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Variational iteration method has been extensively employed to deal with linear and nonlinear differential equations of integer and
fractional order. +e key property of the technique is its ability and flexibility to investigate linear and nonlinear models
conveniently and accurately. +e current study presents an improved algorithm to the variational iteration algorithm-II (VIA-II)
for the numerical treatment of diffusion as well as convection-diffusion equations. +is newly introduced modification is termed
as the modified variational iteration algorithm-II (MVIA-II). +e convergence of the MVIA-II is studied in the case of solving
nonlinear equations. +e main advantage of the MVIA-II improvement is an auxiliary parameter which makes sure a fast
convergence of the standard VIA-II iteration algorithm. In order to verify the stability, accuracy, and computational speed of the
method, the obtained solutions are compared numerically and graphically with the exact ones as well as with the results obtained
by the previously proposed compact finite difference method and second kind Chebyshev wavelets. +e comparison revealed that
the modified version yields accurate results, converges rapidly, and offers better robustness in comparison with other methods
used in the literature. Moreover, the basic idea depicted in this study is relied upon the possibility of the MVIA-II being utilized to
handle nonlinear differential equations that arise in different fields of physical and biological sciences. A strong motivation for
such applications is the fact that any discretization, transformation, or any assumptions are not required for this proposed
algorithm in finding appropriate numerical solutions.

1. Introduction

Diffusion is a basic biofunction for all living organs; all
nutrient materials are transferred to cells through bio-
membranes through a diffusion process [1]. It is quite im-
portant from the biological point of view because different
processes such as exchange of gases, absorption of some
substances in the gut, and absorption of water and minerals
by the roots of the plants are examples of diffusion. +e
movement of substances between cells also involves diffu-
sion. Cells are surrounded by a flexible and dynamic barrier

known as a membrane. +ese biological membranes are
composed of lipids, which aggregate to form a bilayer with
particular biochemical properties. +e amphipathic nature
of the lipid bilayer, whose tails are hydrophobic and asso-
ciated with each other and whose head groups are hydro-
philic and interact with the aqueous environment, is critical
to its structure. +e composition of the lipid bilayer is also
important for the diffusion both across and within the
membrane. +is membrane diffusion is important for a
variety of functions, some of which include regulating the
fluidity of the membrane, the uptake of metabolites into the
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cell from the outside, and the removal of waste products
from the inside of the cell. +e rate of diffusion is affected by
properties of the cell, the surrounding solution, and the
diffusing molecule. Simple equations and graphs can be used
to examine how particular molecules and their concentra-
tion affect the rate of diffusion. Generally, the diffusion
equation can be written as
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( ) + f(ξ, t), (1)

where Z is the concentration of the diffused material, for
example, the concentration of the oxygen, D is the diffusion
coefficient, and f is the source term. Equation (1) can also
model spatial patterns of animals [2] and biological pop-
ulation [3]. Equation (1) can be rewritten in the following
form:
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Convection is the exchange of interior energy into or
out of the body through the physical development of the
encompassing liquid, which transports the inside energy
and its mass. Since the piratical keep up their random
motion, the total heat transfer is because of the super-
position of the energy move coming about because of the
randommotion of the particles and the bulk motion of the
fluid. It is customary to the utilization because of the
transport due to the bulk amount of fluids. Convection
can happen consequently freely if the fluid movement is
caused by buoyancy, caused by a change in density, or
caused by a change in the temperature of the fluid, or it
can be imposed when the liquid is forced to flow over
surface convection such as fans and pumps creating an
artificially induced convection current. In numerous
practical applications like heat loss from solar central
receivers or cooling of PV modules, natural convection
and forced convection occur at the same time.

More sophisticated models include diffusive and con-
vective transport as key elements for modeling heat and
mass transfer phenomena and continuous mechanical
processes. It ought to be noticed that convective-diffusive
transport is indispensable for predictions of various fluid
and gas flows such as pollutants spreading in the atmosphere
and pollutant transportation in groundwater and water
basins [4]. Convection-diffusion problems are governed by
typical mathematical models, which are common in gas and
fluid dynamics. Mass and heat transfer takes place not only
through diffusion but also through movement of the me-
dium. Many scientists have considered different diffusion
and convection-diffusion problems by different procedures;
for example, the wavelet-Galerkin method was used by El-
Gamel [5], while the Bessel collocation method was
implemented by Yüzbaşı and Sahin [6] for the solution of
convection-diffusion problems. To investigate nonlinear
diffusion problems, a nonclassical method has been pre-
sented by Saied [4], Wang [7] employed the
Crank–Nicholson method, and Dhawan et al. [8] utilized the
finite-element method.

For the convection-diffusion models, the piecewise-an-
alytical method [9], high-order ADI method [10], least-
squares homotopy perturbation method [11], multigrid
solver [12], lattice Boltzmann model [13], stabilized finite-
element method [14], second kind Chebyshev wavelets [15],
finite element [16], finite difference method [17], decom-
position method [18], compact finite difference method [19],
meshless local Petrov–Galerkinmethod [20], discrete duality
finite volume scheme [21], discontinuous Galerkin (DG)
schemes [22], and high-order finite volume scheme [23]
have been used in the literature.

Variational iteration method which was proposed
originally by He [24] in 1999 has become popular in applied
sciences and has been extensively employed by many re-
searchers due to its promising performance in dealing with
linear and nonlinear differential equations of integer and
noninteger order. +e key property of the technique is its
ability and flexibility to investigate linear and nonlinear
models conveniently and accurately. +is technique has a
simpler solution procedure and can be used to handle
nonlinear differential equations that arise in different fields
of science because any small discretization, Adomian
polynomials, transformation, linearization, or any as-
sumptions are not required for this method to find the
numerical solutions [24–27]. So far, VIM has been utilized
for the numerical and analytical investigations of fractional
differential equations, oscillation equations, wave equations,
some delay differential equations, etc., and can be utilized in
a simplest way for the study of inverse problems [28],
integrodifferential equations [29], differential-difference
equations [30], and fractional calculus [31]. Many mathe-
maticians have tried to develop this technique further, and
so far many modifications have been introduced. Among
these modifications, the modification where the least-
squares technology has been used by Herisanu and Marinca
[32] is very interesting. Hesameddini and Latifizadeh [33]
coupled it with Laplace transform, while its convergence was
proved by Salkuyeh [34]. An auxiliary parameter was in-
troduced by Inc and Yilmaz [35] to accelerate the conver-
gence speed to the exact solution. In 2010, He et al. [25], the
originator of the method himself, presented three algo-
rithms, i.e., variational iteration algorithm-I (VIA-I), algo-
rithm-II (VIA-II), and algorithm-III (VIA-III). +e first
author has modified the VIA-I successfully and imple-
mented the modified version for many nonlinear PDEs
[36, 37]. Further, the first author also succeeded in modi-
fying the algorithm-II by introducing an auxiliary parameter
recently [38].

In this study, we aim to discuss the convergence analysis
of the modified algorithm-II (MVIA-II) and to implement it
for finding the numerical solution of nonlinear PDEs arising
in physical and biological sciences which are modelled via
the diffusion equations. We summarize the contents of the
paper in the following sections. In Section 2, the proposed
method and its implementation are described. A conver-
gence analysis is discussed in Section 3. In Section 4, a
nonlinear diffusion equation with two convection-diffusion
models is investigated. Some concluding observations are
discussed in the Section 5.
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2. Modified Iteration Algorithm-II

In this section, the main idea of the modification is illus-
trated by considering a nonlinear differential equation:

L[Z(ξ)] +N[Z(ξ)] � k(ξ), (3)

where L[Z(ξ)] and N[Z(ξ)] denote the linear and non-
linear operators, respectively, whereas k(ξ) is a nonhomo-
geneous term. For an appropriate given initial condition
Z0(ξ), series solution Zn+1(ξ) of equation (3) can be ob-
tained as

Zn+1(ξ) �Zn(ξ) + p∫ξ

0
λ(ϑ) L Zn(ϑ){ } +N Zn(ϑ){ }︷����︸︸����︷

−k(ϑ)[ ]dϑ,
(4)

where Zn(ϑ)
︷��︸︸��︷

is a restricted term which gives δZn(ϑ)
︷��︸︸��︷

� 0
and p and λ(ϑ) are the auxiliary parameter and Lagrange
multiplier, respectively, which can be found optimally. +e
first one is used to accelerate the convergence to the exact
solution [39–43], while the second one is used to construct
the correction function [44]. +e significant value of λ(ϑ)
can be achieved by applying δ on both the sides of the
recurrent relation (4) with respect to Zn(ξ), which leads to

δZn+1(ξ) � δZn(ξ)

+ pδ∫ξ

0
λ(ϑ) L Zn(ϑ){ } +N Zn(ϑ){ }︷����︸︸����︷

−k(ϑ)[ ]dϑ,
(5)

where the following Lagrange multipliers can be obtained:

λ � −1, for i � 1,

λ � ξ − t, for i � 2.
(6)

Also, the following general formula for the Lagrange
multiplier in the cases i≥ 1 is available:

λ �
(−1)i(ϑ − t)i− 1

(i − 1)!
. (7)

After finding the value of Zn(ϑ)
︷��︸︸��︷

, an iteration formula is
constructed by using this value in the correctional function 4
as follows:

Zn+1(ξ) �Zn(ξ) + p∫ξ

0

(−1)i(ϑ − t)i− 1

(i − 1)!

L Zn(ϑ){ } +N Zn(ϑ){ } − k(ϑ)[ ]dϑ.
(8)

A more summarizing and concise iteration formula that
can be constructed is known as the modified variational
iteration algorithm-II (MVIA-II):

Zn+1(ξ) � Z0(ξ) + p∫ξ

0

(−1)i(ϑ − t)i− 1

(i − 1)!

· N Zn(ϑ){ } − k(ϑ)[ ]dϑ.
(9)

+e iterative sequence can be obtained starting from a
proper initial approximation and using the iterative formula

(9). It is convenient to repeat iterations many times to arrive
the given accuracy for the advanced computer technique. An
exact solution Z(ξ) is obtained as

Z(ξ) � lim
n⟶∞

Zn(ξ). (10)

In this technique, one does not require the discretization
of the domain and linearization of the given differential
equations. We simply need to calculate the Lagrange mul-
tiplier of the given differential equation by restricting the
nonlinear terms and get the analytical/numerical solution of
the given differential equations in the series form:

Z0(ξ)is an appropriate initial approximation,

Z1(ξ, p) � Z0(ξ) + p∫ξ

0
λ(ϑ) L Z0(ϑ){ } +N Z0(ϑ){ } − k(ϑ)[ ]dϑ,

Zn+1(ξ, p) � Z0(ξ, p) + p∫ξ

0
λ(ϑ) N Zn(ϑ, p){ } − k(ϑ, p)[ ]dϑ,

n � 1, 2, . . . .


(11)

+is procedure is known as the MVIA-II, where one
does not require the discretization of the domain and
linearization of the given differential equations. We
employ this proposed procedure for finding the analytical/
numerical solution of diffusion and convection-diffusion
equations. When p � 1, the variational iteration algorithm
given in equation (11) becomes the standard VIA-II, and
the approximate solution converges to the exact one when
n approaches to infinity. Accordingly, a more accurate
solution can be gained after a higher iteration process.
Equation (11) has two obvious advantages: one is the
limited step which is needed for better accuracy, while the
other is an auxiliary parameter (p)which can be optimally
determined, and its value depends upon the iteration step
(n). When n tends to infinity, the value of p is equal to
p � 1. We give a criterion of how to suitably choose n and
optimally identify p through examples. It can be seen
clearly that the variation iteration algorithms are easy for
the implementation. For nonlinear problems, the non-
linear terms have to be considered as restricted variations
for obtaining the value of the Lagrange multiplier, and a
correction functional can be easily constructed after de-
termining the value identified value of corresponding
nonlinear terms.

3. Convergence Analysis

+is section is devoted to illustrate the convergence of the
proposed method VIA-II having an auxiliary parameter for
ensuring the convergence to an exact solution. +is method
can be implemented most readily in handling nonlinear
differential equations, where one does not require any
discretization of the domain or linearization of the given
differential equations. +e linear operator L is defined as L �
z
2/zt2 and L � z/zt, when it is employed to solve diffusion

and convection-diffusion problems. During solving diffu-
sion and convection-diffusion problems, the operator R can
be defined as
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RZ(ξ, t, p) ≔ p∫t
0
λ(ϑ)[LZ(ξ, ϑ, p) +NZ(ξ, ϑ, p)

︷�����︸︸�����︷
−k(ϑ)]dϑ,

(12)
and wn and vn, n≥ 0, are defined by

w0(ξ, t) � Z0(ξ, t),

v0(ξ, t) � w0(ξ, t),
{
w1(ξ, t, p) � Rv0(ξ, t),

v1(ξ, t, p) � v0(ξ, t) + Rv0(ξ, t),
{
Z1(ξ, t, p) � Rv0(ξ, t),

v1(ξ, t, p) � v0(ξ, t) + w1(ξ, t, p),
{
wn+1(ξ, t, p) � Rvn(ξ, t, p),

vn+1(ξ, t, p) � vn(ξ, t, p) + Rvn(ξ, t, p).
{

(13)

In general, for n≥ 1, it can be written as

Zn+1(ξ, t, p) � Rvn(ξ, t, p),

vn+1(ξ, t, p) � vn(ξ, t, p) + wn+1(ξ, t, p).
{ (14)

Accordingly,

Z(ξ, t, p) ≔ lim
n⟶∞

vn(ξ, t, p) � w0(ξ, t) +∑∞
n�1

wn(ξ, t, p).

(15)
Z0(ξ, t) can be chosen uninhibitedly, but it needs to

fulfil the corresponding initial-boundary conditions. +e
determination of appropriate initial approximation will give
productive and accurate results. +e nth-order truncated
series Zn(ξ, t, p) ≔ w0(ξ, t) +∑n

n�1 wn(ξ, t, p) can be used
to approximate the solution. +e unknown parameter p in
Zn(ξ, t, p) ensures that the hypothesis is fulfilled by utilizing
2-norm error of the residual function.+e error analysis and
convergence criteria of VIA-II with an auxiliary parameter
are revealed using the following theorems [45, 46].

Theorem 1. 7e operator R defined in (12) maps a Hilbert
spaceH toH. 7e solution given in (15) in the form of series is
as follows:

Z(ξ, t) ≔ lim
n⟶∞

vn(ξ, t, p) � w0(ξ, t) +∑∞
n�1

wn(ξ, t, p).

(16)
It converges if ∃p≠ 0, 0< β< 1, such that

Rv0(ξ, t)




 



≤ β v0(ξ, t)



 



,
Rv1(ξ, t, p)




 



≤ β Rv0(ξ, t)



 



,
Rvn(ξ, t, p)




 



≤ β Rvn−1(ξ, t, p)



 



, n � 2, 3, 4, . . . .


(17)

Proof. To prove the required result, it is enough to verify
that the sequence vn{ }∞n�0 is a Cauchy sequence in the Hilbert
space H. For that reason, we proceed as

v0(ξ, t) � w0(ξ, t), v0+1(ξ, t, p) � v0(ξ, t) + Rw0(ξ, t).

(18)
Further,

vn+1(ξ, t, p) � vn(ξ, t, p) + Rwn(ξ, t, p), (19)

which implies

vn+1(ξ, t, p) − vn(ξ, t, p)




 



 � Rwn(ξ, t, p)





 




≤ β Rwn−1(ξ, t, p)




 




≤ β2 Rwn−2(ξ, t, p)





 



.
(20)

Continuing in the same way, one obtains

vn+1(ξ, t, p) − vn(ξ, t, p)




 



≤ βn Rw0(ξ, t, p)





 



. (21)

Clearly, βn⟶ 0 as n⟶∞. +us,

vn+1(ξ, t, p) − vn(ξ, t, p)




 



⟶ 0. (22)

For every n≥ i, it holds that

vn − vi




 



 � vn − vn−1( ) + vn−1 − vn−2( ) + · · · + vi+1 − vi( )



 



,

(23)
which implies

vn − vi




 



≤ Rwn−1



 



 + Rwn−2





 



 + · · · + Rwj






 




, (24)

and later

vn − vi




 



≤ βn− 1 Rw0





 



 + βn− 2 Rwn−2




 



 + · · · + βi Rw0





 




≤ βn− 1

+ βn− 2
+ · · · + βi( ) Rw0





 




�
1 − βn− i

1 − β
βi+1 Rw0





 



.
(25)

As 0< β< 1, we get

lim
n,i⟶∞

vn − vi




 



 � 0, (26)

which shows that the sequence vn{ }∞n�0 is a Cauchy sequence
in a Hilbert space H, which means that

Z(ξ, t) � lim
n⟶∞

vn(ξ, t, p) � w0(ξ, t) +∑∞
n�1

wn(ξ, t, p),

(27)
converges.

Lemma 1. Let Q be a function from a Hilbert space H to H,
the operator L required in (3) be defined as L � z

i/zti, i � 1, 2,
and the Lagrange multiplier be defined optimally by the
variation theory; then,

L∫t
0
λ(ϑ)Q(ξ, ϑ, p)dϑ{ } � −Q(ξ, ϑ, p). (28)
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Proof. Consider the linear operator L used in (3) defined as
L � z/zt and let λ(ϑ) � 1. +en,

L∫t
0
λ(ϑ)Q(ξ, ϑ, p)dϑ{ } � z

zt
∫t

0
λ(ϑ)Q(ξ, ϑ, p)dϑ

� −Q(ξ, ϑ, p).

(29)

Similarly, let the operator L required in (3) be defined as
L � z

2/zt2, and let λ(ϑ) � ϑ − t. +en,

L∫t
0
λ(ϑ)Q(ξ, ϑ, p)dϑ{ } � z

2

zt2
∫t

0
(ϑ − t)Q(ξ, ϑ, p)dϑ

� −Q(ξ, ϑ, p)

�
z

zt
∫t

0

z(ϑ − t)

zt
Q(ξ, ϑ, p)dϑ + (ϑ − t)Q(ξ, ϑ, p) | ϑ�t( )

�
z

zt
∫t

0
−Q(ξ, ϑ, p)dϑ � −Q(ξ, ϑ, p),

(30)
which verifies the statements.

Theorem 2. Let the operator L needed in (3) be defined as
L � z

i/zti, i � 1, 2. If we have the series solution (15) defined
as

Z(ξ, t) ≔ w0(ξ, t) +∑∞
n�1

wn(ξ, t, p), (31)

then Z(ξ, t) is an exact solution to the nonlinear partial
differential equation (3).

Proof. Assume that the series solution (31) converges. +en,
it implies the existence of limn⟶∞wn(ξ, t, p) and

w0(ξ, t) − w1(ξ, t, p)[ ] +∑n
j�1

wj(ξ, t, p) − wj+1(ξ, t, p)[ ]
� w0(ξ, t) − wj+1(ξ, t, p).

(32)
+erefore,

w0(ξ, t) − w1(ξ, t, p)[ ] +∑∞
j�1

wj(ξ, t, p) − wj+1(ξ, t, p)[ ]
� w0(ξ, t) − lim

n⟶∞
wn+1(ξ, t, p)

� w0(ξ, t).

(33)
One can conclude from equation (15) that

Z(ξ, t) � w0(ξ, t) +∑∞
n�1

wn(ξ, t, p). (34)

Applying the operator L on both the sides, we get

L w0(ξ, t) − w1(ξ, t, p)[ ] +∑n
j�1

L wj(ξ, t, p) − wj+1(ξ, t, p)[ ]
� L w0(ξ, t)[ ] � 0.

(35)
From Lemma 1 and definitions, it follows

L w0(ξ, t) − w1(ξ, t, p)[ ] � L w0(ξ, t)[ ] − L Rv0(ξ, t)[ ].
(36)

For simplicity, suppose

M ≔ LZ(ξ) +NZ(ξ) − k(ξ). (37)

It implies

L w0(ξ, t) − w1(ξ, t, p)[ ] � −L p∫t
0
λ(ϑ)Mv0(ξ, t)dϑ[ ]

� pMv0(ξ, t),

L w1(ξ, t) − w2(ξ, t, p)[ ] � L w1(ξ, t)[ ] − L Rv2(ξ, t)[ ]
� L Rv0(ξ, t)[ ] − L Rv1(ξ, t, p)[ ]
� L p∫t

0
λ(ϑ)Mv0(ξ, t)dϑ[ ]

− L p∫t
0
λ(ϑ)Mv1(ξ, t)dϑ[ ]

� p Rv1(ξ, t, p) − Rv0(ξ, t)[ ].
(38)

In a similar way, for j≥ 2,
L wj(ξ, t, p) − wj+1(ξ, t, p)[ ] � p Rvj(ξ, t, p) − Rvj−1(ξ, t, p)[ ].

(39)
Subsequently, it follows

L w0(ξ, t) − w1(ξ, t, p)[ ] + L w1(ξ, t, p) − w2(ξ, t, p)[ ]
+∑n
j�2

L wj(ξ, t, p) − wj+1(ξ, t, p)[ ]
� pMv0(ξ, t) + p Rv1(ξ, t, p) − Rv0(ξ, t)[ ]
+ p Rvn(ξ, t, p) − Rv1(ξ, t, p)[ ]

� pMvn(ξ, t, p)

� pM w0(ξ, t) +∑n
j�1

wj(ξ, t, p)
 .

(40)

Hence,

L w0(ξ, t) − w1(ξ, t, p)[ ] +∑n
j�1

L wj(ξ, t, p) − wj+1(ξ, t, p)[ ]
� pM w0(ξ, t) +∑n

j�1

wj(ξ, t, p)
 .

(41)
From equations (35) and (41), one can derive
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pM w0(ξ, t) +∑n
j�1

wj(ξ, t, p)
  � 0. (42)

Meanwhile, the unknown auxiliary parameter p is a
nonzero optimal number, and it is revealed that
Z(ξ, t) ≔ w0(ξ, t) + ∑∞n�1 wn(ξ, t, p) is an exact solution of
the nonlinear partial differential equation (3), which was the
required proof.

Theorem 3. Let us suppose that the solution
Z(ξ, t) ≔ w0(ξ, t) + ∑∞n�1 wn(ξ, t, p), given in (15), converges
to the exact solution of the model equation (1). Also, assume
that if the approximate solution is the truncated series
ZN(ξ, t) ≔ w0(ξ, t) + ∑Nn�1 wn(ξ, t, p), then the maximum
error norm can be assessed as

Z(ξ, t) −ZN(ξ, t)




 



≤ 1

1 − β
βN+1


















 w0





 (43)

Proof. Following +eorem 1, one obtains

vn − vN




 



≤ 1 − βn−N

1 − β
βN+1 w0





 



. (44)

Since n⟶ 0, then vn � Z(ξ, t) and 0< β< 1, and it
follows

Z(ξ, t) −ZN(ξ, t)




 



≤ 1

1 − β
βN+1 w0





 



, (45)

which completes the proof.
Shortly, defining

βj �

wj+1






 





wj






 




 , wj






 




≠ 0,

0, wj






 




 � 0,

j � 0, 1, 2, . . . .


(46)

At this point, if 0< βj < 1 for j � 0, 1, 2, . . ., thenw0(ξ, t) +∑∞n�1 wn(ξ, t, p) of (3) converges to the exact solutionZ(ξ, t),
whereas the maximum absolute error is equal to

Z(ξ, t) −ZN(ξ, t)




 



≤ 1

1 − β
βN+1


















 w0





 , (47)

where β � max βj, j � 0, 1, 2, . . .{ }.
4. Numerical Examples

+is section is dedicated to the numerical application of the
proposed algorithm (MVIA-II) for different types of dif-
fusion equations. Here, the approximate solutions to the
diffusion as well as convection-diffusion equations are

obtained effortlessly and smartly without any use of
transformation or linearization. We assess the validity, ef-
ficiency, and accuracy of MVIA-II by solving different types
of diffusion equations. +e obtained approximate results are
very significant and encouraging.

4.1. Test Problem 1. Consider the following nonlinear dif-
fusion equation for the slow diffusion process [19]:

zZ

zt
�

z

zξ
Z

2zZ

zξ
( ), 0< ξ < 1, t> 0, (48)

with the initial condition:

Z(ξ, 0) �
ξ + a

2c
, (49)

where a and c are the arbitrary coefficients. +e exact so-
lution of equation (48) is

Z(ξ, t) �
ξ + a

2
�����
c2 − t

√ , t< c2. (50)

For our start, we solve the above system of the diffusion
equation for the slow diffusion process by MVIA-II. +e
correction functional of MVIA-II for equation (48) is

Zn+1(ξ, t, p) � Zn(ξ, t, p) + p∫t
0
λ(ξ)

zZn(ξ, ϑ, p)

zt
−

z

zξ
Zn(ξ, ϑ, p)

2zZn(ξ, ϑ, p)

zξ
( )

︷�������������︸︸�������������︷
dξ.

(51)
+e value of λ(ξ) can be found with the help of the

variational principle [47]. We find the value λ(ξ) � −1 of
λ(ξ). Usage of the obtained value of λ(ξ) in (51) gives the
below iterative formula:

Zn+1(ξ, t, p) � Zn(ξ, t, p) − ∫t
0

zZn(ξ, ϑ, p)

zt
{

−
z

zξ
Zn(ξ, ϑ, p)

2zZn(ξ, ϑ, p)

zξ
( )}dξ.

(52)
A more summarizing and concise iteration formula can

be constructed using the iterations (11):

Zn+1(ξ, t, p) � Z0(ξ, t, p) − ∫t
0
−
z

zξ
Zn(ξ, ϑ, p)

2({

·
zZn(ξ, ϑ, p)

zξ
)}dξ.

(53)

Starting with a proper initial approximation,

Z0(ξ, t) �
ξ + a

2c
. (54)

Other iterations can be obtained by utilizing the iteration
formula (53), by supposing a � c � 1, as
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Z1(ξ, t, p) �
(pt + 2)(ξ + 1)

4
,

Z2(ξ, t, p) �
ξ

2
+
pt(pt + 4)(ξ + 1) p2t2 + 4pt + 8( )

128
+
1

2
,

· · · .

(55)
+e threshold value of n for this case is n � 4. To find a

proper value of p for Z4(ξ, t, p), the following residual
function is defined:

r4(ξ, t, p) �
zZ4(ξ, t, p)

zt
−

z

zξ

1

Z4(ξ, t, p)
2

zZ4(ξ, t, p)

zξ
( ).

(56)
+e 2-norm of the residual function (56) in the 4th it-

eration with respect to p for (ξ, t) ∈ [0, 1] × [0, 1] is

e4(p) �
1

(11)2
∑10
i�0

∑10
j�0

r4
i

10
,
j

100
, p( )[ ]2 1/2. (57)

+e residual function (56) can be used to approximate
e4(p), while the optimal value of p can be determined by
minimizing e4(p). +e value of p is equal to
1.00000601028068 when the minimum value
3.21205524320124664∗10− 6 of e4(p) is reached. In this
example, we choose a good initial approximation, and the
value of p is near 1, showing the initial approximation is of
great importance for a fast convergence. Results are obtained
with the usage of this optimal value of p inZ4(ξ, t, p) in the
space-time domain (ξ, t) ∈ [0, 1] × [0, 1]. Further, to show
how the numerical solution converges to the exact solution,
we compute βn values for the considered nonlinear diffusion
problem:

β0 �
Z1(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z0(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.150000901542102< 1,

β1 �
Z2(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z1(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.032393045990139< 1,

β2 �
Z3(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z2(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.005810185025718< 1,

· · · .

(58)

Obtained values show that for n≥ 0, the values βn are less
than one, which provide the proof as well that the proposed
MVIA-II algorithm is convergent.

Showing the effectiveness of the algorithm, numerical
results of the proposed method for Test Problem 4.1 are
reported in Table 1 for various values of x and t. It can be
observed from the table that the results of the proposed
algorithm match with the exact solution and with the results
reported for CFD6 [19] as well. We have also compared the

CPU time and found that MVIA-II is faster than the
compact finite difference method (CFD6) [19].

+e approximate solution for different times t � 0.01,
t � 0.05, t � 0.10, t � 0.20, and t � 0.30 is visualized in
Figure 1 for Test Problem 4.1.

Comparative analysis of the proposed MVIA-II with
respect to CDF6 in terms of spatial convergence rate is given
in Table 2. It can be seen from this table that the MVIA-II is
more accurate than the CDF6 [19].

4.2. Test Problem 2. Consider the convection-diffusion
equation from [15] of the following form:

zZ

zt
+ a(ξ)

zZ

zξ
� b(ξ)

z
2
Z

zξ2
+ f(ξ, t), (59)

with initial/boundary conditions:

Z(ξ, 0) � ξ3,Z(0, t) � 0,Z(1, t) � et. (60)

+e exact solution of equation (59) is

Z(ξ, t) � ξ3et. (61)

For our start, we solve the system of the convection-
diffusion equation by the MVIA-II, and for comparison
purposes, we take a(ξ) � −ξ/6, b(ξ) � ξ2/12, and f(ξ, t) � 0.
Constructing the correction functional of MVIA-II for
equation (59) as

Zn+1(ξ, t, p) �Zn(ξ, t, p) + p∫t
0
λ(ξ)

zZn(ξ, ϑ, p)

zt
−
x

6

zZn(ξ, ϑ, p)

zξ

︷�����︸︸�����︷
−
x2

12

z
2
Zn(ξ, ϑ, p)

zξ2

︷�����︸︸�����︷
dξ.

(62)
+e value of λ(ξ)may be determined easily with the help

of the variational theory:

δZn+1(ξ, t, p) � δZn(ξ, t, p) + δp∫t
0

λ(ξ)
zZn(ξ, ϑ, p)

zt
−
x

6

zZn(ξ, ϑ, p)

zξ

︷�����︸︸�����︷
−
x2

12

z
2
Zn(ξ, ϑ, p)

zξ2

︷�����︸︸�����︷
dξ.

(63)
Ignoring the restricted terms,

Table 1: +e comparison of results for Test Problem 4.1 for dif-
ferent values of t and ξ.

t ξ
Exact

solution

Approximate
solution

CPU time in
seconds

Present CFD6 [19] Present CFD6 [19]

0.01
0.1 0.552771 0.552771 0.552771

0.050035 0.090.5 0.753778 0.753778 0.753778
0.9 0.954786 0.954786 0.954786

0.1
0.1 0.579751 0.579751 0.579751

0.088120 0.380.5 0.790569 0.790569 0.790569
0.9 1.001388 1.001388 1.001388
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δZn+1(ξ, t, p) � δZn(ξ, t, p) + pδ∫t
0
λ(ξ)

zZn(x, ξ, p)

zξ
{ }dξ

�(1 + λ(ξ))δZn(ξ, t, p) − p∫t
0
λ′(ξ)δZn(ξ, ϑ, p)dξ,

(64)
corresponding stationary conditions are λ′(ξ) � 0 and
1 + λ(ξ) � 0, and we obtain the value of λ(ξ) which is
λ(ξ) � −1. Using this obtained value of λ(ξ) in equation (62)
gives the below iterative iteration formula:

Zn+1(ξ, t, p) �Zn(ξ, t, p)

− ∫t
0

zZn(ξ, ϑ, p)

zt
−
x

6

zZn(ξ, ϑ, p)

zξ
{

−
x2

12

z
2
Zn(ξ, ϑ, p)

zξ2
}dξ.

(65)

A more concise iteration can be constructed using the
iterative formula (11):

Zn+1(ξ, t, p) � Z0(ξ, t, p)

− ∫t
0
−
x

6

zZn(ξ, ϑ, p)

zξ
−
x2

12

z
2
Zn(ξ, ϑ, p)

zξ2
{ }dξ. (66)

Starting with a proper initial approximation,

Z0(ξ, t) � ξ3. (67)

Other iterations can be obtained by utilizing the iteration
formula (66):

Z1(ξ, t, p) � ξ3(pt + 1),

Z2(ξ, t, p) � ξ3 +
ptξ3(pt + 2)( )

6
,

Z3(ξ, t, p) � ξ3 +
ptξ3 p2t2 + 3pt + 6( )

6
,

· · · .

(68)

+e threshold value of n is n � 10 and is used to find a
proper value of p for Z5(ξ, t, p). +e following residual
function is defined:

r10(ξ, t, p) �
zZ10(ξ, t, p)

zt
−

z

zξ

1

Z10(ξ, t, p)
2

zZ10(ξ, t, p)

zξ
( ).

(69)
+e 2-norm of residual function (69) for the 4th iteration

with respect to p for (ξ, t) ∈ [0, 1] × [0, 1] is

e10(p) �
1

(11)2
∑10
i�0

∑10
j�0

r10
i

10
,
j

10
, p( )[ ]2 1/2. (70)

+e residual function (69) is utilized to approximate
e5(p) for finding the optimal value of p, which can be found
by minimizing e4(p). +e value of p is found to be
1.00000002955466 when the minimum value of e4(p) is
2.98660438462132656∗10− 8. With the usage of this optimal
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Figure 1: +e results of MVIA-II for Test Problem 4.1 for different values of time.

Table 2: Comparison of convergence rates for t � 0.001 for Test
Problem 4.1.

h CFD6 [19] Present method

1/8 3.–e− 07 3.0–e− 09
1/10 3.–e− 07 3.0–e− 09
1/12 3.–e− 07 3.0–e− 09
1/14 3.–e− 07 3.0–e− 09
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value of p in Z10(ξ, t, p) in the space-time domain
(ξ, t) ∈ [0, 1] × [0, 1], the behavior of exact and present
solutions can be perceived in Figures 2 and 3.

Further, to show how the numerical solution converges
to an exact solution, we compute βn values for this nonlinear
diffusion problem:
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Figure 2: Solution behavior of (a) exact and (b) approximate solutions for Test Problem 4.2.
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Figure 3: Comparison in terms of absolute errors for Test Problem 4.2.
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β0 �
Z1(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z0(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.300001803084204< 1,

β1 �
Z2(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z1(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.034615752701361< 1,

β2 �
Z3(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z2(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.003345779402775< 1,

β3 �
Z4(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z3(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.000250098190015< 1,

· ··,

(71)

which show that for n≥ 0, the values of βn are less than one,
which provide the proof as well that the MVIA-II is
convergent.

In Table 3, we compare the results generated by the
MVIA-II with the exact one and with themethod reported in
[48] for Test Problem 4.2. From this table, we can conclude
that the proposed algorithm produces better results than the
results of a technique based on Hermite interpolant mul-
tiscaling functions given in [48].

+e behavior of the exact and approximate solutions
obtained by the MVIA-II is given in Figure 2. It can be
revealed from this figure that the MVIA-II provides accurate
and precise results. +e absolute error for times t � 0.3,
t � 0.6, and t � 0.9 is shown in Figure 3, and superb accuracy
has been archived in this case as well.

4.3. Test Problem 3. Consider the convection-diffusion
equation from [48] of the following form:

zZ

zt
+ a(ξ)

zZ

zξ
� b(ξ)

z
2
Z

zξ2
+ f(ξ, t), (72)

with initial/boundary conditions:

Z(ξ, 0) � e− ξ ,Z(0, t) � e− 0.09t,Z(1, t) � e− 1− 0.09t. (73)

+e exact solution of equation (72) is

Z(ξ, t) � e− ξ− 0.09t. (74)

For our start, we solve the convection-diffusion equation
by the MVIA-I, and for comparison purposes, we use
a(ξ) � −0.1, b(ξ) � 0.01, and f(ξ, t) � 0. Constructing the
correction functional of MVIA-II for equation (72) as

Zn+1(ξ, t, p) �Zn(ξ, t, p) + p∫t
0
λ(ξ)

zZn(ξ, ϑ, p)

zt
− 0.1

zZn(ξ, ϑ, p)

zξ

︷�����︸︸�����︷
−0.01

z
2
Zn(ξ, ϑ, p)

zξ2

︷�����︸︸�����︷
dξ.

(75)

+e value of λ(ξ)may be determined easily with the help
of the variational theory:

δZn+1(ξ, t, p) � δZn(ξ, t, p) + δp∫t
0
λ(ξ)

zZn(ξ, ϑ, p)

zt
− 0.1

zZn(ξ, ϑ, p)

zξ

︷�����︸︸�����︷
−0.01

z
2
Zn(ξ, ϑ, p)

zξ2

︷�����︸︸�����︷
dξ.

(76)
Ignoring the restricted terms, the stationary conditions

are λ′(ξ) � 0 and 1 + λ(ξ) � 0, from which we obtain the
value λ(ξ) � −1 of λ(ξ). Using this obtained value of λ(ξ),
equation (75) gives the below iterative formula:

Zn+1(ξ, t, p) �Zn(ξ, t, p)

− ∫t
0

zZn(ξ, ϑ, p)

zt
− 0.1

zZn(ξ, ϑ, p)

zξ
− 0.01

z
2
Zn(ξ, ϑ, p)

zξ2
{ }dξ.

(77)
A more summarizing iteration can be constructed using

the iterative formula (11):

Zn+1(ξ, t, p) �Z0(ξ, t, p) − p∫t
0

· −0.1
zZn(ξ, ϑ, p)

zξ
− 0.01

z
2
Zn(ξ, ϑ, p)

zξ2
{ }dξ.

(78)

Starting with a proper initial approximation,

Z0(ξ, t) � e
− ξ . (79)

+e other iterations can be obtained by using the iter-
ative scheme (78), as

Z1(ξ, t, p) � −
e− ξ(9pt − 100)

100
,

Z2(ξ, t, p) � −
e− ξ 81p2t2 + 1800pt + 20000( )

20000
,

· · ·.

(80)

+e threshold value of n in this example is n � 5 and is
used to find a proper value of p forZ5(ξ, t, p). +e following
residual function is defined:

r6(ξ, t, p) �
zZ6(ξ, t, p)

zt
− 0.1

zZ6(ξ, t, p)

zξ
− 0.01

z
2
Z6(ξ, t, p)

zξ2
.

(81)
+e 2-norm of residual function (81) for the 6th iteration

with respect to p for (ξ, t) ∈ [0, 1] × [0, 1] is equal to

e6(p) �
1

(11)2
∑10
i�0

∑10
j�0

r6
i

10
,
j

10
, p( )[ ]2 1/2. (82)
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+e residual function (81) is used to approximate e6(p)
for finding the optimal value of p, which can be found by
minimizing e6(p). +e value of p is found to be 1 when the
minimum value of e6(p) is 2.38042263784292823

∗10− 22. In
this example, we choose a good initial approximation, and

the value of p is 1, showing that the initial approximation is
of great importance for fast convergence. With the usage of
this optimal value of p in Z4(ξ, t, p) in the space-time
domain (ξ, t) ε[0, 1] × [0, 1], the approximate solution is
obtained. Further,

Table 3: For different values of t and ξ, comparison of results for Test Problem 4.2.

ξ Exact solution Present method
Method of [48]

J� 0 J� 1 J� 2

0.1 0.001349859 0.001349859 0.001349859 0.001349859 0.001349859
0.2 0.010798870 0.010798870 0.010798870 0.010798870 0.01079887
0.3 0.036446188 0.036446188 0.036446185 0.036446188 0.036446188
0.4 0.086390964 0.086390964 0.086390958 0.086390964 0.086390964
0.5 0.168732351 0.168732351 0.168732340 0.168732351 0.168732351
0.6 0.291569502 0.291569502 0.291569483 0.291569502 0.291569502
0.7 0.463001571 0.463001571 0.463001541 0.463001571 0.463001571
0.8 0.691127709 0.691127709 0.691127665 0.691127709 0.691127709
0.9 0.984047071 0.984047071 0.984047010 0.984047070 0.984047071
1.0 1.349858808 1.349858808 1.349858729 1.349858807 1.349858808

Table 4: Comparison of solutions for various values of ξ for Test Problem 4.3.

ξ Exact solution Approximate solution
Absolute errors

Present method [48] [15]

0.1 0.880733672597157 0.880733672597159 1.7764e− 15 1.03e− 13 4.65e− 12
0.2 0.796920782290140 0.796920782290141 1.6653e− 15 2.11e− 13 8.34e− 12
0.3 0.721083743026607 0.721083743026608 1.5543e− 15 4.13e− 13 1.36e− 11
0.4 0.652463552227900 0.652463552227902 1.4433e− 15 4.36e− 13 3.85e− 11
0.5 0.590373435960464 0.590373435960465 1.3323e− 15 3.70e− 13 7.53e− 10
0.6 0.534191975471484 0.534191975471485 1.2212e− 15 3.85e− 13 9.90e− 12
0.7 0.483356887821146 0.483356887821147 9.9920e− 16 7.44e− 14 5.54e− 12
0.8 0.437359398365983 0.437359398365984 9.4369e− 16 1.00e− 13 1.18e− 11
0.9 0.395739148771237 0.395739148771238 8.3267e− 16 3.20e− 13 7.69e− 11
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Figure 4: Solution behavior graphs of (a) exact and (b) approximate solutions for Test Problem 4.3.
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β0 �
Z1(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z0(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 0.027000162277578< 1,

β1 �
Z2(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z1(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 3.746191596095180e − 04< 1,

β2 �
Z3(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z2(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 3.370330110176276e − 06< 1,

β3 �
Z4(ξ, t, p)
∣∣∣∣ ∣∣∣∣
Z3(ξ, t, p)
∣∣∣∣ ∣∣∣∣ � 2.274994159334152e − 08< 1,

· ··,

(83)

which shows that for n≥ 0, the values of βn are less than one,
which provide the proof as well that the proposed algorithm
(MVIA-II) is convergent.

+e numerical results of the MVIA-II for Test Problem
4.3 are reported in Table 4 along with the exact solution and
the results in the recent literature. It can be noticed from the
table that the MVIA-II gives more accurate results in
comparison with the approaches given in [15, 48].

+e accuracy of the suggested MVIA-II is also verified
from Figure 4, whereas in Figure 5, we have shown the
absolute error for various time instants t � 0.3, t � 0.5, and
t � 1.0.

Figure 5 is the evidence of better accuracy of the pro-
posed MVIA-II.

5. Conclusion

+e primal purpose of this paper is to study convergence
analysis of a modified variational iteration algorithm-II
(MVIA-II) and its applications in physical and biological
sciences. +e numerical results and theoretical study of the
convergence analysis point out that the proposed algorithm
can solve nonlinear problems efficiently and accurately. +e
numerical, as well as graphical results, generated by the
MVIA-II are compared with the results of the compact finite
difference method, the second kind Chebyshev wavelets
procedure, and a procedure based on Hermite interpolant
multiscaling functions, which revealed that the MVIA-II is
of high accuracy and yields accurate results. +is modified
algorithm facilitates computational work for solving linear
as well as nonlinear problems arising in engineering and
applied sciences. High-accuracy solutions can be achieved in
a few iterations of the proposed algorithm compared to
earlier methods reported in the literature. We hope that the
achieved results will be useful for further studies in scientific
research, especially in physical and biological sciences.
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Figure 5: Comparison in terms of absolute errors for various values of t for Test Problem 4.3.
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