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Abstract

The structural dynamic response predominantly depends upon natural frequencies which fabricate these as a controlling 
parameter for dynamic response of the truss. However, truss optimization problems subjected to multiple fundamental 
frequency constraints with shape and size variables are more arduous due to its characteristics like non-convexity, non-
linearity, and implicit with respect to design variables. In addition, mass minimization with frequency constraints are con-
flicting in nature which intricate optimization problem. Using meta-heuristic for such kind of problem requires harmony 
between exploration and exploitation to regulate the performance of the algorithm. This paper proposes a modification 
of a nature inspired Symbiotic Organisms Search (SOS) algorithm called a Modified SOS (MSOS) algorithm to enhance 
its efficacy of accuracy in search (exploitation) together with exploration by introducing an adaptive benefit factor and 
modified parasitism vector. These modifications improved search efficiency of the algorithm with a good balance between 
exploration and exploitation, which has been partially investigated so far. The feasibility and effectiveness of proposed 
algorithm is studied with six truss design problems. The results of benchmark planar/space trusses are compared with other 
meta-heuristics. Complementarily the feasibility and effectiveness of the proposed algorithms are investigated by three 
unimodal functions, thirteen multimodal functions, and six hybrid functions of the CEC2014 test suit. The experimental 
results show that MSOS is more reliable and efficient as compared to the basis SOS algorithm and other state-of-the-art 
algorithms. Moreover, the MSOS algorithm provides competitive results compared to the existing meta-heuristics in the 
literature.

Keywords Natural frequency · Truss optimization · Meta-heuristics · Adaptive mechanism · Exploration · Exploitation

1 Introduction

The design of optimum structure is an active research 
area due to its wide range of applications in bridges, tow-
ers, pylons, roof supports, building exoskeletons, space 

structures, and industries. Basically, truss is a framework 
of flexible members pin connected at joint called node 
intended to withstand purely axial loads over a large span 
of space. Formerly, structural optimization was a concept 
of optimal design of load-carrying mechanical structures 
only. In emerging world, structural optimization is a broad 
concept due to diversity of aim and possible constraints, 
causes tremendous variation of results. Basically, objective 
of structural optimization is to make structures slender with 
minimum weight. Consequently, optimal design became a 
progressive area of research in search and optimization field 
today.

In most of dynamic truss optimization problems, the 
response highly depends upon the natural frequency and 
mode shape of structure. Therefore, to avoid condition 
like resonance, frequency constraints become inevitable 
in formulation of truss optimization problems subjected to 
dynamic loads. Mass optimization is considered to be chal-
lenging with inclusion of frequency constraints. Frequency 
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constraints usually conflicts with lower bounded mass 
optimization, [16]. In addition, regarding design variables, 
frequency constraints are more implicit, non-linear, and 
non-convex, [81]. Therefore, gradient-based methods are 
inappropriate for these types of optimization problems as 
they have complex programming approach and required 
additional time for computation. Furthermore, for optimal 
solution they required good starting point, Kaveh and Tala-
tahari [25]. Due to premature convergence and above demer-
its, drift is towards nature-based meta-heuristics (MHs) for 
scholars nowadays as they have leverage with respect to clas-
sical MHs. Noilublao and Bureerat [38] proposed an inte-
grated design technique for simultaneously sizing, topology, 
and shape optimization of truss structure with frequency 
constraints. Results showed population-based incremental 
learning MHs are better for natural frequency constrained 
optimization problems. Gomes [16] attempted to overcome 
non-linearity associated with shape and size optimization 
of truss by accounting the particle swarm optimization 
(PSO) algorithm as an optimization engine with frequency 
constraints.

Kaveh and Zolghadr [26] suggested an algorithm termed 
as Charged System Search with its modified version for opti-
mization of structural truss including frequency constraints. 
Miguel and Miguel [36] suggested the use of two MHs, Fire-
fly Algorithm and Harmony Search, for solving shape and 
size optimization of trusses simultaneously subjected to 
multiple natural frequency constraints. Furthermore, [27] 
introduced a concept of hybridization between the Charged 
System Search and Big Bang-Big Crunch algorithms with 
natural frequency constraints, which are proficient to iden-
tify local optima trap. In addition, [28] investigated the 
topology optimization of structural truss with inclusion of 
buckling, displacement, stress, and frequency constraints. 
Moreover, [29] comes up with a new algorithm called as 
Democratic PSO for structural optimization with inclusion 
of frequency constraints to alleviate the premature conver-
gence phenomenon of the basic PSO algorithm. Farshchin 
et al. [12] proposed a multi-class Teaching–Learning-Based 
approach (MC-TLBO) with frequency constraints for struc-
ture optimization to increases the exploration capability and 
enhancing the search efficiency.

Kaveh and Zolghadr [30] developed a multi-agent 
meta-heuristic (MH) called Tug of War Optimization to 
optimize size and shape of structural trusses subjected to 
frequency constraints. Kaveh and Ghazaan [20] employed 
physically inspired non-gradient algorithm called Vibrat-
ing Particles System (VPS) for structural optimization 
subjected to frequency constraints. Kaveh and Mahdavi 
[23] utilized colliding bodies’ optimization (CBO) for 
truss structure optimal design subjected to dynamic con-
straints. Furthermore, Kaveh and Mahdavi [24] proposed 
two-dimensional version of CBO, with advancement in 

its algorithm formulation which remain untouched in 
one-dimension CBO. The results show better search per-
formance within minimum computational time. Savsani 
et al. [42] comes up with an improved form of the Teach-
ing–Learning-Based Optimization algorithm for optimiza-
tion of trusses topology considering different static and 
dynamic constraints. Wang et al. [53] presented an algo-
rithm for 3-D truss structure optimization with multiple 
constraints on its natural frequencies. Wei et al. [54] pro-
posed a niche hybrid parallel genetic algorithm (NHPGA) 
for simultaneous size and shape optimization of structural 
trusses subjected to numerous frequency constraints. Here, 
NHPGA combined the advantage of simplex search, paral-
lel computing and genetic algorithm with niche technique 
for getting effective and efficient solution. Zuo et al. [59] 
for obtaining global solution and to speed up convergence 
of truss optimization problems used genetic algorithm and 
hybrid optimality criterion algorithm with multiple fre-
quency constraints.

Kaveh et al. [21] applied Dolphin Echolocation algo-
rithm for optimization of truss structure with frequency 
constraints. Efficiency of algorithm was compared with 
hybrid MHs. Kaveh and Ghazaan [83] applied hybridized 
algorithm for structural optimization with multiple natu-
ral frequency constraints. They applied Aging Leader and 
Challengers with PSO and harmony-based search mecha-
nism with PSO for optimization search problem with natu-
ral frequency constraints. Due to its auto tuned capability it 
has high convergence ability with better stability of struc-
ture. Mortazavi and Togan [37] demonstrate the competi-
tive edges of integrated PSO in optimization of truss struc-
tures with integration of the weighted particle concept and 
fly-back mechanism under multiple frequency constraints 
with sizing and layout variables. Savsani et al. [43] con-
sidered four modified MHs to solve distinct obstacles of 
optimization.

Recently many MHs showed the superiority with respect 
to gradient-based algorithms as they do not require gradi-
ent-based calculation [33]. MHs include the natural evolu-
tionary process like the evolutionary algorithm proposed 
by Fogel [13], De Jong [5], Koza [32] and the Genetic 
Algorithm (GA) proposed by Goldberg and Holland [15], 
and animal behavior, e.g., Tabu search proposed by Glover 
[14], Ant algorithm proposed by Dorigo et al. [7], PSO 
proposed by Eberhart and Kennedy [8], the Artificial Bee 
Colony algorithm proposed by Karaboga and Basturk 
[17], Firefly Algorithm by Yang [56], Cuckoo Search by 
Yang and Deb [57], Dolphin Echolocation by Kaveh and 
Farhoudi [18] and the physical annealing process like 
simulated annealing proposed by Kirkpatrick et al. [31] 
and more like Harmony Search by Geem et al. [78], Big 
Bang–Big Crunch by Erol and Eksin [9], Water Cycle 
Algorithm by Eskandar et al. [10], and Ray Optimization 
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by Kaveh and Khayatazad [22]. However, above MHs need 
extra controlling parameters and also not easy to use. For 
example, GA needs mutation and crossover rates, while 
PSO requires inertia weight, social, and cognitive param-
eters. Furthermore, many MHs need to perform parameter 
tuning, where improper tuning related to algorithm-specific 
parameters might increase computational time and produce 
local optima solutions. They show inadequacy in robust-
ness and generalization.

The resemblance in MHs is that they incorporate rules 
and randomness to imitate organic phenomena. MHs gener-
ally employs various iterative process to find efficient opti-
mal solution in search space with integration of explora-
tion and exploitation notion to escort a minor heuristic with 
learning strategies [39]. However, Wolpert and Macready 
[55] rationalized that it is impossible to solve all optimiza-
tion problem with one MH. Therefore, a recent efficient and 
high performing MH is required to solve complex optimiza-
tion problems.

Symbiotic Organisms Search (SOS) is a recent algo-
rithm which mimics the strategies of mutualism, com-
mensalism, and parasitism encouraged by natural synergy 
between organisms in ecosystems. SOS has better exploi-
tation capability across benchmark problems due to ease 
in adjustability of its common parameters which make it 
simple to operate as well as its ability of merit solution 
generation within fewer iterations [3]. Different studies 
acknowledged the novelty of SOS than other competing 
MHs due to its simplicity of implementation with ability of 
better exploration and exploitation using minimum control-
ling parameters. Many scholars also compared its perfor-
mance for various benchmark functions and optimization 
problems across other MHs with outcome of better perfor-
mances [60–64]. Moreover, lots of research demonstrated 
the superiority of SOS over other MHs like Panda and Pani 
[65] united the SOS with Augmented Lagrange Multiplier 
method to solve constrained optimization problems. This 
fusion enhances the result accuracy within lower run time 
compared to other MHs. Prayogo et al. [66] applied SOS 
with an improvement in the parasitism phase for optimi-
zation of resource leveling of construction project. The 
experimental result shows the better quality solution in 
comparison with existing optimization models. Similar 
ascendancy conduct of SOS has been detected by Yu et al. 
[58] while application in capacitated vehicle routing prob-
lem. Authors proposed six improved version of SOS with 
inclusion of two new interaction strategies, namely compe-
tition and amensalism in the basic SOS algorithm for per-
formance enhancement. Likewise, a new hybrid artificial 
intelligence system, SOS–LSSVR (least squares support 
vector regression), has been proposed to predict the per-
manent deformation potential of asphalt pavement mixtures 
(Cheng et al. [4]). Proposed study is able to achieve better 

accuracy than all other comparative measures which mani-
fest the outperformance of SOS-based system over other 
methods. Abdullahi et al. [63] presents a Discrete Symbi-
otic Organism Search (DSOS) for optimal scheduling of 
tasks on cloud resources. Simulation results revealed that 
DSOS outperforms PSO which is one of the most popular 
heuristic optimization techniques used for task schedul-
ing problems. DSOS converges faster when the search gets 
larger which makes it suitable for large-scale scheduling 
problems. Banerjee and Chattopadhyay [67] proposed a 
modified SOS to design an improved 3 dimensional turbo 
code. SOS a novel powerful MH optimization technique is 
also proposed for the first time to solve the load frequency 
control problem [68]. Results show that the dynamic sta-
bility of the concerned power system effective enhance-
ment with SOS. Furthermore, Prayogo et al. [72] in their 
doctoral dissertation compared the effectiveness of SOS in 
solving various civil engineering and benchmark problems. 
Simulation results demonstrate that SOS is significantly 
more effective and efficient than the other algorithms pre-
sent in the literature. Analogously, lots of research [69–71, 
73, 74] are available in the literature which flourishes the 
supremacy of SOS over other MHs.

Few studies demonstrated the supremacy of adaptive 
strategies over fixed search mechanism for quality solution 
and convergence search which tune the balance between 
exploration and exploitation [11, 50]. For improvisation 
in exploration and exploitation potential of the basic SOS 
algorithm, Tejani et al. [46] introduced an adaptive benefit 
factors which result into more-reliable and balanced solu-
tion of dynamics structures subjected to frequency limits. 
Tejani et al. [48] suggested a modified and improved version 
of SOS to overcome non-convexity, non-linearity drawback 
of basic algorithms with renovation in search performance. 
Ezugwu et al. [11] presents SOS with simulated anneal-
ing (SA) to solve the traveling salesman problems. Results 
demonstrate better solution convergence, minimum execu-
tion time with minimum deviation of solution from best 
solution. Yu et al. [58] presented improved SOS with two 
new interaction strategies called competition and amen-
salism. Liao and Kuo [35] develop five new discrete SOS 
algorithms. Tran et al. [51] introduced opposition multiple 
objective SOS for scheduling repetitive projects. Similarly, 
Tejani et al. [52] utilized multiobjective adaptive symbiotic 
organisms search for truss optimization problems. Despite 
of various advantages, above-mentioned algorithms lacks 
in key components. In addition, in these algorithms if their 
exploration capacity is superior then exploitation capacity 
decreases comparatively and vice versa. Furthermore, they 
untouched the parasitism phase which leads to problem of 
large computational time for getting solution of optimiza-
tion process. Therefore, for better result a good balance 
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between exploration and exploitation capacity of algorithm 
is required.

Non-linearity and non-convexity characteristics of shape 
and size variables with frequency limits, cause optimization 
problem more challenging. SOS incompetency for dynamic 
structural optimization with natural frequency limits has 
been displayed by many scholarly findings [79], (Crepin-
sek et al. 2013). Research depicts the heuristic nature of 
benefit factor, i.e., 1 or 2 in the basic SOS algorithm, which 
represents the organism interaction as partial or complete 
only. However, the benefit factor which organism may get 
could be in any scale between 1 and 2. The SOS algorithm 
though efficient in solving complex optimization and dis-
crete engineering problems, still has high probability of 
plunging into local optimum [48]. The SOS algorithm also 
lags in iterative process of size of population selection. 
The reason is there are instances when selecting a small 
population size yields a better result than a large popula-
tion size and vice versa. For example, if the algorithm is 
stopped too early, the approximation of the solution might 
not be close to the targeted global optimum and prolonging 
the simulation might as well incur unnecessary scale up in 
the computational effort. Ezugwu et al. [11] have shown 
the improvement in efficiency of algorithm via reducing 
the solution completion time, introduce diversity in the 
search process and avoid premature convergence through 
integration of local search strategy into basic SOS. Above 
researches motivate the researchers to extend their research 
by incorporating additional improvements into SOS using 
hybridization techniques, to include other MHs such as SA 
and test its performance on different set of larger problem 
instances. In addition, many researches show the require-
ment of improvement in basic SOS for discrete and continu-
ous optimization problems [6]. Few research scholars show 
the possibility of better trade of between exploration and 
exploitation capability of SOS with modification in mutual-
ism and parasitism phase. Miao et al. [84] presents a modi-
fied SOS algorithm based on the simplex method to solve 
the path planning problems. Results shows, modification 
of SOS leads to faster convergence speed, higher precision, 
and stronger robustness than the main algorithm. Numerous 
scholars show that metamorphosis lead to increase in the 
diversity of the population and improvement in the abil-
ity of the algorithm to explore and exploit, as well as pre-
venting the algorithm from prematurely finding the local 
optimal solution. Moreover, modification testing on vari-
ous benchmark problems shows enhancement in accuracy 
and robustness with stronger convergence speed than other 
algorithms.

Despite of aforementioned advantages, the SOS algo-
rithm inadequacy for dynamic structural optimization 
with natural frequency limits has been uncovered by many 
scholarly findings. Moreover, it is practically not possible 

to forecast the influence of the adaptive operators for dif-
ferent real life applications [49]. As per the No Free Lunch 
theorem, it is impossible to solve all optimization problems 
with one algorithm. Furthermore, the SOS algorithm is a 
recently developed algorithm and it is always interesting 
to investigate different modification that can improve the 
performance of the algorithm. These proficiencies and pros-
pects encouraged us to formulate an adaptive SOS algo-
rithm with frequency constraints and to investigate its effect 
on dynamic structural optimization problems. These inad-
equacies like lack of efficient exploration, balanced search 
with good success rate and less computation time, give 
impetus to formulate a modified SOS (MSOS) algorithm 
and to examine its effect on different structural optimiza-
tion problems.

In other words, a good balance of exploration and exploi-
tation is essential to avoid local solutions and find an accu-
rate estimation of the global optimum for a given optimi-
zation problem. To alleviate these drawbacks, MSOS is 
equipped with adaptive benefit factor to tune the balance 
between exploration and exploitation during mutualism 
phase and an improved parasitism phase to boost exploita-
tion capability during parasitism phase of SOS.

The rest of the paper is organized as follows: Sect. 2 
presents the SOS algorithm. The improved SOS is pro-
posed in Sect. 3. The problem is formulated in Sect. 4 and 
solved using the modified SOS in Sect. 5. Moreover, Sect. 6 
includes verification of MSOS performance with various 
functions of CEC 2014 test suits. Finally, Sect. 7 concludes 
the work and suggest future directions.

2  The symbiotic organisms search algorithm

In nature, an essential relationship is maintained by many 
organisms for survival and growth. These relations may be 
beneficial or harmful sometimes. In symbiotic relationship 
species live together for mutual benefit and survival, which 
make it different from other regular interaction. Considering 
the natural interaction between the organism for survival 
in ecosystem Cheng and Prayogo [3] introduced a compel-
ling and modest meta-heuristic algorithm called SOS which 
simulates the interactive behavior among organism seen in 
nature. Symbiosis describes close interaction between two or 
more species like snail and tortoise, human and dog, Lichen 
(algae and fungus), etc. In either of case, each organism 
helps together in existence and continuation while prevail-
ing relationship.

Unlike other MHs which need extra optimization param-
eters SOS algorithm required only general controlling 
parameters like total no of function evaluations (FE) for its 
operation and population size (number of organism). For 
example, GA needs mutation, crossover, and rates, while 
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PSO requires inertia weight, social, and cognitive param-
eters [46]. On the other hand, SOS does not need algorithm-
specific governing factors and is simply organized and easy 
to use. It is also robust and generalized. This is considered an 
advantage over competing algorithms, because SOS does not 
need to perform parameter tuning. Improper tuning related 
to algorithm-specific parameters might increase computa-
tional time and produce local optima solutions.

Symbiotic relationship can be divided into three phases: 
mutualism, commensalism and parasitism.

Mutualism: In this phase, the organism tries to find the best 
solution in mutual benefit interaction with other to find out the 
optimum value greater than previous one– a classic example 
is the interaction between bees and flowers;

Commensalism: In this phase, organisms with best func-
tional value is trying to find without affecting the other possi-
ble solution (organism) nearby– an example is the relationship 
between remora fish and sharks; and

Parasitism: In this phase, best solution is obtained with suf-
fering of other organism– an example is the plasmodium para-
site, which uses its relationship with the anopheles mosquito 
to transfer between human hosts.

The three phases are adopted from the most common sym-
bioses used by organisms to increase their fitness and survival 
advantage over the long term. In this optimization algorithm, 
the better solution can be achieved by the symbiotic relations 
between the current solution vector and either the other ran-
domly selected solution or the best solution from the current 
population. The phases are repeated until the stopping criterion 
is achieved.

The detailed discussion of all three phases and modification 
of SOS is explained in the subsequent sections:

2.1  The mutualism phase

When both organisms of different species get individual ben-
efit from interaction then it is called a mutualism. A com-
mon example of mutualism is the relationship between bees 
and flowers, where both organisms acquire benefits from 
each other. Bees obtained sweet food source secreted by 
the flowers (called nectar) through visiting different flowers 
which benefit them to produce honey. On the other hand, 
while travelling bees transfer pollen grains from one plant 
to another which facilitate pollination in flowers (benefit to 
flowers).

In mutualism phase, a sequentially selected organism (Xi) in 
the ecosystem interacts with another random member say (Xj), 
where i ≠ j. Both organisms engage in a mutuality relationship 
with the goal of increasing mutual survival advantage in the 
ecosystem. They are interdependent and each gain benefit from 
other. New candidates are calculated based on interact with 
the motive of mutual survival advantage in the ecosystem as 
per Eqs. (1, 2):

where

The following observations on the mutualism mathemati-
cal model can be made:

• rand(0,1) in Eqs. (1, 2) is a vector resenting random num-
bers between 0 and 1;

• Mutual
−

Vector in Eq.  (3) represents the relationship 
attributes between organisms X

i
 and Xj;

• X
best represents the organism with the current highest 

state of adaptation to the ecosystem;
• Organism X

i
 might benefit significantly when inter-

acting with organism Xj ; at the same time, organism 
Xj might benefit only slightly when interacting with 
organism X

i
.

2.2  The commensalism phase

Living organisms in nature generally react and live with one 
another for adaptation in various forms. Commensalism is 
an interesting relationship one out of them. In this type of 
symbiotic relationship, one will get benefit, while the other 
will remain unaffected or not harmed. Some time it is also 
called as one-sided symbiotic relationship. The welfare can 
be in any form like seed dispersal, transportation, food, and 
shelter. One of the examples is remora and shark in which 
remora remains attached with shark for getting leftover food 
but shark remain neutral.

In this phase, the best from mutualism phase taken as an 
input and an organism is arbitrarily selected from ecosys-
tem which tries to communicate with others. Unlike mutual-
ism phase, modification is only for one organism and other 
remain as previous one, whereas overhaul is only when new 
fitness value is superior to previous. The new organism is 
presented in Eq. (6):

Some observations on the commensalism mathematical 
model can be made:

• rand(−1, 1) in Eq. (6) is a vector of random numbers 
between − 1 and 1;

(1)
Xinew = X

i
+ rand(0,1) × (Xbest − Mutual−Vector × BF1),

(2)

Xjnew = Xj + rand(0,1) × (Xbest − Mutual−Vector × BF2)

(3)Mutual
−

Vector =

Xi + Xj

2

(4)BF1 = 1 + round[rand(0,1)].

(5)BF2 = 1 + round[rand(0,1)]

(6)Xinew = Xi + rand(−1,1) × (Xbest − Xj)
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•X
best

 reflects the current highest state of adaptation to 
the ecosystem, similar to that used in the mutualism phase;

• Organism X
i
 is updated to Xinew only if its new fitness 

is better than its pre-interaction fitness; and
• For each organism X

i
 , this interaction counts for one 

function evaluation.

2.3  The parasitism phase

In parasitism phase, parasite gets only benefit while liv-
ing in host body, causing harm to host from its long-term 
interaction. Here one organism gets complete benefit, while 
other gets eliminated completely from the system. One of 
the examples is plasmodium parasite which use Anopheles 
mosquito to enter into human body which act like host. The 
parasite flourishes and reproduces inside of host and human 
body suffers disease which may result into death.

After the commensalism phase is completed, the organ-
ism Xi again randomly selects a new organism from the eco-
system, organismXj . In this phase a design vector (Xi) of 
“i” population organism play role of anopheles mosquito. 
Here anopheles mosquito creates an artificial vector called 
“Parasite Vector”. During the interaction, Parasite Vector 
tries to kill host Xj and replace it in the ecosystem. Organism 
Xi may gain a benefit, because, by cloning Parasite Vector, 
its influence in the ecosystem may increase, whereas Xj may 
suffer and die.

The Parasite Vector is presented in Eq. (7):

where LB and UB represents the solution lower bound and 
upper bound, respectively.

The creation of Parasite Vector is described as follows:

1. An initial Parasite Vector is created in the search space 
by duplicating organism X

i
 ; some decision variables 

from the initial Parasite Vector are modified randomly 
to differentiate Parasite Vector from organism X

i
;

2. A random number is created within a range from one to 
the number of decision variables, representing the total 
number of modified variables;

3. The location of the modified variables is determined 
stochastically using a uniform random number, which 
is generated for each dimension; if the random number 
is less than 0.5, the variable is modified; otherwise, it 
stays the same; and

4. The variables are modified using a uniform distribution 
within the search space and Parasite Vector is ready for 
the parasitism phase.

(7)

ParasiteVector =

{

Xj if 0.5 ≤ rand(0,1)

LB + rand(0, 1) × (UB − LB) Otherwise

Both Parasite Vector and organism Xj are then evaluated 
to measure their fitness. If Parasite Vector has a better fitness 
value, it kills organism Xj and assumes its position in the 
ecosystem. If thefitness value of Xj is better, Xj has immunity 
from the parasite and Parasite Vector can no longer live in 
that ecosystem. For each organism Xi, this interaction counts 
for one function evaluation.

2.4  Stopping criterion

The optimization process terminates when a user-set stop-
ping criterion is met. This criterion is often set as the maxi-
mum iteration number (gmax) or the maximum number of 
function evaluations (FEmax). The optimal solution can be 
identified after search process termination.

3  Modi�cation in the SOS algorithm

Success rate of most of the population-based optimization 
algorithms depends on the equilibrium between exploration 
and exploitation abilities significantly. Exploration repre-
sents the ability of algorithm for global search that strongly 
affects the accuracy of obtained optimal solution. Whereas 
exploitation signifies the local search potential, this plays 
an important role in impacting on the convergence of the 
optimization algorithm. Obviously, if the exploration capac-
ity is superior to the other, a global optimal solution can 
be achieved, yet the convergence is slow. This is due to the 
fact that the algorithm must require a remarkable amount of 
computational cost for seeking an optimal solution in a given 
whole domain. Conversely, the algorithm converges quickly, 
but optimal solutions may occur. Therefore, provided that 
the above two abilities are adjusted to gain a better balance, 
the solution accuracy and the convergence speed can be 
obtained simultaneously. Although the original SOS algo-
rithm is good at the global search capability, the limitation 
on the computational cost is survived. As observed, both 
mutualism and commensalism phases improve the exploi-
tation ability of the algorithm, while the parasitism phase 
contributes to the exploration capability. Nevertheless, the 
last phase requires a considerable amount of computational 
cost to sever its search process. If the parasitism phase is 
eliminated to save computational cost, the SOS approach is 
easily trapped at local solutions. Therefore, the other phases 
must be refined to preserve the balance between exploitation 
and exploration capabilities.

To overcome the aforementioned imperfections of the 
original SOS approach, a MSOS algorithm is proposed in 
this study.
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3.1  Modification in mutualism phase

Various research applications proved that the structural opti-
mization with adaptive control algorithm has dominance in 
solving single and multiobjective problems with inclusion 
of desired properties like good convergence, superior search 
ability and harmony between exploration and exploitation. 
Adaptive control mechanisms usually advance the effective-
ness of the algorithm and tune the balance between explo-
ration and exploitation abilities [49]. In this respect, many 
studies have been proposed by employing various adaptive 
control approaches in various MHs. Piotrowski [41] used the 
concept of global and local mutation operators to propose 
an adaptive memetic differential evolution (DE) algorithm, 
whereas a strategically adaptive version of a DE was pro-
posed by Bureerat and Pholdee [85]. Li and Yin [34] pro-
posed a modified cuckoo search algorithm using an adaptive 
parameter setting to enhance the diversity of the popula-
tion. Shan et al. [44] used adaptive control on an artificial 
bee colony algorithm to improve the performance. Yi et al. 
(2016) employed an adaptive DE based on fitness function 
value. Tejani et al. [47] modified a teaching-learning-based 
optimization using an adaptive teaching factor. Many stud-
ies to develop algorithms with adaptation for multiobjec-
tive optimization are also found in the literature. Similarly, 
Tejani et al. [52] utilized multiobjective adaptive symbiotic 
organisms search for truss optimization problems. Bingul [2] 
proposed an adaptive GA with dynamic fitness function for 
multiobjective design problems. Ou-Yang et al. [86] used a 
self-adaptive-velocity PSO. Pham [87] presented adaptive 
directional mutation to enhance DE.

On the other hand, SOS is a newly discovered algorithm 
which encourage investigator to enhance the algorithm per-
formance with further modification in it. Moreover, research 
shows that it is impossible to find an algorithm which is able 
to solve all optimization problems individually, so always 
modification is needed in optimization algorithm [49]. In 
addition, SOS is new player in this arena, so it always has a 
good possibility of improvement in its performance.

Research depicts the heuristic nature of benefit factor, i.e., 
1 or 2 in Mutualism phase of basic SOS algorithm, which 
represents the organism interaction as partial or complete 
only. However, benefit factor is the key component in influ-
encing the Mutual_Vector in mutualism phase of SOS. The 
benefit factors ( BF

1
andBF

2
 ) are determined stochastically 

as either 1 or 2 (Eqs. 4 and 5) in basic SOS algorithm, indi-
cating whether an organism partially or fully benefits from 
the interaction. These Benefit Factors is heuristic in nature, 
because in nature one organism can receive partial or full 
benefit than other. The level of benefit interaction, i.e., full 
or partial is represented by these factors. Organisms evolve 
to a fitter version only if their new fitness is better than their 
pre-interaction fitness; if so, the old X

i
 and Xj are replaced 

by X
inew

 and Xjnew ; this mechanism is similar to greedy selec-
tion; and for each organism X

i
 , this interaction counts for 

two function evaluations.
In other words, the organism Xi and Xj can get partially 

and fully benefit from mutual vector. Which means when 
lower value of benefit factor is there then algorithm search 
will be fine with small step, but the convergence speed of 
the algorithm decreases. Similarly, if larger value of benefit 
factor considered the search get speed up skipping nearby 
value which reduces exploitation capacity of algorithm. 
However, the benefit factor which organism actually may 
get could be in any scale between 1 and 2 in nature. This 
motivates us for changing benefit factor  (BF1) to adaptive 
benefit factor (ABF) which gives good convergence, supe-
rior search ability, and harmony between exploration and 
exploitation:

where Mutual
−

Vector is defined as Eq. 3.

The adaptive benefit factor as shown in Eqs. (10, 11) 
is applied for minimization problem. Here value of the 
design variables in this algorithm may change to a small 
extent or to a significant extent as they are governed by 
various factors. The large and small changes in the design 
variables represent the exploration and exploitation of a 
search space, respectively. For an accurate optimization 
of structure with minimization of objective function, a 
good balance between the exploration and exploitation is 
needed. Exploration refers to the process of finding prom-
ising areas of a search space and leads to global search. 
Exploitation, however, is the local search around desired 
solutions found in the exploration phase.

Due implementation of adaptive benefit factor, the 
term Mutual

−
Vector × ABFgives a good balance between 

exploration and exploitation for the relationship char-
acteristic between organism X

i
 and Xj compared with 

those of initial BF
1
 and BF

2
 rand(0,1) values. This leads 

to good diversity with faster convergence and more sta-
bility of(X

best
− Mutual−Vector × ABF) . As a result, new 

(8)
Xinew = X

i
+ rand(0, 1) × (Xbest − Mutual−Vector × ABF).

(9)

Xjnew = Xj + rand(0,1) × (Xbest − Mutual−Vector × BF2)

(10)ABF =

{

fi
(

Xi

)

∕fi
(

Xbest

)

, if fi
(

Xbest

)

≠ 0

1 + round[rand(0,1)], if fi
(

Xbest

)

≠ 0

(11)ABF =

⎧
⎪
⎨
⎪
⎩

1, ifABF < 1

2, ifABF > 2

ABF, otherwise.
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solutions of X
inew

 and Xjnew lies inside feasible region that 
minimize the deviation of the objective function between 
the best organism and the whole ecosystem. Consequently, 
the stability of the algorithm based on the evaluation of 
standard deviation increases, and the algorithm demands 
less numbers of analyses to converge a global optimal solu-
tion. Eventually exploration ability of mutualism phase is 
increase due to implemented modification in Benefit factor.

ABF leads the algorithm to explore non-visited region 
in search space when population(‘i’ or ‘j’) is away from 
the best population and also helps in increase the con-
vergence rate of solution when population is nearby to 
best solution. This shows that MSOS with ABF leads to 
the global optimal solution with a good balance between 
exploration and exploitation of optimization algorithm.

3.2  Modification in parasitism phase

A parasitism phase is important in upgrading the explora-
tion capacity of SOS. However, it is also experienced that 
over exploration results in higher computational cost. In this 
phase, a large number of new solutions get rejection due to 
inferior objective functional values compared to previous 
one. In parasitism phase of basic SOS algorithm, the explo-
ration rate is poor, as the parasite vector is producing with 
fusion of design variable with a random generated variable 
in search space. This only results in improvement of existing 
result, which enhances the exploitation capability of this 
algorithm. The main reason for modification is to remove 
the drawback of low exploitation capability of parasitism 
phase. Many studies show that the exploitation capability 
of parasitism phase in SOS algorithm is considerably low as 
compared to exploratory capability. Increasing the number 
of FE leads to an increase in the convergence time too.

In addition, many researches show the improvement 
in efficiency of algorithm with modification in parasitism 
phase [45, 66]. Therefore, this phase is improved with the 
modification of parasitism phase. Here it is tried to improve 
exploitation potential of parasitism phase with maintaining 
global optimal solution as well in search space. Therefore, 
our motive is to set a perfect balance between exploration 
and exploitation of search algorithm. In this the proposed 
algorithm, exploration is encourage using mutation strategy. 
The strategy enhances the diversity of population and solu-
tions as well. The proposed approach allows the algorithm 
to explore different regions of the search space at the same 
time, avoid the population concentration in one region, and 
avoid premature convergence. Equation 12 represents the 
modification in parasite vector:

(12)

Modified Parasitism Vector =

{

X
j

i
if 0.5 ≤ rand(0,1)

X
j

k
otherwise

Here, the randomly generated organism X
k
 is replaced 

by parasitism vector when parasitism vector function value 
is better than host X

k
 . This is governed by the condition 

when a random number in [0, 1] has a greater value than 
a threshold (0.5 ≤ rand(0, 1)) , where threshold value 0.5 is 
adapted iteratively. Otherwise new organism ‘k’ is selected 
randomly from the population. Here if the improved parasit-
ism vector is fitter than the organism ‘k’, parasite will kill 
organism ‘k’ and acquire its place. Finally, if the objective 
function value for the improved parasitism vector gives 
minimum value than the previous one, then the parasitism 
vector takes the new position while eliminating previous 
organism.

Populations are evolving to a fitter version only if their 
new fitness dominates their pre-interaction fitness. In this 
case, the old X

i
 will be replaced immediately byX

inew
 . The 

X
i
 will be moved into advanced population. Otherwise, 

X
inew

 will be added into advanced population for selecting 
the next generation ecosystem. As such, the proposed algo-
rithm can converge faster while maintaining good diver-
sity. Due to above-mentioned modification in parasitism 
phase exploitation capability increase with high conver-
gence rate and stability of optimal solution.

It should be noted that in this modification commensalism 
phase kept remain same as in the original SOS algorithm. In 
commensalism phase, each organism X

inew
 and Xjnew

 is com-
pared with the pre-interaction organism X

i
 and Xj to choose 

a better organism for the next step. Parameter (X
best

− Xj) , 
of Eq. (6) echoes the leverage getting by X

i
 due its relation-

ship withXj . In this phase, an arbitrary organism X
i
 interacts 

with randomly selected another organism Xj in ecosystem 
in which only organism X

i
 benefited, while other, i.e., Xj 

remain unaffected. The organism updated only when the 
function value F (Xinew) fitter than previous one. This helps 
X

i
 to ameliorate in ecosystem with respect to existing best 

organism Xbest. It is clear that the worse organism in each 
pair is not selected and convergence speed increased with 
better organism selection. In this phase exploitation ability 
and convergence speed are improved due to the decreased 
search space. Therefore, in this phase a good exploitation 
near the best organism region is observed in search space 
which accelerates the convergence of algorithm.

However, with the afore-implemented modifications in 
the mutualism and parasitism phases of MSOS, the explo-
ration and exploitation abilities are balanced. Moreover, 
the suggested parameter values in the MSOS have faster 
convergence speed against the original SOS. It can be 
concluded that MSOS significantly improves the compu-
tational cost and the convergence of the original SOS, but 
still attaining the global optimal solution with high accu-
racy and reliability. Both implementations aim at increas-
ing the exploration and exploitation capability and thus 
enhancing the convergence speed with higher precision, 
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Fig. 1  Flowchart of the SOS and MSOS algorithms
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and stronger robustness than basic SOS. From above modi-
fication, a balanced trade-off between the exploration and 
exploitation abilities is, therefore, achieved. Modification 
increases the diversity of the population and improves the 
ability of the algorithm to explore and exploit, as well as 
preventing the algorithm from premature convergence. 
Furthermore, the proposed algorithm is simple and easy 
to implement.

The proposed algorithms work in three phases: the 
mutualism phase, the commensalism phase, and the par-
asitism phase. In addition, each phase is governed by a 
number of generations and various factors. A schematic 
diagram of MSOS and SOS is presented in Fig. 1, which 
gives various steps of these algorithms like initialization, 
mutualism phase, commensalism phase, parasitism phase, 
and termination criteria. The subsequent sections examine 
the efficiency of MSOS with respect to the shape and siz-
ing problems.

4  The formulation of the design problem

The basic objective of structural optimization problem is to 
minimize the mass of the truss via finding optimal element 
cross section area and optimal nodal positions subjected to 
multiple frequency constraints. Therefore, the objective func-
tion is the mass of truss by neglecting lumped mass at nodes 

while keeping nodal coordinates and elemental cross-section 
areas as design variables.

The mathematical formulation corresponding to the prob-
lem considered in this work is as follows:

where A
i,�i, and L

i
signify the cross-sectional area, material 

density, and length of the bar ‘i’, respectively. Nj presents 
nodal coordinate (xj, yj, zj) of ‘jth’ node. fq and fr are ‘qth’ 
and ‘rth’ natural frequencies, respectively. The superscripts, 
‘max’ and ‘min’ signify the maximum and minimum allowa-
ble limits, respectively. The finite element method is applied 
as analyzer to calculate fundamental Eigen values and natu-
ral frequencies of the truss structure.

Solving constrained optimization problem at times become 
infeasible as the solutions at times get stuck in the local 
optima, especially in the problems having disjoint search 
space. Under these scenarios Penalty function methods are 
used which convert a constrained problem into an uncon-
strained one, where the ‘Penalty Function’ penalizes the infea-
sible solutions to move toward desirable feasible solutions.

(13)
Find, X = {A, N}, where A =

{

A1, A2,… , A
m

}

and

N =
{

N1, N2,… , N
n

}

to minimize, Mass of truss,

F(X) =

m
∑

i=1

A
i
�

i
L

i

Subjected to

g
1(X) ∶ fq − f min

q
≥ 0

g
2
(X) ∶ fr − f max

r
≤ 0

g
3(X) ∶ Amin

i
≤ Ai ≤ Amax

i

g
4(X) ∶ Nmin

j
≤ Nj ≤ Nmax

j

where i = 1,2,… , m; j = 1,2,… , n

Fig. 2  10-bar truss

Fig. 3  37-bar truss
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The objective function is penalized to handle frequency 
limits. There is no penalty for non-violation of the limits; 
otherwise, the penalty function is considered as follows [28]:

The parameters �
1
 and �

2
 are selected by considering their 

nature. In this investigation, values of �
1
 and �

2
 are set as 3 

as per previous studies [48, 75].

5  Truss problems and discussions

In this section, the proposed algorithm is tested on six chal-
lenging benchmark trusses (as shown in Figs. 2, 3, 4, 5, 6, and 
7). Here the consideration is to perform size and shape opti-
mization of given trusses under multiple natural frequency 
limits. Later on, soundness and viability of the proposed 

(14)Penalized F(X) =

{

F(X), if no violation of limits

F(X) × Fpenalty, otherwise

(15)

Fpenalty = (1 + �1 × ∁)
�2 , ∁ =

∑(
∁q + ∁r

)
,

∁q =

||
|
||
|
|

1 −

||
|
fq − f min

q

|
|
|

f min
q

|
|
|||
|
|

, ∁r =
|
|
||
|
1 −

||fr − f max
r

||
f max
r

|
|||
|

Fig. 4  72-bar truss

Fig. 5  52-bar truss

Fig. 6  120-bar truss
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MSOS algorithm was evaluated for different continuous 
section truss design. Furthermore, the results are compared 
with previous results obtained through various existing MHs 
like FA, TLBO, OC, GA, CSS, CBO, TWO, SOS, and VPS.

5.1  The 10-bar truss

The first benchmark problem of 10-bar truss, shown in 
Fig. 2, is considered here to investigate the effect of various 
design parameters (given in Table 1). This problem results 
already been examined by various researchers is shown in 
Table 2. For given truss problem, ten continuous design vari-
ables are considered for sizing function and at all free nodes 
(nodes 1–4) of the given truss a 454.0 kg lumped mass is 
added, as shown in Fig. 2.

MSOS is tested check effects on size optimization by 
assuming population size as 20 and maximum Function 
Evaluations as 4000. Table 2 illustrates design variables, 
truss masses, Standard Deviation (SD) of mass, FE, and fre-
quency responses obtained for 100 independent runs. The 
result table presents that MSOS and SOS find the minimum 

mass 524.5747 and 525.2789 kg, respectively. In addition, 
MSOS finds the best solution as compared to similar results 
detailed in literature. Therefore, the results of MSOS are 
compared with the results of the other MHs. The mass sav-
ing for MSOS is 18.18, 13.41, 10.57, 7.38, 4.68, 10.42, 6.71, 
4.52, 11.16, 7.66, 0.70, 0.35, 0.25, 0.70, and 0.16 kg as com-
pared to those obtained from NHGA, PSO, NHPGA, CSS, 
enhanced CSS, HS, FA, CSS-BBBC, hybrid OC-GA, TWO, 
SOS, SOS-ABF1, SOS-ABF2, SOS-ABF1&2, and ISOS, 
respectively.

Mean mass (Avg.) obtained using MSOS and SOS is 
527.7970 and 531.4033 kg, respectively. As per results, 
MSOS presents the best Avg. solution among the considered 
MHs. It is also observed that SOS and its variants find better 
Avg. solution as compared to similar solutions presented in 
literature. The Avg. mass saving for MSOS is 13.09, 8.59, 
10.73, 9.88, 7.27, 7.75, 3.61, 0.83, 0.75, 0.91, and 2.23 kg 
as compared to those obtained from PSO, CSS, enhanced 
CSS, HS, FA, TWO, SOS, SOS-ABF1, SOS-ABF2, SOS-
ABF1&2, and ISOS, respectively.

Fig. 7  200-bar truss

Table 1  Design parameters of the benchmark trusses

The 10-bar truss The 37-bar truss The 72-bar truss The 52-bar truss The 120-bar truss The 200-bar truss

Design variables A
i
, i = 1,2,… , 10 A

i
, i = 1,2,… , 14;

yj, j = 3,5, 7,9, 11

G
i
, i = 1,2,… , 16 G

i
, i = 1,2,… , 8;

zA, zB, zF , xB, xF

G
i
, i = 1,2,… , 7 G

i
, i = 1,2,… , 29

Limits f (Hz) f1 ≥ 7,

f2 ≥ 15,

f
3
≥ 20

f1 ≥ 20,

f2 ≥ 40,

f
3
≥ 60

f1 ≥ 4,

f
3
≥ 6

f1 ≤ 15.916,

f
2
≥ 28.648

f1 ≥ 9,

f
2
≥ 11

f1 ≥ 5,

f2 ≥ 10,

f
3
≥ 15

Size variables, A
i

(

cm
2
)

[0.645, 50] [1, 10] [0.645, 30] [1, 10] [1, 129.3] [0.1, 30]

Shape variables – yj ∈ [0.1, 3]m – ± 2 m – –

Material den-
sity�

(

kg∕m3
)

2770 7800 2770 7800 7971.81 7860

Young modulus
E(Pa)

6.98 × 10
10

2.1 × 10
11

6.98 × 10
10

2.1 × 10
11

2.1 × 10
11

Pa 2.1 × 10
11
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MSOS and SOS find SD as 2.9121 and 4.2243  kg, 
respectively. It is evident that MSOS finds better solution 
as SD compare to SOS and other MHs except HS and SOS-
ABF1&2. It should be noted that maximum FE used in 
MSOS and SOS is fairly small as compared to HS, FA, 
and hybrid OC-GA. This valuation specifies that the solu-
tions obtained using MSOS and SOS are more reliable and 
superior with the other solutions stated in literature. How-
ever, few studies are available in the literature which dem-
onstrate competitive edge to proposed algorithm like VPS 
which gives Avg. and SD values of 535.64 and 2.55 kg, 
respectively, after 4620 analyses, a novel adaptive hybrid 
evolutionary firefly algorithm (AHEFA) suggested by Lieu 
et al. [88] which gives Avg. and SD values of 525.1623 and 
1.9155 kg, respectively, after 5860 function analyses, Rou-
lette wheel selection-Elitist-Differential Evolution (ReDE) 
recommended by Ho-Huu et al. [89] results into Avg. and 
SD values of 525.7039 and 1.3415 kg, respectively, after 
20,000 average function analyses. Kaveh and Javadi [90] 
suggested an efficient hybrid algorithm HRPSO (which 
compound particle swarm, ray optimizer, and harmony 
search strategy) which gives Avg. and SD values of 524.88 
and 2.253 kg, respectively, after 10 independent runs. Simi-
larly, cyclical parthenogenesis algorithm (CPA) proposed 
by Kaveh and Zolghadr (2016) gives Avg. and SD values 
of 533.66 and 2.67 kg, respectively, after 12,800 structural 
analyses.

Figure 8 shows a convergence graph of mean mass with 
respect to FE for MSOS and SOS. The mean mass is com-
puted by considering the average mass of all runs for each 
generation. The graph indicates that MSOS converges faster 
in nearly 2000 FE. In addition, it is identified that MSOS 
outperforms the basic SOS.

5.2  The 37-bar truss

The second benchmark problem considered here is shown 
in Fig.  3, which is a 37-bar truss, simply supported 

bridge. Initially it was considered by Wang et al. [53] and 
later many researchers investigate this truss problem (as 
shown in Table 3). Various design parameters considered 
here is depicted in Table 1. In addition, all free nodes here 
considered having a lumped mass of 10 kg attached to 
the lower chord of truss. Moreover, lower cords of given 
truss problem are assumed to have fixed rectangular 
cross-section of 0.4 cm2, whereas the remaining bars are 
clustered into fourteen groups by considering symmetry 
of structure about its middle vertical plane. Here lower 
nodes are considered to be fixed and upper nodes have a 
possibility of shifting vertically as structural symmetry 
has been considered along vertical plane. Due to above 
consideration this problem has five shape and fourteen 
size variables.

MSOS and SOS are investigated by assuming population 
size as 20 and FE as 4000. The solutions are presented in 
Table 3. MSOS and SOS find the best solution as 360.3018 
and 360.8658 kg, respectively. The results show that SOS 
and its variants find nearly similar and better solutions with 
similar results reported in literature. However, maximum 
FE used in SOS and its variants is very small as compared 
to PSO, HS, and FA.

MSOS and SOS present Avg. solutions as 362.9610 and 
364.8521 kg, respectively. MSOS and SOS present SD of 
mass as 1.7265 and 4.2278 kg, respectively. It observed from 
the solutions that that MSOS archives better solution as Avg. 
and SD of mass among the considered MHs for 4000 FE. 
Meanwhile, many competitive solutions are also available 
in literature like a new Particle Swarm Ray Optimization 
(PSRO) proposed by Kaveh and Zolghadr [92] which gives 
the result of mean weight and standard deviation after 20 
independent runs as 362.65 and 1.30 kg, respectively. Simi-
larly, CPA gives Avg. and SD values of 360.93 and 0.65 kg, 
respectively, after 12,800 structural analyses, VPS gives 
Avg. and SD values of 360.23 and 0.22 kg, respectively, 
after 7940 structural analyses. In addition, CBO gives the 
solution of Avg. 360.4463 kg and SD of 0.35655 kg after 
6000 number of analysis. Moreover, ReDE results into Avg. 
and SD values of 359.9944 and 0.1493 kg, respectively, after 
12,579 average function analyses.

Figure 9 shows the convergence graph of the 37-bar 
truss. Graph is plotted between mean mass vs. FE for the 
proposed algorithms. The convergence graph indicates 
that MSOS converge faster and achieves good optimal 
results as compared to SOS. Moreover, MSOS shows 
early convergence nearly within 3000 FE. In addition, it 
is identified that from the obtained results, MSOS per-
forms better compare to basic SOS. Therefore, the per-
formance of the proposed modified algorithm is better as 
compared to its basic version in terms of statistical results 
and convergence.
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5.3  The 72-bar truss

The third benchmark truss problem taken here is manifested 
in Fig. 4. Similar to earlier cases this truss problem also has 
been investigated by many researchers at large scale as siz-
ing problem. Table 1 represents the deign consideration for 
this problem. Here due to assumption of vertical plane sym-
metry of structure similar to previous cases, sixteen groups 
of bars are considered. Furthermore, at all top position nodes 
(nodes 1–4) a lumped mass of 2770 kg is assumed to be 
attached, as shown in Fig. 4.

MSOS and SOS are investigated by assuming population 
size as 20 and FE as 4000. The solutions are presented in 
Table 4. The best solution found using MSOS and SOS is 
324.346 and 325.5585 kg, respectively. It is observed from 
solutions that MSOS performs better compared to SOS and 
its other variants and similar solutions reported in litera-
ture. Moreover, MSOS performs better among considered 
MHs. Therefore, results obtained using MSOS are compared 
with the results of the other MHs mass saving for MSOS 
is 4.47, 4.05, 3.16, 0.41, 3.22, 3.23, 4.48, 1.21, 0.74, 0.34, 
0.89, and 0.72 kg compared to those obtained from CSS, 
enhanced CSS, CSS-BBBC, CBO, TLBO, MC-TLBO, 
TWO, SOS, SOS-ABF1, SOS-ABF2, SOS-ABF1&2, and 
ISOS, respectively.

The results signify that MSOS and SOS find Avg. solu-
tion as 326.7847 and 331.1228 kg, respectively. MSOS and 
SOS find SD of mass as 2.1968 and 4.2278 kg, respectively. 
It can be seen from the results that MSOS finds best result as 
Avg. and SD of solutions among the considered MHs with 
4000 FEs. It observed that maximum FE consumed by CBO, 
TLBO, and MC-TLBO is significantly better as compared to 
the other MHs. However, few studies are available in the lit-
erature which illustrate competitive solutions than proposed 
algorithm like CPA gives Avg. and SD values of 330.91 and 
1.84 kg, respectively, after 12,800 structural analyses, VPS 
gives Avg. and SD values of 327.670 and 0.018 kg, respec-
tively, after 4720 structural analyses, HRPSO gives Avg. and 

SD values of 324.497(in lb.) and 3.948 kg, respectively, after 
10 independent runs. Similarly, ReDE results into Avg. and 
SD values of 324.3219 and 0.0516 kg, respectively, after 
11,116 average function analyses, AHEFA gives Avg. and 
SD values of 324.4109 and 0.2420 kg, respectively, after 
8860 function analyses.

Figure 10 illustrates a convergence graph of the mean 
mass for MSOS and SOS. As observed from the graph, the 
mean mass for 4000 FE is 326.7847 kg and 331.1228 kg for 
MSOS and SOS, respectively. It can be seen from the con-
vergence graph that MSOS converges better than SOS. This 
study specifies that the solutions obtained using MSOS are 
more reliable and proficient as compared to similar solutions 
obtained using other MHs.

5.4  The 52-bar truss

The fourth problem selected, as shown in Fig. 5, is 52-bar 
dome shape truss problem. This truss problem was first stud-
ied by Lin et al. (1982) for shape and sizing optimization and 
later it was considered by several other scholars, as shown 
in Table 5. For this problem various design parameters con-
sideration are illustrated in Table 1. As in first case, here a 
50 kg lumped mass is assumed to be attached at free nodes. 
The elements of structure are clustered into eight groups 
considering z-axis symmetry and also to keep dome sym-
metric free nodes are allowed to shift ± 2 m in each direction 
of the vertical plane.

MSOS and SOS are investigated by assuming population 
size as 20 and FE as 4000. Table 5 illustrates the solutions 
obtained using MSOS, SOS, and other MHs stated in lit-
erature. The solutions show that MSOS and SOS propose 
trusses with the best mass of 193.773 and 195.4969 kg, 
respectively. It is identified that MSOS ranks first, whereas 
ISOS ranks second among the considered MHs. The mass 
saving for MSOS is 104.23, 42.27, 34.61, 11.46, 3.56, 21.17, 
3.76, 3.54, 1.58, 0.48, 1.72, 1.04, 1.40, 4.49, and 0.98 kg 
compared to those obtained from Bi-factor algorithm, 
NGHA, PSO, CSS, enhanced CSS, HS, FA, CSS-BBBC, 
DPSO, TWO, SOS, SOS-ABF1, SOS-ABF2, SOS-ABF1&2, 
and ISOS, respectively.

The results signify that MSOS and SOS present Avg. 
solutions as 204.4279 and 214.6676 kg, respectively. The 
results indicate that MSOS finds better Avg. solutions as 
compared to other MHs stated in literature except DPSO. 
In addition, the maximum FE consumed in the proposed 
MHs is fairly small as compared to PSO, HS, FA, and 
DPSO. MSOS and SOS find SD as 8.4014 and 15.1499 kg, 
respectively. However, few studies are also available in the 
literature which exhibit competitive solutions than proposed 
algorithm like CPA gives Avg. and SD values of 198.81 
and 3.71 kg, respectively, after 12,800 structural analyses, 
HRPSO gives Avg. and SD values of 193.361 and 17.637 kg, 
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respectively, after 10 independent runs, AHEFA gives Avg. 
and SD values of 198.7290 and 4.4108 kg, respectively, after 
12,120 function analyses. Similarly, ReDE results into Avg. 
and SD values of 195.4260 and 3.8587 kg, respectively, after 
14,749 average function analyses. In addition, an Improved 
ray optimization (IRO) Kaveh et al. [82] gives Avg. and SD 
values of 196.43 and 1.81 kg, respectively, after 17,000 
structural analyses.

It is observed from the solutions that that MSOS gives 
better Avg. solution and SD as compared to basic SOS. 
Figure 11 compares the convergence characteristic curve 
of the mean mass for MSOS and SOS. The convergence 
graph indicates that MSOS converges faster and achieves 
good optimal results as compared to SOS. Moreover, 
MSOS shows early convergence nearly within 3000 FE. 
This study indicates that the results of MSOS, SOS, and its 
other variants are more reliable and proficient as compared 
to the results of the other considered MHs. In addition, 
MSOS performs more efficiently as compared to basic 
SOS.

5.5  The 120-bar truss

The fifth benchmarks problem considered here is 120 bar 
truss problem, as shown in Fig. 6.This truss has a 3-D dome 
structure which was first considered by Kaveh and Zolghadr 
[27] for size optimization. Again, for this truss problem the 
design parameters considered is shown in Table 1. Con-
versely rather than using single lumped mass as done in 
previous cases, here a lumped mass of 3000 kg is added 
at node1, from 2 to 13 nodes 500 kg and for rest of free 
nodes a 100 kg mass is added. Again, based on the z-axis 
symmetry assumption the elements are clustered into seven 
group here.

MSOS and SOS are investigated by assuming population 
size as 20 and FE as 4000. Table 6 illustrates the obtained 

solutions using SOS and other MHs. It shows that MSOS 
and SOS find the truss problems with the best mass of 
8708.3180 and 8713.3030 kg, respectively. The results show 
that SOS, MSOS, and its other variants give better solu-
tions compared to similar solutions detailed in literature. 
In addition, MSOS ranks first among the considered MHs. 
MSOS gives mass saving of 496.19, 338.02, 180.81, 463.61, 
182.16, 4.99, 3.79, 2.01, 8.63, and 1.74 kg compared to solu-
tions obtained from CSS, CSS-BBBC, CBO, PSO, DPSO, 
SOS, SOS-ABF1, SOS-ABF2, SOS-ABF1&2, and ISOS, 
respectively.

The Avg. solution for MSOS and SOS are 8720.9734 and 
8735.3452 kg, respectively. It is observed that MSOS finds 
better Avg. solution among the considered MHs. The Avg. 
mass benefit for MSOS is 170.28, 530.87, 175.02, 14.37, 
6.45, 4.33, 69.72, and 7.62 kg as compared to those obtained 
from CBO, PSO, DPSO, SOS, SOS-ABF1, SOS-ABF2, 
SOS-ABF1&2, and ISOS, respectively. It is observed evi-
dently that MSOS gives better Avg. solution as compared to 
similar solutions presented in literature. However, few stud-
ies are available in the literature which demonstrate competi-
tive solutions than proposed algorithm like VPS gives Avg. 
and SD values of 8896.04 and 6.65 kg, respectively, after 
6860 structural analyses. Similarly, ReDE results into Avg. 
and SD values of 8707.5233 and 0.1543 kg, respectively, 
after 5380 average function analyses, AHEFA gives Avg. 
and SD values of 8707.5580 and 0.2535 kg, respectively, 
after 3560 function analyses, IRO gives Avg. and SD values 
of 8905.21 and 4.92 kg, respectively, after 16,300 structural 
analyses. In addition, Jalili and Talatahari (2018) proposed a 
hybrid Charged System Search with Migration-based Local 
Search algorithm (CSS-MBLS) which gives Avg. and SD 
values of 8715.60 and 4.95 kg, respectively, after 2400 
structural analyses. Furthermore, CBO gives the solution 
of Avg. 8,891.2540 and SD of 1.7926 kg after 6000 number 
of analysis.

MSOS and SOS present SD as 11.7324 and 17.9011, 
respectively. CBO and DPSO rank first and second, respec-
tively, in terms of SD but maximum FE consumed by these 
MHs is 50% higher compare to SOS and its variants. MSOS 
and SOS-ABF2 are nearly similar in SD and perform bet-
ter compare to others with 4000 FEs. Figure 12 displays 
convergence of the mean solutions obtained for MSOS and 
SOS. It is observed from the convergence graph of MSOS 
that the objective function converges rapidly within initial 
2500 FEs. Convergence graph also indicates that MSOS 
converges better than SOS and converges to better solutions. 
This study signifies that the solution obtained using MSOS 
are more reliable and proficient as compared to SOS and 
other solutions presented in literature without violation of 
constraints.
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5.6  The 200-bar truss

Figure  7 illustrates the sixth benchmark problem, i.e., 
200 bar truss optimization problem which is a large-scale 
size optimization problem. Design parameters like design 
variables, limits, frequency constraints etc. are presented in 
Table 1. Here a lumped mass of 100 kg is assumed at all top 
nodes (nodes 1–5) of structure. Again, based on the z-axis 
symmetry assumption, all the elements are clustered into 
29 groups here.

SOS and its variants are assumed with population size 
of 20 and FE of 10,000. Table 7 illustrates the compara-
tive solutions. The best solutions for MSOS and SOS are 
2164.47 and 2180.321 kg, respectively. The results show 
that MSOS gives better solutions compared SOS and its 
variants and similar results reported in literature. The solu-
tions show that MSOS finds mass saving of 95.39, 134.14, 
38.74, 24.61, 15.85, 0.41, 1.33, 43.42, and 4.99  kg as 
compared to those obtained from CSS, CSS-BBBC, CBO, 
2D-CBO, SOS, SOS-ABF1, SOS-ABF2, SOS-ABF1&2, 
and ISOS.

MSOS and SOS find Avg. solutions of 2185.4313 and 
2303.3034 kg, respectively. It is observed for the solu-
tions that MSOS gives better Avg. solution than SOS and 
other solutions. MSOS and SOS find SD as15.4062 and 
83.5897, respectively. It can be seen from the solutions 
that that MSOS finds better result as SD than SOS and 
other solutions presented in the table except SOS-ABF1. 
In addition, SOS-ABF1 and MSOS find SD nearly simi-
lar. However, few studies are available in the literature 
which demonstrate competitive edge to proposed algo-
rithm like enhanced colliding bodies’ optimization algo-
rithm proposed by Kaveh and Ghazaan [83] gives Avg. 
and SD values of 2159.93 and 1.57 kg, respectively, after 
14,700 number of analyses, CSS-MBLS gives Avg. and 
SD values of 2,157.40 and 1.04 kg, respectively, after 9600 
number of analyses, AHEFA gives Avg. and SD values 
of 2161.0393 and 0.1783 kg, respectively, after 11,300 
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function evaluation analyses, MC-TLBO gives Avg. and 
SD values of 2157.447 and 0.528 kg, respectively, after 
23,000 number of analyses.

This test clarifies that the solutions of MSOS are more 
reliable and proficient as compared to SOS and other solu-
tions reported in literature. Figure 13 shows a convergence 
graph of the mean mass for MSOS and SOS of the 200-bar 
truss. It can be seen easily that the graph converges faster 
for initial 7000 FEs. The convergence graph and statistical 
results indicate that MSOS converges faster and set superior 
results.

The aforementioned discussion demonstrates the com-
parison between best mass, average mass, and SD values 
obtained using the proposed MSOS and SOS algorithms 
for six benchmark problems. In the tables, the average 
values exemplify the convergence rate of the algorithm, 
whereas the SD determines the search consistency. It can 
be seen from the result summary that performance of SOS 
has been improved by the proposed modifications. In addi-
tion, convergence plots represented above for benchmarks 
problems with proposed modification manifest the solu-
tion with faster convergence with minimum time. The 
overall performance of MSOS is the significant among the 
measured MHs. In addition, this study illustrates that the 
proposed modification outperformance with respect to the 
basic SOS algorithm. Obtained solutions confirm the mer-
its of the proposed MH.

6  Corroborating MSOS performance 
with various benchmark functions

This section the twenty-two benchmark functions are 
extracted from CEC 2014 Special Session and Competition 
on Real-Parameter Numerical Optimization (Liang et al. 
2013) are exploited to manifest the effectiveness of the pro-
posed algorithm. These twenty-two standard problems are 

epitomized in Table 8. Furthermore, these benchmark prob-
lems are subdivided into three segments: Three unimodal 
Functions (F1–F3), thirteen simple multimodal Functions 
(F4–F16) and also six hybrid Functions (F17–F22). Moreo-
ver, eight distinct optimization algorithms (viz. WWO, 
BA, HuS, GSA, BBO, IWO, SOS, and MSOS) has been 
applied to these standard problems and compared to verify 
the results. In this study, 30-dimensional functions are used 
with search ranges as [− 100, 100]. Population size is con-
sidered as 50 and FEmax are taken as 150,000 for proposed 
algorithm. All results are collected from 60 independent 
runs on each test function.

Comparative Avg. and SD of fitness values over the 60 
runs are presented in Tables 9 and 10, respectively. Statisti-
cal tests are essential to check significance improvements by 
a proposed method over existing methods. Thus, the Fried-
man rank test on the results of MSOS, SOS, and other state-
of-the-art algorithms. The test is performed on the Avg. and 
SD of functional values obtained. The tables also present 
the rank sum of the algorithms over the test functions. The 
results signify that MSOS outperforms other optimizers 
for unimodal functions followed by SOS and WWO. For 
multimodal and hybrid functions WWO gives best results 
followed by IWO and MSOS among the considered algo-
rithms. Moreover, MSOS ranks better compared to SOS for 
unimodal, multimodal, and hybrid functions. The overall 
performance of MSOS is second best among the consid-
ered algorithms, whereas WWO performs the best on the 
benchmark functions of unimodal, multimodal, and hybrid 
functions. These results confirm the merits of the proposed 
algorithms once more.

7  Conclusion and future perspectives

A modified SOS is presented here for determining the min-
imum mass design of truss structure subjected to multiple 
natural frequency constraints with optimal nodal positions 
and element cross section areas. The proposed algorithm is 
applied successfully on five benchmark problems of simul-
taneous size and shape, optimization to investigate their 
performance. Complementarily, three unimodal functions, 
thirteen multimodal functions, and six hybrid functions of 
the CEC2014 are also investigated. A modified parasite 
vector is proposed here for improvement in exploitation 
capability of parasitism phase in basic SOS algorithm. Fur-
thermore, an adaptive factor is introduced in basic SOS 
algorithm to improve its efficiency for complex structures. 
Motive behind proposed study is to maintain harmony 
between exploration and exploitation potency of optimi-
zation algorithm in search space. Here all benchmark prob-
lems are examined by considering constraints like natural 
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frequency, nodal coordinates, and element section area for 
evaluation of feasibility and effectiveness of the algorithm. 
Usually design variable like nodal coordinates and element 
section area are of diverse nature and on collaboration 
they show complexity and diversified characteristics. In 
addition, frequency bounds with multiple design variable 
results into non-linearity and non-convexity of optimiza-
tion problem.

In this study, the performance of the MSOS algorithm 
is compared with various existing MHs like NHGA, PSO, 
NHPGA, CSS, enhanced CSS, HS, FA, CSS-BBBC, 
hybrid OC-GA, TWO, SOS, SOS-ABF1, SOS-ABF2, 
SOS-ABF1&2, and ISOS. Results shows the dominance 
of MSOS with respect to existing algorithms in param-
eters like optimum mass, Average mass, and SD of mass. 
Results also manifest that the combined utilization of 
adaptive factor and modification in parasitism vector in 
the proposed algorithm, improves the efficiency of search 
with good balance between exploration and exploitation 

potential. In addition, results show that the propose algo-
rithm has high exploration potential during initial function 
evaluations and also high exploitation capability during 
remaining function evaluation, which shows its outstand-
ing possession of global exploration and exploitation 
capacity in search space. To evaluate the performance 
of the proposed algorithms in benchmark functions, the 
results of SOS and MSOS are compared with the results 
of the WWO, BA, HuS, GSA, BBO, and IWO algorithms 
for the twenty-two benchmark functions proposed in the 
CEC2014 competition. Overall, MSOS has a better or 
competitive for obtaining results based on the average and 
SD of functional values obtained over the stated runs as 
compared to SOS.

A possible direction for future work would be to extend 
the proposed method to investigate the multi-objective 
truss structure design problems, where other objec-
tive functions such as joint cost and total construction 
cost can be taken into account. Application of efficient 
analysis techniques can facilitate the optimization prob-
lem of large-scale structures. It seems that introducing 
new mathematical and MHs as well as hybridizing and 
improving the existing ones to address structural optimi-
zation with frequency constraints will continue to grow 
as an active research topic. Moreover, utilization of novel 
algebraic and graph theoretical methods to decrease the 
computational time for optimization of different types 
of regular and near-regular structures can also be a very 
interesting field for future research. Considering fre-
quency constraints along with stress, displacement, and 
other types of constraints can also receive more attraction. 
Inquisitive researchers can analyse this algorithm for vari-
ous optimization problems, from small-scale engineer-
ing design problems to large-scale truss structure design 
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Table 8  CEC 2014 22 benchmark functions

Test function Optimum Test function Optimum

F1: rotated high conditioned Elliptic function 100 F12: Shifted and Rotated Katsuura Function 1200

F2: rotated bent Cigar function 200 F13: Shifted and Rotated HappyCat Function 1300

F3: rotated discus function 300 F14: Shifted and Rotated HGBat Function 1400

F4: shifted and rotated Rosenbrock’s function 400 F15: Shifted and Rotated Expanded Griewank’s plus Rosen-
brock’s Function

1500

F5: Shifted and Rotated Ackley’s Function 500 F16: Shifted and Rotated Expanded Scaffer’s F6 Function 1600

F6: Shifted and Rotated Weierstrass Function 600 F17: Hybrid Function 1 ((F9, F8,F1) 1700

F7: Shifted and Rotated Griewank’s Function 700 F18: Hybrid Function 2 (F2, F12, F8) 1800

F8: Shifted Rastrigin’s Function 800 F19: Hybrid Function 3 (F7, F6, F4, F14) 1900

F9: Shifted and Rotated Rastrigin’s Function 900 F20: Hybrid Function 4 (F12, F3, F13, F8) 2000

F10: Shifted Schwefel’s Function 1000 F21: Hybrid Function 5 (F14, F12, F4, F9, F1) 2100

F11: Shifted and Rotated Schwefel’s Function 1100 F22: Hybrid Function 6 (F10, F11, F13, F9, F5) 2200
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Table 9  Comparative Avg. of fitness values of the CEC2014 (The results of first six algorithms are as per Zheng [76])

Function WWO BA Hus GSA BBO IWO SOS MSOS

F1 628064.7331 316593399.3261 5555804.7723 14413625.1299 27262607.1812 1463430.6695 1026753.8150 467711.3550

F2 330.4397 25714756385.1935 10068.1285 8771.2239 4012004.0764 17672.1722 213.1503 231.0785

F3 526.8209 72001.7161 502.0203 45384.2492 13100.3120 8167.4657 938.9390 496.9134

Friedman 
value of 
F1-F3

8 24 12 17 20 15 8 4

Friedman 
rank of 
F1-F3

2 8 4 6 7 5 2 1

F4 417.0105 3697.5439 506.9362 676.4360 538.7936 500.3255 468.2918 466.2221

F5 519.9999 520.9716 520.7029 519.9990 520.1556 520.0140 520.5639 520.0303

F6 605.9873 636.3693 623.0650 619.5872 613.9623 602.2138 610.8746 611.5147

F7 700.0037 910.6678 700.0407 700.0001 701.0283 700.0337 700.0161 700.0216

F8 801.1436 1070.3076 940.1063 800.4991 877.4573 843.7475 852.1217 824.6915

F9 961.0930 1250.0944 1011.9988 1059.7399 951.4286 946.0714 970.5093 966.3686

F10 1581.5778 6426.1095 2253.5001 4392.2443 1002.1744 2565.2591 2107.2343 1378.4436

F11 3349.4633 8152.1644 3302.9108 5099.2681 3247.3542 2887.3064 4017.4845 3636.8347

F12 1200.0995 1202.5771 1200.1870 1200.0011 1200.2257 1200.0355 1200.6611 1200.3483

F13 1300.2617 1304.0199 1300.3921 1300.2972 1300.5091 1300.2789 1300.4233 1300.3700

F14 1400.2169 1473.1361 1400.2377 1400.2540 1400.4439 1400.2360 1400.3309 1400.2643

F15 1503.2828 194533.2621 1517.0308 1503.2887 1514.6242 1503.6932 1517.6988 1510.9396

F16 1610.4351 1612.9981 1611.7074 1613.6691 1609.9125 1610.4324 1610.6564 1610.4357

Friedman 
value of 
F4–F16

28 103 70 55 59 36 66 51

Friedman 
rank of 
F4–F16

1 8 7 4 5 2 6 3

F17 26618.6801 4641277.7674 198099.0415 578588.7550 4299306.6650 86437.0037 143235.1725 81339.7737

F18 2026.3758 121880897.9466 3780.5580 2289.6856 28418.2340 5787.0752 8320.0810 5807.7762

F19 1907.7291 2004.9297 1931.0413 1995.2919 1928.4718 1907.9130 1923.3954 1920.0385

F20 5363.8611 19356.8922 38657.3368 22421.9064 31411.1843 2992.6053 5770.2949 5697.8995

F21 38673.7809 1095231.5294 60455.7923 170612.9594 485593.2936 39074.3102 68597.8240 32529.2852

F22 2481.9864 3134.0717 3072.5807 3161.1458 2722.8879 2346.3986 2496.3689 2483.6063

Friedman 
value 
of F17–
F22

9 44 32 35 38 14 27 17

Friedman 
rank of 
F17–
F22

1 8 5 6 7 2 4 3

Overall 
Fried-
man 
value

45 171 114 107 117 65 101 72

Overall 
Fried-
man 
rank

1 8 6 5 7 2 4 3
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problems. Moreover, one can attempt to resolve the per-
sistence problem of tuning of unpredictable parameters 
in algorithms.

References

 1. Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algo-
rithm with chaos for mechanical design optimization prob-
lems. Appl Soft Comput 36:152–164. https ://doi.org/10.1016/j.
asoc.2015.06.056

 2. Bingul Z (2007) Adaptive genetic algorithms applied to dynamic 
multiobjective problems. Appl Soft Comput J 7:791–799. https ://
doi.org/10.1016/j.asoc.2006.03.001

 3. Cheng MY, Prayogo D (2014) Symbiotic Organisms Search: 
A new metaheuristic optimization algorithm. Comput Struct 
139:98–112. https ://doi.org/10.1016/j.comps truc.2014.03.007

 4. Cheng MY, Prayogo D, Wu YW (2018) Prediction of permanent 
deformation in asphalt pavements using a novel symbiotic organ-
isms search – least squares support vector regression. Neural 
Comput Appl. https ://doi.org/10.1007/s0052 1-018-3426-0

 5. De Jong KA (1975) An Analysis of the Behavior of a Class of 
Genetic Adaptive Systems. Comput Commun Sci 56:266

 6. Do DTT, Lee J (2017) A modified symbiotic organisms search 
(mSOS) algorithm for optimization of pin-jointed structures. 
Appl Soft Comput J 61:683–699. https ://doi.org/10.1016/j.
asoc.2017.08.002

 7. Dorigo M, Maniezzo V, Colorni A (1996) Ant System: Optimiza-
tion by a Colony of Cooperating Agents. IEEE Trans Syst Man 
Cybern Part B 26:1–13. https ://doi.org/10.1109/3477.48443 6

 8. Eberhart R, Kennedy J (1995) A new optimizer using particle 
swarm theory. MHS’95 Proc Sixth Int Symp Micro Mach Hum 
Sci 39–43. https ://doi.org/10.1109/MHS.1995.49421 5

 9. Erol OK, Eksin I (2006) A new optimization method: Big 
Bang-Big Crunch. Adv Eng Softw 37:106–111. https ://doi.
org/10.1016/j.adven gsoft .2005.04.005

 10. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water 
cycle algorithm—a novel metaheuristic optimization method for 
solving constrained engineering optimization problems. Com-
put Struct 110–111:151–166. https ://doi.org/10.1016/j.comps 
truc.2012.07.010

 11. Ezugwu AES, Adewumi AO, Frîncu ME (2017) Simulated anneal-
ing based symbiotic organisms search optimization algorithm for 

Table 10  Comparative SD of fitness values of the CEC2014 The results of first six algorithms are as per Zheng [76]

Function WWO BA Hus GSA BBO IWO SOS MSOS

F1 244526.8140 104690309.2627 2620084.7953 13187933.1609 16720012.8760 571747.0082 732930.2258 255076.7193

F2 202.2221 7553596375.4800 6012.6897 2903.3044 1549219.3214 8673.4818 20.2822 63.3820

F3 184.6450 17548.6717 540.6109 10432.6453 12764.8742 2692.8884 527.5818 249.8799

F4 36.3636 1973.8532 36.6181 51.5149 38.3545 28.7968 31.7519 40.9633

F5 0.0007 0.0481 0.0783 0.0006 0.0422 0.0038 0.0801 0.0430

F6 2.6204 1.5591 2.1784 1.8319 2.3542 1.1219 2.5681 3.0635

F7 0.0063 32.3193 0.0556 0.0010 0.0264 0.0121 0.0214 0.0271

F8 2.3361 25.6476 12.7304 0.2063 20.6917 10.1117 12.3208 6.9815

F9 11.0977 44.1294 25.9919 17.4329 11.4372 11.3933 24.0796 16.9302

F10 361.6122 518.6548 433.1531 360.9861 0.6800 380.0190 344.1052 187.9776

F11 289.2180 362.2389 465.5429 567.3467 511.5523 447.7160 835.0838 506.0594

F12 0.0561 0.3339 0.0777 0.0010 0.0562 0.0148 0.1833 0.1351

F13 0.0641 0.5483 0.0650 0.0665 0.1061 0.0650 0.0864 0.0783

F14 0.0441 13.9463 0.0474 0.0423 0.1992 0.1191 0.1296 0.0538

F15 0.7753 140338.9490 3.2695 0.7297 4.2976 0.8484 3.7981 4.1851

F16 0.4667 0.1904 0.7249 0.3428 0.5923 0.6144 0.6059 0.7675

F17 12403.5374 1789909.2516 160518.8631 219949.3460 4192494.2708 68473.6644 159023.3392 54940.7907

F18 125.1962 100285357.3457 2246.5148 377.9286 19674.9440 3690.0554 10313.3555 5702.6751

F19 1.3780 20.3164 33.1485 34.3190 27.6885 1.6545 26.6142 22.3884

F20 3177.0847 10283.6255 8492.7252 13860.3564 17604.9005 700.4102 3295.2452 2466.1799

F21 35555.5716 750680.8765 42428.1036 65285.4119 334571.5390 23011.1766 80093.3096 24345.4802

F22 142.8952 205.4095 267.2685 250.0137 234.4393 73.3907 151.5147 141.3538

Overall 
Fried-
man 
value

51.0000 144 113.5 89 128 67.5 108 91

Overall 
Fried-
man 
rank

1 8 6 3 7 2 5 4

https://doi.org/10.1016/j.asoc.2015.06.056
https://doi.org/10.1016/j.asoc.2015.06.056
https://doi.org/10.1016/j.asoc.2006.03.001
https://doi.org/10.1016/j.asoc.2006.03.001
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1007/s00521-018-3426-0
https://doi.org/10.1016/j.asoc.2017.08.002
https://doi.org/10.1016/j.asoc.2017.08.002
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.compstruc.2012.07.010


 Engineering with Computers

1 3

traveling salesman problem. Expert Syst Appl 77:189–210. https 
://doi.org/10.1016/j.eswa.2017.01.053

 12. Farshchin M, Camp CV, Maniat M (2016) Multi-class teaching-
learning-based optimization for truss design with frequency con-
straints. Eng Struct 106:355–369. https ://doi.org/10.1016/j.engst 
ruct.2015.10.039

 13. Fogel DB (1988) An Evolutionary Approach to the Trave-
ling Salesman Problem. Biol Cybern 60:139–144. https ://doi.
org/10.1007/BF002 02901 

 14. Glover F (1975) Tabu search and adaptive memory program-
ming—advances, applications and challenges. In: In Interfaces 
in computer science and operations research. pp 1–75

 15. Goldberg DE, Holland JH (1988) Genetic algorithms 
and machine learning. Mach Learn 3:95–99. https ://doi.
org/10.1023/A:10226 02019 183

 16. Gomes HM (2011) Truss optimization with dynamic constraints 
using a particle swarm algorithm. Expert Syst Appl 38:957–
968. https ://doi.org/10.1016/j.eswa.2010.07.086

 17. Karaboga D, Basturk B (2007) A powerful and efficient algo-
rithm for numerical function optimization: Artificial bee col-
ony (ABC) algorithm. J Glob Optim 39:459–471. https ://doi.
org/10.1007/s1089 8-007-9149-x

 18. Kaveh A, Farhoudi N (2013) A new optimization method: 
Dolphin echolocation. Adv Eng Softw 59:53–70. https ://doi.
org/10.1016/j.adven gsoft .2013.03.004

 19. Kaveh A, Ilchi Ghazaan M (2015) Hybridized optimization 
algorithms for design of trusses with multiple natural fre-
quency constraints. Adv Eng Softw 79:137–147. https ://doi.
org/10.1016/j.adven gsoft .2014.10.001

 20. Kaveh A, Ilchi Ghazaan M (2017) Vibrating particles system 
algorithm for truss optimization with multiple natural frequency 
constraints. Acta Mech 228:307–322. https ://doi.org/10.1007/
s0070 7-016-1725-z

 21. Kaveh A, Jafari L, Farhoudi N (2015) Truss optimization with 
natural frequency constraints using a dolphin echolocation algo-
rithm. Asian J Civ Eng 16:29–46

 22. Kaveh A, Khayatazad M (2013) Ray optimization for size and 
shape optimization of truss structures. Comput Struct 117:82–
94. https ://doi.org/10.1016/j.comps truc.2012.12.010

 23. Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: A 
novel meta-heuristic method. Comput Struct 139:18–27. https 
://doi.org/10.1016/j.comps truc.2014.04.005

 24. Kaveh A, Mahdavi VR (2015) Two-dimensional colliding bodies 
algorithm for optimal design of truss structures. Adv Eng Softw 
83:70–79. https ://doi.org/10.1016/j.adven gsoft .2015.01.007

 25. Kaveh A, Talatahari S (2010) A novel heuristic optimization 
method: Charged system search. Acta Mech 213:267–289. https 
://doi.org/10.1007/s0070 7-009-0270-4

 26. Kaveh A, Zolghadr A (2011) Shape and size optimization of truss 
structures with frequency constraints using enhanced charged sys-
tem search algorithm. Asian J Civ Eng 12:487–509

 27. Kaveh A, Zolghadr A (2012) Truss optimization with natural fre-
quency constraints using a hybridized CSS-BBBC algorithm with 
trap recognition capability. Comput Struct 102–103:14–27. https 
://doi.org/10.1016/j.comps truc.2012.03.016

 28. Kaveh A, Zolghadr A (2013) Topology optimization of trusses 
considering static and dynamic constraints using the CSS. 
Appl Soft Comput J 13:2727–2734. https ://doi.org/10.1016/j.
asoc.2012.11.014

 29. Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout 
and size optimization with frequency constraints. Comput Struct 
130:10–21. https ://doi.org/10.1016/j.comps truc.2013.09.002

 30. Kaveh A, Zolghadr A (2017) Truss shape and size optimization 
with frequency constraints using Tug of War Optimization. Asian 
J Civ Eng 18:311–313

 31. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by Sim-
ulated Annealing. Science 220:671–680. https ://doi.org/10.1126/
scien ce.220.4598.671

 32. Koza JR (1994) Genetic programming as a means for program-
ming computers by natural selection. Stat Comput 4:87–112. https 
://doi.org/10.1007/BF001 75355 

 33. Lee KS, Geem ZW (2004) A new structural optimization method 
based on the harmony search algorithm. Comput Struct 82:781–
798. https ://doi.org/10.1016/j.comps truc.2004.01.002

 34. Li X, Yin M (2015) Modified cuckoo search algorithm with self 
adaptive parameter method. Inf Sci (Ny) 298:80–97. https ://doi.
org/10.1016/j.ins.2014.11.042

 35. Liao TW, Kuo RJ (2018) Five discrete symbiotic organisms search 
algorithms for simultaneous optimization of feature subset and 
neighborhood size of KNN classification models. Appl Soft Com-
put J 64:581–595. https ://doi.org/10.1016/j.asoc.2017.12.039

 36. Miguel LFF, Fadel Miguel LF (2012) Shape and size optimization 
of truss structures considering dynamic constraints through mod-
ern metaheuristic algorithms. Expert Syst Appl 39:9458–9467. 
https ://doi.org/10.1016/j.eswa.2012.02.113

 37. Mortazavi A, Toğan V (2017) Sizing and layout design of truss 
structures under dynamic and static constraints with an inte-
grated particle swarm optimization algorithm. Appl Soft Comput 
J 51:239–252. https ://doi.org/10.1016/j.asoc.2016.11.032

 38. Noilublao N, Bureerat S (2011) Simultaneous topology, shape 
and sizing optimisation of a three-dimensional slender truss tower 
using multiobjective evolutionary algorithms. Comput Struct 
89:2531–2538. https ://doi.org/10.1016/j.comps truc.2011.08.010

 39. Osman IH, Laporte G (1996) Metaheuristics: A bibliography. Ann 
Oper Res 63:511–623. https ://doi.org/10.1007/BF021 25421 

 40. Patel V, Savsani V (2014) Optimization of a plate-fin heat 
exchanger design through an improved multi-objective teaching-
learning based optimization (MO-ITLBO) algorithm. Chem 
Eng Res Des 92:2371–2382. https ://doi.org/10.1016/j.cherd 
.2014.02.005

 41. Piotrowski AP (2013) Adaptive memetic differential evolution 
with global and local neighborhood-based mutation operators. Inf 
Sci (Ny) 241:164–194. https ://doi.org/10.1016/j.ins.2013.03.060

 42. Savsani VJ, Tejani GG, Patel VK (2016) Truss topology optimi-
zation with static and dynamic constraints using modified sub-
population teaching–learning-based optimization. Eng Optim 
48:1990–2006. https ://doi.org/10.1080/03052 15X.2016.11504 68

 43. Savsani VJ, Tejani GG, Patel VK, Savsani P (2017) Modified 
meta-heuristics using random mutation for truss topology opti-
mization with static and dynamic constraints. J Comput Des Eng 
4:106–130. https ://doi.org/10.1016/j.jcde.2016.10.002

 44. Shan H, Yasuda T, Ohkura K (2015) A self adaptive hybrid 
enhanced artificial bee colony algorithm for continuous opti-
mization problems. BioSystems 132–133:43–53. https ://doi.
org/10.1016/j.biosy stems .2015.05.002

 45. Tejani GG, Savsani VJ, Bureerat S, Patel VK (2018) Topology and 
Size Optimization of Trusses with Static and Dynamic Bounds 
by Modified Symbiotic Organisms Search. J Comput Civ Eng 
32:1–11. https ://doi.org/10.1061/(ASCE)CP.1943-5487.00007 41

 46. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic 
organisms search (SOS) algorithm for structural design optimi-
zation. J Comput Des Eng 3:226–249. https ://doi.org/10.1016/j.
jcde.2016.02.003

 47. Tejani GG, Savsani VJ, Patel VK (2016) Modified sub-population 
teaching-learning-based optimization for design of truss structures 
with natural frequency constraints. Mech Based Des Struct Mach 
44:495–513. https ://doi.org/10.1080/15397 734.2015.11240 23

 48. Tejani GG, Savsani VJ, Patel VK, Bureerat S (2017) Topology, 
shape, and size optimization of truss structures using modified 
teaching-learning based optimization. Adv Comput Des 2:313–
331. https ://doi.org/10.12989 /acd.2017.2.4.313

https://doi.org/10.1016/j.eswa.2017.01.053
https://doi.org/10.1016/j.eswa.2017.01.053
https://doi.org/10.1016/j.engstruct.2015.10.039
https://doi.org/10.1016/j.engstruct.2015.10.039
https://doi.org/10.1007/BF00202901
https://doi.org/10.1007/BF00202901
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1016/j.eswa.2010.07.086
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.advengsoft.2013.03.004
https://doi.org/10.1016/j.advengsoft.2014.10.001
https://doi.org/10.1016/j.advengsoft.2014.10.001
https://doi.org/10.1007/s00707-016-1725-z
https://doi.org/10.1007/s00707-016-1725-z
https://doi.org/10.1016/j.compstruc.2012.12.010
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.compstruc.2014.04.005
https://doi.org/10.1016/j.advengsoft.2015.01.007
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1016/j.compstruc.2012.03.016
https://doi.org/10.1016/j.compstruc.2012.03.016
https://doi.org/10.1016/j.asoc.2012.11.014
https://doi.org/10.1016/j.asoc.2012.11.014
https://doi.org/10.1016/j.compstruc.2013.09.002
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/BF00175355
https://doi.org/10.1007/BF00175355
https://doi.org/10.1016/j.compstruc.2004.01.002
https://doi.org/10.1016/j.ins.2014.11.042
https://doi.org/10.1016/j.ins.2014.11.042
https://doi.org/10.1016/j.asoc.2017.12.039
https://doi.org/10.1016/j.eswa.2012.02.113
https://doi.org/10.1016/j.asoc.2016.11.032
https://doi.org/10.1016/j.compstruc.2011.08.010
https://doi.org/10.1007/BF02125421
https://doi.org/10.1016/j.cherd.2014.02.005
https://doi.org/10.1016/j.cherd.2014.02.005
https://doi.org/10.1016/j.ins.2013.03.060
https://doi.org/10.1080/0305215X.2016.1150468
https://doi.org/10.1016/j.jcde.2016.10.002
https://doi.org/10.1016/j.biosystems.2015.05.002
https://doi.org/10.1016/j.biosystems.2015.05.002
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000741
https://doi.org/10.1016/j.jcde.2016.02.003
https://doi.org/10.1016/j.jcde.2016.02.003
https://doi.org/10.1080/15397734.2015.1124023
https://doi.org/10.12989/acd.2017.2.4.313


Engineering with Computers 

1 3

 49. Tollo G di, Lardeux F, Maturana J, Saubion F (2015) An experi-
mental study of adaptive control for evolutionary algorithms. 
Appl Soft Comput 35:359–372. https ://doi.org/10.1016/j.
asoc.2015.06.016

 50. Tran DH, Cheng MY, Prayogo D (2016) A novel Multiple Objec-
tive Symbiotic Organisms Search (MOSOS) for time-cost-labor 
utilization tradeoff problem. Knowledge-Based Syst 94:132–145. 
https ://doi.org/10.1016/j.knosy s.2015.11.016

 51. Tran DH, Luong-Duc L, Duong MT et al (2018) Opposition 
multiple objective symbiotic organisms search (OMOSOS) for 
time, cost, quality and work continuity tradeoff in repetitive pro-
jects. J Comput Des Eng 5:160–172. https ://doi.org/10.1016/j.
jcde.2017.11.008

 52. Tejani GG, Pholdee N, Bureerat S, Prayogo D (2018) Multiobjec-
tive adaptive symbiotic organisms search for truss optimization 
problems. Knowl-Based Syst. https ://doi.org/10.1016/j.knosy 
s.2018.08.005

 53. Wang D, Zhang WH, Jiang JS (2004) Truss optimization on shape 
and sizing with frequency constraints. AIAA J 42:622–630. https 
://doi.org/10.2514/1.1711

 54. Wei L, Tang T, Xie X, Shen W (2011) Truss optimization on 
shape and sizing with frequency constraints based on parallel 
genetic algorithm. Struct Multidiscip Optim 43:665–682

 55. Wolpert DH, Macready WG (1997) No free lunch theorems for 
optimization. IEEE Trans Evol Comput 1:67–82. https ://doi.
org/10.1109/4235.58589 3

 56. Yang XS (2009) Firefly Algorithms for Multimodal Optimiza-
tion. In: In International symposium on stochastic algorithms. 
pp 169–178

 57. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: 2009 
World Congress on Nature and Biologically Inspired Computing, 
NABIC 2009 - Proceedings. pp 210–214

 58. Yu VF, Redi AANP, Yang CL et al (2017) Symbiotic organisms 
search and two solution representations for solving the capaci-
tated vehicle routing problem. Appl Soft Comput J 52:657–672. 
https ://doi.org/10.1016/j.asoc.2016.10.006

 59. Zuo W, Bai J, Li B (2014) A hybrid OC-GA approach for fast and 
global truss optimization with frequency constraints. Appl Soft 
Comput J 14:528–535. https ://doi.org/10.1016/j.asoc.2013.09.002

 60. Cheng M-Y, Prayogo D, Tran D-H (2016) Optimizing Multiple-
Resources Leveling in Multiple Projects Using Discrete Symbiotic 
Organisms Search. J Comput Civ Eng 30:04015036. https ://doi.
org/10.1061/(ASCE)CP.1943-5487.00005 12

 61. Duman S (2017) Symbiotic organisms search algorithm for opti-
mal power flow problem based on valve-point effect and pro-
hibited zones. Neural Comput Appl 28:3571–3585. https ://doi.
org/10.1007/s0052 1-016-2265-0

 62. Prasad D, Mukherjee V (2016) A novel symbiotic organisms 
search algorithm for optimal power flow of power system with 
FACTS devices. Eng Sci Technol Int J 19:79–89. https ://doi.
org/10.1016/j.jestc h.2015.06.005

 63. Abdullahi M, Ngadi MA, Abdulhamid SM (2016) Symbiotic 
Organism Search optimization based task scheduling in cloud 
computing environment. Futur Gener Comput Syst 56:640–650. 
https ://doi.org/10.1016/j.futur e.2015.08.006

 64. Panda A, Pani S (2016) A Symbiotic Organisms Search algo-
rithm with adaptive penalty function to solve multi-objective con-
strained optimization problems. Appl Soft Comput J 46:344–360. 
https ://doi.org/10.1016/j.asoc.2016.04.030

 65. Panda A, Pani S (2017) An orthogonal parallel symbiotic organ-
ism search algorithm embodied with augmented Lagrange multi-
plier for solving constrained optimization problems. Soft Comput 
doi. https ://doi.org/10.1007/s0050 0-017-2693-5

 66. Prayogo D (2018) Optimization model for construction project 
resource leveling using a novel modified symbiotic organisms 

search. Asian J Civ Eng 3456789:. https ://doi.org/10.1007/s4210 
7-018-0048-x

 67. Subhabrata Banerjee SC (2017) Power Optimization of Three 
Dimensional Turbo Code Using a Novel Modified Symbi-
otic Organism Search. Wirel Pers Commun doi. https ://doi.
org/10.1007/s1127 7-016-3586-0

 68. Guha D, Kumar P, Banerjee S (2018) Symbiotic organism search 
algorithm applied to load frequency control of multi-area power 
system. Energy Syst. https ://doi.org/10.1007/s1266 7-017-0232-1

 69. Dosoglu MK, Guvenc U, Duman S, Sonmez Y (2018) Symbiotic 
organisms search optimization algorithm for economic / emis-
sion dispatch problem in power systems. Neural Comput Appl. 
https ://doi.org/10.1007/s0052 1-016-2481-7

 70. Saha S, Mukherjee V (2016) Optimal placement and sizing of 
DGs in RDS using chaos embedded SOS algorithm. 3671–3680. 
https ://doi.org/10.1049/iet-gtd.2016.0151

 71. Zhou Y, Wu H, Luo Q, Abdel-baset M (2018) Automatic data 
clustering using nature-inspired symbiotic organism search 
algorithm. Knowledge-Based Syst. https ://doi.org/10.1016/j.
knosy s.2018.09.013

 72. Prayogo D, Cheng MY, Prayogo H (2017) A Novel implementa-
tion of nature-inspired optimization for civil engineering: a com-
parative study of symbiotic organisms search. 19:36–43. https ://
doi.org/10.9744/CED.19.1.36-43

 73. Jaffel Z, Farah M (2018, March) A symbiotic organisms search 
algorithm for feature selection in satellite image classification. 
In: Advanced Technologies for Signal and Image Processing 
(ATSIP), 2018 4th International Conference on(pp. 1–5). IEEE

 74. Sulaiman M, Ahmad A, Khan A, Muhammad S (2018) Hybridized 
symbiotic organism search algorithm for the optimal operation of 
directional overcurrent relays. Hindawi Complex 2018:11. https 
://doi.org/10.1155/2018/46057 69

 75. Tejani GG, Savsani VJ, Patel VK, Mirjalili S (2018) Knowledge-
Based Systems Truss optimization with natural frequency bounds 
using improved symbiotic organisms search. Knowledge-Based 
Syst 5:1–17. https ://doi.org/10.1016/j.knosy s.2017.12.012

 76. Zheng Y (2015) Computers & Operations Research Water wave 
optimization: A new nature-inspired metaheuristic. Comput Oper 
Res 55:1–11. https ://doi.org/10.1016/j.cor.2014.10.008

 77. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and Exploi-
tation in Evolutionary Algorithms: A Survey. ACM Comput 45:1–
33. https ://doi.org/10.1145/24807 41.24807 52

 78. Geem Z, Kim J, Loganathan GV (2001) A New Heuristic Optimi-
zation Algorithm: Harmony Search. Simulation 76:60–68. https 
://doi.org/10.1177/00375 49701 07600 201

 79. Al-sharhan S (2016) An enhanced symbiosis organisms search 
algorithm: an empirical study. Neural Comput Appl doi. https ://
doi.org/10.1007/s0052 1-016-2624-x

 80. Liang JJ, Qu BY, Suganthan PN (2014) Problem Definitions 
and Evaluation Criteria for the CEC 2014 Special Session and 
Competition on Single Objective Real-Parameter Numerical 
Optimization

 81. Grandhi R (1993) Structural Optimization with Frequency 
Constraints — A Review. AIAA J 31:2296–2303. https ://doi.
org/10.2514/3.11928 

 82. Kaveh A, Ilchi M, Taha G (2013) An improved ray optimization 
algorithm for design of truss structures. Period Polytech 2:97–112. 
https ://doi.org/10.3311/PPci.7166

 83. Kaveh A, Ghazaan MI (2014) Enhanced colliding bodies algo-
rithm for truss optimization with frequency constraints. J Com-
put Civ Eng 29:1–11. https ://doi.org/10.1061/(ASCE)CP.1943-
5487.00004 45

 84. Miao F, Zhou Y, Luo Q (2018) A modified symbiotic organ-
isms search algorithm for unmanned combat aerial vehicle 
route planning problem. J Oper Res Soc 5682:1–32. https ://doi.
org/10.1080/01605 682.2017.14181 51

https://doi.org/10.1016/j.asoc.2015.06.016
https://doi.org/10.1016/j.asoc.2015.06.016
https://doi.org/10.1016/j.knosys.2015.11.016
https://doi.org/10.1016/j.jcde.2017.11.008
https://doi.org/10.1016/j.jcde.2017.11.008
https://doi.org/10.1016/j.knosys.2018.08.005
https://doi.org/10.1016/j.knosys.2018.08.005
https://doi.org/10.2514/1.1711
https://doi.org/10.2514/1.1711
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.asoc.2016.10.006
https://doi.org/10.1016/j.asoc.2013.09.002
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000512
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000512
https://doi.org/10.1007/s00521-016-2265-0
https://doi.org/10.1007/s00521-016-2265-0
https://doi.org/10.1016/j.jestch.2015.06.005
https://doi.org/10.1016/j.jestch.2015.06.005
https://doi.org/10.1016/j.future.2015.08.006
https://doi.org/10.1016/j.asoc.2016.04.030
https://doi.org/10.1007/s00500-017-2693-5
https://doi.org/10.1007/s42107-018-0048-x
https://doi.org/10.1007/s42107-018-0048-x
https://doi.org/10.1007/s11277-016-3586-0
https://doi.org/10.1007/s11277-016-3586-0
https://doi.org/10.1007/s12667-017-0232-1
https://doi.org/10.1007/s00521-016-2481-7
https://doi.org/10.1049/iet-gtd.2016.0151
https://doi.org/10.1016/j.knosys.2018.09.013
https://doi.org/10.1016/j.knosys.2018.09.013
https://doi.org/10.9744/CED.19.1.36-43
https://doi.org/10.9744/CED.19.1.36-43
https://doi.org/10.1155/2018/4605769
https://doi.org/10.1155/2018/4605769
https://doi.org/10.1016/j.knosys.2017.12.012
https://doi.org/10.1016/j.cor.2014.10.008
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1177/003754970107600201
https://doi.org/10.1007/s00521-016-2624-x
https://doi.org/10.1007/s00521-016-2624-x
https://doi.org/10.2514/3.11928
https://doi.org/10.2514/3.11928
https://doi.org/10.3311/PPci.7166
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000445
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000445
https://doi.org/10.1080/01605682.2017.1418151
https://doi.org/10.1080/01605682.2017.1418151


 Engineering with Computers

1 3

 85. Bureerat S, Ph D, Pholdee N, Ph D (2015) Optimal Truss Sizing 
Using an Adaptive Differential Evolution Algorithm. J Comput 
Civ Eng. https ://doi.org/10.1061/(ASCE)CP.1943-5487.00004 87

 86. Ou-yang C, Hanyata TB, Samadhi TMAA (2015) Hybrid self-
adaptive-velocity particle swarm optimisation-Cooper heuristic 
for the facility location allocation problem in Jakarta. https ://doi.
org/10.1080/23302 674.2015.10295 65

 87. Pham HA (2016) Advances in Engineering Software Truss opti-
mization with frequency constraints using enhanced differential 
evolution based on adaptive directional mutation and nearest 
neighbor comparison. Adv Eng Softw 102:142–154. https ://doi.
org/10.1016/j.adven gsoft .2016.10.004

 88. Lieu QX, Do DTT, Lee J (2018) An adaptive hybrid evolutionary 
firefly algorithm for shape and size optimization of truss structures 
with frequency constraints. Comput Struct 195:99–112. https ://
doi.org/10.1016/j.comps truc.2017.06.016

 89. Ho-Huu V, Nguyen-Thoi T, Truong-Khac T, Le-Anh L, Vo-Duy T 
(2016) An improved differential evolution based on roulette wheel 
selection for shape and size optimization of truss structures with 
frequency constraints. Neural Comput Appl 29:167–185. https ://
doi.org/10.1007/s0052 1-016-2426-1

 90. Kaveh A, Javadi SM (2013) Shape and size optimization of trusses 
with multiple frequency constraints using harmony search and 
ray optimizer for enhancing the particle swarm optimization 
algorithm. 1605:1595–1605. https ://doi.org/10.1007/s0070 
7-013-1006-z

 91. Kaveh A, Zolghadr A (2017) Cyclical parthenogenesis algo-
rithm for layout optimization of truss structures with frequency 
constraints. Eng Optim 0:1–18. https ://doi.org/10.1080/03052 
15X.2016.12457 30

 92. Kaveh A, Zolghadr A (2014) A new PSRO algorithm for fre-
quency constraint truss shape and size optimization. Struct Eng 
Mech 52:445–468. https ://doi.org/10.12989 /sem.2014.52.3.445

 93. Jalili S, Talatahari S (2017) Optimum Design of Truss Structures 
Under Frequency Constraints using Hybrid CSS-MBLS Algo-
rithm. 00:1–14. https ://doi.org/10.1007/s1220 5-017-1407-y

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

View publication statsView publication stats

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000487
https://doi.org/10.1080/23302674.2015.1029565
https://doi.org/10.1080/23302674.2015.1029565
https://doi.org/10.1016/j.advengsoft.2016.10.004
https://doi.org/10.1016/j.advengsoft.2016.10.004
https://doi.org/10.1016/j.compstruc.2017.06.016
https://doi.org/10.1016/j.compstruc.2017.06.016
https://doi.org/10.1007/s00521-016-2426-1
https://doi.org/10.1007/s00521-016-2426-1
https://doi.org/10.1007/s00707-013-1006-z
https://doi.org/10.1007/s00707-013-1006-z
https://doi.org/10.1080/0305215X.2016.1245730
https://doi.org/10.1080/0305215X.2016.1245730
https://doi.org/10.12989/sem.2014.52.3.445
https://doi.org/10.1007/s12205-017-1407-y
https://www.researchgate.net/publication/329219353

	Modified symbiotic organisms search for structural optimization
	Abstract
	1 Introduction
	2 The symbiotic organisms search algorithm
	2.1 The mutualism phase
	2.2 The commensalism phase
	2.3 The parasitism phase
	2.4 Stopping criterion

	3 Modification in the SOS algorithm
	3.1 Modification in mutualism phase
	3.2 Modification in parasitism phase

	4 The formulation of the design problem
	5 Truss problems and discussions
	5.1 The 10-bar truss
	5.2 The 37-bar truss
	5.3 The 72-bar truss
	5.4 The 52-bar truss
	5.5 The 120-bar truss
	5.6 The 200-bar truss

	6 Corroborating MSOS performance with various benchmark functions
	7 Conclusion and future perspectives
	References


