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A modification to the standard Thomson parabola spectrometer is discussed, which is designed to

measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions acceler-

ated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal

shaped electric plates, which will not only resolve ion traces at high energies, but will also retain

the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam

direction) electric plate design provides effective charge state separation at the high energy end of the

spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector,

which would have been clipped or blocked by simply extending the rectangular plates to enhance the

electrostatic deflection. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4866021]

I. INTRODUCTION

High power lasers are nowadays able to accelerate

protons and heavier ions up to tens of MeV per nucleon

via various mechanisms such as target normal sheath ac-

celeration (TNSA),1 radiation pressure acceleration (RPA)2

and break-out afterburner acceleration (BOA).3 Typically

these mechanisms accelerate simultaneously several ion

species, originated not only from the bulk target material,

but also from the contaminant layers present on both sides

of the target foils. Therefore, such ion sources are typi-

cally multi-species (protons, several charge states of car-

bon, oxygen, and the bulk target elements) and demand

spectrometers with adequate charged species discrimina-

tion capability. Diagnosing and characterising spectra of

individual ion species is key to understanding the un-

derlying acceleration mechanisms, such as TNSA, RPA,

BOA, etc., which are currently the object of extensive

experimental investigations. Among ion diagnostics rou-

tinely used in such experiments, such as Radiochromic film

stack detectors,4 nuclear activation techniques5 and Faraday

cups,6 Thomson Parabola Spectrometers (TPS) are particu-

larly useful as different ion species are dispersed in energy

and mass-to-charge (A/Z) ratio by means of static electric and

magnetic fields.7–9 Implementation of the diagnostic and data

analysis are also relatively simple and straightforward.

The dispersion of ions in a TPS is governed by the elec-

tric and magnetic field strengths as well as the dimensions of

a)Electronic mail: s.kar@qub.ac.uk

various elements, such as the field regions, and the distances

from the electric and magnetic fields to the detector. Compact

(in order to fit inside the vacuum interaction chamber)

spectrometers are unable to provide sufficient A/Z resolution

for heavy ions beyond several MeV/nucleon (as the parabolic

ion traces start to overlap), even when the energy dispersion

by the magnetic field is adequate. Species separation can

be increased primarily by increasing either the electric field

strength or the longitudinal extent of the electric field region.

However, the large electric field required for separating high

energy ion tracks will cause lower energy ions to be deflected

away from the detector, or to be clipped by the electric

plate itself. Hence, the possibility of obtaining a full energy

spectrum is compromised. In this paper we discuss how

shaping of the electric field plates can enable both low and

high energy ions to be retained while providing significant

species separation at the high energy end.

The paper is structured as follows. After a brief dis-

cussion of the basic principle of a TPS diagnostic, Sec. III

describes the particle tracing simulation employed to study

different electric plate geometries. Section IV describes var-

ious methods of increasing the species separation and the

derived trapezoidal plate design.

II. WORKING PRINCIPLES

A schematic of a traditional TPS used in laser plasma

experiments is shown in Fig. 1. It consists of pairs of per-

manent rectangular magnets and electrodes, producing uni-

form magnetic and electric fields dispersing ions according to

0034-6748/2014/85(3)/033304/6/$30.00 © 2014 AIP Publishing LLC85, 033304-1
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FIG. 1. Schematic of a Thomson parabola spectrometer (TPS).

their mass-to-charge ratio and energy,7 resulting in a unique

parabolic trace on the detector plane for each mass-to-charge

ratio. The magnetic and electric fields are parallel to each

other, but perpendicular to the ion’s initial momentum. The

pinhole selects a pencil beam of ions as input to the TPS.

For uniform electric and magnetic fields, without consid-

ering fringe field effects, the ion displacements at the detector

plane along the Y (owing to magnetic field) and X (owing to

electric field) axes can be derived, respectively, for the non-

relativistic case as

SB = αB

(

L2
B1

2
+ LB1LB2

)

, (1)

SE = α2E
m

q

(

L2
E1

2
+ LE1LE2

)

, (2)

where α = q/mvz and vz is the longitudinal speed of the ion

(of mass m and charge q) at the pinhole. LB1, LB2, LE1, and

LE2 correspond to the distances shown in Fig. 1, and E and B

denote the electric and magnetic field strengths, respectively.

The displacements owing to the magnetic (SB) and electric

fields (SE) are derived using equations of motion for the parti-

cles and the Lorentz force, where one can neglect the change

in vz without any loss of generality. Equations (1) and (2)

show that the resulting displacements have a linear depen-

dence on the magnetic (B) and electric (E) field strengths,

whereas they have a stronger dependence on the length of ei-

ther the magnets or the electric plates. In this paper we have

focused on the electric field displacement, considering that

the energy dispersion produced by the magnetic field is ad-

equate. For instance, in order to benchmark the results dis-

cussed in this paper, we have considered a traditional TPS7, 8

design with a pair of 50 mm square magnets providing a peak

magnetic field of 1.0 T, and LB2 = 310 mm. The magnetic

dispersion of this system is shown in Fig. 2.

C5+

C6+

C4+

p+

FIG. 2. Displacement of ions produced in the TPS by a pair of 50×50 mm

magnets of 1.0 T field strength at a distance of LB2 = 310 mm.

As mentioned earlier, in the case of a multi-species ion

source, electric field dispersion is equally important for re-

solving ion spectra. If the deflection owing to the electric field

is insufficient, it will be difficult to discriminate individual ion

species due to overlapping of the parabolic traces towards the

higher energy end. In order to study a suitable field configura-

tion for effective charge state separation, while retaining low

energy ions, we used the 3D particle tracing code PTRACE,10

as discussed below.

III. SIMULATION DESIGN

The particle tracing code PTRACE,10 written in C++

object oriented methodology, computes the trajectory of a par-

ticle through a customised 3D electromagnetic field region

using a differential equation solver at its core. The numerical

algorithm is a fourth order Runge-Kutta solver coupled with

an adaptive step-size monitoring routine. Such an approach

offers a fast and reliable solution to the equation of motion,

with the possibility of prescribing the precision to which the

trajectory is computed.10

The 3D setup of the TPS was modeled in PTRACE as

per the schematic shown in Fig. 1. The pencil beam of ions,

selected by the pinhole of the TPS, was defined in PTRACE

as a point ion source with multi-energy spectrum and very

low divergence. The magnetic field object was defined next

to the source. In order to include fringe fields, the magnetic

field in this region was defined according to the field pro-

file in a conventional magnet-yoke configuration, as mea-

sured by Carroll et al.11 In this case the magnetic field profile

along the ion propagation axis (Z -axis) can be fitted with a

super-Gaussian like function:

B(z) = Bpeakexp

[

−

(

z − zcentre

BFWHM/1.82

)4
]

, (3)

where Bpeak is the peak magnetic field, zcentre is the z coordi-

nate of the center of the magnets, and BFWHM is the full width

at half maximum of the field profile, which is approximately

equal to the length of the magnets.

In order to study the effect of different charged plate

geometries, a simple numerical approach for electric field

calculation was implemented in the electric field object. As

shown in Fig. 3, the electric field at any given point in space

P(x, y, z) is numerically calculated by superposition of the

FIG. 3. Schematic of the electric plate setup in PTRACE for calculation of

the E-field.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

143.117.23.145 On: Wed, 11 Jun 2014 14:20:58



033304-3 Gwynne et al. Rev. Sci. Instrum. 85, 033304 (2014)

electric fields due to all points on the charged plates. For ex-

ample, in the case of a rectangular geometry, the electric field
−→
E due to the negative electrode will therefore be

−→
E = Kσ

∫ ymax

ymin

∫ zmax

zmin

dy ′dz′
−−→
PP ′

|
−−→
PP ′|3

∣

∣

∣

∣

∣

x=xnegative

, (4)

where K = 1/4πǫ0, the surface charge density σ = 2ǫ0E and

the limits ymax, ymin, zmax, zmin, and xnegative refer to those

shown in Fig. 3. In order to simplify the calculation, the in-

tegration over z was substituted with a summation along z.

During the transit of an ion of a given mass, charge, and en-

ergy, the main module of PTRACE accesses the electric and

magnetic field objects in order to obtain the fields at the ion’s

position. The trajectory of the ion is subsequently simulated

by the differential equation solver. The detector plane was de-

fined at a given distance from the electric plates, and PTRACE

produced a 2D image of the simulated ion traces at this

position.

IV. INCREASING SPECIES SEPARATION

In principle, the species separation can be increased

by three possible methods: (1) increasing the distance LE2,

(2) increasing the electric field strength, and (3) increasing

LE1. In terms of the capability of discriminating ion traces

at the detector plane, one can define the resolution of the

spectrometer as

R =

∣

∣

∣

∣

∣

SE2 − SE1

a

∣

∣

∣

∣

∣

=
E

2a

∣

∣

∣

∣

∣

m2

q2

−
m1

q1

∣

∣

∣

∣

∣

α2(LE1 + 2LE2)LE1,

(5)

where SE1 and SE2 stand for the electric field displacements

of two ion species of charges q1 and q2, and masses m1 and

m2, respectively, at a given magnetic displacement (i.e., when

q1/m1v1z = q2/m2v2z). a stands for the size of the pinhole at

the entrance of the spectrometer, which typically defines the

width of the ion tracks at the detector (in a standard config-

uration, the pinhole to detector distance is significantly less

than the distance between the ion source and the pinhole).

Since R = 1 corresponds to the threshold for discriminating

two neighbouring ion tracks, one can simply rewrite Eq. (5)

as

�

(

A

Z

)

=
4a [μm](Ai/Zi)

2Wi [MeV/nucleon]

E [MV/m](LE1 [mm] + 2LE2 [mm])LE1[mm]
,

(6)

where Ai, Zi, and Wi represent the atomic mass, ionisation

state, and energy per nucleon of a given charge species. As

can be seen from Eq. (5), the resolution increases linearly with

E and LE2, whereas it has a quadratic dependency with the

electric field plate length (LE1). Increasing LE2 by a significant

amount, in order to improve the resolution, is normally not a

viable option for a number of reasons. For example, it could

be practically difficult to field a spectrometer with a large LE2

inside a small interaction chamber, while keeping the TPS at a

reasonable distance from the interaction target. Nevertheless,

moving the detector plane significantly further away from the

end of the electric field plates will increase the magnetic field

FIG. 4. Comparison of the maximum energy of A/Z = 2.0 (for instance,

C6 +) resolvable for different values of �(A/Z) achieved with 50 × 50 mm

plates at 1 × 106 V/m, 50 × 50 mm plates at 2 × 106 V/m, and 50 × 100

mm plates at 1 × 106 V/m, assuming LE2 = 150 mm.

dispersion commensurately, as it will entail an increase in LB2,

which may not be desired given a finite dimension of the de-

tector. At the same time, as with any alteration that would

increase the dispersion of the ion traces, there will be a de-

crease in the particle flux at the detector plane giving rise to a

lower signal to noise ratio.

The electric field strength can be increased either by de-

creasing the separation of the electrodes or by increasing the

voltage to the electrodes. However, the limiting factor is the

onset of arcing/discharge between the electrodes, which can

cause an instantaneous drop or fluctuations in the electric

field. From experience, up to ∼2 × 106 V/m can be applied in

a typical experimental chamber at a vacuum pressure of 10−4

to 10−5 mbar without any significant discharge between the

electrodes.9 On the other hand, increasing the length of the

electric plates is not limited by any fundamental constraints.

The maximum energy, Wi , at which a particular charge

state of ion species is resolvable from adjacent traces, can be

calculated from Eq. (6). This is illustrated by Fig 4, where Wi

for A/Z = 2.0 (C6+ for instance) is plotted against �(A/Z)

for different TPS configurations. For example, if we con-

sider the neighbouring ion tracks of C6+ (A/Z = 2.0) and O7+

(A/Z = 2.29), corresponding to �(A/Z) = 0.29, using 100 mm

electric plates will provide track separation at significantly

higher ion energies compared to using 50 mm long electric

plates with the same electric field strength.

In order to illustrate the effect of increasing electric plate

length on charge state separation, the performance of a TPS

was simulated with PTRACE by changing the electric plate

length, while keeping Bpeak, LB1, and LB2 constant. One can

see the significant improvement in separation between the

traces at the high energy end (for example, around 100 MeV

protons and 200 MeV C6+ ions) for 150 mm long electric

plates as shown in Fig. 5(b) as compared to the output of the

standard TPS configuration shown in Fig. 5(a). However, it

must be noted that the simulations assumed a point source en-

tering the TPS, when in reality the pinhole will determine a

finite track size at the detector and thus the highest energies

which can be resolved by the TPS will generally be lower than

those predicted by the simulation.
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(a) (b) (c) (d)

FIG. 5. Comparison between the Thomson parabola traces for several ion species (proton, C6+, C5+, C4+, Au40+, and Au45+ from left to right, with energy up

to 100 MeV, 200 MeV, and 1000 MeV for protons, carbon ions, and gold ions, respectively) obtained using different electric plate designs as shown in schematics

above the simulated images: (a) rectangular plates with LE1 = 50 mm and LE2 = 250 mm, (b) rectangular plates with LE1 = 150 mm and LE2 = 150 mm, (c)

rectangular plates with LE1 = 300 mm and LE2 = 150 mm, and (d) trapezoidal plates with LE1 = 300 mm and LE2 = 150 mm. The red arrows in the schematics

of the electric plate design show the ion beam direction, with the beam axis 10 mm above the bottom edge of the electric plates. Other parameters used in these

simulations are LB1= 50 mm, B = 1.0 T, D = 5 mm, E = 1.8 × 106 V/m, and d = 9 mm. The insets in the simulated images show the zoomed view of the high

energy portions of the ion tracks. One can see the improvement in track separation in (b) as compared to (a), which is achieved by using a longer electric field

region at the same electric field strength. Some clipping is here observed in the low energy part of the gold ion tracks, as shown by the dotted line in (b). The

track separation at higher ion energies as well as the A/Z resolution of the system can be increased further by using even longer electric plates, as shown in (c),

which may be required in future experiments with upcoming facilities. However, clipping of the low energy part of the ion tracks will become more serious in

this case, as shown by the dotted red line. Trapezoidally shaped electric plates, as shown in (d), can be used in such high resolution spectrometers allowing the

lower energy ions to pass over the top of the plate, while keeping the same track separation for the high energy ions obtained in (c).

In order to benchmark experimentally the performance

of longer electric plates towards charge state separation, the

TPS with 150 mm long electric plates (as shown in Fig. 6(a))

and a Fuji BAS-TR image plate detector were employed in

FIG. 6. (a) 3D schematic view of the compact TPS fielded in the experiment;

(b) data obtained by the TPS showing traces of different energy and mass-to-

charge ratio ions produced by the interaction of the Vulcan laser at intensity

3 × 1020 W/cm2 with a 10 nm thick Au foil. The low energy ions are clipped

by the electric plate as shown by the dotted line; (c) a zoomed in view of the

enhanced species separation produced by the 150 mm rectangular electric

plates, where the numbers represent A/Z values for the ion species, such as

1.0—protons; 2.0—C6+ and O8+; 2.29—O7+; 2.4—C5+; 2.67—O6+; 3.0—

C4+; (d) a zoomed in view of the fine charge state separation of Au ions,

which are clipped by the longer electric plate.

a recent experiment at the Vulcan Petawatt laser facility of

RAL-STFC, UK. The laser delivered ∼250 J of energy on tar-

get in a 0.75 ps pulse duration. The laser was focused on to the

target by a f/3 off axis parabola, irradiating normally 10 nm

thick Au foils at an intensity of 3 × 1020 W/cm2. The TPS was

placed at a distance of 1.7 m from the laser irradiated target

with a 100 μm pinhole at the front. The applied electric and

magnetic fields in this case were 1.8 × 106 V/m and ∼1.0 T,

respectively. As shown in the experimental data in Fig. 6(b),

the TPS was able to resolve clearly, in addition to the pro-

tons and several charge states of carbon and oxygen ions (see

Fig. 6(c)), tracks of Au ions with adjacent charge states rang-

ing from ∼30 to ∼50 (see Fig. 6(d)).

It is to be noted that the dimensions and field strengths

of the TPS were chosen in order to resolve the C6+ tracks at

the maximum energies produced in the experiment, which is

around 15–20 MeV/nucleon, while working within the space

constraints of the interaction chamber. This is a significant

improvement in track separation at the high energy end of the

spectrum compared to that obtained using a standard TPS,

as shown in Figs. 5(a) and 5(b). Moreover, one can see that

the highest energy at which C5+ (A/Z ≈ 2.4) is still separated

from its adjacent O7+ (A/Z ≈ 2.29) track is ≈6 MeV/nucleon,

which agrees well with the formula for �(A/Z) given in

Eq. (6). Similarly, the energy at which Au40+ is still separated

from the next charge state of Au (i.e., Au41+), corresponding

to �(A/Z) = 0.12, is ≈1.5 MeV/nucleon.

Due to the strong electric field deflection required for

charged species separation at the high energy end of the spec-

trum, the low energy ions suffer a large deflection within
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the electric plates and get clipped at the output end of

the electric plates. The clipping of low energy ions can be

clearly seen in the simulated (Fig. 5(b)) and experimental data

(Fig. 6(b)). The clipping of the ion tracks becomes more seri-

ous (as shown in the Fig. 5(c)) if one extends the electric field

region further in order to achieve either track separation at

higher energies or, to resolve ion tracks with smaller �(A/Z)

values. Next generation facilities are expected to result in a

significant increase of ion energies which will then demand

such higher resolution spectrometers.

Using a longer electric field region instead of a higher

electric field, in order to improve the resolution of the spec-

trometer, provides flexibility in terms of controlling the de-

flection for different energy ions. By reshaping the geometry

of the electric plates, clipping of the lower energy ions can

be avoided. Since the magnetic deflection, prior to the electric

plates, disperses the ions according to their energy along the

vertical direction (Y axis), reshaping the electric plates into a

trapezoidal geometry (for instance as shown in Fig. 5(d)) will

allow the low energy ions to reach the detector, while the high

energy ions will still experience the full length of the electric

plates. In this way a full ion spectrum can be captured while

obtaining the desired species separation at the high energy end

of the spectrum, as shown in Fig. 5(d). Since different energy

ions experience different lengths of electric plates in a trape-

zoidal geometry, the ion traces on the detector will not follow

a parabolic shape. However, as long as the ion traces are well

separated and their charge states can be identified, the spec-

tral profile can be obtained by deconvolving the traces after

binning the signal along the Y axis, i.e., along the axis of the

energy dispersion caused by the magnetic field.

The dimensions of the trapezoidal electric plates can be

chosen according to the energy dispersion of the TPS (which

depends on B, LB1, and LB2) and the desired species separa-

tion at the detector plane. For example, the trapezoidal electric

plates used in Fig. 5(d) were designed by modifying the rect-

angular electric plate of 300 mm shown in Fig. 5(c), assuming

that this provides the desired species separation. Clipping of

ions on the electric plate occurs when the displacement due

to the electric field is equal to, or greater than, the distance

between the beam axis and the negative plate, d, shown in

Fig. 1. By using LE2 = 0 in Eq. (2), one can estimate the max-

imum energy (Wmax) of a given ion species that would clip

the negative plate. The magnetic field displacement for this

energy at the end of the electric plates can be calculated by

using LB2 = D + LE1 in Eq. (1), where D is the distance be-

tween the magnets and the electric plates as shown in Fig. 1.

This defines the corner point “E” of the trapezoidal geome-

try shown in the schematic in Fig. 5(d). The point “G” is set

according to the minimum energy (Wmin) of the ion species

detected by the detector. Using LE2 = 0 in Eq. (2), one can

estimate LE1 (say L′
E1) for which SE = d. The magnetic dis-

placement (say S ′
B) of these ions at LB2 = D + L′

E1, which

can be calculated by using Eq. (1), will define the point “F”

on the negative plate where the ions of energy Wmin will be

clipped. The line EG can then be defined such that the edge

of the electric plate is below the point “F” (i.e., below S ′
B at

LB2 = D + L′
E1), thus allowing the lower energy ions to pass

over the edge of the electric plate.

The manufacture of this type of electric plates is rela-

tively cheap and easy as it merely requires cutting the cor-

ner off a standard rectangular plate. Once the cut has been

made, the plate will have a fixed geometry which may be

considered a disadvantage as the geometry was chosen with

specific magnetic and electric field strengths in mind. How-

ever, the plates can be used for different magnetic and elec-

tric filed strengths while retaining the entire spectrum. For ex-

ample, weaker electric fields and/or stronger magnetic fields

can be accommodated by raising the plates up with respect to

the beam axis, whereas, stronger electric fields and/or weaker

magnetic fields can be accommodated by lowering the plates

down with respect to the beam axis. Alternatively, differ-

ent sets of plates could be manufactured for different field

strengths, with shallower cuts made for strong electric and

weak magnetic fields, and steeper cuts for weak electric and

strong magnetic fields.

V. CONCLUSION

With the growing need for a compact, high resolution

ion spectrometer for multi-species, multi- MeV/nucleon ion

source, produced by high intensity laser plasma interactions,

we have studied a potential modification to the standard

Thomson parabola spectrometer currently used in experi-

ments. Extended, trapezoidal shaped electric plates are pro-

posed in contrast to conventional rectangular electric plates,

which will provide not only better trace separation for high

energy ions (due to the extended length of the electric plates),

but will also retain the lower energy part of the spectrum.

A compact TPS using long electric plates, benchmarked in a

recent experiment, was capable of resolving different charge

states of high energy gold ions produced by the interaction of

a high power laser with ultra-thin gold foils. The data, as well

as simulations of TPS design required by upcoming ion beam

parameters, show clipping of low energy ions by the electric

plates, which can be mitigated by using trapezoidal shaped

electric plates.
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