 77, 88] for the zero-dispersion Szegö

and half-wave equations. Concerning the opposite question of obtaining upper

bounds on the rate of possible growth of the Sobolev norms of solutions of NLS

equations, we refer to [8, 17, 31, 80, 81].

One can also use Theorem 1.2 to construct other interesting nonscattering

dynamics for Equation (1.1), as is illustrated in the following result.

COROLLARY 1.7 (Forward compact solutions). Let d > 2. For functions U (t)

on R × Td defined for all t > 0, we define the ‘limit profile set’ as

ω(U ) = lim sup
t→+∞

{e−i t∆
R×Td U (t)} =

⋂

τ∈(0,∞)

{e−i t∆
R×Td U (t) : t > τ }.

Then we have the following.

(1) (No nontrivial scattering) Assume that U solves (1.1) and that ω(U ) is a

point. If U (0) is sufficiently small, then U ≡ 0.

(2) (Scattering up to phase correction) There exist a nontrivial solution U of

(1.1) and a real function b : R → R such that ω(U (t)eib(t)) is a point.

(3) ((Quasi)periodic frequency dynamics) There exists a global solution U (t)

such that ω(U ) is compact but dim Span(ω(U )) > 2.

The proof of part (3) in the above corollary is interesting in its own right.

In fact, we construct global solutions to (1.1) that asymptotically bounce their

energy (and mass) between two disjoint sites in frequency space periodically

in time. These correspond to periodic-in-time solutions of (1.3) that exhibit the

following ‘beating effect’ (in the nomenclature of [44]): there exist two disjoint

subsets R × Λ1 and R × Λ2 in R × Z2, so that for any ε ∈ (0, 1) there exists

a solution G(t) of (1.3) that is supported in frequency space on R × Λ1 ∪ R ×
Λ2 in such a way that the fraction of the mass carried by each of the two sets

alternates between ε and 1 − ε periodically in time. We refer to Section 4.2 for

more constructions including asymptotically quasiperiodic dynamics.

1.2.1. Comments. It would be interesting to understand what is the optimal

topology to obtain our results. It is probably a lot larger than the one we use.

Progress in this direction would have the following impact.
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• The results are restricted to small data. In the absence of a ‘correct’ topology,

the exact meaning of “large data” is not well established.

• We cannot let any H s norm, s > 1, grow in Corollary 1.4, partly because we

want to cover all the cases 0 6 d 6 4 in a uniform manner, using simple

exponents. More careful analysis might address this point (for instance, either

lowering the regularity requirement in Theorem 1.2 or a more quantified

version of the construction in [30] would resolve this). We decided not to

pursue this point here because Corollary 1.4 already captures the energy

cascade phenomenon.

• It is possible that a more adapted topology allows one to define the scattering

operator in a good Banach space.

Finally, we also mention the situation in [2], where the partial periodicity is

replaced by adding a (partially) confining potential.

1.3. Overview of proof.

1.3.1. Modified scattering. In order to describe the asymptotic behavior of a

nonlinear dispersive equation like (1.1), it may be relevant to study the limiting

behavior of the profile F(t) = e−i t∆U (t) obtained by conjugating out the linear

flow. If F(t) converges to a fixed function G∞, then the solution scatters. If

not, the next best thing is to find the simplest possible dynamical system that

describes the asymptotic dynamics of F(t). To find this system, one has to

work on proving global a priori energy and decay estimates that allow one to

decompose the nonlinearity in the F equation in the following way:

i∂t F = N (F) = Ne f f (F)+ E(F), (1.5)

where E(F) is integrable in time. When this is possible, one can hope to prove

that the asymptotic dynamics converge to that of the effective system

i∂t G = Ne f f (G). (1.6)

Proving the global a priori energy and decay estimates can be a daunting task,

depending on the problem at hand. On the other hand, the process of proving

the convergence to the dynamics of (1.6) depends very much on how simple or

complicated Ne f f (G) is.

Previous modified scattering results that we are aware of only concerned

equations (or systems) posed on Rd , quasilinear or semilinear [1, 25, 32, 33, 53–

55, 63, 64, 66, 74, 89], and had an integrable asymptotic system for (1.6).
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This often allowed for a simple phase conjugation (in physical or Fourier space)

to give the modification. In contrast, our limiting system is given by (1.3), which

is not only a nonintegrable system, but also allows for the growth of norms of

its solutions, as we saw in Corollary 1.4. This requires a robust approach to

modified scattering that tolerates the growth of the limiting system (1.6) as long

as the decay of E(F) in (1.5) is sufficiently fast to trump the divergence effects

of the effective part Ne f f (F).

1.3.2. Isolating the resonant system: heuristics. To isolate the effective

interactions (Ne f f above), we can argue formally by looking at (1.1) in Fourier

space:

i∂t F̂p(ξ, t) =
∑

q−r+s=p

eiωt

∫

R2

e2iηκt F̂q(ξ −η, t)F̂r (ξ −η−κ, t)F̂s(ξ −κ, t) dκ dη,

(1.7)

where ω = |p|2−|q|2+|r |2−|s|2, and where F̂p(ξ) denotes the Fourier transform

of F at (ξ, p) ∈ R × Zd . Roughly speaking, a stationary phase argument in the

(η, κ) integral implies (see [66] for a previous use of this remark) that for very

large times the equation for F̂p(ξ, t) can be written as

i∂t F̂p(ξ, t) = π

t

∑

q−r+s=p

eiωt F̂q(ξ, t)F̂r (ξ, t)F̂s(ξ, t)+ l.o.t.

This is essentially an ordinary differential equation (ODE) system for each

ξ ∈ R. As is well known, resonant interactions corresponding to (p, q, r, s) for

which ω = 0 play a particularly important role in the dynamics of such an ODE,

especially given the decay of ∂t F̂p. This suggests that the expression above can

be simplified to

i∂t F̂p(ξ, t) = π

t

∑

q−r+s=p

|q|2−|r |2+|s|2=|p|2

F̂q(ξ, t)F̂r (ξ, t)F̂s(ξ, t)+ l.o.t.

As a result, one should expect the asymptotic dynamics of F to be dictated

by the ODE system given by the first term on the right-hand side above. The

latter system can be seen to be autonomous when written in terms of the slow

time scale τ = π ln t in which it has the form (1.3). Note that this system was

previously studied and shown to have interesting dynamics [26, 30, 38, 50].

The upshot of the above formal calculation is that one should expect a solution

F(t) to (1.7) to asymptote to some G(π ln t) where G(τ ) solves (1.3). This is

the content of Theorem 1.1.
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1.3.3. Norms and the control of the solution. As mentioned above, establishing

a priori energy and decay estimates is a precursor to isolating the leading-order

dynamics. In the scalar case d = 0 [54, 66], the needed energy estimates follow

easily once we guarantee the t−1/2 decay for the L∞ norm. Indeed, schematically

speaking, if E(t) is an appropriate energy of the system that controls its strong

norms, then one has the relation

∂t E(t) . ‖u(t)‖2
L∞ E(t) . t−1 E(t),

which barely allows one to close any polynomial-growth bootstrap for E(t).

The L∞ decay can be bootstrapped by relying on the boundedness of the

Fourier transform, which follows from the equation satisfied by F̂(ξ). An almost

identical energy method argument works in the case when d = 1, but it reaches

its limit there. Indeed, for d > 2, we do not have access to the sharp linear decay

t−1/2 which was crucial to closing the energy bootstrap above. To overcome this

difficulty, we need additional estimates coming from the low-regularity theory.

We use a hierarchy of three norms.

• The Z -norm is bounded and essentially corresponds to the strongest

information that remains a priori bounded uniformly in time.

• The S-norm controls the number of periodic derivatives we want to consider.

It grows slowly with time, but the difference between the solutions and the

asymptotic dynamics decays in this norm.

• The S+-norm is slightly stronger than the S-norm. It is allowed to grow slowly,

but still yields better control on objects in the S-norm. In particular, it controls

the same number of derivatives in the periodic directions as the S-norm.

While the choice of the Z -norm is dictated by the resonant system, there is

considerable flexibility in the choices of the two other norms. Another possible

choice might be a variation (but for the moment, it seems difficult in the proof

of the modified wave operator to work with an intermediate norm controlling

no weight in x) of Z , Z ∩ H N , S. One of the main problems complicating the

situation here is the need for a bounded linearized operator around a solution G

of the asymptotic system, which is not trivial in view of the missing t−1/2 decay

of ‖U (t)‖L∞ .

The significance of the Z -norm stems from the following two key facts:

(1) it is conserved for the resonant system (ultimately, this leads to the key

nonperturbative ingredient; see (4.4) and (6.5)), and (2) it is a controlling

norm for the existence and growth of its solution (in particular, this forces the

restriction d 6 4 in Theorems 1.1 and 1.2) in view of Lemma 4.3. This, combined
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with Lemma 7.3, provides the extent to which we can get decay for solutions of

(1.1). Interestingly, all this global analysis of the resonant system (1.3) relies

heavily on using local-in-time Strichartz estimates on the torus in order to get

global-in-time bounds for the Z -norm of the nonlinearity (see Lemma 7.1). At

this place our viewpoint is quite different from a naı̈ve one-dimensional vector-

valued analysis (as is the case in [85]).

We also note that, although our approach is close in spirit to recent

developments in global existence for quasilinear equations [42, 43, 48, 62–

64], some of the key estimates really pertain to the low-regularity theory (see

Lemma 7.1 and Lemma 7.2 (this is somewhat parallel to the energy method in

the quasilinear results)).

Organization of the paper. Section 2 introduces the notation used in this

paper. Section 3 provides a decomposition of the nonlinearity as in (1.5).

Section 4 introduces the resonant system (1.3) and gives some properties of its

solutions. Section 5 shows existence of the modified wave operators and proves

Theorem 1.2. Section 6 shows the modified scattering statement and proves

Theorem 1.1. Finally, Section 7 collects various additional estimates needed in

the proofs.

2. Notation

2.1. Standard notation. In this paper, T := R/(2πZ). We will often

consider functions f : R → C and functions F : R × Td → C. To distinguish

between them, we use the convention that lower-case letters denote functions

defined on R, upper-case letters denote functions defined on R × Td , and

calligraphic letters denote operators, except for the Littlewood–Paley operators

and dyadic numbers, which are capitalized most of the time.

We define the Fourier transform on R by

ĝ(ξ) := 1

2π

∫

R

e−i xξg(x) dx .

Similarly, if F(x, y) depends on (x, y) ∈ R × Td , F̂(ξ, y) denotes the partial

Fourier transform in x . We also consider the Fourier transform of h : Td → C,

h p := 1

(2π)d

∫

Td

h(y)e−i〈p,y〉 dy, p ∈ Zd,

and this extends to F(x, y). Finally, we also have the full (spatial) Fourier

transform

(FF)(ξ, p) = 1

(2π)d

∫

Td

F̂(ξ, y)e−i〈p,y〉 dy = F̂p(ξ).
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We will often use Littlewood–Paley projections. For the full frequency space,

these are defined as follows:

(F P6N F)(ξ, p) = ϕ

(
ξ

N

)
ϕ
( p1

N

)
. . . ϕ

( pd

N

)
(FF)(ξ, p),

where ϕ ∈ C∞
c (R), ϕ(x) = 1 when |x | 6 1 and ϕ(x) = 0 when |x | > 2. Next,

we define

PN = P6N − P6N/2, P>N = 1 − P6N/2.

Many times we will concentrate on the frequency in x only, and we therefore

define

(FQ6N F)(ξ, p) = ϕ

(
ξ

N

)
(FF)(ξ, p),

and define QN similarly to PN . By a slight abuse of notation, we will consider

QN indifferently as an operator on functions defined on R × Td and on R. We

shall use the following commutator estimate:

‖[QN , x]‖L2
x →L2

x
. N−1. (2.1)

Below, we will need a few parameters. For T & 1 a positive number, we let

qT : R → R be an arbitrary function satisfying

0 6 qT (s) 6 1, qT (s) = 0 if |s| 6 T/4 or |s| > T, and∫

R

|q ′
T (s)| ds 6 10.

Particular examples are the characteristic functions qT (s) = 1[T/2,T ](s), with the

natural interpretation of the integral on R of |q ′
T |.

We will use the following sets corresponding to momentum and resonance

level sets:

M := {(p, q, r, s) ∈ Z4d : p − q + r − s = 0},
Γω := {(p, q, r, s) ∈ M : |p|2 − |q|2 + |r |2 − |s|2 = ω}. (2.2)

In particular, note that (p, q, r, s) ∈ Γ0 if and only if {p, q, r, s} are the vertices

of a rectangle.

2.2. Duhamel formula. We will prove all our statements for t > 0. By time-

reversal symmetry, one obtains the analogous claims for t 6 0. In studying

solutions to (1.1), it will be convenient to factor out the linear flow and write

a solution U of (1.1) as

U (x, y, t) =
∑

p∈Zd

ei〈p,y〉e−i t |p|2(ei t∂xx Fp(t))(x) = ei t∆
R×Td (F(t)).
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We then see that U solves (1.1) if and only if F solves

i∂t F(t) = e−i t∆
R×Td (ei t∆

R×Td F(t) · e−i t∆
R×Td F(t) · ei t∆

R×Td F(t)). (2.3)

Note in particular that F evolves purely nonlinearly and that ∂t F is ‘smaller’

than F in many ways, as partly captured in our choice of norms. We will denote

the nonlinearity in (2.3) by N t [F(t), F(t), F(t)], where the trilinear form N t is

defined by

N t [F,G, H ] := e−i t∆
R×Td (ei t∆

R×Td F · e−i t∆
R×Td G · ei t∆

R×Td H).

Now, we can compute the Fourier transform of the last expression, which leads

to the identity

FN t [F,G, H ](ξ, p) =
∑

(p,q,r,s)∈M
ei t[|p|2−|q|2+|r |2−|s|2] ̂I t [Fq,Gr , Hs](ξ), (2.4)

where

I t [ f, g, h] := U(−t)(U(t) f U(t)g U(t)h), U(t) = exp(i t∂2
x ). (2.5)

One verifies that

̂I t [ f, g, h](ξ) =
∫

R2

ei t2ηκ f̂ (ξ − η)ĝ(ξ − η − κ)̂h(ξ − κ) dκ dη.

Thus one may also write

FN t [F,G, H ](ξ, p) =
∑

(p,q,r,s)∈M
ei t[|p|2−|q|2+|r |2−|s|2]

×
∫

R2

ei t2ηκ F̂q(ξ − η)Ĝr (ξ − η − κ)Ĥs(ξ − κ) dκ dη.

According to our previous discussion, we now define the resonant part of the

nonlinearity ((π/t)R corresponds to Ne f f in (1.5)) as

FR[F,G, H ](ξ, p) :=
∑

(p,q,r,s)∈Γ0

F̂q(ξ)Ĝr (ξ)Ĥs(ξ). (2.6)

We have a remarkable Leibniz rule for I t [ f, g, h], namely

ZI t [ f, g, h] = I t [Z f, g, h] + I t [ f, Zg, h] + I t [ f, g, Zh], Z ∈ {i x, ∂x}.
(2.7)

A similar property holds for the whole nonlinearity N t [F,G, H ], where Z can

also be a derivative in the transverse direction, Z = ∂y j
. Property (2.7) will be of

importance in order to ensure the hypothesis of the transfer principle displayed

by Lemma 7.4.
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2.3. Norms. Our norms will depend on two parameters which we fix

throughout the paper. We set δ < 10−3 and N > 30 (the exact value of N can

be significantly lowered for example by allowing more weights in the S-norm in

(2.8)). We will often consider sequences, and we define the following norm on

these:

‖{ap}‖2
hs

p
:=

∑

p∈Zd

[1 + |p|2]s |ap|2.

For functions, we will often omit the domain of integration from the description

of the norms. However, we will indicate it by a subscript x (for R), x, y (for

R × Td) or p (for Zd). We will use mainly three different norms: a weak norm,

‖F‖2
Z := sup

ξ∈R
[1 + |ξ |2]2

∑

p∈Zd

[1 + |p|]2|F̂p(ξ)|2 = sup
ξ∈R

[1 + |ξ |2]2‖F̂p(ξ)‖2
h1

p
,

and two strong norms,

‖F‖S := ‖F‖H N
x,y

+ ‖x F‖L2
x,y
, ‖F‖S+ := ‖F‖S + ‖(1 − ∂xx)

4 F‖S + ‖x F‖S.

(2.8)

We have the following hierarchy:

‖F‖H1
x,y

. ‖F‖Z . ‖F‖S . ‖F‖S+ . (2.9)

To verify the middle inequality, using (2.1) and the elementary inequality,

‖ f ‖L1
x (R)

. ‖ f ‖1/2

L2
x (R)

‖x f ‖1/2

L2
x (R)
, (2.10)

one might observe that

[1 + |ξ |2]|F̂(ξ, p)| .
∑

N

N 2|Q̂N F(ξ, p)| .
∑

N

N 2‖QN Fp‖1/2

L2
x
‖x QN Fp‖1/2

L2
x

.
∑

N

N−1/2‖(1 − ∂xx)
5/2 Fp‖1/2

L2
x
‖〈x〉Fp‖1/2

L2
x

. ‖Fp‖1/2

H5
x
‖〈x〉Fp‖1/2

L2
x
.

Squaring and multiplying by 〈p〉2, we find that (using interpolation too)

‖F‖Z . ‖F‖1/4

L2
x,y

‖F‖3/4

S . (2.11)

We also note that the operators Q6N and P6N and the multiplication by ϕ(·/N )

are bounded in Z , S, S+, uniformly in N .
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The space-time norms we will use are

‖F‖XT
:= sup

06t6T

{‖F(t)‖Z + (1 + |t |)−δ‖F(t)‖S + (1 + |t |)1−3δ‖∂t F(t)‖S},

‖F‖X+
T

:= ‖F‖XT
+ sup

06t6T

{(1 + |t |)−5δ‖F(t)‖S+ + (1 + |t |)1−7δ‖∂t F(t)‖S+}.

(2.12)

In most of the cases, in order to sum up the one-dimensional estimates, we

make use of the following elementary bound:

∥∥∥∥
∑

(q,r,s):(p,q,r,s)∈M
c1

qc2
r c3

s

∥∥∥∥
l2

p

. min
σ∈S3

‖cσ(1)‖l2
p
‖cσ(2)‖l1

p
‖cσ(3)‖l1

p
. (2.13)

As a warm up, we can prove the following simple estimates, which are sufficient

for the local theory.

LEMMA 2.1. The following estimates hold:

‖N t [F,G, H ]‖S . (1 + |t |)−1‖F‖S‖G‖S‖H‖S,

‖N t [Fa, Fb, F c]‖S+ . (1 + |t |)−1 maxσ∈S3
‖Fσ(a)‖S+‖Fσ(b)‖S‖Fσ(c)‖S.

(2.14)

However, these estimates fall short of giving a satisfactory global theory.

Proof. Coming back to (2.5), we readily obtain

‖I t [ f a, f b, f c]‖L2
x
. min

σ∈S3

‖ f σ(a)‖L2
x
‖ei t∂xx f σ(b)‖L∞

x
‖ei t∂xx f σ(c)‖L∞

x
. (2.15)

Assume that |t | > 1. We use the basic dispersive bound for the one-dimensional

Schrödinger equation and (2.10) to get

‖ei t∂xx f ‖L∞
x
. |t |−1/2‖ f ‖L1

x
. |t |−1/2‖ f ‖1/2

L2
x
‖x f ‖1/2

L2
x
. (2.16)

Estimate (2.16) allows us to write, for any α > d,

∑

p∈Zd

‖ei t∂xx Fp‖L∞
x
. |t |−1/2

∑

p∈Zd

〈p〉−α‖〈p〉2αFp‖1/2

L2
x
‖x Fp‖1/2

L2
x
. |t |−1/2‖F‖S.
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If |t | 6 1, we use Sobolev estimates instead of (2.16), and get
∑

p∈Zd

‖ei t∂xx Fp‖L∞
x
.
∑

p∈Zd

‖Fp‖H1
x
. ‖F‖S.

We now can come back to (2.15): recalling (2.4), and using (2.13), we get the

bound

‖N t [Fa, Fb, F c]‖L2
x,y

. (1 + |t |)−1 min
σ∈S3

‖Fσ(a)‖L2
x,y

‖Fσ(b)‖S‖Fσ(c)‖S. (2.17)

Now we can use Lemma 7.4. This completes the proof of Lemma 2.1.

3. Structure of the nonlinearity

The purpose of this section is to extract the key effective interactions from the

full nonlinearity in (1.1). We first decompose the nonlinearity as

N t [F,G, H ] = π

t
R[F,G, H ] + E t [F,G, H ], (3.1)

where R is given in (2.6). Our main result is the following.

PROPOSITION 3.1. Assume that, for T > 1, F, G, H: R → S satisfy

‖F‖XT
+ ‖G‖XT

+ ‖H‖XT
6 1. (3.2)

Then, for t ∈ [T/4, T ], we can write

E t [F(t),G(t), H(t)] = E1(t)+ E2(t),

where the following bounds hold uniformly in T > 1:

T −δ
∥∥∥∥
∫

R

qT (t)Ei(t) dt

∥∥∥∥
S

. 1, i = 1, 2,

T 1+δ sup
T/46t6T

‖E1(t)‖Z . 1,

T 1/10 sup
T/46t6T

‖E3(t)‖S . 1,

(3.3)

where E2(t) = ∂tE3(t). Assuming in addition that

‖F‖X+
T

+ ‖G‖X+
T

+ ‖H‖X+
T
6 1, (3.4)

we also have that

T −5δ

∥∥∥∥
∫

R

qT (t)Ei(t) dt

∥∥∥∥
S+

. 1, T 2δ

∥∥∥∥
∫

R

qT (t)Ei(t) dt

∥∥∥∥
S

. 1, i = 1, 2.

(3.5)
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We will give a proof of Proposition 3.1 at the end of this section. It depends

on various lemmas that we prove first. Among these lemmas, Lemma 3.2,

Lemma 3.3, and the first part of Lemma 3.7 are essentially based on L2

arguments, while Lemma 3.6 and the second part of Lemma 3.7 are based on

regularity in Fourier space.

3.1. The high-frequency estimates. We start with an estimate bounding

high frequencies in x . It uses essentially the bilinear Strichartz estimates on R

(see Lemma 7.2 and [28]).

LEMMA 3.2. Assume that T > 1. The following estimates hold uniformly in T :

∥∥∥∥
∑

A,B,C

max(A,B,C)>T 1/6

N t [Q A F, Q B G, QC H ]
∥∥∥∥

Z

. T −7/6‖F‖S‖G‖S‖H‖S ∀t > T/4,∥∥∥∥
∑

A,B,C

max(A,B,C)>T 1/6

∫

R

qT (t)N
t [Q A F(t), Q B G(t), QC H(t)] dt

∥∥∥∥
S

. T −1/50‖F‖XT
‖G‖XT

‖H‖XT
,∥∥∥∥

∑

A,B,C

max(A,B,C)>T 1/6

∫

R

qT (t)N
t [Q A F(t), Q B G(t), QC H(t)] dt

∥∥∥∥
S+

. T −1/50‖F‖X+
T
‖G‖X+

T
‖H‖X+

T
.

Proof. We start by proving the first inequality of Lemma 3.2. Fixing t > T/4

and invoking the bound (2.11) and Lemma 2.1, we obtain that it suffices to prove

the bound

∥∥∥∥
∑

A,B,C

max(A,B,C)>T 1/6

N t [Q A F, Q B G, QC H ]
∥∥∥∥

L2
x,y

. T −5/3‖F‖S‖G‖S‖H‖S. (3.6)

Coming back to (2.4), and using that l1
p ⊂ l2

p, we see that (3.6) follows from

∑

(p,q,r,s)∈M

∑

A,B,C

max(A,B,C)>T 1/6

‖I t [Q A Fq, Q B Gr , QC Hs]‖L2
x
. T −5/3‖F‖S‖G‖S‖H‖S.
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Using (2.5) and the Sobolev embedding, we see that

‖I t [Q A Fq, Q B Gr , QC Hs]‖L2
x

. (ABC)−11‖Q A Fq‖H12
x

‖Q B Gr‖H12
x

‖QC Hs‖H12
x

. (ABC)−11(〈q〉〈r〉〈s〉)−d−1‖F‖H13+d
x,y

‖G‖H13+d
x,y

‖H‖H13+d
x,y
.

Summing, we complete the proof of the first inequality of Lemma 3.2.

Let us now turn to the proof of the two remaining estimates. We first note that,

for every t and every F,G, H ∈ S (respectively S+)
∥∥∥∥

∑

A,B,C

med(A,B,C)>T 1/6/16

N t [Q A F, Q B G, QC H ]
∥∥∥∥

S

. T −7/6‖F‖S‖G‖S‖H‖S,

∥∥∥∥
∑

A,B,C

med(A,B,C)>T 1/6/16

N t [Q A F, Q B G, QC H ]
∥∥∥∥

S+
. T −7/6‖F‖S+‖G‖S+‖H‖S+,

(3.7)

where med(A, B,C) means the second largest number between A, B,C . The

proof of (3.7) is slightly more delicate than the first inequality of Lemma 3.2,

because, in aiming to apply Lemma 7.4, we are not allowed to lose derivatives

on at least one of the F , G, H . Let K ∈ L2
x,p; then we need to bound

IK =
〈
K ,

∑

A,B,C

med(A,B,C)>T 1/6/16

N t [Q A F, Q B G, QC H ]
〉

L2
x,p×L2

x,p

6
∑

(p,q,r,s)∈M

∑

A,B,C

med(A,B,C)>T 1/6/16

∣∣∣∣
∫

R

U(t)(Q A Fq) · U(t)(Q B Gr )

· U(t)(QC Hs) · U(t)K p

∣∣∣∣. (3.8)

We will show that

IK . T −5/3‖F‖L2
x,y

‖K‖L2
x,p

‖G‖S‖H‖S. (3.9)

Similar estimates hold with F replaced by G or H . By duality and Lemma 7.4,

this is sufficient to prove (3.7).

By performing a Littlewood–Paley decomposition of K p, and using Sobolev

inequality, we see from (3.8) that

IK .
∑

(p,q,r,s)∈M

∑

∗
(BC)−11‖Q A Fq‖L2

x
‖Q B Gr‖H12

x
‖QC Hs‖H12

x
‖Q D K p‖L2

x
,

(3.10)
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where
∑

∗ denotes the sum over all dyadic integers A, B,C, D such that the two

highest are comparable, and, in addition, med(A, B,C) > T 1/6. Now note that

∑

∗
(BC)−11‖Q A Fq‖L2

x
‖Q B Gr‖H12

x
‖QC Hs‖H12

x
‖Q D K p‖L2

x

.
∑

∗
(med(A, B,C))−11‖Q A Fq‖L2

x
‖Q B Gr‖H12

x
‖QC Hs‖H12

x
‖Q D K p‖L2

x

. T −5/3‖Fq‖L2
x
‖K p‖L2

x
‖Gr‖H12

x
‖Hs‖H12

x
,

where, in the last inequality, we have crudely summed over the two smallest

dyadic numbers and applied the Cauchy–Schwarz inequality on the two highest.

Using Cauchy–Schwarz inequality again in p, q , we see from (3.10) that

IK . T −5/3‖F‖L2
x,y

‖K‖L2
x,p

(∑

r

‖Gr‖H12
x

)(∑

s

‖Hs‖H12
x

)
,

which yields (3.9) and thus (3.7).

It therefore remains to prove that

∥∥∥∥
∑

(A,B,C)∈Λ

∫

R

qT (t)N
t [Q A F(t), Q B G(t), QC H(t)] dt

∥∥∥∥
S

. T −1/50‖F‖XT
‖G‖XT

‖H‖XT
, (3.11)

and
∥∥∥∥

∑

(A,B,C)∈Λ

∫

R

qT (t)N
t [Q A F(t), Q B G(t), QC H(t)] dt

∥∥∥∥
S+

. T −1/50‖F‖X+
T
‖G‖X+

T
‖H‖X+

T
, (3.12)

where (A, B,C) ∈ Λmeans that the A, B,C summation ranges over med(A, B,

C) 6 T 1/6/16 and max(A, B,C) > T 1/6. We shall only give the proof of (3.11),

the proof of (3.12) being similar.

We consider a decomposition

[T/4, 2T ] =
⋃

j∈J

I j , I j = [ jT 9/10, ( j + 1)T 9/10] = [t j , t j+1], #J . T 1/10

(3.13)

and consider χ ∈ C∞
c (R), χ > 0 such that χ(x) = 0 if |x | > 2 and

∑

k∈Z
χ(x − k) ≡ 1.
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The left-hand side of (3.11) can be estimated by C(E1 + E2), where

E1 =
∥∥∥∥∥
∑

j∈J

∑

(A,B,C)∈Λ

∫

R

qT (t)χ

(
t

T 9/10
− j

)
(N t [Q A F(t), Q B G(t), QC H(t)]

− N t [Q A F(t j), Q B G(t j), QC H(t j)]) dt

∥∥∥∥∥
S

and

E2 =
∥∥∥∥∥
∑

j∈J

∑

(A,B,C)∈Λ

∫

R

qT (t)χ

(
t

T 9/10
− j

)

× N t [Q A F(t j), Q B G(t j), QC H(t j)] dt

∥∥∥∥∥
S

.

Let us now turn to the estimate for E1. We can write

E1 6
∑

j∈J

∫

R

qT (t)χ

(
t

T 9/10
− j

)
E1, j(t) dt, (3.14)

where

E1, j(t) :=
∥∥∥∥∥

∑

(A,B,C)∈Λ
(N t [Q A F(t), Q B G(t), QC H(t)]

− N t [Q A F(t j), Q B G(t j), QC H(t j)])
∥∥∥∥∥

S

.

At this point, we note that

∑

(A,B,C)∈Λ
N t [Q A F, Q B G, QC H ] = N t [Q+ F, Q−G, Q− H ]

+N t [Q− F, Q+G, Q− H ] + N t [Q− F, Q−G, Q+ H ]
Q+ := Q>T 1/6, Q− := Q6T 1/6/16.

Therefore, using Lemma 2.1, and the boundedness of Q± on S, we see that

E1, j(t) 6 (1 + |t |)−1[‖F(t)− F(t j)‖S‖G(t)‖S‖H(t)‖S

+ ‖F(t j)‖S‖G(t)− G(t j)‖S‖H(t)‖S

+ ‖F(t j)‖S‖G(t j)‖S‖H(t)− H(t j)‖S]. (3.15)
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Since |t − t j | 6 T 9/10, we see by definition (2.12) that

‖F(t)− F(t j)‖S 6

∫ t

t j

‖∂t F(σ )‖S dσ . T −(1/10)+3δ‖F‖XT
.

Similar bounds hold for G and H . Therefore, we can bound (3.15) by

E1, j(t) . T −(11/10)+5δ‖F‖XT
‖G‖XT

‖H‖XT
,

which in view of (3.13) and (3.14) is more than enough to bound the contribution

of E1.

It therefore only remains to estimate E2. In this case the A, B,C summation

will not cause any difficulty, since the bilinear Strichartz estimates will provide

a decay in terms of (max(A, B,C))−1. We have that

E2 6
∑

j∈J

∑

(A,B,C)∈Λ
E

A,B,C
2, j ,

where

E
A,B,C
2, j =

∥∥∥∥
∫

R

qT (t)χ

(
t

T 9/10
− j

)
N t [Q A F(t j), Q B G(t j), QC H(t j)] dt

∥∥∥∥
S

.

Note that the profiles F(t j), G(t j), H(t j) are fixed. Using Lemma 7.4, it suffices

to show that

∥∥∥∥∥∥
∑

(p,q,r,s)∈M

∫

R

qT (t)χ

(
t

T 9/10
− j

)
I t [Q A Fa

q , Q B Fb
r , QC F c

s ] dt

∥∥∥∥∥∥
L2

x,p

. (max(A, B,C))−1 min
σ∈S3

‖Fσ(a)‖L2
x,y

‖Fσ(b)‖S‖Fσ(c)‖S. (3.16)

Indeed,

∑

j∈J

∑

(A,B,C)∈Λ
(max(A, B,C))−1 . T −1/20,

‖F(t j)‖S‖G(t j)‖S‖H(t j)‖S 6 T 3δ‖F‖XT
‖G‖XT

‖H‖XT
.
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We proceed by duality. Let K ∈ L2
x,p. We consider

IK =
〈
K ,

∑

(p,q,r,s)∈M

∫

R

qT (t)χ

(
t

T 9/10
− j

)
I t [Q A Fa

q , Q B Fb
r , QC F c

s ] dt

〉

L2
x,p×L2

x,p

=
∑

(p,q,r,s)∈M

∫

R2

qT (t)χ

(
t

T 9/10
− j

)
U(t)(Q A Fa

q )

· U(t)(Q B Fb
r ) · U(t)(QC F c

s ) · U(t)K p dx dt,

where we may assume that K = Q D K , D ≃ max(A, B,C). Using Lemma 7.2,

we can estimate

IK 6
∑

(p,q,r,s)∈M
D−1‖Fa

q ‖L2
x
‖Fb

r ‖L2
x
‖F c

s ‖L2
x
‖K p‖L2

x
.

We can now use (2.13) to evaluate the sum. By duality, this yields (3.16) and

therefore (3.11). As already mentioned, the proof of (3.12) is similar. This

completes the proof of Lemma 3.2.

At this point, we introduce a first decomposition,

N t [F,G, H ] = Π t [F,G, H ] + Ñ t [F,G, H ],
FΠ t [F,G, H ](ξ, p) :=

∑

(p,q,r,s)∈Γ0

̂I t [Fq,Gr , Hs](ξ). (3.17)

The contribution of Ñ is treated in Section 3.2, and that of Π t in Section 3.3.

3.2. The fast oscillations. The main purpose of this subsection is to prove

the following.

LEMMA 3.3. For T > 1, assume that F, G, H: R → S satisfy (3.2) and

F = Q6T 1/6 F, G = Q6T 1/6 G, H = Q6T 1/6 H.

Then, for t ∈ [T/4, T ], we can write

Ñ t [F(t),G(t), H(t)] = Ẽ t
1 + E t

2,

where it holds that, uniformly in T > 1,

T 1+2δ sup
T/46t6T

‖Ẽ1(t)‖S . 1, T 1/10 sup
T/46t6T

‖E3(t)‖S . 1,
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where E2(t) = ∂tE3(t). Assuming in addition that (3.4) holds, we have

T 1+2δ sup
T/46t6T

‖Ẽ1(t)‖S+ . 1, T 1/10 sup
T/46t6T

‖E3(t)‖S+ . 1.

To prove this lemma, we start by decomposing Ñ t along the nonresonant level

sets as follows:

FÑ t [F,G, H ](ξ, p) =
∑

ω 6=0

∑

(p,q,r,s)∈Γω

ei tω(Ot
1[Fq,Gr , Hs](ξ)

+Ot
2[Fq,Gr , Hs](ξ)), (3.18)

Ot
1[ f, g, h](ξ) :=

∫

R2

e2i tηκ(1 − ϕ(t1/4ηκ)) f̂ (ξ − η)ĝ(ξ − η − κ)

× ĥ(ξ − κ) dη dκ,

Ot
2[ f, g, h](ξ) :=

∫

R2

e2i tηκϕ(t1/4ηκ) f̂ (ξ − η)ĝ(ξ − η − κ)

× ĥ(ξ − κ) dη dκ.

Essentially, on O1, we use the fact that the interactions are noncoherent

(in the terminology of Germain–Masmoudi–Shatah [42], O1 corresponds to

space nonresonant interactions and O2 to time nonresonant interactions) (see

Lemma 3.6), while, on O2, we exploit the fact that they are nonresonant, and we

can use a normal forms transformation.

Before we go into the proof of Lemma 3.3, we make the following remarks.

REMARK 3.4. Some of our estimates below will concern functions of one real

variable. To pass them on to functions on R × Td , we define

‖ f ‖Y := ‖〈x〉9/10 f ‖L2
x
+ ‖ f ‖

H
3N/4
x

and use that ∑

p∈Zd

‖Fp‖Y . ‖F‖S. (3.19)

REMARK 3.5. Assume that T/4 6 t 6 T . Under the assumptions of Lemma 3.3,

the multiplier appearing in the definition of Ot
2 in (3.18) can be taken to be

m̃(η, κ) := ϕ(t1/4ηκ)ϕ((10T )−1/6η)ϕ((10T )−1/6κ).

We note that

‖Fηκm̃‖L1(R2) = ‖I (x1, x2)‖L1
x1,x2
,
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where

I (x1, x2) =
∫

R2

ei x1ηei x2κϕ(Sηκ)ϕ(η)ϕ(κ) dη dκ, S ≈ T 7/12.

Then one may show that

|I (x1, x2)| + |x1 I (x1, x2)| + |x2 I (x1, x2)| . 1, |x1x2 I (x1, x2)| . log(1 + T ).

One also has rough polynomial-in-T bounds for (x2
1 + x2

2 + x2
1 x2

2)|I (x1, x2)|.
Therefore by interpolation one obtains that for every ε > 0 there exists κ > 1

such that

|I (x1, x2)| . (1 + T )ε(1 + x2
1 + x2

2)
−κ .

We hence deduce that ‖Fηκm̃‖L1(R2) . t δ/100. Applying Lemma 7.5, we arrive at

the following conclusion: if

f a = Q6T 1/6 f a, f b = Q6T 1/6 f b, f c = Q6T 1/6 f c,

t > T/4, then

‖Ot
2[ f a, f b, f c]‖L2

ξ
= ‖FOt

2[ f a, f b, f c]‖L2
x

. (1 + |t |)δ/100 min
σ∈S3

‖ f σ(a)‖L2
x
‖ei t∂xx f σ(b)‖L∞

x
‖ei t∂xx f σ(c)‖L∞

x

. (1 + |t |)−1+(δ/100) min
σ∈S3

‖ f σ(a)‖L2
x
‖ f σ(b)‖Y ‖ f σ(c)‖Y . (3.20)

A similar bound holds for Ot
1 because Ot

1+Ot
2 enjoys a bound better than (3.20).

The contribution of Ot
1 essentially follows from the following independent

estimate. We now give the argument to bound the operator Ot
1.

LEMMA 3.6. Assume that t , f a , f b, f c satisfy

t > T/4, f a = Q A f a, f b = Q B f b, f c = QC f c, max(A, B,C) 6 T 1/6.

Then

‖Ot
1[ f a, f b, f c]‖L2

ξ
. T −201/200 min

σ∈S3

‖ f σ(a)‖L2
x
‖ f σ(b)‖Y ‖ f σ(c)‖Y . (3.21)

Proof. We will show that

‖Ot
1[ f, g, h]‖L2

ξ
. T −201/200‖ f ‖L2

x
‖g‖Y ‖h‖Y . (3.22)

The other inequalities in (3.21) follow by symmetry and conjugation.
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We first decompose

g = gc + g f , h = hc + h f , gc(x) = ϕ
( x

D

)
g(x),

hc(x) = ϕ
( x

D

)
h(x), D := T (7/12)−(δ/10).

Using the remark after (3.20), we see that

‖Ot
1[ f, g, h]‖L2

ξ
. t δ/100‖ f ‖L2

x
‖ei t∂xx g‖L∞

x
‖ei t∂xx h‖L∞

x
.

In addition, for γ > f rac12,

‖ei t∂xx f ‖L∞
x
. 〈t〉−1/2‖ f ‖L1

x
= 〈t〉−1/2‖〈x〉γ 〈x〉−γ f ‖L1

x
. 〈t〉−1/2‖〈x〉γ f ‖L2

x
.

Hence, if f (x) is supported in |x | > R,

‖ei t∂xx f ‖L∞
x
. 〈t〉−1/2 R−α‖ f ‖Y ,

with α > 2

5
. Therefore we obtain that (3.22) is a consequence of the estimate

‖Ot
1[ f, gc, hc]‖L2

ξ
. T −20‖ f ‖L2

x
‖g‖L2

x
‖h‖L2

x
.

But this follows by repeated integration by parts in κ since, on the support

of integration, we necessarily have |η| & T −5/12. This completes the proof of

Lemma 3.6.

We can now proceed to the proof of Lemma 3.3.

Proof of Lemma 3.3. In the decomposition of Ñ in (3.18), the first sum

involving Ot
1 contributes to Ẽ1(t), and its estimate follows by combining (3.19),

Lemma 3.6, and Lemma 7.4. Indeed, from (3.21), (2.13), and Remark 3.4, we

get that, for t > T/4,

∥∥∥∥
∑

ω 6=0

∑

(p,q,r,s)∈Γω

ei tωOt
1[Fa

q , Fb
r , F c

s ]
∥∥∥∥

L2
ξ,p

6 T −201/200 min
σ∈S3

‖Fσ(a)‖L2
x,y

‖Fσ(b)‖S‖Fσ(c)‖S.

Lemma 7.4 (with θ1 = 1 and θ2 = 0, and K = T −1−(1/200) . T −1−5δ) then gives

the result.

We now consider the contribution of the second sum in (3.18). We start with a

simple observation. Defining

Õt
2,ω[F,G, H ](ξ, p) =

∑

(p,q,r,s)∈Γω

Ot
2[Fq,Gr , Hs](ξ),
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it follows from (3.20) that, for K ∈ L2
ξ,p(R × Zd),

〈K , Õt
2,ω[F,G, H ]〉L2

ξ,p×L2
ξ,p

6
∑

(p,q,r,s)∈Γω

|〈K p,O
t
2[Fq,Gr , Hs]〉L2

ξ×L2
ξ
| . (1 + |t |)−1+δ

∑

(p,q,r,s)∈Γω

‖K p‖L2
ξ

× min{‖Fq‖L2
x
‖Gr‖Y ‖Hs‖Y , ‖Fq‖Y ‖Gr‖L2

x
‖Hs‖Y , ‖Fq‖Y ‖Gr‖Y ‖Hs‖L2

x
},

(3.23)

and summing over ω, using (3.19) and (2.13), we get

∥∥∥∥
∑

ω

ei tωÕt
2,ω[Fa, Fb, F c]

∥∥∥∥
L2
ξ,p

. (1+|t |)−1+δ min
σ∈S3

‖Fσ(a)‖L2
x,y

‖Fσ(b)‖S‖Fσ(c)‖S.

(3.24)

Now observe that

ei tωOt
2[ f, g, h] = ∂t

(
ei tω

iω
Ot

2[ f, g, h]
)

− ei tω(∂tO
t
2)[ f, g, h]

− ei tωOt
2[∂t f, g, h] − ei tωOt

2[ f, ∂t g, h] − ei tωOt
2[ f, g, ∂t h],

(3.25)

where

(∂tO
t
2)[ f, g, h](ξ) :=

∫

R

∂t(e
2i tηκϕ(t1/4ηκ)) f̂ (ξ−η)ĝ(ξ−η−κ)̂h(ξ−κ) dη dκ.

We use here the fact ∂t f , ∂t g, and ∂t g have better decay than f , g, and h,

which ultimately comes from our choice of unknowns as pullbacks of nonlinear

solutions by the linear flow. Using (3.24), the definition of the XT norm, and

Lemma 7.4, we see that the contribution of the second line in (3.25) is acceptable.

Similarly, since (1 + |t |)1/4(∂tO
t
2) satisfies similar estimates as Ot

2, the second

term in the right-hand side of (3.25) is acceptable. It remains to analyze the first

one. We define E3 by

FE3(ξ, p) :=
∑

ω 6=0

∑

(p,q,r,s)∈Γω

ei tω

iω
Ot

2[Fq,Gr , Hs](ξ).

Using (3.23) and (2.13), we see that, for K ∈ L2
x,y(R × Td),

〈K , E3〉L2
x,y×L2

x,y

6
∑

ω 6=0

|〈FK , Õt
2,ω[F,G, H ]〉L2×L2 |,. (1 + |t |)−1+δ

∑

ω 6=0

∑

(p,q,r,s)∈Γω

‖K̂ p‖L2
ξ
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× min{‖Fq‖L2
x
‖Gr‖Y ‖Hs‖Y , ‖Fq‖Y ‖Gr‖L2

x
‖Hs‖Y , ‖Fq‖Y ‖Gr‖Y ‖Hs‖L2

x
}

. (1 + |t |)−1+δ‖K‖L2
x,y

× min{‖F‖L2
x,y

‖G‖S‖H‖S, ‖F‖S‖G‖L2
x,y

‖H‖S, ‖F‖S‖G‖S‖H‖L2
x,y

}.
Another application of Lemma 7.4 shows that this term in the right-hand side of

(3.25) gives an acceptable contribution.

3.3. The resonant level set. We now turn to the contribution of the resonant

set in (3.17),

FΠ t [F,G, H ](ξ, p) =
∑

(p,q,r,s)∈Γ0

FxI
t [Fq(t),Gr (t), Hs(t)](ξ).

This term yields the main contribution in Proposition 3.1, and in particular is

responsible for the slowest 1/t decay. We show that it gives rise to a contribution

which grows slowly in S, S+, and that it can be well approximated by the

resonant system in the Z -norm.

In this subsection, we will bound quantities in terms of

‖F‖Z̃t
:= ‖F‖Z + (1 + |t |)−δ‖F‖S,

so that F(t) remains uniformly bounded in Z̃ t under the assumption of

Proposition 3.1.

LEMMA 3.7. Let t > 1. It holds that

‖Π t [Fa, Fb, F c]‖S . (1 + |t |)−1
∑

σ∈S3

‖Fσ(a)‖Z̃t
· ‖Fσ(b)‖Z̃t

· ‖Fσ(c)‖S (3.26)

and

‖Π t [Fa, Fb, F c]‖S+ . (1 + |t |)−1
∑

σ∈S3

‖Fσ(a)‖Z̃t
· ‖Fσ(b)‖Z̃t

· ‖Fσ(c)‖S+

+ (1 + |t |)−1+2δ
∑

σ∈S3

‖Fσ(a)‖Z̃t
· ‖Fσ(b)‖S · ‖Fσ(c)‖S.

(3.27)

In addition,

‖Π t [F,G, H ] − π

t
R[F,G, H ]‖Z . (1 + |t |)−1−20δ‖F‖S‖G‖S‖H‖S. (3.28)

and

‖Π t [F,G, H ]−π
t
R[F,G, H ]‖S . (1+|t |)−1−20δ‖F‖S+‖G‖S+‖H‖S+ . (3.29)
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REMARK 3.8. Using Lemmas 7.1 and 7.4, we directly see that (3.26) and (3.27)

also hold if Π t [Fa, Fb, F c] is replaced by (1 + t)−1R[Fa, Fb, F c].

REMARK 3.9. Note that, in Lemma 3.7, the summation in p is a highly

nontrivial part of the estimate, as opposed to the previous lemmas, which were

essentially concerned with functions of a real variable, and the summation in p

was treated in a crude way via (2.13).

The proof of Lemma 3.7 relies on the following key lemma, which essentially

allows us to extract the resonant interaction for fixed periodic frequencies. The

proof is essentially an adaptation of [66] to our context.

LEMMA 3.10. Assume that

f (x) = ϕ(s−1/4x) f (x), g(x) = ϕ(s−1/4x)g(x), h(x) = ϕ(s−1/4x)h(x)

(3.30)

and that s > 1. It holds that

∣∣∣∣
∫

R2

ei2sηκ f̂ (ξ − η)ĝ(ξ − η − κ)̂h(ξ − κ) dη dκ − π

s
f̂ (ξ)ĝ(ξ )̂h(ξ)

∣∣∣∣
. s−11/10‖ f ‖L2

x
‖g‖L2

x
‖h‖L2

x
. (3.31)

In fact, for θ an integer,

|ξ |θ
∣∣∣∣
∫

R2

ei2sηκ f̂ a(ξ − η) f̂ b(ξ − η − κ) f̂ c(ξ − κ) dη dκ − π

s
f̂ a(ξ) f̂ b(ξ) f̂ c(ξ)

∣∣∣∣
. s−11/10 min

σ∈S3

‖ f σ(a)‖H θ
x
‖ f σ(b)‖L2

x
‖ f σ(c)‖L2

x
. (3.32)

Proof of Lemma 3.10. We may rewrite the integral in equation (3.31) as

∫

R2

ei2sηκ f̂ (ξ − η)ĝ(ξ − η − κ)̂h(ξ − κ) dη dκ

=
∫

R3

f (y1)g(y2)h(y3)

∫

R2

ei[2sηκ−y1(ξ−η)−y2(η+κ−ξ)−y3(ξ−κ)] dη dκ dy1 dy2 dy3

= 1

2s

∫

R3

f (y1)g(y2)h(y3)e
−iξ(y1−y2+y3)e−i((y1−y2)/

√
2s)((y3−y2)/

√
2s)

×
{∫

R2

ei[η+((y3−y2)/
√

2s)]·[κ+((y1−y2)/
√

2s)] dη dκ

}
dy1 dy2 dy3

= π

s

∫

R3

f (y1)g(y2)h(y3)e
−iξ(y1−y2+y3)e−i((y1−y2)/

√
2s)((y3−y2)/

√
2s) dy1 dy2 dy3.
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Therefore, for ξ ∈ R,

∣∣∣∣
∫

R2

ei2sηκ f̂ (ξ − η)ĝ(ξ − η − κ)̂h(ξ − κ) dη dκ − π

s
f̂ (ξ)ĝ(ξ )̂h(ξ)

∣∣∣∣

6

∣∣∣∣
π

s

∫

R3

f (y1)g(y2)h(y3)e
−iξ(y1−y2+y3)

×{e−i((y1−y2)/
√

2s)((y3−y2)/
√

2s) − 1} dy1 dy2 dy3

∣∣∣∣

. s−11/10‖ f ‖L2
x
‖g‖L2

x
‖h‖L2

x
.

This concludes the proof of (3.31).

Now, (3.32) follows from (3.31) and the fact that

∣∣∣∣
∫

R2

ei2sηκ f̂ a(ξ − η) f̂ b(ξ − η − κ) f̂ c(ξ − κ)(καηβ) dη dκ

∣∣∣∣
. s−(3/4)(α+β) min

σ∈S3

‖ f̂ σ(a)‖L1
x
‖ f̂ σ(b)‖L2

x
‖ f̂ σ(c)‖L2

x
,

which is readily verified upon integrating by parts in η and κ . This completes the

proof of Lemma 3.10.

We are now ready to provide the proof of Lemma 3.7.

Proof of Lemma 3.7. Combining (2.5) with Lemma 7.1, we see that

‖Π t [Fa, Fb, F c]‖L2
x,y

6

∥∥∥∥
∑

(p,q,r,s)∈Γ0

|ei t∂xx Fa
q (x)| · |e−i t∂xx Fb

r (x)| · |ei t∂xx F c
s (x)|

∥∥∥∥
l2

p L2
x

. min
j∈{a,b,c}

∥∥∥∥∥∥
‖ei t∂xx F j

p (x)‖l2
p

∏

k 6= j

[∑

p∈Zd

[1 + |p|2]|ei t∂xx F k
p (x)|2

]1/2

∥∥∥∥∥∥
L2

x

,

and therefore

‖Π t [Fa, Fb, F c]‖L2
x,y

. min
j∈{a,b,c}

‖F j‖L2
x,y

∏

k 6= j

[
sup
x∈R

∑

p∈Zd

[1+|p|2]|ei t∂xx F k
p (x)|2

]1/2

.

Using Lemma 7.3, we can conclude that

‖Π t [Fa, Fb, F c]‖L2
x,y

. (1 + |t |)−1 min
j∈{a,b,c}

‖F j‖L2
x,y

∏

k 6= j

‖F k‖Z̃t
. (3.33)
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Using Lemma 7.4, we obtain (3.26). In order to show (3.27), we will apply the

second part of Lemma 7.4. For this, it suffices to prove that

‖x F‖Z . T −δ‖F‖S+ + T 2δ‖F‖S. (3.34)

Indeed, one first observes that it suffices to prove (3.34) for functions

independent of y. Then, we notice that

sup
ξ

[(1 + |ξ |2)|F(x f )|] ∼ sup
M

(1 + M2)‖FQM(x f )‖L∞
ξ
.

Next, for every M, R we get

‖FQM [x(1 − ϕ(x/R)) f ]‖L∞
ξ
. ‖[x(1 − ϕ(x/R)) f ]‖L1

x
. R−1/2‖x2 f ‖L2

6 C R−1/2‖ f ‖S+ .

On the other hand, by invoking (2.10), we get

‖FQM [(xϕ(x/R)) f ]‖L∞
ξ
. ‖QM(x(ϕ(x/R)) f )‖1/2

L2
x
‖x QM [x(ϕ(x/R)) f ]‖1/2

L2
x
.

(3.35)

We now estimate each factor at the right-hand side of the last inequality. By

setting ϕ̃(x) = xϕ(x), we may write for M a dyadic integer

‖QM(x(ϕ(x/R)) f )‖L2
x
= R‖QM((ϕ̃(x/R)) f )‖L2

x
. RM−N‖ f ‖H N

x
.

We next estimate the second factor in the right-hand side of (3.35) as follows:

‖x QM [x(ϕ(x/R)) f ]‖L2
x
. ‖〈x〉2ϕ(x/R)) f ‖L2

x
. R‖ f ‖S.

We conclude the proof of (3.34) by choosing R = T 2δ(1 + M2)2.

We now turn to the proof of (3.28) and (3.29). First decompose

F = Fc + F f , G = Gc + G f , H = Hc + H f ,

where

Fc(x, y) = ϕ(t−1/4x)F(x, y), Gc(x, y) = ϕ(t−1/4x)G(x, y),

Hc(x, y) = ϕ(t−1/4x)H(x, y).

We claim that

‖Π t [F,G, H ] −Π t [Fc,Gc, Hc]‖Z + 1

t
‖R[F,G, H ] − R[Fc,Gc, Hc]‖Z

. (1 + |t |)−21/20‖F‖S‖G‖S‖H‖S, (3.36)
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and

‖Π t [F,G, H ] −Π t [Fc,Gc, Hc]‖S + 1

t
‖R[F,G, H ] − R[Fc,Gc, Hc]‖S

. (1 + |t |)−21/20‖F‖S+‖G‖S+‖H‖S+ . (3.37)

Indeed, with G̃ denoting either Gc or G f (and similarly for H̃ ) and using

(3.26) and (3.33), we obtain that
∥∥∥π

t
R[F f , G̃, H̃ ]

∥∥∥
S

+ ‖Π t [F f , G̃, H̃ ]‖S . (1 + |t |)−1‖F‖S‖G‖S‖H‖S

∥∥∥π
t
R[F f , G̃, H̃ ]

∥∥∥
L2

x,y

+ ‖Π t [F f , G̃, H̃ ]‖L2
x,y

. (1 + |t |)−1‖F f ‖L2‖G̃‖S‖H̃‖S

. (1 + |t |)−5/4‖F‖S‖G‖S‖H‖S.

Using (2.11) allows us to bound the contribution of this term to (3.36). The terms

involving G f and H f can be treated similarly.

Similarly, using (3.26), we see that
∥∥∥π

t
R[F f , G̃, H̃ ]

∥∥∥
S

+ ‖Π t [F f , G̃, H̃ ]‖S . (1 + |t |)−1‖F f ‖S‖G‖S‖H‖S

. (1 + |t |)−5/4‖F‖S+‖G‖S+‖H‖S+ .

This bounds the contribution of terms involving F f to the right-hand side of

(3.36). The contribution of terms involving H f or G f follows similarly.

Therefore, to show (3.28) and (3.29), it suffices to show that
∥∥∥Π t [Fc,Gc, Hc] − π

t
R[Fc,Gc, Hc]

∥∥∥
Z

. (1 + |t |)−15/14‖F‖S‖G‖S‖H‖S

(3.38)

and∥∥∥Π t [Fc,Gc, Hc] − π

t
R[Fc,Gc, Hc]

∥∥∥
S

. (1 + |t |)−15/14‖F‖S+‖G‖S+‖H‖S+ .

(3.39)

The proof of (3.38) follows from Lemma 3.10 and (2.13). Using once again

Lemma 3.10 and (2.13), one directly estimates the L2
x,y contribution to the S-

norm in the left-hand side of (3.39). Using in addition a Leibniz rule, one

estimates the ‖x F‖L2
x,y

and the ‖∂N
y F‖L2

x,y
contributions to the S-norm in the left-

hand side of (3.39) by a use of Lemma 3.10 and (2.13). Finally, the ‖∂N
x F‖L2

x,y

contribution to the S-norm in the left-hand side of (3.39) can be evaluated as

follows. Let us first explain how we evaluate the first derivative. To simplify the

notation, let us set

T [Fc,Gc, Hc] = Π t [Fc,Gc, Hc] − π

t
R[Fc,Gc, Hc].
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Then

∂x T [Fc,Gc, Hc] = T [(∂x F)c,Gc, Hc]+T [Fc, (∂x G)c, Hc]+T [Fc,Gc, (∂x H)c]
+ t−1/4(T [F̃c,Gc, Hc]+T [Fc, G̃c, Hc]+T [Fc,Gc, H̃c]),

where F̃c = ϕ′(t−1/4x)F , and similarly for G̃c and H̃c. We are now in a position to

apply Lemma 3.10 and (2.13) to estimate the first x-derivative contribution to the

S-norm in the left-hand side of (3.39). The estimates for higher-order derivatives

can be performed inductively. This completes the proof of Lemma 3.7.

Finally, we can give the proof of Proposition 3.1.

Proof of Proposition 3.1. For t ∈ [T/4, T ], we may decompose

N t =
∑

A,B,C

max(A,B,C)>T 1/6

N t [Q A F(t), Q B G(t), QC H(t)]

+ Ñ t [Q6T 1/6 F(t), Q6T 1/6 G(t), Q6T 1/6 H(t)]
+Π t [Q6T 1/6 F(t), Q6T 1/6 G(t), Q6T 1/6 H(t)].

The first term above contributes to E1 by Lemma 3.2. The second term contains

E2, as it can be written by Lemma 3.3 as Ẽ1 + E2 with Ẽ1 giving an acceptable

contribution to E1. The third term can be written as

Π t [Q6T 1/6 F(t), Q6T 1/6 G(t), Q6T 1/6 H(t)] = π

t
R[F(t),G(t), H(t)]

+ (Π t [Q6T 1/6 F(t), Q6T 1/6 G(t), Q6T 1/6 H(t)]
− π

t
R[Q6T 1/6 F(t), Q6T 1/6 G(t), Q6T 1/6 H(t)])

−
(π

t
R[Q>T 1/6 F(t),G(t), H(t)] + π

t
R[Q<T 1/6 F(t), Q>T 1/6 G(t), H(t)]

+ π

t
R[Q<T 1/6 F(t), Q<T 1/6 G(t), Q>T 1/6 H(t)]

)
.

The second term on the right-hand side contributes to E1 as per Lemma 3.7

(applied to functions with additional projection Q6T which does not increase

their norm). Note also that, for the S+-norm, we estimate the norm of the

difference as the sum of the norms. The third term on the right-hand side also

contributes to E1, as seen by invoking Remark 3.8 and using the estimate

‖Q>T 1/6 F‖S . T −2/3‖F‖S+ .

This finishes the proof of Proposition 3.1.
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4. The resonant system

Here, we review some useful facts about the resonant system which will be at

the heart of the asymptotic analysis of (1.1). The resonant system is defined for a

vector a = {ap}p∈Zd as (of course, R is very much related to R defined in (1.3),

and properties of R will directly imply similar properties for R)

i∂t ap(t) =
∑

(p,q,r,s)∈Γ0

aq(t)ar (t)as(t) =: R[a(t), a(t), a(t)]p. (4.1)

This is a Hamiltonian system for the symplectic form

Ω({ap}, {bq}) = Im

[∑

p∈Zd

apbp

]
= Re〈−i{ap}, {bp}〉l2

p×l2
p

and Hamiltonian

H(a) := 〈R(a, a, a), a〉l2
p×l2

p
=

∑

(p,q,r,s)∈Γ0

apaqar as =
∑

λ∈Z

∑

µ∈Zd

∣∣∣∣
∑

p−q=µ,
|p|2−|q|2=λ

apaq

∣∣∣∣
2

= ‖eis∆
Td F−1

y a‖4
L4

y,s (T
d×[0,2π ]). (4.2)

In addition, for any function g, we write

d

dt

∑

p∈Zd

g(p)apap = 2
∑

p∈Zd

g(p)Re{ap∂t ap}

= −i
∑

(p,q,r,s)∈Γ0

{g(p)apaqar as − g(p)apaqar as}

and using symmetry, this becomes

d

dt

∑

p∈Zd

g(p)apap = − i

2

∑

p+r=q+s

|p|2+|r |2=|q|2+|s|2

[g(p)+ g(r)− g(q)− g(s)]apaqar as .

Hence, upon taking g(p) ≡ 1, g(p) = p, g(p) = |p|2, we see that we have

conservation of the mass, momentum, and energy:

mass(a) =
∑

p∈Zd

|ap|2, mom(a) =
∑

p∈Zd

p|ap|2, energy(a) =
∑

p∈Zd

|p|2|ap|2.

(4.3)
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Another way to recover the first and last of these formulas is to see that R[a, a, ·]
is a self-adjoint operator on l2

p and that

〈i R[a, a, a], a〉h1
p×h1

p
= 0 (4.4)

for all a ∈ h1
p.

A first simple remark is that the resonant system is well defined for initial data

in h1
p.

LEMMA 4.1. Let 1 6 d 6 4. For any a(0) ∈ h1
p, there exists a unique global

solution u ∈ C1(R : h1
p) of (4.1). In addition, higher regularity is preserved in

the sense that, if a(0) ∈ hs
p, then the solution belongs to C1(R : hs

p).

Note that this is the reason for our restriction to d 6 4 in Theorems 1.1 and 1.2.

When d > 5, the flow map of (4.1) cannot even be C3 in h1
p in any neighborhood

of 0.

Proof. From Lemma 7.1, we see that the mapping a 7→ R[a, a, a] is locally

Lipschitz in h1
p, uniformly on bounded subsets. A contraction mapping argument

gives local well-posedness in hs
p for any s > 1 which is extended to a global

statement in h1
p by (4.3). The preservation of higher regularity is classical.

REMARK 4.2. Small data do not make a difference: using to the symmetry

(an(t)) → (λan(λ
2t)) enjoyed by (4.1), we can normalize the initial data to any

preassigned size δ in hs
p. In addition, by a complex conjugation one can pass

from the ‘focusing’ to the ‘defocusing’ resonant system.

4.1. Estimation of solutions to the resonant system.

LEMMA 4.3. (i) Assume that G0 ∈ S(+) (here, S(+) denotes either S or S+) and

that G evolves according to (1.3). Then, it holds that, for t > 1,

‖G(ln t)‖Z = ‖G0‖Z

‖G(ln t)‖S(+) . (1 + |t |)δ′‖G0‖S(+) .
(4.5)

Besides, we may choose δ′ . ‖G0‖2
Z .

(ii) In addition, we have the following uniform continuity result: if A and B

solve (1.3) and satisfy

sup
06t6T

{‖A(t)‖Z + ‖B(t)‖Z } 6 θ
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and

‖A(0)− B(0)‖S(+) 6 δ,

then, it holds that, for 0 6 t 6 T ,

‖A(t)− B(t)‖S(+) 6 δeCθ2t . (4.6)

Proof of Lemma 4.3. The first equality in (4.5) follows from (4.3). For the

second, we simply use (7.2) and (7.1) to show that, for σ > 0 and fixed ξ ,

‖FR[G,G,G](ξ)‖hσp
. ‖G‖2

Z‖Ĝ(ξ)‖hσp

‖∂ξFR[G,G,G](ξ)‖l2
p
. ‖G‖2

Z‖∂ξ Ĝ(ξ)‖l2
p
.

(4.7)

An application of Gronwall inequality yields the statement about the S-norm in

(4.5). For the S+-norm, we use again (7.2) and (7.1) to get

‖∂ξFR[G,G,G](ξ)‖hσp
. ‖G‖2

Z‖∂ξ Ĝ(ξ)‖hσp
+ ‖G‖Z‖∂ξ Ĝ‖h1

p
‖Ĝ‖hσp

,

‖∂2
ξFR[G,G,G](ξ)‖l2

p
. ‖G‖2

Z‖∂2
ξ Ĝ(ξ)‖l2

p
+ ‖G‖Z‖∂ξ Ĝ‖h1

p
‖∂ξ Ĝ‖h1

p
.

Bounding first the case σ = 1 and applying inhomogeneous Gronwall estimates,

we obtain the bound on the S+-norm in (4.5).

The proof of (4.6) is similar, based on the fact that

∂τ { Âp(ξ)− B̂p(ξ)} = i{R[ Â(ξ), Â(ξ), Â(ξ)]p − R[B̂(ξ), B̂(ξ), B̂(ξ)]p}
= iR[ Â(ξ)− B̂(ξ), Â(ξ), Â(ξ)]p

+ iR[B̂(ξ), Â(ξ)− B̂(ξ), Â(ξ)]p

+ iR[B̂(ξ), B̂(ξ), Â(ξ)− B̂(ξ)]p.

4.2. Special dynamics of the resonant system. In view of Theorems 1.1

and 1.2, it seems interesting to elaborate on some asymptotic dynamics for (4.1).

From (4.2) and (4.3), we have d +3 conserved scalar quantities, and it is not hard

to check that they are in involution. Below, we illustrate some simple dynamics

related to Remark 1.5 and Corollary 1.7, and finally recall the theorem from [50]

leading to the infinite cascade in Corollary 1.4.

REMARK 4.4. To transfer information from a global solution a(t) of (4.1) to a

solution of (1.3), all one needs to do is take an initial data of the form

G0(x, y) = ε0ϕ̌(x)g(y),
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where gp = ap(0). The solution G(t) to (1.3) with initial data G0 as above is

given in Fourier space by

Ĝ p(t, ξ) = ϕ(ξ)ap(ϕ(ξ)
2t).

In particular, if ϕ = 1 on an open interval I , then Ĝ p(t, ξ) = ap(t) for all t ∈ R

and ξ ∈ I .

We start with a simple observation that prevents linear scattering.

LEMMA 4.5. Assume that a solves (4.1) and that

‖∂t a‖l2
p
→ 0 as t → +∞.

Then a ≡ 0.

Proof. This follows from the conservation and coercivity of the mass and

Hamiltonian:

H(a) = 〈i∂ta, a〉l2
p×l2

p
, ‖a(t)‖l2 = mass(a);

hence we see that H(a) = 0, and (4.2) now implies that a ≡ 0.

4.2.1. The case when d = 1. This case can be integrated explicitly:

i∂tap = 2
∑

q∈Z
|aq |2ap − |ap|2ap.

Thus, we see that

ap(t) = eibp tap(0), bp = 2mass(a)− |ap(0)|2. (4.8)

In particular, |ap(t)|2 ≡ |ap(0)|2 remains constant in time, and there can be no

cascade.

4.2.2. Solutions supported on a rectangle. The simplest genuinely multi-

dimensional solution is supported on a rectangle (p0, p1, p2, p3). We refer

to [30, 44] for related (and more elaborate) computations. Letting

a j = ap j
, j ∈ {0, 1, 2, 3} = Z/4Z,

we see that (4.1) becomes

i∂ta j = 2a j+1a j+2a j−1 + 2(|a j+1|2 + |a j+2|2 + |a j−1|2)a j + |a j |2a j .
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An application of Gronwall’s inequality shows that a solution initially supported

in a rectangle will remain supported on this rectangle. Besides, we can see that

mass, Hamiltonian, and momentum in two different directions in the span of

the rectangle are generically independent and thus the Liouville–Arnold–Jost

theorem provides many 4-torii of solutions.

There is a simple subsystem corresponding to the case when

b0(t) := a0(t) = a2(t), b1(t) := a1(t) = a3(t),

which, by an application of Gronwall’s inequality can be seen to be invariant by

the flow. Besides, (4.1) becomes

i∂t b j = −|b j |2b j + 4b j(|b j |2 + |b j+1|2)+ 2b2
j+1b j , j ∈ {0, 1} = Z/2Z.

Without any loss of generality, we can normalize the initial data so that |b0|2 +
|b1|2 = 1 (see Remark 4.2). We now move to polar coordinates, and define

I j = |b j |2 and θ j = arg b j − 4mt, m = mass(b) = |b0|2 + |b1|2.

A direct calculation shows that the system satisfied by (I j , θ j) is given by

θ̇ j = I j − 2I j+1 cos(2(θ j+1 − θ j)), İ j = 4I j I j+1 sin(2(θ j+1 − θ j)). (4.9)

The conservation of mass and Hamiltonian translates in the above variables into

I0+ I1 = 1; h̃(I0, I1, θ0, θ1)= 1

2
(I 2

0 + I 2
1 )−2I0 I1 cos(2(θ0−θ1))= cst. (4.10)

It is easy to see either by direct verification or by noticing that all the above

variable changes are symplectic that the above system (4.9) is Hamiltonian. Let

r = I0, and define ϕ = θ1 − θ0. The system satisfied by (r, ϕ) is the following:

ϕ̇ = (1 − 2r)(1 + 2 cos 2ϕ), ṙ = 4r(1 − r) sin 2ϕ, (4.11)

which is also Hamiltonian, with energy

h(ϕ, r) = r(1 − r)[1 + 2 cos(2ϕ)].

Due to our mass normalization, we have that r ∈ [0, 1] for all time. Notice (also

notice that the energy curve h = 0 supports only two types of orbit, namely given

by cos 2ϕ = − 1

2
and ṙ = ±2

√
3r(1 − r), which leads to the heteroclinic orbit at

the basis of the construction in [30]) that (I0, I1, θ0, θ1) can all be derived from

the knowledge of (ϕ, r) and (4.9).

Looking at the phase diagram inside the rectangle defined by the invariant

lines {r = 0}, {r = 1}, {ϕ = −π/3} and {ϕ = π/3}, we notice that (ϕ = 0,

r = 1

2
) is the only stationary point, and therefore the level sets {h(ϕ, r) = a}
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Figure 1. Phase diagram for h(ϕ, r).

foliate this rectangle as a ranges between the two extreme values: 0 attained at

the boundary and 3/4 attained at the center (see Figure 1).

An application of the Liouville–Arnold–Jost theorem shows that, if we start

with initial data (ϕ = 0, r = 1−δ), then the solution to (4.11) will be periodic in

time, with energy level given by h(0, 1−δ) = 3δ(1−δ). If 2T is the period, then

the value of r(t) will oscillate between the two extreme values of δ and 1 − δ

attained at respectively even and odd multiples of T .

All in all, we have the following.

PROPOSITION 4.6. Let Λ be a rectangle with vertices p1, p2, p3, p4 in Zd . Let

Λ1 = {p1, p3} and Λ2 = {p2, p4} denote the diagonally opposite pairs.

(1) There exist solutions to (4.1) supported on R that are quasiperiodic with up

to four periods (four angle variables).

(2) For any δ > 0, there exists a periodic-in-time solution (an(t)) of (4.1)

supported on R, with period 2T , and satisfying the following:

mass[(an(0)),Λ1] = δ and mass[an(0),Λ2] = 1 − δ,

mass[(an(T )),Λ1] = 1 − δ and mass[an(T ),Λ2] = δ,

where we denote mass[(an),Λ j ] =
∑

n∈Λ j
|an|2, and T is half the period of

motion.

REMARK 4.7. While the above solutions were supported on one rectangle in Zd ,

one can actually construct the same solutions on any (possibly infinite) family

of rectangles {Λl} as long as the system (4.1) decouples to each rectangle. This

can be achieved by making sure that the rectangles Λl do not form resonant
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interactions between them. We refer to [50] for the precise definitions. In

particular, the set Λ1,Λ2, and Λ = Λ1 ∪ Λ2 in Proposition 4.6 can be made

infinite.

The solutions constructed in the above proposition directly yield time-periodic

and quasiperiodic solutions of (1.3) by setting Ĝ p(t, ξ) = 1

2
1[−1,1](ξ)ap(t).

However, such solutions are in H N (R×Td) but not in S or S+. To fix this caveat,

one can use, instead of 1[−1,1](ξ), a smooth even function ψǫ(ξ) satisfying

{
ψǫ(ξ) = 1

2
|ξ | 6 1 − ǫ,

ψǫ(ξ) = 0 |ξ | > 1,
(4.12)

and a smooth nonnegative nonincreasing interpolant on the interval [1, 1 + ǫ].
One can also arrange things so that ‖ψǫ‖S+ 6 3ǫ−2. If the initial data for G is

taken to be Ĝ p(0, ξ) = ǫ3ψǫ(ξ)ap(0), then the obtained solution G(t) is given

by Ĝ p(t, ξ) = ǫ3ψǫ(ξ)ap(ǫ
3ψǫ(ξ)

2t) (see Remark 4.2). Notice that the S-norm

and the S+-norm of G(0) are then O(ǫ).

4.2.3. Infinite cascade. An important result for us is the existence of infinitely

growing solutions to (4.1), as proved in [50, Theorem 1.6 with R = 0]. We

give a self-contained constructive proof of this result that follows from simple

adaptations of the more recent work [45] in order to obtain an explicit global

solution with a lower bound on the growth rate of its Sobolev norms. Our main

result here is the following.

PROPOSITION 4.8. Let d > 2 and s > 1. There exist global solutions to (4.1) in

C(R : hs
p) such that

sup
t>0

‖a(t)‖hs
p
= ∞.

More precisely, for any ε > 0, there exists a solution a(t) ∈ C(R : hs
p) such that

for some sequence of times tk → ∞ we have that

‖a(0)‖hs
p
6 ε, ‖a(tk)‖hs

p
& (log tk)

C (4.13)

for some C > 0.

By Remark 4.4, this yields a global solution of (1.3) in C(R : H s(R × Td))

whose H s norm grows at the rate (4.13). For the NLS equation (1.1) (by

Theorem 1.2), this yields a growth of (log log tk)
C . We have no reason to believe

that the rate of growth in (4.13), or the implied rate for (1.1), is optimal. In

addition, it is tempting to believe that, for any s > 1, there exists a solution in

H∞(R × T2) whose H s norm blows up in infinite time.
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We now move to the proof of Proposition 4.8. We start by noticing that it is

enough to prove the result on Z2, as this gives a solution of (4.1) on Zd satisfying

the same properties. In addition, we note as in [30] that, by an easy change of

unknown,

ap(t) → ap(t)e
iGt , G = 2‖ap‖2

l2
p
, (4.14)

we may reduce (4.1) to the system

i∂tap = −|ap|2ap +
∑

(p,q,r,s)∈Γ ′
0

aqar as, (4.15)

where Γ ′
0 corresponds to the nondegenerate rectangles (p, q, r, s), that is,

rectangles with positive area. Of course, the transformation (4.14) does not

change the hs
p-norms, and it may be easily inverted.

Next, we recall the following result, which is essentially contained in [45,

Theorem 3-bis and Appendix C].

THEOREM 4.9 [30, 45, 46]. Fix γ ≫ 1. There exist C, ν, K > 0 (independent

of γ ) such that. for any N sufficiently large, there exist a finite set SN ⊂ Z2 and

a solution a(N )(t) = (a
(N )

k (t))k∈Z2 of (4.15) such that

• (0Λ) if (p0, q0, r0) form a right-angled triangle (at q0) in SN , then r0+ p0−q0 ∈
SN , that is, a rectangle has either four or (strictly) fewer than three of its

vertices inside SN ;

• (IΛ) SN = Λ1 ∪Λ2 ∪ · · · ∪ΛN ⊂ B(0, [(K N )!]N );

• (I IΛ) Λ j contains 2N−1 points, 1 6 j 6 N;

• (I I IΛ) if Λ j ⊂ B(0, r), then Λ j+1 ⊂ B(0,
√

2r);

• (I VΛ) there exists R > 0 such that Λ1 is contained in a disc of radius R 6
[(K N )!]N and ΛN−1 contains at least two points at distance R2(N−10)/2 from

the origin;

and the solution a(N )(t) = (a
(N )

k (t))k∈Z2 satisfies

• (Ia) for all times, a(N )(t) is supported on SN , and, for any j = 1, . . . , N,

a(N )(t) is constant on Λ j , that is, a
(N )

k (t) = b
(N )

j (t) for k ∈ Λ j ;

• (I Ia) a(N )(t) cascades energy in the sense that there exists TN such that

1 > |b(N )3 (0)| > 1 − δν, |b(N )N−1(TN )| > 1 − δν,

|b(N )j (0)| < δν for j 6= 3 |b(N )j (TN )| < δν for j 6= N − 1,

where δ = e−γ N ;
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• (I I Ia) it holds that 0 < TN < Cγ N 2.

REMARK 4.10. The growth in Proposition 4.8 can be specified to be

‖a(tk)‖hs
p
& exp(cF−1(t c

k )),

where F(N ) is an increasing function lower bounding the radius of a ball

containing the first generation appearing in I VΛ above (here, F−1 denotes the

inverse function of F) and c > 0 is a small constant.

Proof of Proposition 4.8. The needed solution is constructed using the

observation (see [50]) that compactly supported solutions of (4.15) of disjoint

support can be easily superposed by appropriately positioning them in the

lattice Z2.

Fix s > 1 and γ > 2s/ν. We start by applying Theorem 4.9 for every N =
j ∈ N, j > N0(γ ). This gives a family of sets S j = Λ

j

1 ∪Λ j

2 ∪· · ·∪Λ j

j satisfying

(IΛ)− (I VΛ) and solutions a( j)(t) of (4.15) satisfying (Ia)− (I I Ia).

In addition, considering (I I IΛ − I VΛ), we see that we may assume that there

exists 1

2
[(K N )!]N 6 R j 6 [(K N )!]N such that

Λ j
p ⊂ B(0,

√
2

p

R j) for 1 6 p 6 j; Λ
j

j−1 ∩ B(0, 2( j−20)/2 R j)
c 6= ∅. (4.16)

Next, we claim that we can construct by induction a sequence of vectors

{v j } j>N0
⊂ Z2 such that

vN0
= 0, |v j | 6 210 j , (4.17)

and for any nondegenerate rectangle (p0, q0, r0, s0) with three vertices included

in

Ξ =
⋃

j>N0

(v j + S j).

Then {p0, q0, r0, s0} ⊂ Ξ , and we have the following property:

if {p0, q0, r0, s0} ∩ (v j + S j) 6= ∅ and

{p0, q0, r0, s0} ∩ (vk + Sk) 6= ∅ then j = k.
(4.18)

The existence of this sequence of vectors is proved inductively using

Lemma 4.11 below (at the nth step, take Ξn =
⋃

16 j6n−1(S j + v j) which

has O(n2n) elements). We then easily see that any nondegenerate right-angled

triangle in Ξ must belong to exactly one v j + S j . The fact that the fourth

corner of a rectangle necessarily belongs to Ξ follows from the fact that each
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component v j + S j satisfies this property thanks to (0Λ) above. Choosing any

such sequence {v j } j>N0
, we define the following sequence of initial data A(p)(0)

for (4.1) to be given by

A(p)(0) =
∑

N06 j6p

λ j a
( j)

k−v j
(0),

where λ j = (ε/j 10)2− j/2 R−s
j is a normalization factor. Note that, for any v ∈ Z2,

a
( j)

k−v(t) is also a solution of (4.15). Using (Ia − I Ia), (4.16), and (4.17), we

therefore see that

‖A(p+1)(0)− A(p)(0)‖2
hs

p
. p−20ε2,

so that A(p)(0) is a Cauchy sequence of initial data in hs
p, and therefore it

converges to some A(0) ∈ hs
p(Z

2). Moreover, A(0) satisfies the first property

in (4.13).

What remains to show is that the solution A(t) of (4.1) with initial data

A(0) satisfies the second property in (4.13). We start by noticing that, by (4.18)

(recall that (p0, q0, r0, s0) ∈ Γ ′
0 if and only if (p0, q0, r0, s0) are the vertices of a

nondegenerate rectangle), the solution Ap(t) with initial data Ap(0) is given by

Ap(t) =
∑

N06 j6p

λ j a
( j)

k−v j
(λ2

j t).

As a result, we see that, if m > n and k ∈ vn + Sn , then

A
(m)

k (t) = A
(n)

k (t) = λna
(n)

k−vn
(λ2

nt) = λn

∑

16ℓ6n

b
(n)

ℓ (λ
2
nt)1Λn

ℓ
(k − vn). (4.19)

By continuity of the flow, this also holds for A(m)(t) replaced by A(t). In

particular, using (I VΛ, Ia − I Ia) and (4.17), we see that

‖A(λ−2
n Tn)‖2

hs > λ2
n

∑

k∈Λn
n−1

|b(n)n−1(Tn)|2 · |k + vn|2s & n−20ε22n(s−1).

Setting sn = λ−2
n Tn , and noticing that sn . [((10K )n)!]n , which implies that

log log sn . n, finishes the proof.

We now present the lemma justifying the existence of the sequence {v j } above.

LEMMA 4.11. Let Ξ ⊂ Z2 have cardinality O( j2 j), and let S j be the set

obtained from Theorem 4.9 with N = j . Then there exists v ∈ Z2 with |v| 6 210 j
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such that for any nondegenerate right-angled triangle (p0, q0, r0) we have the

following property:

if |{p0, q0, r0} ∩Ξ | > 2, then {p0, q0, r0} ∩ (v + S j) = ∅,
if |{p0, q0, r0} ∩ (v + S j)| > 2, then {p0, q0, r0} ∩Ξ = ∅. (4.20)

Proof. Let L denote the set of directions of lines joining two points of Ξ or two

points of S j , or directions which are orthogonal to such lines. L has cardinality at

most 23 j , and there exists a vector v′ of length at most 24 j which is not contained

in L.

We now define

A = {(p, q, r), p, q ∈ Ξ, r ∈ S j }, B = {(p, q, r), p ∈ Ξ, q, r ∈ S j }.

We claim that, for any (p, q, r) ∈ A, the condition ‘(C1
pqr ) : (p, q, r + λv′)

form a right-angled triangle’ has at most two solutions λ ∈ R and that similarly,

for any (p, q, r) ∈ B, the condition ‘(C2
p,q,r ) : (p, q +λv′, r +λv′) form a right-

angled triangle’ has at most two solutions.

By translation invariance, it suffices to prove the first claim. If the right angle

is at p or q, then the proof is direct, since v′ is neither orthogonal nor parallel to

p − q. If the right angle happens at r + λv′, then r + λv′ belongs to the circle of

diameter (p, q), and a line directed by v′ will intersect this circle in at most two

points.

We now observe that |A| + |B| . 24 j , and therefore we may choose λ ∈ Z ∩
[0, 25 j ] such that (C1

pqr ) and (C2
pqr ) are never satisfied. We now set v = λv′.

5. Modified wave operators

We start the proof of our main results with the slightly easier task of

constructing (modified) wave operators for (1.1). The following implies

Theorem 1.2.

THEOREM 5.1. There exists ε > 0 such that, if U0 ∈ S+ satisfies

‖U0‖S+ 6 ε, (5.1)

and if G̃ is the solution of (1.3) with initial data U0, then there exists U, a solution

of (1.1), such that e−i t∆
R×Td U (t) ∈ C((0,∞) : S) and

‖e−i t∆
R×Td U (t)− G̃(π ln t)‖S → 0 as t → +∞.
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Proof. This follows by a fixed point argument. We let G(t) = G̃(π ln t), and

define the mapping

Φ(F)(t)

= −i

∫ ∞

t

{
N σ [F + G, F + G, F + G] − π

σ
R[G(σ ),G(σ ),G(σ )]

}
dσ

and the space (of course continuing a solution U of (1.1) on the interval (0, 1) is

direct)

A := {F ∈ C1((1,∞) : S) : ‖F‖A 6 ε1}
‖F‖A := sup

t>1

{(1 + |t |)δ‖F(t)‖S + (1 + |t |)2δ‖F(t)‖Z + (1 + |t |)1−δ‖∂t F(t)‖S},

and we claim that, if ε is sufficiently small, there exists ε1 such that Φ defines a

contraction on the complete metric space A endowed with the metric ‖ · ‖A.

We now decompose

N t [F + G, F + G, F + G] − π

t
R[G,G,G]

= E t [G,G,G] + Lt [F,G] + Qt [F,G], (5.2)

where E t [G,G,G] is defined as in (3.1) and

Lt [F,G] := 2N t [G,G, F] + N t [G, F,G],
Qt [F,G] := 2N t [F, F,G] + N t [F,G, F] + N t [F, F, F].

We will show that, whenever F, F1, F2 ∈ A,
∥∥∥∥
∫ ∞

t

Eσ [G,G,G] dσ

∥∥∥∥
A

. ε3,

∥∥∥∥
∫ ∞

t

Lσ [F,G] dσ

∥∥∥∥
A

. ε2‖F‖A,

∥∥∥∥
∫ ∞

t

Qσ [F,G] dσ

∥∥∥∥
A

. ε‖F‖2
A
,

∥∥∥∥
∫ ∞

t

{Qσ [F1,G] − Qσ [F2,G]} dσ

∥∥∥∥
A

. εε1‖F1 − F2‖A.

(5.3)

Once (5.3) is shown, the proof is complete.

Recall that, if ε . δ1/2 and F ∈ A (see Lemma 4.3 for the estimates on G),

(1 + |t |)2δ‖F(t)‖Z + (1 + |t |)δ‖F(t)‖S + (1 + |t |)1−δ‖∂t F(t)‖S . ε1,

‖G(t)‖S+ + (1 + |t |)‖∂t G(t)‖S+ . ε(1 + |t |)δ/100

‖G(t)‖Z . ε.

(5.4)

Using (2.14), the two last inequalities of (5.3) follow.
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We now turn to the first inequality in (5.3). Using (2.14) again (see also (4.7)),

we easily see that

‖E t [G,G,G]‖S 6 ‖N t [G,G,G]‖S + 1

t
‖R[G,G,G]‖S . (1 + |t |)−1+δε3.

This controls the time derivative in the A-norm. Independently, using (5.4) with

(3.5) in Proposition 3.1, we obtain that

∥∥∥∥
∫ ∞

t

Eσ (G,G,G) dσ

∥∥∥∥
S

. ε3(1 + |t |)−δ,
∥∥∥∥
∫ ∞

t

Eσ (G,G,G) dσ

∥∥∥∥
Z

. ε3(1 + |t |)−2δ.

This gives the first inequality in (5.3).

Now we turn to the second inequality in (5.3). First, using (2.14) and (5.4), we

see that

‖N t [G,G, F]‖S + ‖N t [G, F,G]‖S . ε2ε1(1 + |t |)−1+δ,

which is sufficient for the time-derivative component of the A-norm. Using (5.4)

with Lemma 3.2 and Lemma 3.3, it only remains to show that

‖R[G,G, F]‖Z + ‖R[G, F,G]‖Z . (1 + |t |)−2δε2ε1,

‖Π t [G,G, F] − π

t
R[G,G, F]‖Z + ‖Π t [G, F,G] − π

t
R[G, F,G]‖Z

. (1 + |t |)−1−2δε2ε1,

‖Π t [G,G, F]‖S + ‖Π t [G, F,G]‖S . (1 + |t |)−1−δε2ε1.

(5.5)

Using Lemma 7.1, we see that, for any A, B,C ∈ Z ,

‖R[A, B,C]‖Z . ‖A‖Z‖B‖Z‖C‖Z ,

and the first estimate follows from (5.4). The second estimate follows directly

from (3.28). For the third estimate, we use (3.26) to get

(1 + |t |){‖Π t [G,G, F]‖S + ‖Π t [G, F,G]‖S}
. ‖G‖2

Z̃t
‖F‖S + ‖G‖Z̃t

‖F‖Z̃t
‖G‖S . ε2ε1(1 + |t |)−δ.

The proof is complete.
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REMARK 5.2. Observe that a key point in the proof of the existence of a

modified wave operator is the fact that the term

∫ ∞

t

Eσ [G,G,G] dσ

behaves better in the Z -norm than G itself. This allows us to get decay in the

S-norm by assuming the stronger (however, and this is a key point, this norm is

only stronger in x and controls the same amount of periodic derivatives as S) S+

control on the solution of (1.3). We also observe that, in the proof of the existence

of the modified wave operator, the argument is completely perturbative. We shall

see in the next section that, in the proof of modified scattering, the argument is

not completely perturbative and relies on the conservation laws of the resonant

system.

6. Small-data scattering

The goal of this section is to prove a more precise version of Theorem 1.1,

which is the main result of this paper.

THEOREM 6.1. There exists ε > 0 such that, if U0 ∈ S+ satisfies

‖U0‖S+ 6 ε, (6.1)

and if U is the solution of (1.1) with initial data U0, then U exhibits modified

scattering to the resonant dynamics given by (1.3) in the following sense: there

exists G0 ∈ S such that, letting G̃ be the solution of (1.3) with initial data G̃(0) =
G0, it holds that

‖F(t)− G̃(π ln t)‖S → 0 as t → +∞, (6.2)

where F(t) = e−i t∆
R×Td U (t).

6.1. Global bounds. Before we turn to the asymptotic behavior of solutions,

we need to obtain good global bounds. This is the purpose of the following.

PROPOSITION 6.2. There exists ε > 0 such that any initial data u0 ∈ S+

satisfying (6.1) generates a global solution of (1.1). Moreover, for any T > 0, it

holds that

‖F(t)‖X+
T
6 2ε, (6.3)

where F is defined in Theorem 6.1.
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In the case when d 6 3, global existence can be established in a much more

general setting (namely, U0 ∈ H 1(R × Td) is sufficient; see [59]). However, for

d = 4, due to the supercritical nature of the nonlinearity, even global existence

seems to require the decay analysis we perform here. In what follows, we

emphasize that estimate (6.3) relies on the key nonperturbative identity (4.4).

Proof. Let F(t) be as in the statement of the theorem. Local existence theory and

the fact that t 7→ ‖F(t)‖S+ is C1 are classical (see (2.14)); therefore it suffices

to show the a priori estimate

‖F‖X+
T
6 ‖U0‖S+ + C‖F‖3

X+
T

(6.4)

for all T > 0 and all U solving (1.1) such that ‖F‖X+
T
6

√
ε.

We pick 0 6 t 6 T . Clearly, when 0 6 t 6 1, by (2.14),

‖F(t)− F(0)‖S+ . sup
[0,t]

‖∂t F‖S+ . ‖F‖3

X+
T

.

Thus, in the following, we may replace t = 0 by t = 1.

We start by noting that, thanks to (2.14), we have that

‖∂t F‖S = ‖N t [F, F, F]‖S . (1 + |t |)−1‖F(t)‖3
S

‖∂t F‖S+ = ‖N t [F, F, F]‖S+ . (1 + |t |)−1‖F(t)‖2
S‖F(t)‖S+,

which gives the needed bound for ∂t F .

Recall the decomposition in Proposition 3.1. For each fixed ξ , multiplying by

[1 + |p|2] and taking the inner product with F̂(ξ), we obtain, after using (4.4),

that (a key cancellation appears here in that the resonant term R disappears,

leaving only terms that decay faster)

d

ds

1

2
‖F̂p(ξ, s)‖2

h1
p
= 〈Ê1(ξ, p, s), F̂p(ξ, s)〉h1

p×h1
p
+〈∂s Ê3(ξ, p, s), F̂p(ξ, s)〉h1

p×h1
p
.

(6.5)

Using (3.3), we have that, for any ξ ,

[1 + |ξ |2] ·
∣∣∣∣
∫ t

0

〈Ê1(ξ, p, s), F̂p(ξ, s)〉h1
p×h1

p
ds

∣∣∣∣

. ‖F‖3

X+
T

∫ t

0

(1 + |s|)−1−δ ds · sup
[0,t]

‖F(s)‖Z ,
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and, using (2.14) and (3.3),

[1 + |ξ |2]
∣∣∣∣
∫ t

0

〈∂t Ê3(ξ, p, s), F̂p(ξ, s)〉h1
p×h1

p
ds

∣∣∣∣
6 [1 + |ξ |2]|〈Ê3(ξ, p, t), F̂p(ξ, t)〉h1

p×h1
p
|

+ [1 + |ξ |2]|〈Ê3(ξ, p, 0), F̂p(ξ, 0)〉h1
p×h1

p
|

+ [1 + |ξ |2]
∣∣∣∣
∫ t

0

〈Ê3(ξ, p, s), ∂t F̂p(ξ, s)〉h1
p×h1

p

∣∣∣∣
. ‖F‖3

X+
T

· sup
t∈[0,T ]

‖F(t)‖Z + ‖F‖6

X+
T

.

Combining the above estimates and integrating in time, we arrive at

‖F(t)‖Z 6 ‖F(0)‖Z + C‖F‖3

X+
T

.

Independently, using Remark 3.8 and Proposition 3.1, we also see that, so long

as 1 6 t 6 T ,

‖F(t)− F(1)‖S .

∥∥∥∥
∫ t

1

R[F(s), F(s), F(s)]ds

s

∥∥∥∥
S

+
∥∥∥∥
∫ t

1

[E1(s)+ E2(s)] ds

∥∥∥∥
S

,

. (1 + |t |)δ‖F‖3

X+
T

,

and we may proceed similarly to control the S+-norm. This gives the a priori

estimate and finishes the proof.

6.2. Asymptotic behavior. We can now give the proof of the main theorem.

Proof of Theorem 6.1. Define Tn = en/π and Gn(t) = G̃n(π ln t), where G̃n

solves (1.3) with Cauchy data such that G̃n(n) = Gn(Tn) = F(Tn). We claim

that, for all t > Tn ,

‖Gn(t)‖Z + (1 + |t |)−δ‖Gn(t)‖S + (1 + |t |)−5δ‖Gn(t)‖S+

+ (1 + |t |)1−δ‖∂t Gn(t)‖S . ε (6.6)

uniformly in n > 0. Indeed, first, using (4.4) and (6.3), we get that

‖Gn(t)‖Z = ‖G̃n(π ln t)‖Z = ‖G̃n(n)‖Z = ‖F(Tn)‖Z . ε
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uniformly in n. In addition, using also Lemmas 7.1 and 7.4, we see that,

uniformly in n,

‖∂t Gn(s)‖S . s−1‖Gn‖2
Z‖Gn(s)‖S . ε2s−1‖Gn(s)‖S, (6.7)

and since, by (6.3), ‖Gn(Tn)‖S . εT δ
n , an application of Gronwall’s lemma gives,

for ε small enough,

‖Gn(s)‖S . εsδ, s > Tn,

which, combined with (6.7), provides control of the second and last term in (6.6).

We can estimate the S+-norm similarly, using Remark 3.8 and the above control,

to get

‖∂t Gn(s)‖S+ . s−1ε2‖Gn(s)‖S+ + ε3s−1+4δ, ‖Gn(Tn)‖S+ . εT 5δ
n .

This concludes the proof of (6.6).

Now we claim that, for Tn 6 t 6 Tn+4,

‖F(t)− Gn(t)‖S . ε3T −δ
n . (6.8)

Indeed, using (3.1), we see that

F(t)− Gn(t) = i

∫ t

Tn

Eσ [F, F, F] dσ

+ i

∫ t

Tn

{R[F(σ ), F(σ ), F(σ )]−R[Gn(σ ),Gn(σ ),Gn(σ )]}
dσ

σ
.

On the one hand, using (6.3) and Proposition 3.1, we obtain that

∥∥∥∥
∫ t

Tn

Eσ [F, F, F] dσ

∥∥∥∥
S

. ε3T −2δ
n .

On the other hand, letting X (t) = ‖F(t) − Gn(t)‖Z , we see using (7.1) and

Lemma 7.4 that
∥∥∥∥
∫ t

Tn

{R[F(σ ), F(σ ), F(σ )] − R[Gn(σ ),Gn(σ ),Gn(σ )]}
dσ

σ

∥∥∥∥
Z

.

∫ t

Tn

{‖F(σ )‖2
Z + ‖Gn(σ )‖2

Z }X (σ )
dσ

σ
. ε2

∫ t

Tn

X (σ )
dσ

σ
,

so that X (t) is continuous and satisfies

X (Tn) = 0, X (t) . ε3T −2δ
n + ε2

∫ t

Tn

X (σ )
dσ

σ
.
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An application of Gronwall’s lemma gives that X (t). ε3T −2δ
n for Tn 6 t 6 Tn+4.

We now define Y (t) = ‖F(t) − Gn(t)‖S . Proceeding as above, we find that

Y (Tn) = 0 and

Y (t) . ε3T −2δ
n + ε2

∫ t

Tn

Y (σ )
dσ

σ
+
∫ t

Tn

(‖F(σ )‖Z

+ ‖Gn(σ )‖Z )(‖F(σ )‖S + ‖Gn(σ )‖S)X (σ )
dσ

σ

. ε3T −δ
n + ε2

∫ t

Tn

Y (σ )
dσ

σ
.

An application of Gronwall’s lemma yields (6.8).

We now deduce from this that

‖G̃n(0)− G̃n+1(0)‖S . ε3e−nδ/2. (6.9)

Indeed, from (6.8), we have that

‖G̃n(n + 1)− G̃n+1(n + 1)‖S . ε3e−nδ, ‖G̃n‖Z + ‖G̃n+1‖Z . ε.

Using Lemma 4.3 (ii), we deduce (6.9) if ε is small enough. As a consequence,

we see that {G̃n(0)}n is a Cauchy sequence in S and therefore converges to an

element G0,∞ ∈ S which satisfies that

‖G0,∞‖Z . ε, ‖G̃n(0)− G0,∞‖S . ε3e−nδ/2.

Another application of Lemma 4.3 gives

sup
[0,Tn+2]

‖G∞(t)− Gn(t)‖S . ε3e−nδ/4,

where G∞(t) = G̃∞(π ln t), with G̃∞ the solution of (1.3) with initial data

G̃∞(0) = G0,∞. We deduce from this and (6.8) that

sup
Tn6t6Tn+1

‖G∞(t)− F(t)‖S

6 sup
Tn6t6Tn+1

‖G∞(t)− Gn(t)‖S + sup
Tn6t6Tn+1

‖Gn(t)− F(t)‖S

. ε3e−nδ/4.

This finishes the proof.
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7. Additional estimates

LEMMA 7.1. Let R be defined as in (4.1). For every sequence (a1)p, (a2)p, (a3)p

indexed by Zd , d 6 4,

‖R[a1, a2, a3]‖l2
p
6 Cd min

τ∈S3

‖aτ(1)‖l2
p
‖aτ(2)‖h1

p
‖aτ(3)‖h1

p
, (7.1)

and consequently, for any σ > 0,

‖R[a1, a2, a3]‖hσp
6 Cσ,d

∑

τ∈S3

‖aτ(1)‖hσp
‖aτ(2)‖h1

p
‖aτ(3)‖h1

p
. (7.2)

Proof of Lemma 7.1. One can deduce (7.2) from (7.1) by noting that, pointwise,

|pσ R[a1, a2, a3]| .
∑

τ∈S3

R[|pσaτ(1)|, |aτ(2)|, |aτ(3)|],

where pσa denotes the sequence (|p|σap)p and |a| denotes the sequence (|ap|)p.

By duality, we need to prove that

∣∣∣∣
∑

p0+p2=p1+p3

|p0|2+|p2|2=|p1|2+|p3|2

a0
p0

a1
p1

a2
p2

a3
p3

∣∣∣∣ . ‖a0‖l2
p

min
τ∈S3

‖aτ(1)‖l2
p
‖aτ(2)‖h1

p
‖aτ(3)‖h1

p
.

(7.3)

We will reduce (7.3) to a bound on free solutions on the torus Td . Indeed, if we

set

φ j(y) =
∑

p∈Zd

ã j
pei p·y : Td → C, j = 0, 1, 2, 3,

with ã j = a j if j = 1, 3 and ã j = a j for j = 0, 2, then we have the identity

∑

p0+p2=p1+p3

|p0|2+|p2|2=|p1|2+|p3|2

a0
p0

a1
p1

a2
p2

a3
p3

=
∫

Td
y×Tt

u1(y, t)u2(y, t)u3(y, t)u0(y, t) dy dt,

where u j(y, t) = ei t∆
Td (φ j(y)), j = 0, 1, 2, 3. Therefore (7.3) follows from

∣∣∣∣∣

∫

Td
y×Tt

3∏

j=0

ũ j(y, t) dy dt

∣∣∣∣∣ . ‖φ0‖L2
y

min
τ∈S3

‖φτ(1)‖L2
y
‖φτ(2)‖H1

y
‖φτ(3)‖H1

y
, (7.4)

where L2
y and H 1

y denote the corresponding Sobolev norms on Td and ũ j ∈
{u j , u j }. Estimate (7.4) follows from the analysis in [4, 18, 58], as we explain
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below. By a slight abuse of notation, inside this proof, we denote again by PN

the Littlewood–Paley projector on dyadic scales for functions on the torus Td .

By simple renormalization and symmetry arguments (see for example [23, 24]),

the estimate (7.4) can be reduced to

∑

N0.N1

N36N26N1

(N2 N3)
−1

∣∣∣∣
∫

Td+1

PN0
ũ0 PN1

ũ1 PN2
ũ2 PN3

ũ3

∣∣∣∣ .
3∏

j=0

‖φ j‖L2
y
. (7.5)

At this stage, we invoke the classical L4 Strichartz estimates by Bourgain [4],

‖PN ei t∆
Td φ‖L4

y,t (T
d+1) . N s(d)‖φ‖L2

y
, (7.6)

where s(1) = 0, s(d) = ((d − 2)/4) + ε for every ε > 0 when d = 2, 3,

and s(4) = (d − 2)/4 = 1

2
when d = 4. Using the Galilean invariance of the

Schrödinger equation (see for example [57, page 338]), one deduces from (7.6)

the bound

‖PC ei t∆
Td φ‖L4

y,t (T
d+1) . N s(d)‖φ‖L2

y
, (7.7)

where C is a cube of Zd with side length N > 1 and PC is the corresponding

Fourier projector operator. Using (7.7), one gets a bilinear refinement of (7.6),

‖(PN1
ei t∆

Td φ1)(PN2
ei t∆

Td φ2)‖L2
y,t (T

d+1) . N
2s(d)

2 ‖φ1‖L2
y
‖φ2‖L2

y
, (7.8)

where N2 6 N1. Indeed, to get (7.8), it suffices to decompose the dyadic ring

of size N1 into cubes of size N2, to use an orthogonality argument in the spatial

variable, and to invoke (7.7). Now, we estimate the left-hand side of (7.5), by

using the Cauchy–Schwarz inequality (pairing PN0
u0 PN2

u2 and PN1
u1 PN3

u3) in

two ways depending on whether N2 6 N0 or not and by invoking (7.8), as

follows:
∑

N0∼N1
N36N26N0

(N2 N3)
−1(N2 N3)

2s(d)

3∏

j=0

‖PN j
φ j‖L2

y
. (7.9)

Since, for d = 1, 2, 3, we have 2s(d) < 1, the expression (7.9) sums properly.

This ends the proof for d = 1, 2, 3.

For d = 4, the above argument does not suffice to conclude, because of a lack

of summability in N2 and N3. This causes a significant difficulty, which may be

resolved by using the more recent works [18, 58], as we now explain. In [18] the

four-dimensional estimate (7.6) is improved to

‖PN ei t∆
T4φ‖L

q
y,t (T

4+1) . N 2−(6/q)‖φ‖L2
y
, q > 7

2
. (7.10)
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Observe that, for d = 4, the bound (7.6) follows from (7.10) via an interpolation

with the elementary L∞ bound

‖PN ei t∆
T4φ‖L∞

y,t (T
4+1) . N 2‖φ‖L2

y
. (7.11)

With (7.10) in hand, we can substitute (7.7) by the more refined bound

‖PC ei t∆
Td φ‖L4

y,t (T
4+1) . N 1/2

(
M

N

)δ
‖φ‖L2

y
, (7.12)

for a suitable δ > 0, where now C is a ‘rectangle’ of the form

C = {n ∈ Z4 : |n − n0| 6 N , |a · n − c0| 6 M}

for some n0, c0 ∈ R4 and a ∈ R4, |a| = 1. The proof of (7.12) follows by

an interpolation between (7.10) and an L∞ bound of type (7.11) (even though

elementary, the L∞ bound is sensitive to the size of C , which is crucial for getting

the improvement (7.12)). Using (7.12), we may invoke [58, Proposition 2.8], to

get the following improvement of (7.8) for d = 4:

‖(PN1
ei t∆

T4φ1)(PN2
ei t∆

T4φ2)‖L2
y,t (T

d+1) . N2

(
N2

N1

+ 1

N2

)δ
‖φ1‖L2

y
‖φ2‖L2

y
, (7.13)

for some δ > 0, where again N2 6 N1. Compared to the proof of (7.8), the proof

of (7.13) uses an additional almost orthogonality argument in the time variable

via an application of (7.12) with M = max(1, N 2
1 /N2) (and N = N1). Using

(7.13), we replace (7.9) (for d = 4) by

∑

N1∼N0
N36N26N0

(
N2

N0

+ 1

N2

)δ (
N3

N1

+ 1

N3

)δ 3∏

j=0

‖PN j
φ j‖L2

y
.

This expression now sums properly. This completes the proof of Lemma 7.1.

Next, we recall the one-dimensional bilinear Strichartz estimates.

LEMMA 7.2. Assume that λ > 10µ > 1 and that u(t) = ei t∂xx u0, v(t) = ei t∂xxv0.

Then, we have the bound

‖QλuQµv‖L2
x,t (R×R) . λ−1/2‖u0‖L2

x (R)
‖v0‖L2

x (R)
. (7.14)

We refer to [28] for the proof of Lemma 7.2 (see also [12] for the earlier

higher-dimensional analog of (7.14) and [47] for recent closely related

estimates).
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LEMMA 7.3. Assume that N > 7. Then we have the bound

sup
x∈R

∑

p∈Zd

[1 + |p|2]|ei t∂xx Fp(x)|2 . 〈t〉−1(‖F‖2
Z + 〈t〉−1/4(‖x F‖2

L2 + ‖F‖2
H N )).

(7.15)

Proof. It suffices to prove the statement for t > 1; for |t | 6 1 it simply follows

from the Sobolev embedding, and for t 6 −1 it follows by symmetry. We first

claim that there exists a constant c such that

|ei t∂xx f (x)− c
e−i(x2/4t)

√
t

f̂
(
− x

2t

)
| . t−3/4‖x f ‖L2 . (7.16)

Indeed, one can write

ei t∂xx f (x) = e−i(x2/4t)

∫

R

ei tη2

f̂
(
η − x

2t

)
dη

= e−i(x2/4t)

( −∞∑

l=−1

Il(x, t)+ I (x, t)

)
,

where

Il(x, t) :=
∫

R

ei tη2

φ(2−lη) f̂
(
η − x

2t

)
dη,

I (x, t) :=
∫

R

ei tη2

φ̃(η) f̂
(
η − x

2t

)
dη,

for suitable bump functions φ and φ̃ such that the support of φ does not meet

zero. By a crude estimate, we first get that

|Il(x, t)− f̂
(
− x

2t

) ∫

R

ei tη2

φ(2−lη) dη| . 23l/2‖∂ξ f̂ ‖L2 . (7.17)

On the other hand, an integration by parts gives that

Il(x, t)− f̂
(
− x

2t

) ∫

R

ei tη2

φ(2−lη) dη

= 1

2i t

∫

R

ei tη2

∂η

[
1

η
φ(2−lη)

(
f̂
(
η − x

2t

)
− f̂

(
− x

2t

))]
dη.

Therefore
∣∣∣∣Il(x, t)− f̂

(
− x

2t

) ∫

R

ei tη2

φ(2−lη) dη

∣∣∣∣ . t−12−(l/2)‖∂ξ f̂ ‖L2 . (7.18)
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One also gets a similar bound for I (x, t) (with l = 0). Since
∫
R

ei tη2

dη = ct−1/2,

using (7.17) for l 6 − 1

2
log2 t and (7.18) otherwise, summing over l, we recover

(7.16).

Now, we deduce that

t
∑

p∈Zd

|p|6t1/8

[1 + |p|2]|ei t∂xx Fp(x)|2 .
∑

p∈Zd

[1 + |p|2]
∣∣∣F̂p

(
− x

2t

)∣∣∣
2

+ t−1/2
∑

p∈Zd

|p|6t1/8

[1 + |p|2]‖x Fp‖2
L2 .

On the other hand, we also have that

t
∑

|p|>t1/8

[1 + |p|2]|ei t∂xx Fp(x)|2 . t1−((N−2)/4)
∑

p∈Zd

(1 + |p|2)N−1‖Fp‖2
H1

. t−1/4‖F‖2
H N

provided that N > 7. This finishes the proof of Lemma 7.3.

We now turn to our basic lemma allowing one to transform suitable L2
x,y

bounds to bounds in terms of the L2
x,y-based spaces S and S+. We define an LP-

family Q̃ = {Q̃ A}A to be a family of operators (indexed by the dyadic integers)

of the form

̂̃Q1 f (ξ) = ϕ̃(ξ) f̂ (ξ), ̂̃Q A f (ξ) = φ̃

(
ξ

A

)
f̂ (ξ), A > 2

for two smooth functions ϕ̃, φ̃ ∈ C∞
c (R), with φ̃ ≡ 0 in a neighborhood of zero.

We define the set of admissible transformations to be the family of operators

{TB} where, for any B,

TB = λB Q̃ B, |λB | 6 1

for some LP-family Q̃. Given an trilinear operator T and a set Λ of 4-tuples of

dyadic integers, we define an admissible realization of T at Λ to be an operator

of the form

TΛ[F,G, H ] =
∑

(A,B,C,D)∈Λ
TDT[T ′

A F, T ′′
B G, T ′′′

C H ]

for admissible transformations T , T ′, T ′′, T ′′′.
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A norm B is called admissible if, for any admissible transformation T =
{TA}A, it holds that ∥∥∥∥∥

∑

A

TA F

∥∥∥∥∥
B

. ‖F‖B. (7.19)

We note that all norms that we consider are admissible.

LEMMA 7.4. Assume that a trilinear operator T satisfies

ZT[F,G, H ] = T[Z F,G, H ] + T[F, ZG, H ] + T[F,G, Z H ], (7.20)

for Z ∈ {x, ∂x , ∂y1
, . . . , ∂yd

}, and let Λ be a set of 4-tuples of dyadic integers.

With the notation introduced above, assume also that, for all admissible

realizations of T at Λ,

‖TΛ[Fa, Fb, F c]‖L2 6 K min
σ∈S3

‖Fσ(a)‖L2‖Fσ(b)‖B‖Fσ(c)‖B (7.21)

for some admissible norm B such that the Littlewood–Paley projectors P6M

(both in x and in y) are uniformly bounded on B. Then, for all admissible

realizations of T at Λ,

‖TΛ[Fa, Fb, F c]‖S . K max
σ∈S3

‖Fσ(a)‖S‖Fσ(b)‖B‖Fσ(c)‖B. (7.22)

Assume in addition that, for Y ∈ {x, (1 − ∂xx)
4},

‖Y F‖B . θ1‖F‖S+ + θ2‖F‖S. (7.23)

Then, for all admissible realizations of T at Λ,

‖TΛ[Fa, Fb, F c]‖S+ . K max
σ∈S3

‖Fσ(a)‖S+(‖Fσ(b)‖B + θ1‖Fσ(b)‖S)‖Fσ(c)‖B

+ θ2 K max
σ∈S3

‖Fσ(a)‖S‖Fσ(b)‖S‖Fσ(c)‖B. (7.24)

Proof. The main information we need comes from the computations of the

simple commutators

[x, Q̃ A] = A−1 Q̃ ′
A, (7.25)

where, if Q̃ corresponds to the family (ϕ̃, φ̃), Q̃ ′ corresponds to (ϕ̃′, φ̃′). Clearly

(7.25) defines admissible transformations. We may assume that

‖Fa‖B = ‖Fb‖B = ‖F c‖B = 1, K = 1.

We let TΛ be an arbitrary admissible realization of T atΛ (this realization may

change from line to line, or even in the same line). For Z ∈ {∂x , ∂y1
, . . . , ∂yd

}, let
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Pν be the projector associated to |Z | (for example Pν = φ(|Z |/ν)). Then we can

decompose

PνTΛ[Fa, Fb, F c] = PνΣν,low + PνΣν,high,

where

Σν,low := TΛ[P6νFa,P6νFb,P6νF c]

and

Σν,high := TΛ[P>2νFa, Fb, F c] + TΛ[P6νFa,P>2νFb, F c]
+TΛ[P6νFa,P6νFb,P>2νF c].

Using the boundedness of Pν on L2, we note that, using the Leibniz rule

(7.20), for s a positive integer,

‖Z sPνΣν,low‖L2 . ν−s‖Z 2sPνΣν,low‖L2

. ν−s
∑

α,β,γ6ν

∑

t+u+v62s

‖TΛ[Z tPαFa, Z uPβFb, Z vPγ F c‖L2 .

Assume first that α > β, γ . Using (7.21), and summing over β, γ ,

ν−s
∑

β,γ6α6ν

∑

t+u+v62s

‖TΛ[Z tPαFa, Z uPβFb, Z vPγ F c‖L2

.
∑

α6ν

(α
ν

)s

‖PαZ s Fa‖L2 .

The above sum is in l2
ν . We may proceed similarly for the case when β > α, γ

and the case when γ > α, β.

To treat Σν,high , we simply use (7.21) to get

‖Z sPνTΛ[P>2νFa, Fb, F c]‖L2 . νs‖TΛ[P>2νFa, Fb, F c]‖L2 . νs‖P>2νFa‖L2,

which is in l2
ν , thanks to a standard argument.

This already accounts for most of the components of the S-norm, except for

the term involving x . We first note that

xTΛ[F,G, H ] = TΛ[x F,G, H ] + TΛ[F, xG, H ] + TΛ[F,G, x H ]
+

∑

(A,B,C,D)∈Λ
[x, TD]T[T ′

A F, T ′′
B G, T ′′′

C H ]

+
∑

(A,B,C,D)∈Λ
TDT[[x, T ′

A]F, T ′′
B G, T ′′′

C H ]
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+
∑

(A,B,C,D)∈Λ
TDT[T ′

A F, [x, T ′′
B ]G, T ′′′

C H ]

+
∑

(A,B,C,D)∈Λ
TDT[T ′

A F, T ′′
B G, [x, T ′′′

C ]H ].

In view of (7.25), we thus see that

xTΛ[F,G, H ] = TΛ[x F,G, H ] + TΛ[F, xG, H ] + TΛ[F,G, x H ]
+TΛ[F,G, H ]. (7.26)

At this point, we see that all terms in (7.26) are of the form already controlled

before. This finishes the proof of (7.22).

Now, from (7.26) and (7.22), we see directly that

‖xTΛ[Fa, Fb, F c]‖S . sup
σ∈S3

‖Fσ(a)‖S+‖Fσ(b)‖B‖Fσ(c)‖B

+ sup
σ∈S3

‖Fσ(a)‖S‖x Fσ(b)‖B‖Fσ(c)‖B,

and, assuming (7.23), we can bound this by the right-hand side of (7.24). The

term of the S+-norm where x is replaced by (1 − ∂xx)
4 can be treated similarly

to the above analysis. This completes the proof of Lemma 7.4.

We shall also need the following multilinear estimate.

LEMMA 7.5. Let

1

p
= 1

q
+ 1

r
+ 1

s
, 1 6 p, q, r, s 6 ∞.

Then
∥∥∥∥
∫

R3

ei xξm(η, κ) f̂ (ξ − η)ĝ(ξ − η − κ)̂h(ξ − κ) dη dκ dξ

∥∥∥∥
L p

. ‖F−1m‖L1(R2)‖ f ‖Lq ‖g‖Lr ‖h‖Ls .

The proof of Lemma 7.5 follows from an application of the Parseval identity,

the Hölder inequality, and an approximation argument.
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Supér. (4) 38 (2005), 255–301.

[25] R. Carles, ‘Geometric optics and long range scattering for one-dimensional nonlinear

Schrödinger equations’, Commun. Math. Phys. 220(1) (2001), 41–67.

[26] R. Carles and E. Faou, ‘Energy cascade for NLS on the torus’, Discrete Contin. Dyn. Syst.

32(6) (2012), 2063–2077.

[27] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10

(New York University, Courant Institute of Mathematical Sciences, New York; American

Mathematical Society, Providence, RI, 2003).

[28] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, ‘Global well-posedness for

Schrödinger equations with derivative’, SIAM J. Math. Anal. 33 (2001), 649–669.

[29] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, ‘Global well-posedness and

scattering for the energy-critical nonlinear Schrödinger equation in R3’, Ann. of Math. (2)

167 (2008), 767–865.

[30] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, ‘Transfer of energy to high

frequencies in the cubic defocusing nonlinear Schrödinger equation’, Invent. Math. 181(1)

(2010), 39–113.

[31] J. Colliander, S. Kwon and T. Oh, ‘A remark on normal forms and the ‘upside-down’

I-method for periodic NLS: growth of higher Sobolev norms’, J. Anal. Math 118(1) (2012),

55–82.

[32] P. Deift and X. Zhou, ‘Long-time asymptotics for solutions of the NLS equation with initial

data in a weighted Sobolev space, Dedicated to the memory of Jürgen K. Moser’, Comm.

Pure Appl. Math. 56(8) (2003), 1029–1077.

[33] J.-M. Delort, ‘Existence globale et comportement asymptotique pour l’équation de Klein–
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[72] S. Kuksin and J. Pöschel, ‘Invariant Cantor manifolds of quasi periodic oscillations for a

nonlinear Schrödinger equation’, Ann. of Math. (2) 143 (1996), 149–179.

[73] A. Majda, D. McLaughlin and E. Tabak, ‘A one-dimensional model for dispersive wave

turbulence’, J. Nonlinear Sci. 7(1) (1997), 9–44.

[74] T. Ozawa, ‘Long range scattering for nonlinear Schrödinger equations in one space

dimension’, Commun. Math. Phys. 139 (1991), 479–493.

[75] B. Pausader, N. Tzvetkov and X. Wang, ‘Global regularity for the energy-critical NLS on
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