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Abstract: Dermoscopy images can be classified more accurately if skin lesions or nodules are seg-
mented. Because of their fuzzy borders, irregular boundaries, inter- and intra-class variances, and so
on, nodule segmentation is a difficult task. For the segmentation of skin lesions from dermoscopic
pictures, several algorithms have been developed. However, their accuracy lags well behind the
industry standard. In this paper, a modified U-Net architecture is proposed by modifying the fea-
ture map’s dimension for an accurate and automatic segmentation of dermoscopic images. Apart
from this, more kernels to the feature map allowed for a more precise extraction of the nodule. We
evaluated the effectiveness of the proposed model by considering several hyper parameters such as
epochs, batch size, and the types of optimizers, testing it with augmentation techniques implemented
to enhance the amount of photos available in the PH2 dataset. The best performance achieved by the
proposed model is with an Adam optimizer using a batch size of 8 and 75 epochs.

Keywords: image analysis; segmentation; skin disease; U-Net; deep learning; convolutional
neural network

1. Introduction

All kinds of microorganisms can cause a variety of skin infections, which can range
from moderate to serious. An early diagnosis of a skin illness improves the chances of
a successful treatment. Dark patches or birthmarks may appear on the skin as a result
of skin illness [1]. The modality used for the diagnosis of skin disease is dermoscopy
images. Dermoscopy is a process in which a dermatologist observes a position with a
special microscope or magnifying lens. Dermatologist uses a device named dermatoscope,
that consists of a high magnifying class, so that a clear picture of the nodule can be seen. In
medical imaging, a variety of technologies are employed for the diagnosis of skin disease
such as Machine Learning (ML), Deep Learning (DL), Transfer Learning (TL), Ensemble
Learning (EL), etc. In ML, a machine is made to learn the tasks, whereas in DL, TL, and
EL it learns features directly from the data provided. Improvements in deep learning
Convolutional Neural Networks (CNN) have shown promising results in recent years,
and they have also emerged as a difficult study topic for categorization in medical image
processing [2,3].

Automatically segmenting skin lesions is still a difficult task. Some skin lesions with
light pigment have a very similar color and visual patterns in the pigment patches and
the surrounding skin regions, making skin lesion segmentation difficult. In addition, the
original dermoscopic images have a high resolution, which means that processing them
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on computers takes a lot of time and resources [4]. All of these factors contribute to the
color and texture distribution of the lesions and impede successful learning in the skin
lesions themselves. Certain pictures also show hairs and col-or-makers, making skin
lesion segmentation more difficult. The segmentation of skin lesions is challenging due to
these difficulties.

However, recent studies have shown interest on different variations of DL and CNN
models to overcome the above-mentioned difficulties that arise in segmentation [5–9].
Indeed, Yuan et al. [10] presented a completely automated technique for skin lesion seg-
mentation based on 19-layer deep convolutional neural networks that are trained end-to-
end and do not require previous data knowledge. They have obtained a value of Jaccard
distance of 0.963. In 2017, Yuan et al. [11] proposed convolutional and deconvolutional
neural networks using ISBI challenge and obtained a value of Jaccard distance of 0.784.
Schaefer et al. [12] combined the enhancement stage with two segmentation algorithms.
In the first algorithm, they derived the optimal value of threshold, and in the second
algorithm they applied lesion edge detection. Various segmentation techniques developed
in skin lesions are shown in literature [13,14]. Shankar et al. [15] showed a histogram
thresholding approach to determine the segmented threshold values from the tissues.
Pustokhina et al. [16] showed the advantages of edge and region-based techniques that
include edge operations and models such as region splitting and merging, etc. Raj et al. [17]
used supervised models such as Random forest for skin lesion segmentation by training the
model. Anand et al. [18] used pre-processing, segmentation, and classification for the diag-
nosis of disease. Moreover, they showed that in medical images, the presence of fuzziness
and ambiguity produces a wide range of outcomes. Garnavi et al. [19] presented a hybrid
threshold-based border detection method to determine nodule areas. Ganster et al. [20] pro-
posed an integrated segmentation technique that is based on thresholding and clustering
algorithms. Erkol et al. [21] presented a segmentation method based on the Laplacian-of-
Gaussian and active contour methods.

Moreover, in some of the literature, authors have classified skin lesions directly without
performing any segmentation of the ROI part. For skin disease classification, various
features were used according to the ABCDE rule [22,23]. According to the ABCDE rule,
different features such as Asymmetry, Border detection, Color, Diameter and Evolving
are used. Recently, UNet architecture was proposed for segmenting lesions and their
attributes based on the CNN architecture. A 100-image validation set and a 1000-image
test set were derived from ISIC 2018 [24]. Masni et al. [25] used a total of 2750 images
from the ISIC’s 2016, 2017, and 2018 datasets. They worked only on three classes—NV,
MEL, and AKIEC—and on four pre-trained models—Inception-v3, ResNet-50, Inception-
ResNet-v2, and-DenseNet201—and achieved an accuracy of 81.29%, 81.57%, 81.34%, and
73.44%, respectively. Dorj et al. [26] concentrated on utilizing CNN to classify skin cancer.
For feature extraction, they employed a pre-trained AlexNet model and used a total of
3753 images. The authors used various classification models for the diagnosis in health
applications [27–29], and the machine learning methods with ensemble are used with EEG
signal [30–33].

Segmented images of skin lesions have been used by a few researchers to increase
classification accuracy. However, image classification, segmentation, and object recognition
have all benefited from the increased attention given to Deep Learning (DL) models [34].
In this context, Hang Li et al. [35] proposed dense deconvolutional network on ISBI 2016
and 2017 datasets for skin lesion segmentation based on residual learning. The proposed
dense deconvolutional networks reused the learned features from the previous layers,
which establishes dense links among all feature maps. By addressing the issue of gradient
vanishing, the proposed method strengthens the propagation of multi-level features in the
entire network and boosts the performance of skin lesion segmentation greatly. On the
2016 dataset, they obtained a 0.870 value of Jaccard coefficient, and on the 2017 dataset
they obtained a 0.765 value of Jaccard coefficient. Yu et al. [36] developed a segmentation
and deep classification network with two tiers. They developed a fusion network and
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obtained an accuracy value of 86.54. Khan et al. [37] proposed a model using pre-processing,
segmentation and classification and obtained a segmentation accuracy of 96.8% and 92.1%
for the ISIC and PH2 datasets, respectively. Moreover, they obtained a classification accu-
racy of 97% on the ISIC dataset. Long et al. [38] used the concept of fine tuning with the
classification networks AlexNet, GoogleNet, and VGGNet. The authors presented a novel
architecture that produces accurate and detailed results by combining semantic information
from a deep, coarse layer with appearance information from a shallow, fine layer’s segmen-
tations. Chen et al. [39] combined the methods from deep convolutional neural networks
and graphical models for addressing semantic image segmentation. The authors combined
the final layers with a fully connected Conditional Random Field. They obtained an IOU
accuracy value of 71.6% in the test set. Noh et al. [40] combined a deep deconvolution
network, and the proposed technique overcomes the constraints of previous methods based
on fully convolutional networks, and the segmentation method frequently finds complex
structures and handles objects at many sizes. They achieved an accuracy of 72.5% through
ensembling with the fully convolutional network. Wang et al. [41] presented non-local
U-Nets that are used with flexible global aggregation blocks. These blocks are used for
preserving size in upsampling and downsampling layers. Ibethaz et al. [42] proposed a
MultiResUNet architecture, by replacing it with the two convolutional layers. A parameter
is assigned for the layers that controls the number of filters of the convolutional layers. They
used 97 images ranging from 1349 × 1030 to 1344 × 1024 and resized to 256 × 256, and used
the ISIC-2018 dataset. Christ et al. [43] presented a method for the automatic segmentation
of lesions in CT abdomen images using cascaded fully convolutional neural networks.
They used a two-fold cross validation on the images and obtained a dice score of over 94%.
Lin et al. [44] presented a generic multi-path refinement network that explicitly exploits all
the information available along the down-sampling process to enable a high-resolution pre-
diction using long-range residual connections. They achieved an intersection-over-union
score of 83.4 on the challenging PASCAL VOC 2012 dataset. Novikov et al. [45] used a
multi-class configuration, and the ground-truth masks were trained and tested using the
publicly accessible JSRT database, which contains 247 X-ray images and can be found in
the SCR database. They obtained a Jaccard index value of 95.0%.

The performance results after segmentation increase, and the results obtained are
satisfying. From the literature, it can be seen that, when the segmented images are used for
classification, the classification accuracy increases.

The major contributions of the study are as follows:

• A modified U-Net architecture has been proposed for the segmentation of lesions from
skin disease using dermoscopy images.

• The data augmentation technique has been performed to increase the randomness of
images for better stability.

• The proposed model is validated with different optimizers, batch sizes, and epochs
for better accuracy.

• The proposed model has been analyzed with various performance parameters such as
Jaccard Index, Dice Coefficient, Precision, Recall, Accuracy and Loss.

The rest of the paper is structured as follows: materials and methods are given
in Section 2, followed by results and discussions in Section 3, and Section 4 shows the
conclusion and future scope.

2. Materials and Methods

The proposed model exploits the U-Net architecture for lesion segmentation from skin
disease dermoscopy images. The proposed model has been evaluated on the PH2 [46]
dataset consisting of 200 skin disease dermoscopy images.

2.1. Dataset

The PH2 dataset contains 200 dermoscopy images (160 non-melanomas and 40 melanoma)
that are obtained by the Tuebinger Mole Analyzer system using a 20-fold magnification. All
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images have an approximate size of 192 × 256 pixels. Figure 1 shows the skin diseases’ orig-
inal images, and Figure 2 shows the ground truth masks for the respective original images.

Sensors 2022, 21, x FOR PEER REVIEW 4 of 22 
 

 

2. Materials and Methods 
The proposed model exploits the U-Net architecture for lesion segmentation from 

skin disease dermoscopy images. The proposed model has been evaluated on the PH2 [46] 
dataset consisting of 200 skin disease dermoscopy images. 

2.1. Dataset 
The PH2 dataset contains 200 dermoscopy images (160 non-melanomas and 40 mel-

anoma) that are obtained by the Tuebinger Mole Analyzer system using a 20-fold magni-
fication. All images have an approximate size of 192 × 256 pixels. Figure 1 shows the skin 
diseases’ original images, and Figure 2 shows the ground truth masks for the respective 
original images. 

 
(a) (b) (c) (d) 

Figure 1. Skin Disease Original Images: (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4. 

 
(a) (b) (c) (d) 

Figure 2. Ground Truth Masks for Respective Original Images: (a) Image 1; (b) Image 2; (c) Image 
3; (d) Image 4. 

2.2. Data Augmentation 
As the available training dermoscopy images in the dataset are few, offline data aug-

mentation techniques have been implemented to increase the number of sample images. 
The data augmentation [47] on images is done using different techniques such as flipping 
and rotation, as shown in Figure 3. The corresponding masks of the augmented images 
are also shown in Figure 3. 

  

Figure 1. Skin Disease Original Images: (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4.

Sensors 2022, 21, x FOR PEER REVIEW 4 of 22 
 

 

2. Materials and Methods 
The proposed model exploits the U-Net architecture for lesion segmentation from 

skin disease dermoscopy images. The proposed model has been evaluated on the PH2 [46] 
dataset consisting of 200 skin disease dermoscopy images. 

2.1. Dataset 
The PH2 dataset contains 200 dermoscopy images (160 non-melanomas and 40 mel-

anoma) that are obtained by the Tuebinger Mole Analyzer system using a 20-fold magni-
fication. All images have an approximate size of 192 × 256 pixels. Figure 1 shows the skin 
diseases’ original images, and Figure 2 shows the ground truth masks for the respective 
original images. 

 
(a) (b) (c) (d) 

Figure 1. Skin Disease Original Images: (a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4. 

 
(a) (b) (c) (d) 

Figure 2. Ground Truth Masks for Respective Original Images: (a) Image 1; (b) Image 2; (c) Image 
3; (d) Image 4. 

2.2. Data Augmentation 
As the available training dermoscopy images in the dataset are few, offline data aug-

mentation techniques have been implemented to increase the number of sample images. 
The data augmentation [47] on images is done using different techniques such as flipping 
and rotation, as shown in Figure 3. The corresponding masks of the augmented images 
are also shown in Figure 3. 

  

Figure 2. Ground Truth Masks for Respective Original Images: (a) Image 1; (b) Image 2; (c) Image 3;
(d) Image 4.

2.2. Data Augmentation

As the available training dermoscopy images in the dataset are few, offline data
augmentation techniques have been implemented to increase the number of sample images.
The data augmentation [47] on images is done using different techniques such as flipping
and rotation, as shown in Figure 3. The corresponding masks of the augmented images are
also shown in Figure 3.

Sensors 2022, 21, x FOR PEER REVIEW 5 of 22 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Images and Respective Masks after Data Augmentation Techniques: (a) Original Image; 
(b) Rotated Image; (c) Flipped Image; (d) Original Mask; (e) Rotated Mask; (f) Flipped Mask. 

2.3. Modified U-Net Architecture 
An enhanced version of the Convolutional Neural Network (CNN) was developed 

for dealing with biomedical images in which the purpose is not only to categorize whether 
or not an infection exists but also to identify the infected area [48]. The U-Net architecture 
consists of two paths. The first one is the contraction path, that is also known as encoder, 
and the second one is the symmetric expanding path, also known as decoder. Encoder is 
used to capture the image context, whereas decoder uses transposed convolutions to en-
able precise localization. In this paper, the proposed modified U-Net architecture has been 
presented, as shown in Figure 4. 

The proposed architecture localizes and distinguishes borders by classifying every 
pixel; therefore, input and output share the same size. In the encoder part, the convolution 
layer and the max-pooling layer are applied. In the decoder part, the transposed convolu-
tion layer and the simple convolution layer are applied. 

During the simulation phase, the Input image undergoes a multilevel decomposition 
in the encoder path, and the feature maps are reduced with the help of a max pooling 
layer, which can be seen in Figure 4 as arrows with different colors. The yellow arrows 
show the convolutional layer of size 3 × 3, ReLU (Rectified Linear Unit) activation function 
and dropout layer; the red arrows show the convolutional layer of size 3 × 3 and ReLU 
activation function; the blue arrows show the max-pooling layer; the green arrows show 
the upsampling with 2 × 2 size; the black arrows show the concatenation of images from 
contracting and expanding paths; and, finally, the brown arrows show the final convolu-
tional layer with size 1 × 1. 

Figure 3. Images and Respective Masks after Data Augmentation Techniques: (a) Original
Image; (b) Rotated Image; (c) Flipped Image; (d) Original Mask; (e) Rotated Mask; (f) Flipped Mask.

2.3. Modified U-Net Architecture

An enhanced version of the Convolutional Neural Network (CNN) was developed for
dealing with biomedical images in which the purpose is not only to categorize whether or
not an infection exists but also to identify the infected area [48]. The U-Net architecture
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consists of two paths. The first one is the contraction path, that is also known as encoder,
and the second one is the symmetric expanding path, also known as decoder. Encoder
is used to capture the image context, whereas decoder uses transposed convolutions to
enable precise localization. In this paper, the proposed modified U-Net architecture has
been presented, as shown in Figure 4.

Sensors 2022, 21, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 4. Modified U-Net Architecture. 

In the contraction path, each and every process consists of two convolutional layers. 
In the first part, the channel changes from 1 to 64. The blue arrow pointing down shows 
the max pooling layer that halves down the image from 192 × 256 to 96 × 128. This process 
is repeated three times and reaches below. Below are the two convolutional layers, but 
these layers are without max pooling layers. The image has been resized to 12 × 16 × 1024. 

In the expanding path, the image is going to be upsized to its original image size. The 
upsampling technique expands the size of the images, and it is known as transposed con-
volution. The image is upsized from 12 × 16 to 24 × 32. After that, the image is concatenated 
with the image from the contracting path. The reason for this is to combine the information 
from the last layers to get a more accurate prediction. The proposed modified U-Net ar-
chitecture includes a feature map rectangular in size starting from 192 × 256 in the first 
layer and 96 × 128 in the second layer. It is downsized again to 48 × 64 in the third layer. 
Then, it is downsized to 24 × 32 in the fourth layer, and, finally, it is downsized to 6 × 8 in 
the last layer. Afterwards, the feature map size increases in the expansion path with 24 × 
32 in the first layer from the bottom. It is upsized to 48 × 64 in the second layer and to 96 
× 128 in the third layer. Finally, the feature map size changes to 192 × 256 in the topmost 
layer. 

After the contraction and expanding process, the architecture reaches the upper level, 
reshaping the image; the last layer is a convolution layer. 

Table 1 shows the parameters of the proposed model, that consists of different con-
volution layers, input and output image size, filter size, number of filters, and activation 
function. The total number of parameters for the proposed model are 33,393,669, whereas 
the total number of trainable parameters are 33,377,795, and non-trainable parameters are 
15,874. 

Table 1. Parameters of the Proposed Model. 

S. No. Layers Input Image Size Filter Size No. of Filter Activation Function Output Image 
Size Parameters 

1 Input Image 192 × 256 × 3 - - - - - 
2 Conv_1 192 × 256 × 3 3 × 3 64 ReLU 192 × 256 × 64 1792 
3 Batch Normalization 192 × 256 × 64 - - - - 256 
4 Conv 2 192 × 256 × 3 3 × 3 64 ReLU 192 × 256 × 64 36,928 
5 Batch Normalization 192 × 256 × 64 - - - - 256 
6 MaxPooling 192 × 256 × 64 3 × 3 - - 96 × 128 × 64 0 
7 Conv_3 96 × 128 × 128 3 × 3 128 ReLU 96 × 128 × 128 73,856 
8 Batch Normalization 96 × 128 × 128 - - - - 512 
9 Conv 4 96 × 128 × 128 3 × 3 128 ReLU 96 × 128 × 128 147,584 

Figure 4. Modified U-Net Architecture.

The proposed architecture localizes and distinguishes borders by classifying every
pixel; therefore, input and output share the same size. In the encoder part, the convo-
lution layer and the max-pooling layer are applied. In the decoder part, the transposed
convolution layer and the simple convolution layer are applied.

During the simulation phase, the Input image undergoes a multilevel decomposition
in the encoder path, and the feature maps are reduced with the help of a max pooling
layer, which can be seen in Figure 4 as arrows with different colors. The yellow arrows
show the convolutional layer of size 3 × 3, ReLU (Rectified Linear Unit) activation function
and dropout layer; the red arrows show the convolutional layer of size 3 × 3 and ReLU
activation function; the blue arrows show the max-pooling layer; the green arrows show
the upsampling with 2 × 2 size; the black arrows show the concatenation of images
from contracting and expanding paths; and, finally, the brown arrows show the final
convolutional layer with size 1 × 1.

In the contraction path, each and every process consists of two convolutional layers.
In the first part, the channel changes from 1 to 64. The blue arrow pointing down shows the
max pooling layer that halves down the image from 192 × 256 to 96 × 128. This process is
repeated three times and reaches below. Below are the two convolutional layers, but these
layers are without max pooling layers. The image has been resized to 12 × 16 × 1024.

In the expanding path, the image is going to be upsized to its original image size.
The upsampling technique expands the size of the images, and it is known as transposed
convolution. The image is upsized from 12 × 16 to 24 × 32. After that, the image is
concatenated with the image from the contracting path. The reason for this is to combine
the information from the last layers to get a more accurate prediction. The proposed
modified U-Net architecture includes a feature map rectangular in size starting from
192 × 256 in the first layer and 96 × 128 in the second layer. It is downsized again to
48 × 64 in the third layer. Then, it is downsized to 24 × 32 in the fourth layer, and, finally,
it is downsized to 6 × 8 in the last layer. Afterwards, the feature map size increases in the
expansion path with 24 × 32 in the first layer from the bottom. It is upsized to 48 × 64 in
the second layer and to 96 × 128 in the third layer. Finally, the feature map size changes to
192 × 256 in the topmost layer.

After the contraction and expanding process, the architecture reaches the upper level,
reshaping the image; the last layer is a convolution layer.
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Table 1 shows the parameters of the proposed model, that consists of different con-
volution layers, input and output image size, filter size, number of filters, and activation
function. The total number of parameters for the proposed model are 33,393,669, whereas
the total number of trainable parameters are 33,377,795, and non-trainable parameters
are 15,874.

Table 1. Parameters of the Proposed Model.

S. No. Layers Input Image Size Filter Size No. of Filter Activation
Function

Output Image
Size Parameters

1 Input Image 192 × 256 × 3 - - - - -
2 Conv_1 192 × 256 × 3 3 × 3 64 ReLU 192 × 256 × 64 1792

3 Batch
Normalization 192 × 256 × 64 - - - - 256

4 Conv 2 192 × 256 × 3 3 × 3 64 ReLU 192 × 256 × 64 36,928

5 Batch
Normalization 192 × 256 × 64 - - - - 256

6 MaxPooling 192 × 256 × 64 3 × 3 - - 96 × 128 × 64 0
7 Conv_3 96 × 128 × 128 3 × 3 128 ReLU 96 × 128 × 128 73,856

8 Batch
Normalization 96 × 128 × 128 - - - - 512

9 Conv 4 96 × 128 × 128 3 × 3 128 ReLU 96 × 128 × 128 147,584

10 Batch
Normalization 96 × 128 × 128 - - - - 512

11 MaxPooling 96 × 128 × 128 3 × 3 - - 48 × 64 × 128 0
12 Conv 5 48 × 64 × 256 3 × 3 256 ReLU 48 × 64 × 256 295,168

13 Batch
Normalization 48 × 64 × 256 - - - - 1024

14 Conv 6 48 × 64 × 256 3 × 3 256 ReLU 96 × 128 × 128 590,080

15 Batch
Normalization 48 × 64 × 256 - - - - 1024

16 MaxPooling 48 × 64 × 256 3 × 3 - - 48 × 64 × 128
17 Conv 7 48 × 64 × 256 3 × 3 256 ReLU 96 × 128 × 128 590,080

18 Batch
Normalization 48 × 64 × 256 - - - - 1024

19 MaxPooling 48 × 64 × 256 3 × 3 - - 24 × 32 × 256 0
20 Conv 8 24 × 32 × 512 3 × 3 512 ReLU 24 × 32 × 512 1,180,160

21 Batch
Normalization 24 × 32 × 512 - - - - 2048

22 Conv 9 24 × 32 × 512 3 × 3 512 ReLU 24 × 32 × 512 2,359,808

23 Batch
Normalization 24 × 32 × 512 - - - - 2048

24 Conv 10 24 × 32 × 512 3 × 3 512 ReLU 24 × 32 × 512 2,359,808

25 Batch
Normalization 24 × 32 × 512 - - - - 2048

26 MaxPooling 24 × 32 × 512 3 × 3 - - 12 × 16 × 512 0
27 Conv 11 12 × 16 × 512 3 × 3 512 ReLU 12 × 16 × 512 2,359,808

28 Batch
Normalization 12 × 16 × 512 - - - - 2048

29 Conv 12 12 × 16 × 512 3 × 3 512 ReLU 12 × 16 × 512 2,359,808

30 Batch
Normalization 12 × 16 × 512 - - - - 2048
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Table 1. Cont.

S. No. Layers Input Image Size Filter Size No. of Filter Activation
Function

Output Image
Size Parameters

31 Conv 13 12 × 16 × 512 3 × 3 512 ReLU 12 × 16 × 512 2,359,808

32 Batch
Normalization 12 × 16 × 512 - - - - 2048

33 MaxPooling 12 × 16 × 512 3 × 3 - - 6 × 8 × 512 0
34 Upsampling 12 × 16 × 1024 - - - 12 × 16 × 1024 0
35 De-Conv 1 12 × 16 × 512 3 × 3 512 ReLU 12 × 16 × 512 4,719,104

36 Batch
Normalization 12 × 16 × 512 - - - - 2048

37 De-Conv 2 12 × 16 × 512 3 × 3 512 ReLU 12 × 16 × 512 2,359,808

38 Batch
Normalization 12 × 16 × 512 - - - - 2048

39 De-Conv 3 12 × 16 × 512 3 × 3 512 ReLU 12 × 16 × 512 2,359,808

40 Batch
Normalization 12 × 16 × 512 - - - - 2048

41 Upsampling 24 × 32 × 512 - - - 24 × 32 × 512 0
42 De-Conv 4 24 × 32 × 512 3 × 3 512 ReLU 24 × 32 × 512 2,359,808

43 Batch
Normalization 24 × 32 × 512 - - - - 2048

44 De-Conv 5 24 × 32 × 512 3 × 3 512 ReLU 24 × 32 × 512 2,359,808

45 Batch
Normalization 24 × 32 × 512 - - - - 2048

46 De-Conv 6 24 × 32 × 256 3 × 3 512 ReLU 24 × 32 × 512 1,179,904

47 Batch
Normalization 24 × 32 × 256 - - - - 1024

48 Upsampling 48 × 64 × 256 - - - 48 × 64 × 256 0
49 De-Conv 7 48 × 64 × 256 3 × 3 512 ReLU 48 × 64 × 256 590,080

50 Batch
Normalization 48 × 64 × 256 - - - - 1024

51 De-Conv 8 48 × 64 × 256 3 × 3 512 ReLU 48 × 64 × 256 590,080

52 Batch
Normalization 48 × 64 × 256 - - - - 1024

53 De-Conv 9 48 × 64 × 128 3 × 3 512 ReLU 48 × 64 × 256 295,040

54 Batch
Normalization 48 × 64 × 128 - - - - 512

55 Upsampling 96 × 128 × 128 - - - 96 × 128 × 128 0
56 De-Conv 10 96 × 128 × 128 3 × 3 512 ReLU 96 × 128 × 128 147,584

57 Batch
Normalization 96 × 128 × 128 - - - - 512

58 De-Conv 11 96 × 128 × 64 3 × 3 512 ReLU 96 × 128 × 64 73,792

59 Batch
Normalization 96 × 128 × 64 - - - - 256

60 Upsampling 192 × 256 × 64 - - - 192 × 256 × 64 0
61 De-Conv 12 192 × 256 × 64 3 × 3 512 ReLU 192 × 256 × 64 36,928

62 Batch
Normalization 192 × 256 × 64 - - - - 256

63 De-Conv 13 192 × 256 × 1 3 × 3 512 ReLU 192 × 256 × 1 577

64 Batch
Normalization 192 × 256 × 1 - - - - 4

Total Parameters = 33,393,669
Trainable Parameters = 33,377,795

Non-Trainable Parameters = 15,874

3. Results and Discussion

This section includes all the results attained by using a modified U-Net model. The
model is evaluated on the PH2 dataset. An experimental analysis has been done, from
which training accuracy and loss curves are obtained. A detailed description of the per-
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formed visual analysis of segmented images and the analysis of confusion matrix parame-
ters is given below.

3.1. Result Analysis Based on Different Optimizers

This section includes all the results obtained by using Adam, Adadelta, and SGD
optimizers with a batch size of 18 and 100 epochs.

3.1.1. Analysis of Training Loss and Accuracy

The results are taken using different optimizers with a batch size of 18 and 100 epochs.
Figure 5 shows the curves of training loss and training accuracy. It is worth noticing that
the value of accuracy increases with the number of epochs, and the loss value decreases.
The color red shows the training loss, and the color blue shows the training accuracy.
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Figure 5. Analysis of training loss and training accuracy: (a) Training Loss with SGD optimizer,
(b) Training Accuracy with SGD optimizer, (c) Training Loss with Adam optimizer, (d) Training
Accuracy with Adam optimizer, (e) Training Loss with Adadelta optimizer, (f) Training Accuracy
with Adadelta optimizer’s Original Image.

Figure 5a shows the training loss by using the SGD optimizer; the maximum loss value
is 0.7, which decreases with the number of epochs. Figure 5b shows the training accuracy
in which the maximum accuracy is greater than 0.95 at the 100th epoch. Figure 5c shows
the training loss by exploiting the Adam optimizer; the maximum loss value is lower than
that of the SGD optimizer. Figure 5d shows the training accuracy in which the maximum
accuracy is greater than 0.975 at the 100th epoch. The accuracy for the Adam optimizer
outperforms the accuracy at the SGD optimizer. Figure 5e shows the training loss with the
Adadelta optimizer, whose maximum value is 0.75, which is higher with respect to the SGD
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and Adam optimizers. Figure 5f shows the training accuracy, and the value of accuracy is
only 0.90. Figure 5 shows that the Adam optimizer outperforms the SGD and Adadelta
optimizers in terms of training loss and training accuracy.

3.1.2. Visual Analysis of Segmented Images

Figure 6 shows the segmented images using the Adam, Adadelta and SGD optimizers
with a batch size of 18 and 100 epochs. Figure 6a,c shows the ground truth masks of the
original images, and Figure 6b,d shows the original images. Figure 6e,g shows the predicted
masks of original images 1 and 2 with the Adam optimizer, whereas Figure 6f,h shows
the segmented outputs of original images 1 and 2 with the Adam optimizer. Similarly,
Figure 6i–p shows the predicted masks and segmented outputs for the Adadelta and SGD
optimizers, respectively. From the visual analysis of these figures, it can be seen that
the Adam and SGD optimizers show almost similar results with a batch size of 18 and
100 epochs, whereas the Adadelta optimizer does not follow the profile of the skin lesion;
rather, it extracts a complete skin part. So, the Adadelta optimizer cannot be recommended
for skin lesion segmentation. To select the best performing optimizer between Adam
and SGD, an analysis of these two optimizers is done in Section 3.1.3 using confusion
matrix parameters.
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(d) Original Image 2; (e) Predicted Mask of Image 1 with Adam optimizer; (f) Segmented Output of
Image 1 with Adam optimizer; (g) Predicted Mask of Image 2 with Adam optimizer; (h) Segmented
Output of Image 2 with Adam optimizer and; (i) Predicted Mask of Image 1 with Adadelta optimizer;
(j) Segmented Output of Image 1 with Adadelta optimizer; (k) Predicted Mask of Image 2 with
Adadelta optimizer; (l) Segmented Output of Image 2 with Adadelta optimizer; (m) Predicted Mask
of Image 1 with SGD optimizer; (n) Segmented Output of Image 1 with SGD optimizer; (o) Predicted
Mask of Image 2 with SGD optimizer; (p) Segmented Output of Image 2 with SGD optimizer.

3.1.3. Analysis of Confusion Matrix Parameters

In Section 3.1.2, a visual analysis of segmented images is shown, proving that the
Adam and SGD optimizers do not have the best results. Now, to see the best performing
optimizer, confusion matrix parameters are analyzed. Table 2 shows the comparison of
the Jaccard Index, Dice Coefficient, Precision, Recall, Accuracy, and Loss for the modified
U-Net model architecture by using the Adam, Adadelta, and SGD optimizers.

Table 2. Analysis of Different Optimizers with a batch size of 18 and 100 epochs.

Training Dataset

Optimizer Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

SGD 96.81 84.60 96.09 96.86 97.77 12.03
Adam 96.42 88.32 92.15 98.50 96.88 11.31

Adadelta 83.90 61.62 86.43 95.82 93.91 38.33

Testing Dataset

Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

SGD 93.98 80.26 90.60 91.64 94.55 17.91
Adam 93.83 84.86 85.89 96.93 94.04 19.19

Adadelta 82.41 59.12 81.08 90.82 90.55 41.54

Validation Dataset

Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

SGD 94.44 81.01 91.23 92.65 94.79 17.37
Adam 94.74 86.13 88.30 97.14 95.01 16.24

Adadelta 82.60 60.13 80.76 92.68 90.56 41.23

The validation dataset results, also shown in Figure 7, show that the SGD optimizer
reaches the best performance in terms of Precision, with a value of 91.23%, although the
Adam optimizer outperforms the SGD optimizer with a 94.74% value of Jaccard Index,
86.13% value of Dice Coefficient, 97.14% value of Recall, 95.01% of accuracy, and 16.24 of
loss value. In the case of the Adadelta optimizer, the obtained results show that it is the
worst one. Therefore, from these results we can affirm that the Adam optimizer has shown
the best results on validation dataset, as it has outperformed on almost all parameters with
respect to the SGD and Adadelta optimizers.

Figure 7 shows the analysis of the confusion matrix parameters on the Adam, Adadelta,
and SGD optimizers using a validation dataset. From this figure, it can be seen that the
Adam optimizer is performing best on almost all the parameters, such as Jaccard Index,
Dice Coefficient, Precision, Recall, Accuracy, and Loss. The value of loss is much lower in
the case of the Adam optimizer in comparison to the SGD and Adadelta optimizers.
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3.2. Result Analysis Based on Different Optimizers

From Section 3.1, it is seen that the Adam optimizer has outperformed in comparison
to the SGD and Adadelta optimizers with a batch size of 18. Therefore, in this section, the
results are calculated using the Adam optimizer on different batch sizes. However, it is
possible that the Adadelta and SGD optimizers may provide better results on different
combinations of batch size and epochs. In future, these two optimizers can be analyzed
for different batch size and epoch combinations. Here, the values of batch sizes used for
analyzing the Adam optimizer are 8, 18, and 32 on 100 epochs.

3.2.1. Analysis of Training Loss and Accuracy

The results are taken using different batch sizes with the Adam optimizer on 100 epochs.
Figure 8 shows the curves of training loss and training accuracy, and from the curves it
can be concluded that the value of accuracy increases with the number of epochs, and the
loss value decreases. The color red shows the training loss, and the color blue shows the
training accuracy.

Figure 8a,c,e shows the training loss on batch sizes 8, 18, and 32, and the loss value
is 0.5. Figure 8b,d shows the training accuracy on batch sizes 8 and 18, and the value of
accuracy is approximately greater than 0.975. Figure 8f shows the training accuracy, and
the value of accuracy is only 0.95 with a batch size of 32.
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Figure 8. Analysis of training loss and training accuracy: (a) Training Loss on batch size 8; (b) Training
Accuracy on batch size 8; (c) Training Loss on batch size 18; (d) Training Accuracy on batch size 18;
(e) Training Loss on batch size 32; (f) Training Accuracy on batch size 32.

3.2.2. Analysis of Training Loss and Accuracy

Figure 9 shows the segmented images using the Adam optimizer with 100 epochs and
a batch size of 8, 18, and 32. Figure 9a,c shows the ground truth masks of original images 1
and 2, and Figure 9b,d shows the original images. Figure 9e,g shows the predicted masks of
original images 1 and 2 on batch size 8, whereas Figure 9f,h shows the segmented outputs
of original images 1 and 2 on batch size 8. Similarly, Figure 9i–p shows the predicted masks
and segmented outputs on batch sizes 18 and 32, respectively. From the visual analysis
of the figures, it can be seen that batch sizes 8 and 18 show almost similar results with
the Adam optimizer and 100 epochs, whereas batch size 32 does not perform well, since
it is not extracting only the lesion part but also the outer part. Therefore, batch size 32
cannot be recommended for skin lesion segmentation. To see the best performing batch size
between 8 and 18, the analysis of these two batch sizes, the confusion matrix parameters
are evaluated in Section 3.2.3.
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of Image 1 on batch size; (g) Predicted Mask of Image 2 on batch size 8; (h) Segmented Output of 
Image 2 on batch size 8; (i) Predicted Mask of Image 1 on batch size 18; (j) Segmented Output of 
Image 1 on batch size 18; (k) Predicted Mask of Image 2 on batch size 18; (l) Segmented Output of 

Figure 9. Images segmented on the Adam Optimizer, 100 epochs and different batch sizes: (a) Ground
truth Mask of Original Image 1; (b) Original Image 1; (c) Ground truth Mask of Original Image 2;
(d) Original Image 2; (e) Predicted Mask of Image 1 on batch size 8; (f) Segmented Output of Image 1
on batch size; (g) Predicted Mask of Image 2 on batch size 8; (h) Segmented Output of Image 2 on
batch size 8; (i) Predicted Mask of Image 1 on batch size 18; (j) Segmented Output of Image 1 on batch
size 18; (k) Predicted Mask of Image 2 on batch size 18; (l) Segmented Output of Image 2 on batch
size 18; (m) Predicted Mask of Image 1 on batch size 32; (n) Segmented Output of Image 1 on batch
size 32; (o) Predicted Mask of Image 2 on batch size 32; (p) Segmented Output of Image 2 on batch
size 32.

3.2.3. Analysis of Confusion Matrix Parameters

In Section 3.2.2, a visual analysis of segmented images is done on different batch sizes,
from which batch size 8 and 18 have shown the best results. Now, to see the best performing
batch size, the confusion matrix parameters are analyzed. Table 3 shows the analysis of the
U-Net model architecture using batch sizes 8, 18, and 32.

In the case of the validation dataset, as also shown in Figure 10, the batch size of 18 has
performed best on Recall with a value of 97.14%, although batch size 8 has outperformed
and shown a 95.68% value of Jaccard Index, 87.49% value of Dice Coefficient, 93.42% value
of Precision, 95.51% value of Accuracy, and a lower loss value, of 13.72. In the case of batch
size 32, as already observed with the visual analysis, the performance is lower with respect
to the other batch sizes, showing a loss of 19.19. Therefore, from these results it can be seen
that batch size 8 has shown the best results on the validation dataset.



Sensors 2022, 22, 867 14 of 21

Table 3. Analysis of Different Batch sizes using the Adam Optimizer.

Training Dataset

Batch Size Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

8 97.66 90.37 97.10 95.78 97.82 7.90
18 96.42 88.32 92.15 98.50 96.88 11.31
32 94.79 80.87 92.93 96.08 96.45 17.02

Testing Dataset

Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

8 95.72 87.29 92.04 94.12 95.77 12.54
18 93.83 84.86 85.89 96.93 94.04 19.19
32 92.92 78.37 89.19 93.23 94.34 21.41

Validation Dataset

Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

8 95.68 87.49 93.42 92.72 95.51 13.72
18 94.74 86.13 88.30 97.14 95.01 16.24
32 93.92 79.78 92.13 93.24 95.30 19.19
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Figure 10. Analysis of confusion matrix parameters on different batch sizes.

Figure 10 shows the analysis of confusion matrix parameters on batch sizes 8, 18, and
32. From the figure it can be seen that batch size 8 is performing best on almost all the
parameters, such as Jaccard Index, Dice Coefficient, Precision, Recall, Accuracy, and Loss.
The value of loss is much lower in the case of batch size 8 in comparison to batch sizes 18
and 32.

3.3. Result Analysis Based on Different Epochs with the Adam Optimizer and Batch Size 8

From Section 3.2, it was seen that batch size 8 has outperformed in comparison to batch
sizes 18 and 32 for the Adam optimizer. Therefore, in this section, the results are calculated
using batch size 8 with different epochs. However, it is possible that batch sizes 18 and
32 may provide better results on different combinations of epochs. In future, these two
batch sizes can be further analyzed with different epochs. Here, the value of epochs used
for analyzing the Adam optimizer with batch size 8 are 25, 50, 75, and 100.
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3.3.1. Analysis of Confusion Matrix Parameters

The results are taken using the Adam optimizer on batch size 8 with 25, 50, 75, and
100 epochs. Figure 11 shows the curves of training loss and training accuracy, and from the
curves it is concluded that the value of accuracy increases with the number of epochs, and
the loss value is decreases.

Figure 11a,c,e,g shows the training loss with 25, 50, 75, and 100 epochs, and the loss
value is 0.5; Figure 11b shows the training accuracy on 25 epochs, and the value of accuracy
is approximately greater than 0.94. Figure 11f,h shows the training accuracy, and the value
of accuracy is only 0.975 on 75 and 100 epochs.

3.3.2. Visual Analysis of Segmented Images

Figure 12 shows the segmented images using the Adam optimizer and batch size 8 on
different epochs. Figure 12a,c shows the ground truth masks of the original images 1 and 2,
and Figure 12b,d shows the original images. Figure 12e,g shows the predicted masks of
original images 1 and 2 on 25 epochs, whereas Figure 12f,h shows the segmented outputs
of original images 1 and 2 on 25 epochs. Similarly, Figure 12i–t shows the predicted masks
and segmented outputs on 50, 75, and 100 epochs, respectively.

From the visual analysis of these figures, it can be seen that 25, 50, and 75 epochs show
almost similar results on the Adam optimizer and batch size 8, whereas 100 epochs do not
show good results. To see the best performing epochs between 25, 50, and 75, an analysis
of these two epochs is done in Section 3.3.3 using confusion matrix parameters.

3.3.3. Analysis of Confusion Matrix Parameters

In Section 3.3.2, a visual analysis of segmented images is done on different epoch
values, of 25, 50, 75, and 100. Now, to see the best performing epochs, the confusion matrix
parameters are analyzed. Table 4 shows the analysis of the U-Net model architecture using
25, 50, 75, and 100 epochs size and a batch size of 8 with the Adam optimizer.
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Figure 12. Images segmented on the Adam Optimizer, batch size 8 and different epochs: (a) Ground
truth Mask of Original Image 1; (b) Original Image 1; (c) Ground truth Mask of Original Image 2;
(d) Original Image 2; (e) Predicted Mask of Image 1 on 25 epochs; (f) Segmented Output of Image 1 on
25 epochs; (g) Predicted Mask of Image 2 on 25 epochs; (h) Segmented Output of Image 2 on 25 epochs;
(i) Predicted Mask of Image 1 on 50 epochs; (j) Segmented Output of Image 1 on 50 epochs; (k) Pre-
dicted Mask of Image 2 on 50 epochs; (l) Segmented Output of Image 2 on 50 epochs; (m) Predicted
Mask of Image 1 on 75 epochs; (n) Segmented Output of Image 1 on 75 epochs; (o) Predicted Mask of
Image 2 on 75 epochs; (p) Segmented Output of Image 2 on 75 epochs; (q) Predicted Mask of Image 1
on 100 epochs; (r) Segmented Output of Image 1 on 100 epochs; (s) Predicted Mask of Image 2 on
100 epochs; (t) Segmented Output of Image 2 on 100 epochs.
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Table 4. Analysis of different epochs using the Adam optimizer and batch size 8.

Training Dataset

Epochs Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

25 88.69 73.72 81.72 93.69 91.58 27.71
50 93.51 79.81 98.74 81.03 93.62 18.99
75 97.66 90.79 95.95 96.89 97.79 7.79

100 59.97 53.07 37.62 96.75 47.37 164.86

Testing Dataset

Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

25 89.72 72.95 80.05 94.58 91.64 27.60
50 93.10 78.97 96.55 81.10 93.35 19.44
75 95.57 87.41 90.62 95.23 95.47 13.78

100 57.38 50.65 35.46 96.86 43.25 181.64

Validation Dataset

Jaccard Index (%) Dice Coefficient (%) Precision (%) Recall (%) Accuracy (%) Loss

25 89.56 73.90 81.96 92.34 91.00 28.17
50 92.10 77.69 97.31 77.58 91.72 23.37
75 96.35 89.01 93.56 94.91 96.27 11.56

100 59.78 53.26 37.58 96.73 47.15 165.86

From Table 4, in the case of the validation dataset, it can be seen that on 25 epochs the
value of loss is 28.17, which is very high, followed by a loss value of 23.37 on 50 epochs,
whereas on 75 epochs the value of loss becomes lower, i.e., 11.56. Moreover, the values of
the Jaccard Index, Dice Coefficient, and Accuracy are increased. Therefore, it can be seen
that during the training of the model, there was underfitting on 25 and 50 epochs, due to
which the performance parameters values are not good. But at the epoch value of 75, the
model is properly trained, so the parameters’ values are also improved. If the model is
further trained up to 100 epochs, then the loss value is increased to 165.86. Hence, it can be
identified that the proposed model performs best on 75 epochs.

Figure 13 shows the analysis of confusion matrix parameters on 25, 50, 75, and
100 epochs. The results are obtained on the Jaccard Index, Dice Coefficient, Precision,
Recall, Accuracy, and Loss. The best value of accuracy is obtained on 75 epochs with a
much lower loss.
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3.4. Comparison with State-of-the-Art Techniques

A comparison of the suggested scheme with other current state-of-the-art methods
using dermoscopy images has been performed in terms of both the Jaccard Coefficient and
accuracy. Table 5 provides a breakdown of both class-level predictions. This result analysis
shows that the proposed framework achieves a superior overall accuracy compared to the
state-of-the-art approaches. Jaccard coefficient and accuracy differed from one study to the
next, since they employed different datasets (ISBI-2016, ISBI-2017, and PH2). According to
Yuan et al. [10,11], the Jaccard Coefficient is 0.963 for the ISBI-2016 dataset and 0.78 for the
ISBI-2017 dataset when employing convolutional neural networks.

Table 5. Comparison of the Proposed Model with State-of-the-Art Techniques.

Ref Technique Used Dataset Performance Parameters

Yuan et al. [10] 19-layer Deep Convolution Network ISBI-2016
Jaccard Coefficient = 0.963PH2

Yuan et al. [11] Convolutional-Deconvolutional neural Network ISBI-2017 Jaccard Coefficient = 0.784

Hang Li et al. [28] Dense Deconvolutional Network
ISBI-2016 Jaccard Coefficient = 0.870
ISBI-2017 Jaccard Coefficient = 0.765

Yu et al. [29] Convolution Network
ISBI-2016 Accuracy = 0.8654
ISBI-2017

Khan et al. [30] Convolution Network
ISIC Accuracy = 0.968
PH2 Accuracy = 0.921

Proposed Model Modified U-Net
PH2

Jaccard Coefficient = 0.976
Architecture Accuracy = 0.977

4. Conclusions and Future Scope

Since medical image analysis is one of the challenging tasks which requires various
computational techniques in the hierarchy of imaging applications, different types of analy-
sis techniques, including image pre-processing, classification, segmentation, compression,
and security, must be taken into account. In the literature, various authors have worked
on the segmentation of skin lesions. This study proposed the modified U-Net model ar-
chitecture for the segmentation of skin lesion in dermoscopy image so that an accurate
classification of skin disease can be performed. The dermoscopy images are taken from the
PH2 dataset with 200 images. The proposed model has been analyzed with different batch
sizes, of 8, 18, and 32, using the Adam, Adadelta, and SGD optimizers and 25, 50, 75, and
100 epochs. The proposed model works best with a batch size of 8, the Adam optimizer, and
75 epochs, having an accuracy of 96.27% and a Jaccard Index of 96.35%. Its Dice Coefficient
is coming out as 89.01%. Hence, there is still scope for improving the Dice Coefficient and
the Precision of the modified U-Net architecture model. Moreover, in future, segmented
images can be used for classification purposes to improve classification accuracy.
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