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Abstract A new adaptive quadrature algorithm that places
a greater emphasis on cost reduction while still maintaining
an acceptable accuracy is demonstrated. The different needs
of science and engineering applications are highlighted as
the existing algorithms are shown to be inadequate. The
performance of the new algorithm is compared with the
well known adaptive Simpson, Gauss-Lobatto and Gauss-
Kronrod methods. Finally, scenarios where the proposed al-
gorithm outperforms the existing ones are discussed.

Keywords Adaptive quadrature · Simpson ·
Gauss-Lobatto · Gauss-Kronrod

1 Introduction

With the increasing complexity of problems in science and
engineering, more and more computational tasks require the
use of massively parallel simulations running for hours to
days. A reduction in the computational burden could trans-
late into several hours saved and far lesser CPU time for par-
allel simulations. Adaptive quadrature is an essential tech-
nique to minimize the cost of integrating or simply resolving
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features in a function. When the cost of evaluating a func-
tion is high or if adaptive quadrature has to be used repet-
itively, the efficiency of the algorithm being employed be-
comes critical.

In the field of quantum transport it is often required to
resolve sharp features in the transmission probability of a
structure at different energies [3]. To convey the enormity
of the problem, it is comparable to finding and integrating a
Lorentzian with a full-width at half maximum (FWHM) of
10−10 eV over a 0.5 eV range. Numerical techniques other
than adaptive quadrature have been developed [2, 6] that at-
tempt to reduce the cost. Though these techniques are bene-
ficial they do add a significant overhead to the computational
task, since some cost is incurred by these techniques as well.
In this regard any efficient adaptive quadrature method is
desirable since the cost incurred by the adaptive quadrature
method itself is in general minimal.

To understand why the existing adaptive quadrature
methods are inadequate for such applications, the purpose
and the intent behind these methods must be highlighted.
Problems in computing and numerical analysis require high
precision, possibly 7–8 digits. In engineering and scientific
applications it is enough to have a lower precision since
there are several input parameters to the simulation, that are
not known to such high accuracies anyway. In device engi-
neering a general procedure is to guide a design by many
simulations that provide design trends. Absolute numbers
with perfect accuracy are not required but rapid computa-
tional turn around is needed. To meet the requirements of
such applications, accuracy must be traded for a reduction
in cost. Further, some implementations of adaptive quadra-
ture methods throw away function evaluations from previous
iterations in the quest for accuracy, a scenario that is not de-
sirable, given that it can be very costly to evaluate a function
at every single point.
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2 Methodology: 5 point adaptive scheme

Figure 1 illustrates the procedure for the 5 point adaptive
scheme for a Lorentzian placed asymmetrically in the range
of integration. The Lorentzian is to be resolved and inte-
grated as accurately as possible. After sampling the function
on a widely spaced homogeneous grid, nodes are added in
successive iterations. The addition of nodes in a given re-
gion, like other adaptive schemes is based on two estimates
of the integral, one of which is more accurate than the other.
In this case the estimates are I5 and I3 over a region which is
typically only a small part of the entire range to be integrated
over. I5 and I3 refer to the number of points used in evalu-
ating the integral over a small subsection of the total range.
These integrals can be performed using the mid-point rule
or by fitting a quadratic function to a set of 3 points. The
scheme is not very sensitive to the quadrature rule used to
find I5 and I3 since the addition of nodes is based on the rel-
ative error of the two and not the actual values. The scheme
is implemented in the following manner,

Fig. 1 Successive iterations of the adaptive refinement algorithm in
the 5 point scheme are illustrated. Vertical solid lines denote the nodes
at the beginning of each iteration. Vertical dotted lines denote nodes
added at each iteration

• Step 1: The function to be integrated is sampled on a
widely spaced homogeneous grid.

• Step 2: I5 using 5 points and I3 using 3 points are com-
puted over any set of 5 successive nodes. Typically the
2nd and the 4th points in a given set of 5 points are ne-
glected for the purpose of computing I3.

• Step 3: If the following condition,

|I5 − I3|/I3 > ε (convergence criterion) (1)

is found to be true, then 4 new nodes are added in a re-
gion spanned by the original 5 successive nodes such that
they bisect the 4 already existing intervals symmetrically.
Otherwise no new nodes are added.

• Step 4: Steps 2–3 are repeated with all the nodes, till the
convergence criterion is met over any set of 5 successive
nodes.

The integration is done using the composite Simpson’s
rule by breaking the range into regions that have the same
difference in successive abscissas.

3 Results and discussion: accuracy vs cost

In Fig. 2(a) the 5 point adaptive scheme is used to resolve
features in the transmission through a Resonant Tunneling
diode [5] at different energies. Figure 2(b) shows the distri-
bution of nodes in energy which is indicative of the cost of
resolving each features in the transmission. As is expected
flatter portions of Fig. 2(b) correspond to sharper features in
Fig. 2(a) since more nodes were required to resolve them.
The 5 point adaptive grid scheme is running with ε = 0.1
in (1). A smaller ε would resolve the features even more ac-
curately though it would increase the node count as well.

The performance of the 5 point adaptive scheme is now
compared with other algorithms keeping in mind that the
ideal algorithm would be one whose accuracy scales well
with an increasing node count, that is, an algorithms that
can give low accuracies at a low node count and high ac-
curacies at a high node count. The 5 point adaptive scheme

Fig. 2 (a) Transmission as a
function of energy for a
Resonant tunneling device with
thick barriers giving rise to very
sharp features in transmission.
Similar devices have been
modeled in [5]. (b) The
corresponding distribution of
nodes generated using the 5
point adaptive grid scheme
running with ε = 0.1
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Fig. 3 The relative error as a function of node count for a normalized
Lorentzian with FWHM = 10−3. The different data points for a given
algorithm were obtained by varying the convergence criterion (ε) for
the 5 point scheme and the error tolerance for the remaining algorithms

is implemented in MATLAB and is compared with the in-
built functions quad, quadl and quadgk which correspond
to the Adaptive Simpson [8], Gauss-Lobatto [1] and Gauss-
Kronrod [7] methods. The performance and implementation
of these three algorithms has been discussed in [4]. A nor-
malized Lorentzian is placed asymmetrically and integrated
in the range [0,1]. The relative error for a Lorentzian with
a given FWHM is found with the corresponding node count
by varying the convergence criterion for the 5 point adaptive
scheme and the error tolerance in the case of the remaining
adaptive quadrature methods.

Figure 3 shows how the 5 point adaptive scheme com-
pares with the other algorithms for the case when the
Lorentzian is not very sharp (FWHM = 10−3). The per-
formance of the 5 point adaptive scheme is similar to that
of the adaptive Simpson’s method with relative errors close
to 10−5 being achieved with 100 nodes. A relative error
close to 1 indicates that the algorithm could not resolve
the feature at all, which is the case for the Simpson’s and
the Gauss-Lobatto methods around 15 nodes and for Gauss-
Kronrod around 200 nodes. One point of distinction could
be that the 5 point adaptive scheme does find the Lorentzian
with even fewer nodes although with a lower accuracy. It
can be argued that the three existing algorithms are miss-
ing data points in the low accuracy region (relative error
between 10−3 and 10−5) as they do not converge, but since
the difference in cost between them and the 5 point adap-
tive scheme is not large enough the discrepancy may not be
serious. However, a small node count can reduce the cost
of subsequent calculations in terms of memory footprint as
well as overall compute time. Accuracies of 10−3 may often
be acceptable resulting in node reduction by a factor of 2 or
more.

Fig. 4 The relative error as a function of node count for a normalized
Lorentzian with FWHM = 10−7. The different data points for a given
algorithm were obtained by varying the convergence criterion (ε) for
the 5 point scheme and the error tolerance for the remaining algorithms

In Fig. 4, showing the performance for a Lorentzian of
FWHM = 10−7, the contrast between the 5 point adap-
tive scheme and the remaining methods is more evident.
The 5 point adaptive scheme shows the ability to find the
Lorentzian with a low accuracy (relative error between 10−3

and 10−6) and a low node count. The remaining algorithms
take larger node counts to find the Lorentzian, although to
a higher accuracy. The adaptive Simpson’s, Gauss-Lobatto
and Gauss-Kronrod do not have any data points for high rel-
ative errors since they do not converge with low node counts.

One advantage that the 5 point adaptive scheme has that
at the end of each iteration it is possible to have an estimate
of the integral of the function, something that is not possible
in the remaining methods. It is also possible to build safe-
guards that avoid getting caught in noisy integrands or that
treat a certain part of the range differently than others. It has
been verified that adding 4 nodes in Step 2 of the algorithm
compared to adding only one is more efficient unless there
is an analysis of the integrand over the 5 points in question.

4 Conclusion

In this paper the 5 point adaptive quadrature scheme was
demonstrated, that placed a greater emphasis on cost reduc-
tion, while still maintaining acceptable accuracies. Such a
technique was shown to be beneficial for scientific and en-
gineering applications. Existing techniques were shown to
be inadequate despite their higher accuracies because of the
prohibitive costs involved. A performance comparison was
used to demonstrate the suitability of the 5 point adaptive
scheme over the existing algorithms in applications where
low accuracies suffice and evaluating functions at each node
is expensive.
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