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Modified Sequentially Rejective Multiple 

Test Procedures 

JULIET POPPER SHAFFER* 

Suppose that n hypotheses Hl, H2,. . . , Hn with associated 

test statistics Tl, T2,. . . , T, are to be tested by a procedure 

with experimentwise significance level (the probability of 

rejecting one or more true hypotheses) smaller than or 

equal to some specified value a. A commonly used pro- 

cedure satisfying this condition is the Bonferroni (B) pro- 

cedure, which consists of rejecting H, for any i, iff the 

associated test statistic Ti is significant at the level a' = 

aln. Holm (1979) introduced a modified Bonferroni pro- 
cedure with greater power than the B procedure. Under 

Holm's sequentially rejective Bonferroni (SRB) proce- 
dure, if any hypothesis is rejected at the level a' = a/n, 

the denominator of a' for the next test is n - 1, and the 
criterion continues to be modified in a stagewise manner, 
with the denominator of a' reduced by 1 each time a hy- 

pothesis is rejected, so that tests can be conducted at suc- 
cessively higher significance levels. Holm proved that the 
experimentwise significance level of the SRB procedure is 

<a, as is that of the original B procedure. Often, the 

hypotheses being tested are logically interrelated so that 

not all combinations of true and false hypotheses are pos- 
sible. As a simple example of such a situation suppose, 

given samples from three distributions, we want to test the 

three hypotheses of pairwise equality: pi = ,u' (i < i' 

1, 2, 3), where ,ai is the mean of distribution i. It is easily 

seen from the relations among the hypotheses that if any 
one of them is false, at least one other must be false. Thus 

there cannot be one false and two true hypotheses among 

these three. If we are testing all hypotheses of pairwise 

equality with more than three distributions, there are many 
such constraints. As another example, consider the hy- 

potheses of independence of rows and columns of all 2 x 

2 subtables of a K x L contingency table. It is shown that 

if one such hypothesis is false, then at least (K - 1)(L - 

1) must be false. When there are logical implications among 
the hypotheses and alternatives, as in the preceding ex- 

amples, Holm's SRB procedure can be improved to obtain 

a further increase in power. This article considers methods 

for achieving such improvement. One way of modifying 
the SRB method is as follows: Given that j - 1 hypotheses 
have been rejected, the denominator of a', instead of being 
set at n - j + 1 for the next test as in the SRB procedure, 
can be set at tj, where tj equals the maximum number of 

hypotheses that could be true, given that at least j - 1 

hypotheses are false. Obviously, t, is never greater than n 
- j + 1, and for some values of j it may be strictly smaller, 
as for j = 2 in the first example. Then this modified se- 

quentially rejective Bonferroni (MSRB) procedure will'never 
be less powerful (and typically will be more powerful) than 

the SRB procedure while (as is proved in the article) main- 

* Juliet Popper Shaffer is Senior Lecturer, Department of Statistics, 

University of California, Berkeley, CA 94720. 

taining an experimentwise significance level -<a. The MSRB 

procedure is readily applicable to a wide variety of standard 

and nonstandard problems. A number of examples are 

given, and extensions and generalizations are discussed. It 

is pointed out that the methods may be adapted in some 

circumstances to the use of non-Bonferroni multiple test 

procedures. 

KEY WORDS: Multiple comparisons; Simultaneous in- 
ference; Bonferroni tests; Stagewise multiple tests; Power; 
Experimentwise error rate. 

1. INTRODUCTION 

Suppose that n hypotheses Hl, H2, . . ., Hn with asso- 

ciated test statistics T1, T2, . . . , Tn are to be tested by a 

procedure with an experimentwise significance level smaller 
than or equal to some specified value a, where the exper- 
imentwise significance level is defined as the supremum 

(over all joint distributions F of the Ti that are possible 
under the assumed model) of the probability of rejecting 
one or more true hypotheses. A commonly used procedure 
satisfying this condition is the Bonferroni (B) procedure, 
based on the simple Bonferroni inequality. The B proce- 
dure consists of rejecting Hi, for any i, if and only if the 

significance probability of Ti-that is, PrH,(Ti ? ti)-is < 

aln, where ti is the observed value of Ti and the Ti are 

defined so that large values lead to rejection. 
Holm (1977, 1979) introduced a class of sequentially 

rejective multiple test methods that includes a modified 
Bonferroni procedure with greater power than the B pro- 

cedure. Holm's sequentially rejective Bonferroni (SRB) 
procedure modifies the criterion in a stagewise manner, as 

follows: Let Yi = PrH,(Ti 
- ti), let {Y(i)} be the order sta- 

tistics of the Y1, Y(1) c s' c Y(n), and let H(i) be the hy- 
pothesis with test statistic Y(i), i = 1, . . . , n. Then H(1) is 

rejected iff Y(1) c a/n; given that H(1) is rejected, H(2) is 

rejected iff Y(2) ? aI(n - 1); . . ; given that H(,-1) is 

rejected, H(,) is rejected iff Y(j) a a/(n - j + 1); and so 

forth. Acceptance of H(k) implies acceptance of H(1) for all 
1 > k, 1 c j, k, 1 c n. Holm proved that the experimentwise 

significance level of the SRB procedure is a, the same as 

that of the original B procedure. 
It will be assumed that no hypothesis in the set is equiv- 

alent to the intersection of any of the others-that is, the 

hypotheses are minimal (Gabriel 1969). A decision on any 
intersection hypothesis of interest is made by rejecting it 

iff at least one of the hypotheses H1, H2,. . . , Hn included 

in the intersection is rejected; clearly, these decisions can 
be added to the decisions with respect to Hl, H2,.. . Hn 
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without changing the experimentwise significance level of 
the total procedure. 

A procedure 3 will be called uniformly more powerful 
than another procedure 6* for testing a specific set S of 
hypotheses if the probability of rejecting each false hy- 
pothesis in S under 3 is greater than or equal to the prob- 
ability of rejecting it under 3*, for all joint distributions 
of the T, that are possible under the assumed model, with 
strict inequality for at least one false hypothesis in S under 
some distribution. The SRB procedure is obviously uni- 
formly more powerful than the B procedure for H1, H2, 

. . . , H, and their intersections; in fact it has the stronger 

property of always rejecting hypotheses that are rejected 
under B and sometimes rejecting additional ones. 

Let I = {il, i2, . . , iJ} be the set of indexes of the 
hypotheses that are true in any particular application. In 
Holm's terminology, the situation is one of "free combi- 
nations" if the set {H,: i E I} can be any subset of the n 
hypotheses. If these conditions are not satisfied, Holm's 
procedure remains valid, but it is possible to improve it to 
obtain a further increase in power. The purpose of this 
article is to show how the improvement can be achieved 
and to illustrate its extent in a number of different appli- 
cations. 

2. A MODIFIED SEQUENTIALLY REJECTIVE 
BONFERRONI PROCEDURE 

The SRB procedure described in Section 1 can be mod- 
ified in the following way: At stage j, instead of rejecting 

H(1) if Y(1) -c al(n - j + 1), reject H(,) if Y(1) c alt1, 

where t, equals the maximum number of possibly true hy- 
potheses, given that at least j - 1 hypotheses are false. 
When there are relationships of logical implication among 
the hypotheses, usually the number m of true hypotheses 
cannot take on certain values between 0 and n, since the 
falsity of j - 1 hypotheses implies the falsity of some ad- 

ditional hypotheses for some values of j, as will be illus- 
trated in Section 3. For those values of j, t, will be strictly 
less than n - j + 1, and since t, is obviously never greater 
than n - j + 1, the modified SRB (MSRB) procedure 
will be at least as powerful as the SRB procedure, and in 
most applications with restricted combinations it will be 

uniformly more powerful. 
Given some specific application, let A = {a,: i = 1, . 

r} be the set of possible numbers of true hypotheses, 0 < 

a1 < a2 < < ar c n, and let J be the associated set of 
possible values of t,. Then either J = A or, more typically, 

J is the set of all nonzero values of A, since t1 = 

max{,j?n i+} a, for all stages j. 

That the MSRB procedure has experimentwise signifi- 
cance level -<a follows directly from Holm's (1979) proof 
for the SRB procedure. The basic idea behind Holm's proof 
is that if m hypotheses are true, an error must occur at or 

before stage n - m + 1. Therefore, Pr(no errors) - Pr(Y, 
> a/m for all i E I) = 1 - Pr(Y, < a/m for some i E I) 

?-1 - 1E,I a/m = 1 - a. In Section 3 some applications 

in which the MSRB procedure may be considerably more 
powerful than the SRB procedure are presented, in Section 
4 possible further modifications to achieve still greater power 
are given, and in Section 5 specific illustrations of the use 
of the MSRB are provided. 

3. APPLICATIONS 

3.1 Comparisons Among k Distributions 

Consider a class of distributions G E .9) and a function 
f defined over 9 and taking on at least k distinct values. 
Let G1, G2, . . , Gk be k unknown distributions in X, and 
consider the k(k - 1)12 hypotheses 

f(G,) = f(G'), i < i'. (3.1) 

The family may or may not restrict the distributions to 
some specified form, such as normal; the function may be 
real-valued, such as the mean or variance, or, at the other 
extreme, f(G) may equal G. Given any set of distributions, 
they will be said to be homogeneous or different according 
to whether or not their values of f are equal. The possible 
numbers of true hypotheses can be determined from the 
properties of equivalence relationships, as illustrated in 
Table 1 for k = 4, in which case the number of hypotheses 
n = 6. By considering all possible configurations of true 
and false hypotheses, as in Table 1, we see, for example, 
that all six hypotheses may be true, but that if any hy- 
pothesis is false, at least three must be false, since if any 
two distributions differ, at least one of these must differ 
from the remaining ones. As shown, it is also possible to 
have 2, 1, or 0 true hypotheses, so A = {O, 1, 2, 3, 6} in 
this case. 

The possible numbers of true hypotheses, and thus the 
values of t1, for 3 ? k - 10 are given in Table 2. Values 
for k > 10 can be obtained from the recursion formula 

k 

S(k) = U {(2) + x: X S(k - j)} (3.2) 
]=1 

where S(k) is the set of possible numbers of true hy- 

Table 1. Determining Possible Numbers of True Hypotheses for the Application in Section 3.1, I/lustrated for k = 4 

Number of Number of Maximum number of 
Partitions of 4 populations Representation true hypotheses false hypotheses true hypotheses 

1. [(1, 2, 3, 4)] (4) (2) = 6 0 6 (partition 1) 

2. [(1)(234)], [(2)(134)], etc. (3)(1) (2) 3 1-3 3 (partition 2) 
3. [(12)(34)], [(13)(24)], etc. (2)(2) (2) + (2) = 2 4 2 (partition 3) 
4. [(12)(3)(4)], etc. (2)(1)(1) () = 1 5 1 (partition 4) 
5. [(1)(2)(3)(4)] (1)(1)(1)(1) 0 6 0 (partition 5) 
General (kl)(k2) (kt) 7k,=2 (") or 

0 if all k, - 1 
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Table 2. Possible Numbers of True Hypotheses for the Application in 
Section 3.1, With k Distributions (3 s k s 10) 

Number of Number of 
distributions hypotheses Possible numbers 

(k) (n) of true hypotheses 

3 3 0, 1,3 
4 6 0-3, 6 
5 10 0-4, 6, 10 
6 15 0-4, 6, 7, 10, 15 
7 21 0-7,9, 10, 11, 15,21 
8 28 0-13, 15, 16, 21, 28 
9 36 0-13, 15, 16, 18, 21, 22, 28, 36 

10 45 0-18, 20, 21, 22, 24, 28, 29, 36, 45 

NOTE: To use the MSRB procedure for the application in Section 3.4, determine the set A = 

{ai} of possible numbers of true hypotheses corresponding to the relevant values of K and L. 
Then, at stage j, for i = 1, , (2K) . (L) test the hypothesis H(/) at significance level alt1, where 

ti = maX{a,n-j1+1} ai. 

potheses with k distributions, k 2 2, and S(O) = S(1) = 

{O}. By testing intersections of these pairwise hypotheses 
as described in Section 1, tests of all of the 2k - k - 1 
hypotheses of subset homogeneity of the Gi can be ob- 
tained. 

Formula (3.2) can be proved by induction. It obviously 
holds for k = 2. Assuming it holds for k - 1 distributions, 
when a new distribution is added to those k - 1, it will 
be one of a set of j homogeneous distributions for some j 
E {1, 2, . . . , k} and the other k - j distributions will be 

different from those. Therefore, the set of possible num- 
bers of true hypotheses (3.1), given j, is {(2) + x: x E S(k 
- j)}, and S(k) = the union of these sets over j E {1, 2, 
* , k}. 

Of course, many other methods have been proposed for 
this situation [see, e.g., Einot and Gabriel (1975), and note 
the modifications described in Sec. 4 here and other pos- 
sibilities indicated in Sec. 5]. Some detailed comparisons 
with other approaches can be found in Shaffer (1984), where 
it is shown that the method described here is competitive 
with other methods in general use. 

3.2 Comparisons Within Several 
Sets of Distributions 

Let fi be a function, defined over a class of distributions 

Gi E gi, which takes on at least K' distinct values. Suppose 
there are p sets of unknown distributions Gi1, Gi2, . . 

Gik (i = 1,. . . , p), where EIfg1ki = K', and consider the 

P= l ki(ki - 1)/2 within-set hypotheses 

fi(Gij) = fi(Gij), i <ji (3.3) 

From (3.2) we obtain the recursion formula 

W(kl, k2, ,kp) = Xl + X2 + *** + xp: Xi E S(ki), 

i = 1, 2, . . . ,p, (3.4) 

where W(kl, k2, . . ., kp) is the set of possible numbers 
of true within-set hypotheses (3.3) with ki distributions in 
set i (i = 1, 2, . . , p) and S(ki) is defined as in (3.2). 
By testing intersections as in the application in Section 3.1, 
all within-set hypotheses of subset homogeneity of the G1 
may be included. A specific application would be the tests 
usually recommended when there is interaction between 

two factors in a factorial design: The levels of one of the 
factors are compared separately within each level of the 
other factor. If i represents one of the p levels of a factor 
A, j represents one of the ki levels of a factor B, with ki 
= k for all i, and the fi(Gij) are the means of normal 
distributions Gij with common variance, then the hy- 
potheses (3.3) are the standard normal-theory analysis-of- 
variance hypotheses that the effects of B within each level 
of A equal zero (see also Sec. 5, Illustration 2). 

3.3 Comparisons Between Several 
Sets of Distributions 

Given the same situation as in the application in Section 
3.2, consider the 1j.i<j,Pkjkj pairwise equality hy- 
potheses 

fi(Gij) = fj'(G'j1j), i < i'. (3.5) 

[This comparison would generally make sense only when 

fi(Gij) = f(Gij) for all i.] The possible numbers of true 
hypotheses can be obtained from the recursion formula 

B(k1l, kp.... , kp) = U f cici + x: 
(C1,...,Cp)eC Jl'ji<i''p) 

x EB(k- cl, k2 - C2, . . . , kp - cp)j (3.6) 

where B(O, 0, . . . , 0) = {O}, B(kl, k2, . . ., kp) = the 
set of possible numbers of true between-set hypotheses 
(3.5) with ki distributions in set i (i = 1, 2, . . . , p) and 
C = { (cl, C2, . . . , cp): O c< ci -< ki for i = 1, 2, . . . , p 
and If= ci > O}. The proof of (3.6) is somewhat similar 
to that of (3.2) and is omitted. By adding consideration of 
intersections, one obtains tests of the 2K' - K' - 1 - 

1P (2k, - ki - 1) hypotheses of equality of all subsets 
containing distributions from more than one set. 

An important application is to studies comparing treat- 
ments with control groups. As pointed out by Cochran 
(1983), in many observational studies an ideal control group 
is not available, in which case it is desirable to compare 
each treatment group with more than one control group, 
where each control may be vulnerable to different sources 
of bias. 

3.4 Tests of Independence of All 2 x 2 Subtables 
of a K x L Contingency Table or Tests of 
Additivity in All 2 x 2 Subparts of a 
K x L Factorial Design 

The sets A of possible numbers of true hypotheses are 
the same in (a) tests of independence of all 2 x 2 subtables 
of a K x L contingency table and (b) tests of additivity 
in all 2 x 2 subparts of a K x L factorial design. If L = 
2, they reduce to those in the application in Section 3.1: 
In (a), the hypotheses are then equivalent to the hy- 
potheses 7ril /ri2 = 7ri'1/'7i'2, for i, i' = 1, 2, . . ., K, where 
7%j is the probability of an observation falling in row i and 
column j; in (b), they are equivalent to the hypotheses ,ui1 

- /1i2 = pil- /1i'2 for i, i' = 1, 2, . . . , K, where uij is 
the mean of the distribution at level i of factor A and j of 
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Table 3. Possible Numbers of True Hypotheses for the Application in 

Section 3.4, for Selected Values of K x L 

Number of Possible numbers of 

K and L hypotheses true hypotheses 

L = 2 Obtain from Table 2 

All K (2) by setting K = k. 

L = 3 
K = 3 9 0-3, 5, 9 

K = 4 18 0-10, 12, 18 

K= 5 30 0-16, 18,22,30 

L = 4 

K = 4 36 0-21,24,27,36 

NOTE: To use the MSRB procedure for the application in Section 3.4, determine the set A = 

{a,} of possible numbers of true hypotheses corresponding to the relevant values of K and L. 

Then, at stage j, for j = 1, . . ., (K 2), test the hypothesis H(1) at significance level alt1, where 

ti = maxia,!n -1 + 1 a,. 

factor B. Results for some representative values of K x 

L are given in Table 3. Adding intersections permits tests 

of the hypotheses of independence in all subtables of a 

contingency table or of the hypotheses of additivity under 

all subsets of factor level combinations in a factorial design. 

If L > 2, there is no obvious algorithm for computing 

the possible numbers of true hypotheses. It can be seen, 

however, from the sets of possible numbers in Sections 

3.1-3.3 and from Table 3 that the main advantage of the 

MSRB procedure over the SRB procedure appears at the 

second stage, where the relative difference in criterion sig- 

nificance probabilities is greatest. An explicit expression 

for t2 in Section 3.4, proved in the Appendix, is 

t2= [K(K - 1)/2][L(L - 1)/2] 

- (K - 1)(L - 1). (3.7) 

A compromise procedure, possibly applicable also in other 

situations, would be to set tj = t2 for all 2 c j c n - t2 + 

1, and to use the SRB values for all stages j > n - t2 + 

1. This approach could also be combined effectively with 

the modified procedure described in Section 4.1. 

4. MODIFICATIONS AND GENERALIZATIONS OF 
THE MSRB PROCEDURE 

4.1 A Modified MSRB Procedure Following 
Initial Rejection of a More 
Comprehensive Hypothesis 

Often the n hypotheses are not tested separately unless 

a more comprehensive hypothesis has initially been re- 

jected at significance level a, where such rejection implies 

that at least some number r of the n hypotheses (but not 

which ones) are false, r = 1, 2, . . ., n - 1. It follows 

directly from the proof in Section 2 that a further improve- 

ment in the MSRB is then possible; the critical values a/ 

tj for testing H(1), H(2), . . ., H(r) can be replaced by a/ 

t(n-r) without increasing the overall significance level above 

a. A typical opportunity to apply this modified procedure 

would arise in the use of a sequentially rejective procedure 

in the application in Section 3.1 following rejection of the 

hypothesis f(G1) = f(G2) - - f(Gk) by a composite 

test based on a statistic other than Y(l) (e.g., rejection of 

equality of means with an F test in analysis of variance). 

In the first stage of the MSRB following rejection of this 

composite hypothesis, aln would be replaced by a/t2. For 

an application of this idea in a somewhat different context, 

see Shaffer (1979). 

4.2 A Modified MSRB Procedure Taking Into 
Account the Particular Hypotheses Rejected 

The power of the MSRB procedure can be increased, 

at the cost of greater complexity, by substituting for a/t, 
at stage j the value a/lt,*, where t,* is the maximum number 

of hypotheses that could be true, given that the specific 

hypotheses H(l), H(2), . . ., H(, l) are false. (The depen- 

dence of tj* on the first j - 1 rejected hypotheses is sup- 

pressed for convenience in the notation.) To prove that 

this procedure has an experimentwise significance level ? 

a, let t,*L be the minimum t,* (for 1 S j - n - m + 1) 

over all subsets of size j - 1 of false hypotheses. Note that 

t* L-m for all j, where m is the number of true hypotheses. 
Then Pr(one or more errors) = Pr(Y, a a/tj,L for some j 

S n - m + 1 and some i E I) ? Pr(Y, c a//m for some 

iE I) c aa. 

As an illustration, consider the application in Section 3.2 

with p = 2 and k, = k2 = 4. By referring to Table 1, we 

see that if the two hypotheses f1(G11) = f1(G14) and f1(G11) 
= f1(G13) are false, the number of possibly true hypotheses 

is 9; if the two hypotheses fl(Gll) = fl(G14) and f2(G21) 

= f2(G24) are false, the number of possibly true hypotheses 
is 6 (see also Sec. 5, Illustration 2). 

5. ILLUSTRATIONS 

When the number of hypotheses is large, the analysis of 

relationships among them may be complicated. In many 

situations that arise in practice, however, the number of 

hypotheses is small and their logical interrelations are 

transparent. In such cases, the MSRB procedure and its 

extensions can be easily applied. Illustration 1 is an ex- 

ample of this kind. In Illustration 2, the MSRB is compared 

with a more familiar approach to the problem described 

in Section 3.2. 

Illustration 1. Information was available on the pro- 

portions of (i) passes, (ii) failures, and (iii) incompletes or 

withdrawals, in a number of mathematics classes, each 

of which had been taught by one of two different methods. 

All classes were of approximately the same size and were 

taught by different instructors. The experimenter was in- 

terested in comparing the proportions (i), (ii), and (iii) for 

the two methods. 

Let Pi1k be the proportion of students in the kth class 

taught by method i who fall in category j, for i = 1, 2; j 
= 1, 2, 3; k = 1, 2, . . . , n,. Assuming the vectors (Pilk, 

Pi2k, Pi3k) are independent observations from trivariate dis- 
tributions Fi with mean vectors (1-ii, fl1i2 f13), the three 

hypotheses to be tested are {H,: 1 - 2 = , j = 1, 2, 

3}. 

Since the sum of the three observations for each class 

equals 1, it follows that if any of the three hypotheses is 

false, at most one can be true. Thus the following MSRB 

methods may be considered. 
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1. Choose an appropriate test statistic for each hypoth- 

esis. Order the hypotheses as in Section 1, and reject H(l) 

(the hypothesis corresponding to the smallest significance 

probability) if Y(1) < a/3. If H(1) is rejected, reject H(i) if 

Y(i)<a,fori = 2,3. 

2. Carry out a level-a test of the hypothesis Ho: ulj - 

P2j 
= 0 for all j. Under appropriate conditions on the 

proportions, a repeated measures analysis of variance or 

a multivariate analysis of variance would be a reasonable 

approximate test in this situation (see Shaffer 1981). In 

view of the result in Section 4. 1, if Ho is rejected, test each 

of Hl, H2, and H3 at level a. 

Illustration 2. Assume a 2 x 3 balanced factorial design 

to be analyzed by a fixed-effects analysis of variance. As 

pointed out in Section 3.2, if the test for interaction is 

significant, it is often recommended that the effects of any 

factor of interest be examined separately within each level 

of the other factor. Suppose the interaction is significant, 

and assume that we are interested in all pairwise contrasts 

among the three levels of factor B for each of the two 

levels of factor A. Letting ui, be the mean of the cell for 

level i of factor A and j of factor B, the six hypotheses 

to be tested are {Hik): 1ij - 1ik = 0; i = 1, 2; j < k = 

1, 2, 3}. 

Assume that we want the experimentwise significance 

level to be a. A typical way of accomplishing this aim is 

to use a multiple range test for each value of i, with sig- 

nificance level a/2 for each. More specifically, given the 

value of i, the three means are ordered, and the difference 

between the largest and smallest is considered significant 

(i.e., the corresponding hypothesis is rejected) if the dif- 

ference, divided by its estimated standard deviation based 

on the within-groups mean square, is greater than the a/ 

2 critical value of the studentized range distribution for 

three means. If the difference is significant, the tests of 

the remaining two differences are based on the studentized 

range of two means, with the levels depending on the par- 

ticular multiple range procedure adopted. The optimal lev- 

els, consistent with a maximum Type I error probability of 

a/2, are a/2 for each of the remaining two differences 

(see, e.g., Lehmann and Shaffer 1979). 

To use the MSRB, note that the significance of the in- 

teraction implies that the six hypotheses are not all true. 

It is then easily seen intuitively by the kind of argument 

in Section 3.1, and formally from the results of Section 

3.2, that at most four of them are true. Thus, ordering the 

hypotheses as in Section 1, and using the modification of 

the MSRB discussed in Section 4.1, hypothesis H(M) would 

be rejected if the difference between the corresponding 

means were larger than the a/4 critical value of the stu- 

dentized range of two means. Given a rejection, H(2) would 

also be tested at a/4. Making use of the modification in 

Section 4.2, H(3) would be tested at a/4 or a/2, depending 

on whether H(l) and H(2) referred to the same or different 

values of i, respectively. At each subsequent stage, the 

appropriate level for the test would be easily determined. 

If the degrees of freedom for error are large, the multiple 

range and MSRB approaches can be compared by exam- 

ining critical values of ranges of standard normal random 

variables. The first test, for example, would be based ap- 

proximately on the a/2 critical value of the range of three 

means for the multiple range procedure and the a/4 critical 

value of the range of two means for the MSRB procedure. 

For a = .05, the respective values are 3.68 and 3.53. In 

other words, the probability of finding at least one signif- 

icant pairwise difference is greater with the modified MSRB 

procedure than with the range procedure. Some further 

comparisons are possible by direct consideration of critical 

values required by the two procedures. For instance, the 

probability of finding at least one significant difference 

within each level of i is greater with the modified MSRB 

than with the multiple range procedure, as is the proba- 

bility of rejecting all of the hypotheses. Further consid- 

eration of the procedures suggests, as a rough approxi- 

mation, that the multiple range procedure is more powerful 

when the false hypotheses are all within a single level of 

factor A, whereas the MSRB procedure has the advantage 

when true mean differences occur within both levels. 

6. DISCUSSION 

Note that the improvements in multiple test procedures 

discussed in this article are based on logical analysis of the 

relationships among the hypotheses and are independent 

of the particular test statistics used, except for knowledge 

of their respective marginal distributions. As in the usual 

use of the Bonferroni inequality, the methods are, there- 

fore, highly flexible and easily used in nonstandard situa- 

tions. Other approaches to multiple testing use more pow- 

erful methods based on the joint distribution of the test 

statistics, ranging from the use of improved Bonferroni 

inequalities that are based on some properties of the joint 

distribution of subsets of the test statistics (e.g., Worsley 

1982), to the full use of the joint distribution, as, for ex- 

ample, when the test statistics are independent or in the 

comparison of means of normal distributions with equal 

variance. In many circumstances it may be feasible to com- 

bine logical and distributional considerations to obtain 

multiple testing methods better than those obtainable using 

either type alone; these would be modifications of the more 

general class of sequentially rejective methods considered 

by Holm (1977). 

APPENDIX: PROOF OF (3.7) 

The proof will be carried out in the contingency table frame- 

work. To apply it to factorial designs, substitute means for ex- 

pected frequencies and substitute equivalence if different only by 

translation for equivalence if different only by a scale factor. 

Consider a K x L contingency table, with entries equal to 

expected frequencies under the true model, as a row of L column 

vectors cl, C2, . . . , CL of length K. Two vectors will be said to 

be equivalent if they differ only by a scale factor. Then given any 

L' columns, 2 < L' ' L, all 2 x 2 subtables of the K x L' 

contingency table consisting of the K rows and those L' columns 
satisfy the hypotheses (of independence) iff all column vectors i 

included in the L' columns are equivalent. 
It will be shown that a table satisfying the maximum number 

of true hypotheses of independence, given that not all are true, 
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is one in which L - 1 vectors are equivalent and the Lth vector 

would be equivalent to these others if a single element were 

changed. The number of true hypotheses in such a table is readily 

seen to be (3.7). 

Given a specific table that does not have all column vectors 

equivalent, let r,, = the number of independent 2 x 2 subtables 

in the K x 2 subtable consisting of the K rows and columns j 
and j', 0 r,,, ? K(K - 1)/2. The number of independent 2 x 

2 tables is 

r, . (A. 1) 

We want to choose vectors to maximize (A. 1) subject to the 

restriction that not all hypotheses are true. 

Let rM = maxls,<,J'L r,,1 among those that are <K(K - 1)/2, 

and let c,* and c,** be any two column vectors for which r,*,** 
= rM. Replace each column vector c, by a copy of c,* (if r,,* - 

r,,**) or c,** (otherwise). Note that with each of these replace- 

ments, (A.1) does not decrease: since r,, becomes either K(K - 

1)/2 (if c, and c,' become copies of the same vector c,* or c,**) 
or rM (if c, and c, become copies of the two different vectors), 

no r,, can decrease. After this replacement, the vectors are in 

two groups of L1 and L - L1 vectors, respectively, where the 

vectors within each group are equivalent; the number of true 

hypotheses is 

[L1(L1 - 1)12][K(K - 1)/2] + [(L - L1)(L -L 

- 1)12][K(K - 1)/2] + L1(L - Ll)rM. (A.2) 

Since the maximum number of true hypotheses must occur in a 

table of this form, it remains only to maximize (A.2) with respect 

to L1 and rM. 

Maximization of (A.2) With Respect to L1. Since the sum of 

the coefficients of K(K - 1)/2 and rM in (A.2) is fixed, and rM 

< K(K - 1)/2, the maximum is found by maximizing the coef- 

ficient of K(K - 1)/2. Since this coefficient is a quadratic in L1 

with a minimum at L, = L/2, its integer-valued maximum occurs 

for L1 = 1 (or L - 1), in which case (A.2) becomes 

[(L - 1)(L - 2)12][K(K - 1)/2] + (L - 1)rM. (A.3) 

Maximization of (A.3) With Respect to rM. We want to max- 

imize rM, the number of true hypotheses in a K x 2 contingency 

table, given rM < K(K - 1)/2. As noted in Section 3, the set of 

possible numbers of true hypotheses in tests of independence in 

K x 2 contingency tables is equivalent to the set of possible 

numbers of true hypotheses in tests of pairwise equality among 

k populations (see the application in Sec. 3.1). Considering that 

application, if at least one of the hypotheses (3.5) is false, there 

are at least two distinct values of f (G); we may assume that there 

are exactly two, since the number of true hypotheses can never 

be decreased if two different values are replaced by a single value. 

If the two distinct values are designated as v, and v2, and d = 

the number of distributions i such that f (G,) = v1 (O < d < k) 
then the number of true hypotheses is 

d(d - 1)/2 + (k - d)(k - d - 1)/2. (A.4) 

The expression (A.4) is a quadratic in d with a minimum at d = 

k/2 and its integer-valued maximum at d = 1 (or k - 1). Sub- 

stituting this value for d in (A.4) gives (k - 1)(k - 2)/2 as the 

maximum number of true hypotheses in (3.1) with at least one 

false hypothesis. Therefore, the maximum value of rM smaller 

than K(K - 1)/2 is (K - 1)(K - 2)/2, achieved when the vector 

that is not equivalent to the L - 1 others differs from such 

equivalence in a single element. Finally, (A.3) with rM replaced 

by (K - 1)(K - 2)/2 equals (3.7). 

[Received August 1984. Revised January 1986.] 
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