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Modified Vector Rotational CORDIC
(MVR-CORDIC) Algorithm and Architecture

Cheng-Shing Wu and An-Yeu Wivlember, IEEE

Abstract—The CORDIC algorithm is a well-known iterative =~ CORDIC operation is limited by the large iteration numher,
method for the computation of vector rotation. However, the major  which is generally equal to the internal wordlengdth, At algo-
disadvantage is its relatively slow computational speed. For appli- yitnmic evel, one trivial solution to overcome such a problem is

cations that require forward rotation (or vector rotation) only, we t d the iterati ber directly: h . Lwill b
propose a new scheme, the modified vector rotational CORDIC 0 reduce ine iteration number directly, however, signal will be

(MVR-CORDIC) algorithm, to improve the speed performance Seriously distorted by the approximation and quantization noise
of CORDIC algorithm. The basic idea of the proposed scheme in practical implementations [11]. At circuit level, the CORDIC

is to reduce the iteration number directly while maintaining the  operation can be accelerated by introducing redundant number
SQNR performance. This can be achieved by modifying the basic (o 5resentation into the internal data processing, which can elim-

microrotation procedure of CORDIC algorithm. Meanwhile, three . te th fi tered in addition/subtracti
searching algorithms are suggested to find the corresponding Inate the carry propagation encountered in addition/subtraction

directional and rotational sequences so as to obtain the best SQNR Operations [8], [12].

performance. Three SQNR performance refinement schemes are  In this paper, we propose an algorithmic-level improved
also suggested in this paper. Namely, the selective prerotation scheme, which is called modified vector rotational CORDIC
scheme, selective scaling scheme, and iteration-tradeoff SCheme(MVR-CORDIC) algorithm. It is very suitable for applications

They can reduce and balance the quantization errors encountered . . .
in both microrotation and scaling phases so as to further improve that use the CORDIC algorithm in only forward rotation mode

the overall SQNR performance. Then, by combining these three (IS0 known as vector rotation mode).e., the rotation angles
refinement schemes, we provide a systematic design flow as well asare fixed and known in advance, such as digital lattice filter
the optimization procedure in the application of MVR-CORDIC  [6], [7], [13] and discrete linear transformation [10], [14]-[16].
algorithm. Finally, we present wo VLSI architectures for the  Tne major feature of the aforementioned applications is that the

MVR-CORDIC algorithm. It shows that by using the proposed . . p . . . .
MVR-CORDIC algorithm, we can save 50% execution time in directional sequence: (), which controls the rotation direction

the iterative CORDIC structure, or 50% hardware complexity in ~ Of €ach elementary angle in the microrotation phase, can be
the parallel CORDIC structure compared with the conventional computed in advance. By reformattipg¢) and searching for

CORDIC scheme. new sequences, we can reduce the iteration number signifi-
Index Terms—CORDIC algorithm, DSP, MVR-CORDIC algo- ~ cantly, while not increase the quantization noise level. This can
rithm, searching algorithms, VLSI. be achieved by modifying the basic microrotation procedure of

conventional CORDIC algorithm. Then, we can improve the
speed performance of the conventional CORDIC algorithm.
Similar work has been reported by Hu and Naganathan
HE COordinate Rotational Dlgital Computer (CORDIC)17]. In [17], with the aid of greedy search, the directional
algorithm is a well-known iterative technique to perfomgequenceﬂ(i), of the angle rotated by CORDIC algorithm is
various basic arithmetic operations [1]—{3]. The algorithm igecoded However, the length of the resultant recoded sequence,
very attractive for hardware implementation because it uses ogjiich determines the iteration number in the microrotation
elementary shift-and-add steps to perform vector rotation inbfase, is not fixed but varied with the rotation angle. For
two-dimensional (2-D) plane. Hence, the CORDIC algorithrgertain cases, the length of the recoded sequence can be large
can be applied to many DSP applications where rotation-basgti quite close to the upper bound &¥/2, where N is the
arithmetic functions are heavily utilized, such as linear systemiimber of e|ementary ang|es [17] Under such situation, in
solver [4], [5], digital lattice filter [6], [7], singular value prob- synchronous circuit design, the overall speed performance of
lems [8], and the fast Fourier transformation (FFT) [9], [10]. the CORDIC-based arithmetic operation is therefore limited by
However, the major disadvantage of the CORDIC algorithiose angles. Besides, the nonuniform feature of the iteration
is its slow computational speed. For iterative CORDIC structupgymber is not suitable for modular design in VLSI imple-
(to be discussed in Section VIII-A), the speed performance gfentation. To avoid the drawback, in our work, the design
parameters are computed under a fixed iteration number. To
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Moreover, we propose three SQNR refinement schemes for
the MVR-CORDIC algorithm. The first SQNR refinement
scheme introduces the concept of selective prerotation. It can
carry out the microrotation phase of MVR-CORDIC algorithm
with a reduced angle approximation error compared with
existing approaches. The second scheme, which is employed
in the scaling phase of MVR-CORDIC algorithm, is used to
reduce the quantization error in the approximation of scaling
factor. This can be achieved by using a selective scaling oper-
ation that combines two existing scaling techniques. The third
refinement technique is called the iteration-tradeoff scheme.
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TABLE |

SUMMARY OF CORDIC ALGORITHM IN CIRCULAR ROTATIONAL MODE

% Initialization
Given z(0),y(0), and z(0)
% Micro-rotation phase
FORi=0to N -1
{ z(i+1) ] _ [ 1 —p(8)27? } [ z(i) }
y(E+1) | 7| n@27 1 y(9)
% Angle updating
2(i + 1) = 2(i) — p(i)a(i), where a(i) = arctan(2™%)
END
% Scaling phase

With this scheme, we can make tradeoff on the iteration [xf ] _ [rf:(N) } _ 1 [z(N)]
number between the microrotation and scaling phase of the ys () 5 Vit = | y()
MVR-CORDIC algorithm. It can balance the quantization
errors encountered in these two phases so as to further improve
the overall SQNR performance. Based on (1), the CORDIC recurrence equations can be written
Next, with aid of the proposed refinement schemes as wal
as SONR analysis developed in the Appendix, we provide a
systematic design flow and optimization procedure to facilitate
the design process of MVR-CORDIC algorithm. The corre- y(i+1) =y(@) + p(d)z()27"
spondlpg V.LSI.archlt.ectur'es show that we can save at least 50% i+ 1) = 2(3) — p(i)ali) )
execution time in the iterative CORDIC structure, and 50% hard-
ware complexity in the parallel CORDIC structure, comparefér : = 0, 1, ---, N — 1. Due to the nature of the recurrence
with the conventional CORDIC algorithm. Hence, low-powetlfelation above, for data a8 bits wordlength, no more thaR
high-speed CORDIC VLSI architectures become feasible. iterations need be performed, i.8/,< B. In addition, the final
The rest of the paper is organized as follows. In Section Nalues,z(N) andy(V), need to be scaled by an accumulated
the conventional CORDIC algorithm is briefly reviewed. Thenscaling factor
we will discuss the strategies of MVR-CORDIC algorithm to
accelerate the CORDIC rotation in vector rotational mode. In P = 1\1; (3)
Section lllI, three searching algorithms are proposed to solve H ST
=0

a(i+1) =a(i) - p(i)y(i)2"

the problem under the constraints set by MVR-CORDIC al-
gorithm. Then, we compare the computational complexity as
well as the error performance of these three searching alge-retain the norm of the initial vectdr:(0), »(0)]*. Several
rithms. In Section IV, computer simulations are performed {QORDIC-like iteration schemes are proposed to perform the
illustrate the relationship between error performance and dgaling operation [18]-[20]. In Table I, we summarize the basic
sign parameters. From Sections V-VII, we discuss three SQNBration procedure of the CORDIC algorithm in the circular
performance refinement schemes. The design flow is also aglede? It consists of two major phases: the microrotation phase
dressed in detail. Finally, two corresponding VLSI architecturesd scaling phase.

of MVR-CORDIC algorithm are derived in Section VI, fol-

lowed by the conclusions in Section IX. B. SQNR and Performance Indices

Before the derivation of the MVR-CORDIC algorithm, we
Il. CORDIC AND MVR-CORDIC ALGORITHM first introduce the residue angle err§y, as the performance
index for the rotational results. The residue angle &fois de-
A. CORDIC Algorithm fined as the angle difference between the target ahgled the
The CORDIC algorithm decomposes the rotation angje, angle that can be represented by CORDIC (or MVR-CORDIC)
into predefined elementary angles, i.e., algorithm. That is

N-1
A . .
N-1 & =0 — Z p(i)a(i). 4
0=">" u(i)ali)+¢ 1) i=0
=0 Additionally, another performance index, signal-to-quantiza-
where tion-noise ratio (SQNR), is also employed. The usage of SQNR
N number of elementary angles: can give a more straightforward view about the signal quality
(i) € {1, —1}—rotation sequence, which determineisn practical implementations. The detailed discussion of SQNR
H the r(;tation angl; q ’ and its relationship witl,,, are addressed in the Appendix.
a(i) = arctan (2_i)—ith elementary angle; 2The_re are three rotational modes in CORDIC algorithm; circular mode, hy-
. perbolic mode, and linear mode. In this paper, we focus on circular CORDIC
£ residue angle. system only.
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C. The Proposed MVR-CORDIC Algorithm 1

In the development of the MVR-CORDIC algorithm, we
make the following modifications on the microrotation proce-
dure of the conventional CORDIC algorithm. 0

» Skip Some Microrotation Angles:

As opposed to conventional CORDIC, we are forced
to skip some microrotations in the modified scheme. By -
doing so, we cannot only reduce the iteration number R S
but also improve the error performance for certain an-

(@
gles. For example, we can rotate the angl@of n/4 ) ) )
ig. 1. Constellation of reachable angles. (a) Conventional CORDIC with

by performing the microrotation of elementary anglg\r:R = 3. (b) MVR-CORDIC with/V' = 4 and ... = 3

05

-0.5

6(0) = arctan(2°) once, and skipping all remaining
microrotations. Then, the residue angle epr = 0. TABLE I
On the contrary, the conventional CORDIC has to go SUMMARY OF THE MVR-CORDIC ALGORITHM
through all the N microrotations with sequence of
w=1[1,-1,1,1,1,...], while the residue angle error % Initialization
&mis 7.2 1073 for N = 8. Given z(0) and y(0)
+ Repeat Some Microrotation Angles: % Micro-rotation phase
In the conventional CORDIC of Table I, each microro- FOR :I?itfg'" -1 1 —a()2-*0 1 [ 20)
tation anglea(i) = arctan (27%), is allowed to be used [ (i +1) ] = [ a(i)2s® 1 } [ () ]

only once. However, in our modified scheme, we make it

more flexible so that each microrotation can be performed ~ % Scaling Pha(si[) . M
repeatedly. By doing so, for a rotation angle thatfs [ £ ] =P [ ”” ] = ——— [ " ]
times of one microrotation angle, i.é.,= K - a(¢), we v v M VIe2® Lol
can simply execute the microrotation @fi) by K times
instead of performing microrotation in the conventional . i ) )
way. Therefore, better error performance can be obtaind§® wordlength}V' is assigned to be 4, and the restricted iter-
but with reduced iteration number. For example, we c&#On numberk,,, is 3. The reachable angles of conventional
obtainé,, = 0 for rotation angle of = /2 by simply CORDIC for iteration numbetV = 3 (N = R,,) are also
rotating elementary angle #{0) = arctan (2°) twice? shown in Fig. 1(a) for comparison purpose. Note that the com-
whereas the conventional CORDIC uses the sequerR&ison is made under the condition of equal iteration number in

p = [1,1,1,1, —1, .. ] and the residue angle error isthe microrotation phase. As we can see in Fig. 1, the number of
as large ag,, = 7 + 102, reachable angles of the proposed MVR-CORDIC is much more
« Confine the Number of Microrotations to R,,,: than the conventional CORDIC. This implies that, given the

In Table I, allV microrotations need to be executed se3@8Me iteration number, the MVR-CORDIC will outperform the
quentially to complete the CORDIC rotation. To obtaiffonventional CORDIC in terms of residue angle error. Namely,
the best performance is often set to be equal to the in-given a target residue angle error, the MVR-CORDIC rotation
ternal wordlength¥, which is the upper bound gf in  "équires fewer iterations compared with conventional approac;h.
practical implementations [11]. However, in our modified=onsequently, the speed performance of CORDIC-based arith-
algorithm, we confine the iteration number in the microrgMetic operations can be greatly improved.

tation phase tdR,, (R, < W). As we will see, this will In Table Il, we summarize the microrotation procedure as
lead to significant speed improvement in the CORDIC opfvell as the scaling operation (to be discussed in Section V1) of
eration. the MVR-CORDIC algorithm. The main feature of the proposed

MVR-CORDIC algorithm can be stated as follows.

Given a rotation anglé, the MVR-CORDIC attempts
. . to accomplish the rotation in a more flexible way. It takes
0= Z a(D)f(s() + &m ®)  fewer terations than the conventional CORDIC algorithm,
=0 while the SQNR performance is still maintained.

Putting all of these modifications together, we can rewrite (1)

R, —1

wheres(é) € {0, 1, ..., W — 1} is the rotational sequence

that determines the microrotation angle in itteiteration, and [ll. SEARCHING ALGORITHMS AND COMPARISON

a(t) € {—1, 0, 1} is the directional sequence that controls th

direction of theith microrotation of(s(%)). ) ) ) ) ) )
To see the effects of the above modifications, we show theConsider (5) in the previous section. Now the key issue in

constellation of reachable angles of MVR-CORDIC in Fig. 1(bf"® MVR-CORDIC algorithm is to find the best sequences
of s(¢) and «(¢) to minimize |£,,|, subject to the constraint

3The example ofr/2 is used to emphasize the impacts of repeating microrghat the total iteration number is confined &, To solve the
tation angles. However, in practical implementation, rotation of angzcan

be simply accomplished by setting = —y(0) andy; = =(0) without going const_rained problem, we consider the following three searching
through CORDIC rotation. algorithms.

R. Searching Algorithms
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Initialization:
Given 0, W, Rm
Let 8(0)=6
i=0
J(-D=inf

Select off) E{+1,-1,0}
s(@) €10, 1,2, ..., W-1}
S0 as to minimize

J@=B(0)-oDa(s(i))

Initialization:
Given 8, W, R,

5561

Initialization:
Given 0, W, R,D
Let 8(0)=0
i=0
J(-1)=inf

Select k) {+1,-1,0}
sthye {0, 1,2, ..., W-1}
for iD < k< (i+1)D-1

50 as to minimize

J0=60)- T aouts(k)

k=il

R

Y

for 0gigR, -1
S0 as to minimize

0+ 1)=08(i)-o(d)als(i)
Store ofi} and s(i)

Select oi) € {+1, -1, 0}
st =10, 1,2, .., W-1}

J=6- S oiuis()

)
=i+
IY ]
Geup-s
8G+1)=0()- I ok ulsk))
k=il
Store ofk) and s(k)

v

fiz(R,-1?

Store ofi) and s(i)
forO<i<R -1

Y
End End End
(a) (b) (©)

Fig. 2. The flowcharts of the proposed searching algorithms. (a) Greedy algorithm. (b) Exhaustive algorithm. (c) Semigreedy algorithm.

1) Greedy Algorithm:

2)

In the greedy algorithm, we try to approach the target
rotation angleg, step by step. That is, in each step, deci-
sions are made ar(:) ands(¢) by choosing the best com-
bination of «(¢)a(s(4)) so as to minimizd¢,,|. Specif-
ically, o() and s(¢) are determined such that the error
function of J(i) = |6(4) — a(?)a(s(4))| is minimized,
wheref(z) is the residue angle iith step, defined as

(6)

The searching algorithm is terminated if no further
improvement can be found, i.e/() > J( — 1), or
a(R,, — 1) ands(R,, — 1) are determined at the end of
the searching algorithm. The detailed flowchart of the
greedy algorithm is shown in Fig. 2(a). This approach
is similar to the one used in [17]. However, the major
difference is that in [17], the greedy algorithm terminates
only when the residue angle error cannot be further
reduced. The total iteration number is not fixed.
Exhaustive Algorithm:

The second approach to solve the constrained problem
is the exhaustive algorithm. The idea is to search for the

3)

entire solution space, i.e., all the possible combinations
of 2=~ a(i)a(s(4)), in one single step. Decisions for
a(i) ands(?), for 0 < ¢ < R, — 1, are made such that
the error function

Ry—1

T=0- > ali)a(s(i)

=0

()

is minimized. Obviously, the exhaustive searching algo-
rithm produces global optimal solution. The flowchart of
the algorithm is depicted in Fig. 2(b).

Semigreedy Algorithm:

The last searching algorithm is the semigreedy algo-
rithm. Actually, we can treat the semigreedy algorithm as
a combination of greedy and exhaustive algorithm. The
whole searching space of(i) and s(¢) for 0 < ¢ <
R,, — 1 are divided into several sections wiih itera-
tions as a segment. We call such a segment as a block,
and D is termed as the block length. The segmentation
scheme is illustrated in Fig. 3. In the semigreedy algo-
rithm, the exhaustive search is performed within each iso-
lated block, and the connection between each consecutive
blocks is determined in the greedy manner. Specifically,
in the<th block (corresponds tih step in performing the
searching algorithm), the decisionsc@fk) ands(k) for
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Total iteration number, R n

A

o
|

: R
Section s =|—-

-
R, -D(s-1) iterations

.........

Section 1 Section 2

- -
D iterations D iterations

Fig. 3. The segmentation of the searching space with block leBgththe semigreedy algorithm.

TABLE Il
COMPUTATIONAL COMPLEXITY OF THE PROPOSEDTHREE SEARCHING ALGORITHMS
Conventional MVR-CORDIC
CORDIC Greedy Exhaustive Semi-greedy
with N=R Algorithm Algorithm Algorithm
Loop Number R R (2N+1) QN+ 1) (R yoneryp
NI‘ mn m D
Order Constant O(N) O(NE-) O(NP)
Run Time Shortest Short. Long Middle
TABLE IV
THE COMPUTATIONAL COMPLEXITY WITH N = 16, R = 6, AND D = 3, AND THE ERRORPERFORMANCECOMPARISONWITH N =8, R =4,AND D = 2
\\ Conventional MVR-CORDIC
CORDIC Greedy Exhaustive Semi-greedy
IS withN=R Algorithm Algorithm Algorithm
Loop l':',“mbe' 6 198 1,291,467,969 71,874
L
Normalized 1 33 2.2%108 1.2%10%
Loop Number
Averaged |§ml 6.289%102 2.147*103 8.903*%10+ 1.979*%1073

1D <k < (i+1)D — 1 are made to minimize the costcomparison purpose. Note that the complexity is represented in

function terms of loop number. We use it to approximate the execution
(i+1)D—1 time, since the number of loops dominates the computational
T = e — & & g) complexity in performing these searching algorithms.
(@) @) IZ;D a(k)a(s(k) ®) In addition, in Table VI, we show the numerical results of the
loop number by settingv = 16, R,, = 6 andD = 3. The
where Normalized Loop Number is defined as
L (bt NormalizedV
a5 —_ p— L =
0(i) =0 z_:o kZD ak)a(s(k)) ©) Loop number of the proposed searching algorithm

Loop number of the conventional CORDIC algorithm
is the residue angle in thiéh step. Fig. 2(c) illustrates the (10)
detailed flowchart of the proposed semigreedy algorithm.
It can be used to illustrate the complexity gaps between these
B. Comparison of Computational Complexity and Error  searching algorithms. In the last row, we show the averaged
Performance residue angle error foV = 8§, R,, = 4andD = 2. The
Next, we compare the computational complexity and err&nsemble average was carried out over 65 angles from 0 to
performance for the three searching algorithms developed2 with equal space, i.ef = 0, (7/128), (2r/128), ...,
above. The comparison results are shown in Table Ill. Thréedr/128).
parametersN’ R,,, and D are the number of e|ementary Based on the results in Tables Ill and IV, we can make the
angles, the restricted iteration number, and the searchiif§owing observations:
block length of the semigreedy algorithm, respectively. The ¢ The greedy algorithm requires the least computational
conventional CORDIC algorithm is also included here for  complexity (N, = 198) among the three algorithms,



WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 553

while it generates the sequences with worst error pe 10 T T T
formance(¢,, = 2.147 = 10~3). This algorithm can be
used to give the designers a quick but rough index abc—, N~
the performance of a specified application by using th
MVR-CORDIC algorithm. It can be also applied to theg,
situations where iterative-design is often involved, sucs
as lattice filter design. In this case, designer may ha‘é
to go through many design iterations to determine tr§ 5
restricted iteration numbef;,,,, and the wordlengthiy’, - 0
so as to meet the filter specification. With the greed
search, the designer can therefore choose these de: 0 e
parameters within short design period. The number of elementary angles, N
» The exhaustive algorithm consumes the longest execution
time (N, = 1.291 * 109) while resulting in the best error Fig. 4D Error performance versus number of elementary adglesth R,
performancéé,, = 8.903x10~*). This can be applied to andD = 3.
those angles that are often employed in DSP applications,
such as the twiddle factor8/ ¥ = exp(—j(2rnk/N)), 1 ' ' '

—o-
_.e_

Greedy search

Semi-greedy search (D=3)

Exhaustive search

Estimated results of Exhaustive search

in FFT/IFFT. In such applications, for a given angle, wi —o--  Greedy search

- 46— Semi-greed h (D=3
only have to perform the algorithm once to find the resuli—, . I et =9

Esti d lts of Exh: i h
of rotational sequence and directional sequence. This 2 FEetmatedresulls of Exhaustive seard

gorithm can be also applied to the applications where tli
performance is of most importance while with no restricg 10}
tion on execution time.
» The exhaustive algorithm can provide the best SQNR Peg
formance. However, for larg®& or R,,, it becomes prac- £ 1o
tically impossible due to its heavy computational com

residue a

plexity. In such a situation, the semigreedy algorithm ce 5+ s ) s s e G g
7

2 3 4 5 6
The restricted iteration number, Rm

be employed instead. Actually, the semigreedy algorith
plays the role in providing tradeoffs between the other two
algorithms described above. The paramét@f the semi- Fig. 5. Error performance versus restricted iteration nunihgrwith v = 8
greedy algorithm is used to control the algorithm so as fgdD =3

generate well error performanc¢¢,, = 1.979 x 1072)
within moderate execution timgV,, = 71, 874). We can
treat semigreedy algorithm as the generalized version for
the three proposed searching algorithms, i.e., the greedy
algorithm is the semigreedy algorithm wifh = 1, and

the exhaustive algorithm is the semigreedy algorithm with
D = R,,.

This can be explained that we have more choices in ap-
proximating the rotation anglé, thus resulting in smaller
residue angle error. However, the error curves are grad-
ually saturated asV is above certain value. The reason
is that the error performance cannot be improved unlim-
itedly only by increasingV when the restricted iteration
numberR,, is kept fixed. Actually, the saturation phenom-
enon of error performance suggests that we can perform
the searching algorithms by using a smaller number of el-
ementary anglesy’ (say N’ = 11 in this case), instead

. . ] ] of using/V directly. By doing so, we can reduce the com-
In this section, three experiments are conducted to illustrate  tational complexity in running the searching algorithms
the relationship between error performance and the parameters hjle retaining compatible error performance.

used in the three searching algorithms. As with the previous . grror  Performance Versus Restricted Iteration
experiments, the averaged residue angle ejga, is obtained Number (R,,,):

based on ensemble averaging of 65 angles from#)/fowith Fig. 5 emphasizes on the relationship between the error
equal space. performance and the restricted iteration numbgy,, for

IV. RELATIONSHIP BETWEEN ERROR PERFORMANCE AND
DESIGN PARAMETERS

* Error Performance Versus Number of Elementary An-
gles V):

In Fig. 4, the averaged residue angle etégy] is plotted
versus the number of elementary angl®¥s for a fixed it-
eration numbeR,,, = 4. Note that, to obtain the best error
performance in the conventional CORDIC algorithm, the
number of elementary angl¥ is set to bé¥. In Fig. 4,
for all the searching algorithms, the error performance
improves as the number of elementary angles increases.

the algorithms of interest. Similar to Fig. 4, the results
presented in Fig. 5 show that increasifig, has the effect
of improving error performance. Also, the error curves
also saturate gradually for lard&,,. The phenomenon can
be explained in the similar way as with Fig. 4.

One important observation is as follows. First, we
use the horizontal dashed line to represent the averaged
noise level of conventional CORDIC algorithm with
N = 8. We can find that by using greedy search, the
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o

The residue angle error, |§

Fig. 6. Error performance versus searching block len@thwith N = 6,

10°
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o . ' ' - ' ' MVR-CORDIC requires at least 4 iterationgt,{, = 4) to
Tl o gggg:g;ggg;:gg;gg with N6 cover all possible rotation angles. However, the residue angle
e —é—  Semi-greedy search with N=10 error&,, will be increased approximately with the value|6f
@ - - - o, ~, x Estimated results of Semi-greedy search

form > 6 > —m. This can be easily explained by observing
the constellation of the reachable angles in Fig. 1(a): the
distribution is sparse fof¢| of large value, which results in
large residue angle error. In general, the error can be suppressed
by dividing the rotation of a largé (i.e.,#/2 < |68| < «) into
two steps (assume/2 < 8 < ) [17]:

1) Prerotate the initial vectd#(0), (0)]* by an angle ofr

...........

; 5 ; : ; : 5 to [/(0), o/ ()]F = [—2(0), —y(0)]".
The searching block length, D 2) Rotate the vectdr’(0), +/(0)]” by an angle offf — ).
In step 1), the prerotation can be easily accomplished without

N =8, N =10, andR,, = 3. going through CORDIC algorithm. In step 2), we can continue

to perform the MVR-CORDIC rotation of anglé & ), which

. is a smaller angle compared with origirtal By doing so, we
MVR'Ct(.) RDII% g:ggrl'éh"} ca:hperfq{rrp eCIIUfZ”)_/t wetl_l aScan keep the rotation angle in step 2) belpy2, and hence
conventiona algonthm with only & Herations, o, o nt the MVR-CORDIC from rotating a large angle directly.

(R = 4). Fpr thg semlgreedy.and _the exhaustive sear onsequently, better error performance can be obtained.
even fewer iterationsK,, = 3 in this case) are needed

to achieve compatible error performance. Recall that ] ]

the conventional CORDIC algorithm has to go througR- Selective Prerotation Scheme

8 (N = 8) microrotations to reach such a noise level. Based on above design concept, we develop an improved
In addition, computer simulations also indicates thajcheme, called the Selective Prerotation Scheme, for the MVR-
by using semigreedy algorithm with moderat® the CORDIC rotation of arbitrary angle. The main concept of the

MVR-CORDIC algorithm requires onlyl/3 iterations new scheme is that we attempt to approach the rotation @ngle

(microrotations), in an average sense, to achieve compaeither clockwise or counterclockwise. The bidirectional rota-

rable (or even better) error performance compared witiyn scheme can be achieved by introducing two different pre-

the conventional CORDIC algorithm. rotation angles, where one prerotation angle is greaterhan
Error Performance Versus Searching Block Length and the other one is smaller thénin general, these two types
(D): of rotation with different prerotation angles behave differently

Fig. 6 depicts the residue angle error versus thg terms of¢,,. Then, from the alternative candidates, the one
searching block length{). As can be seen, we can obtaifwith smallers,, is selected so as to perform the MVR-CORDIC
better performance by increasing the searching blogktation ofé, hence the name of the method.
length of semigreedy algorithm. The results confirm our To be more specific, in the proposed scheme, we first divide
argument that, for largeD), the semigreedy behavesthe MVR-CORDIC rotation into 4 groups based on the quad-
like exhaustive algorithm. On the other hand, whBn rant of the rotation anglé in the complex plane. Then, in each
is small, the essence of greedy algorithm will arise dugoup, two rotation types with different prerotation angles are
to the confined searching space. Moreover, the satukggested to carry out the rotation. To obtain better SQNR per-
tion phenomenon suggests that we can use semigreggiynance, we have to evaluate the respedivefor each type.
algorithm with moderate value ab (say D = 5 in  Then, choose the better one from these two candidates. Similar
this case) to obtain a near optimum error performanggthe conventional prerotation scheme, two steps are required to
without going through exhaustive search. Meanwhile, thgymplete each MVR-CORDIC rotation: one step for rotation of
saving in computational complexity is significant. Foprerotation angle, and other step for rotation of remaining angle
example, in this experiment with = 8 andD = 5, the  with MVR-CORDIC algorithm. We summarize the proposed al-
computational complexity rate between exhaustive sear@inative prerotation scheme in Table V. The proposed scheme
and semigreedy search is only about 0.0326%, and tgn provide a better error performance than conventional ap-
performance difference is below60 dB. proach without increasing any hardware complexity.

V. SELECTIVE PREROTATION SCHEME FORMVR-CORDIC C. Design Example and Simulation

ALGORITHM . o .
To illustrate the modified scheme developed earlier, we con-

A. Conventional Prerotation Scheme sider the example of = 217 /32. First, the rotation angle be-
From (5), we can easily verify that all the reachable anglé@ngs to the second group, i.e,{2 < § < . According to the

of MVR-CORDIC algorithm are confined to the range of€lective prerotation scheme in Table V, the following two types
—Rna(0) < 6 < R,,a(0) with the settingn(i) = =+1 and of rotation procedure may be adopted:

s(¢) = 0,for0 < ¢ < R, — 1. Hence, to perform vector « Type | Prerotate angle ofx/2, followed by
rotation of arbitrary angle, i.ex > 6 > —m, directly, the MVR-CORDIC rotation of(# — 7/2) = 57 /32.
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» Type II: Prerotate angle af, followed by MVR-CORDIC TABLE V
rotation of (6 — n) = —11x/32.

Here, the semigreedy algorithm (with parameters of

555

SUMMARY OF THE ROTATION PROCEDURE OFSELECTIVE PREROTATION
SCHEME FORMVR-CORDIC ALGORITHM

N =9 W =9, R,, =4,andD = 2) is used to search for the Pre-rotation MVR-CORDIC
directional sequencey(i), as well as the rotational sequence Grouweof® i Type —— : Rotation Angle
! gle Operation
s(%), for these two angles. The results for these two rotatio 201 [0
types are listed in Table VI, where the directional and rotation: Typel 0 [y-(o) } ¥0) } ®
sequence are represented in the vector form as 0<6<ni2 2@ 20
Type I /2 , 0-n/2
{y(O) :| x(0) }
a =[a(0), a(1), ..., (R, — D]F Typel | 2 [x'(()) } -y(O)} o2
S =[5(0), s(1), ..., s(R, — D]*. n2<b<n Yol L0
Type Il T [ x:(O) } HO) :1 0-n
The corresponding SQNR values are calculated based on (A YO LyO
with [2(0), »(0)]T = [1, 0]7 4 It can be seen clearly that, in this Typel | -m {’{(0)} -X<°)} .
case, we can obtain better error performance by using Typ¢ . < ¢ < -n2 YO [0
rotation. As a result, we can perform the rotatiol ef 217 /32 Typell | -n2 [g(g) } O } 472
with MVR-CORDIC rotation procedure of Type-I in Group-II. y'( ) O
Moreover, in Fig. 7, the residue angle errgy,, is plotted Typel | -2 [’y‘ggi} _y)f(oo))} 0472
versus 65 angles distributed from Otowith equal space for -n2<0<0 ,
three rotation schemes discussed in this section; namely, the Type il 0 [jﬁgi } ;‘§3§ } o
rect rotation (no prerotation phase), the conventional schen.z;
and the proposed modified scheme. The experiment is carried
out based on the semigreedy algorithm with parameteds ef TABLE VI

8, W =8, R,, = 3,andD = 2. Based on the simulation re- SQNR RESULTS FORROTATION ANGLE OF# = 217/32 FORMVR-CORDIC

sults in Fig. 7, we can make the following observations.

ALGORITHM WITH THE PROPOSEDROTATION SCHEME

* Unlike the direct rotation approach, the error performanc Rotation Type | Hotationalindicator, § | Residueangle | SQNR
of the selective prerotation scheme will not degrad@hs 219 ° _D"e°"°”f' indicator, @ error, |¢,| (dB)
increases. Typer | 3= ﬁ ﬂ, 0.16510% | 60.76 dB

» The selective prerotation scheme can provide appare®=217/32 T 7
. - : - Typen | S=10.23,6] 2682107 | 51.22dB
improvement compared with conventional prerotatio a=[-1,-1,-1,-1]7 ‘ )

scheme for2r/8 < |#] < 6x/8. The reason is that,
for 2r/8 < |6 < 6#/8, we can still perform the
MVR-CORDIC rotation off that is smaller tharzx /8.

rotation with angle that is greater than /8. P, in two forms [18]-{20], i.e.,
» The proposed scheme consistently behaves best among

To save hardware complexity, in practical implementation the
However, the conventional scheme has to perform tjs&aling operation is performed by quantizing the scaling factor,

R.—1
the three schemes for all the rotation angles. The aver- Typel: P = Z ko279 (12)
aged residue angle error of the 65 angles for direct rota- =
tion scheme, conventional scheme, and proposed scheme Rl
arel.2x 1071, 5.9 1073, and1.7 = 10~3, respectively. . -

¥ A0 0T * pectively Typell: P= [ Q+k-27) (13)
=0
VI. SELECTIVE SCALING SCHEME FORMVR-CORDIC ’
ALGORITHM where

A. Scaling Operation P quan_tlzed.valutla oP; . )

R, restricted iteration number in the scaling phase;

In this section, we consider an implementation issue: the;..
scaling phase of MVR-CORDIC algorithm. The use of scaling J
operation is intended to ensure the preservation of the nor
the vector[z(0), y(0)]%, after the sequence of microrotationstypes are as follows:
For convenience of representation, the scaling fad®rof
MVR-CORDIC algorithm in Table Il is represented as [1]-[3]

e {1, -1}; and
€ {0,1,..., W—1}.

11)

R, —1 -1
pP= < H \/1+2—28<i>> )

11 with Z(0) = 0, and3(0) = 0,

4These SQNR values are obtained without considering the effects of scaling Type I:
operation, which will be discussed in the next section.

TG+ =2()+kj-27Y -3
U+ 1) =90)+k; - 279 -4(j)

. {ﬂf +1) = #(5) + k-2 Y - 2(Ri)
Type I: . .
9 +1) =9() + k- 27 - y(R,y,)

J
e corresponding iteration procedures for these two scaling

(14)
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Fig. 7. SQNR performance comparison of three rotation schemes, based on semigreedy search of 65 angles uniformly distributed from 0 to

with 2(0) = =z(R,) and §(0) = y(R,). Note that ' ‘ ’ ' ' ' ' ' '
[Z(4), 9()]* provide successive approximation of ide
ally scaled vector. It taked?, iterations to complete the
scaling phase, and the resultant vector of MVR-CORDIC

[xf7 yf]T — [i.(RS)’ Q(RS)]T By d0|ng SO, we Carapprox_ o 0.1 02 03 0.4 (()af; 0.8 07 08 0.9 1

X GEEEESOMADO O - OGN0 OO O OO O QO 0.0 o

imate the multiplication of P with only R, shift-and-add T ' ' ' ' ' ' ' '
operations, and the scaling operation can share the se

circuits with the MVR-CORDIC microrotation module (to be*$ S G0 O om0 0 0ne O G OO OmnmaI—
discussed in the Section VIII), which eliminates the significat

overhead of scaling multipliers. 0 o1 o0z 03 04 05 06 07 08 09 1

. oy e b
As one can expect, this process will introduce some quariu- ®

zation noise, and the noise increase&aslecreases. Similar to rig. g, The distribution of values that can be represented by (a) Scaling Type-I
the microrotation phase described in Section II-B, we introdu@® Scaling Type-II.
another performance indeg,, to describe the amount of error

introduced by the approximation process of (12) and (13). Thgo types of representation. We can then choose the one with
scaling approximation errqré;, is defined as smaller¢, from the two candidate scaling types. Hence, we can
carry out the scaling operation with better SQNR performance.

p
1- .

A
€ = 2

(16)

C. Design Example

The relationship betweeg, and SQNR performance is dis- e use the example ¢f = 217/32 to demonstrate the pro-

cussed in the Appendix. posed scaling procedure. First, by substitutthg: [2, 2]7 into
(11), we obtain

B. Selective Scaling Scheme

—1
In Fig. 8(a) and (b), we illustrate the distribution of the values P = (\/1 +2722./1+ 2_2'2) = 0.9412.
that can be represented by (12) and (13) With= 2 andW = )
16. It is interesting to see that the distributions for these twpSSume thatz, = 2. We summarize the results for these two
types of representation are quite different, i.e.,digribution ~Scaling types in Table VII, wherg; andg; for j = 0, 1, ...,
of Type-l is dense in the region &f < 0.5; on the contrary, s — 1 are represented in vector form as
the distribution of Type-Il concentrated in the different region

of P > 0.5. Based on the observation and apply the similar K =[ko, k1, ..., kr,—1]"

idea used in Section V-B, we are motivated to propose a novel Q=lq, q1, - qr.-1]%,

scaling operation, calleBelective Scaling Scherfioe the MVR-

CORDIC algorithm. respectively. The SQNR result before performing the such a

The basic idea of the selective scaling scheme is to combimgantized scaling operation (i.e., assume floating-point scaling)
these two types scaling operation in (12) and (13). That is, frar60.76 dB. In Type-I scaling, the SQNR value drops to 47.93
a given scaling factor, a better strategy to quaniizis to find dB due to the introduced quantization error&f = 3.906 =
out the smallest, (the closest” to P) with respect to these 10~3. On the other hand, Type-Il scaling has relatively low
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TABLE VII TABLE VIII
RESULTS OF THESCALING TYPES FORROTATION ANGLE OF 6 = 217/32, CASE I: TRADING R, FOR R, WITH 6§ = T77/32,
WHERE THEPARAMETERSARE SETASR, = 2AND W =9 N=16,D=2,R,, =3, R, =3, R, =4AND R, =2

Rotation angle, 6 = 217/32, Group-II, Rotation Type-I,

e - ; Before | R =3 | & =5779*10" SQNR =
h §=[2.2], @=[1, 1]. SQNR = 60.76 dB 1
with §'= [2.2), @= (1, 1]. 5Q (no scaling error) Tradeoff | R =3 | & =1432¢10* | 4476dB
Scaling | Scaling N SQNR =
factor type K and 0 P © & (dB) 7132w
TRET After | R =4 | E =1873*10" SQNR =
pe Type 1 G; [0‘ 4 0.9375 | 3.906%10° | 47.93dB Tradeoff | R =2 g, =6.394*10 54.08 dB
0942 | pypernr | KEELI o000 | 15264109 | 60.76 0B
P 0=[48] ‘ ' !
TABLE IX
Cask Il: TRADING R,, FOR R, WITH 6 = 87/32,
quantization noise @f, = 1.526x10~°, and the SQNR degrada- N=16D=2 R, =3, R, =3, R, =2AND R, =4
tion is below 0.01 dB. Thus, by carefully choosing the proposed
scaling scheme, we can achieve better SQNR performance ¢ Before | R =3 | & =0 SQNR =
the MVR-CORDIC algorithm. Tradeoff | R =3 | & =1747%103 55.16 dB
0= ‘
832 m
VII. | TERATION-TRADEOFF SCHEME AND DESIGN FLOW After |R =2 | & =0 SQNR =
Due to the similar nature and operations of the microrotation Tradeoff | R =4 | & =1801*10% | 74.89dB

phase and scaling phase, one question may arise in the appl:
cation of MVR-CORDIC algorithm: how to determire,, and

R, inan optimal sense? In this section, we provide a systematic in microrotation phase can compensate for the SQNR loss
design flow to determine these two important design parameters in scaling phase. An example of Case | is presented in

for the MVR-CORDIC algorithm. Table VIILI.
. e Case llI: Trading®,, for R,
A. lteration-Tradeoff Scheme fdt,, and R, On the other hand, when the overall SQNR perfor-

From previous discussions, we known that to carry out the ~Mance is dominated by the introduced quantization error
complete MVR-CORDIC algorithm in Table Il, we have to go  in scaling operationg, (§; > &,). We attempt to obtain

through two separate phases with a totalgf iterations. We more accurate representation of the scaling factor but
define Ry as sacrificing the angle resolution in microrotation phase. It
is suitable for the situation that the scaling factor lies in
Ry 2 R, + R, a7 the region with relatively sparser distribution (see Fig. 8),
) ] ) S while the rotation angleq, can be well represented with
whereR,, and R, are the restricted iteration number in micro- R, elementary angles. An example of such a tradeoff

rotation phase and scaling phase, respectively. When the total 55¢ is presented in Table IX.
iteration number is of major concern, (17) implies that we can

make tradeoff betweeR,,, andR;. That s, we can change,, B. Design Flow for the MVR-CORDIC Algorithm

) ) . . !
andR, to B,,, andx;, respectively, subject to the constraint Based on the above iteration-tradeoff scheme, we derive the

R + R =Ry (18) design flow as well as the optimization procedure to determine
the optimalR, and R, for the MVR-CORDIC algorithm.
We are justified to do so since the basic iterative operations in « Step 1: Determine R-.
these two phases are almost the same. The modification can  |n practical implementationz; must be determined

help to further improve the SQNR performance for certainrota-  according to the system requirement, such as speed, power

tion angles. In the following, we develop two tradeoff schemes Consumption, silicon area, and, of course, the SQNR per-
depending on the characteristics of the rotation angle in the fgrmance.

MVR-CORDIC algorithm. « Step 2: Initialize R,,, and R,.

e Case I: TradingR, for R,, OnceR7 is determined, we have to allocdte, andR,

In this case, we attempt to gain additional rotation ac-  for microrotation and scaling phase, respectively. As arule
curacy in the microrotation phase at the expanse of de- of thumb, we initially setR,, = Rr/2 andR; = Ry /2
grading precision in the scaling operation. This can be (assumeRy is an even integer). With this initial setting,
applied to the MVR-CORDIC rotation when the residue the design flow is likely to converge to the optimum solu-
angle error¢,,, dominates the overall SQNR performance  tion within fewest design iterations, in an average sense.
(&m > &). Itis suitable for the situation that the rota- + Step 3: Perform the Searching Algorithm with R,,, and
tion angle liesin the region with relatively sparser distribu-  R,.
tion [see Fig. 1(a)]. Meanwhile, the corresponding scaling With R, and R,, we can apply the semigreedy algo-
factor, P, can be well represented wifR, iterations. Of rithm to computex(z), s(¢), k(¢), andg(¢), as well ag,,
course, it is only meaningful that the extra SQNR gained  and(, in these two phases. For iterative design process, it



558

In Fig. 9, we illustrate the corresponding design flowchart of
the proposed design methodology and optimization procedure.
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is better to use moderately smal (sayD = 1, 2, or 3) Determine the total
. o START

to accelerate the computation. iteration number, R,
Step 4: Estimate the SQNR Performance v

In general, the estimation of SQNR is a time-consumin Let R =R'=R/2,
process because we have to go through extensive compt R,=R' =R 2
simulation to obtain a reliable SQNR value. Fortunately SQNR = - e
with the SQNR analysis developed in the Appendix, i.e. ¥

Execute the Semi-greedy Optimization Procedure

algorithm with R’ and R’ 1«

1
SQNR(dB)~ 101log;, <ﬁ§2> (19) with moderately small D

v SQNR,=SONR,
Rm=R ,m ’ Rs:R ’x

we can gccurately e§t|mate the SQNR value by simp Evaluate current SQNR

substitutingé,,, and¢; into (19). value, SONR,, by using
Moreover, (19) indicates thathen¢,, and &, are of 1

the same magnitude, the SQNR reaches its maximum ve SQNR =10log,, (4@"2%2) ,

due to the dependency of these two error indices. That { I;:":gill if g, <&

decreasing,, may have the effects of increasifig and s

R =R +1
{ Ri=pol  To>5

vice versa. We can use this property as the design guic SONR > SONR Y I

line in determining the optimak,,, andR,. Based on the ' g

observation as well as the iteration-tradeoff scheme dev N

oped _earlier in this section, we are able to derive an op Execute the Semi-greed

mization procedure, as.descrlbed from Step 5 to Step 7 algorithm with R and Iz END >
Step 5: Apply the lteration-Tradeoff Scheme with a larger value of D <

The selection of the tradeoff-type depends on the qua..
tities of the errorsé,,, andé,, in these two phases. To be

specific, modifications are made d%,, andR, as Fig. 9. The proposed design flowchart and the optimization procedure in the

application of MVR-CORDIC algorithm.

R;n, = an, +1 .
{R’ — R 1 if & > &>, The SQNR value is 70.93 dB. Next, by applying the Case-lI
> R i R _1 tradeoff onR,,, and R, in gZO), we can obtair] an improved re-
or { m — titm if &, < &,. (20) sults of¢,, = 5.402 % 107>, £, = 4.012 « 10~°, and 83.44 dB
R, =R, +1 SQNR value with Type-I rotation and Type-Il scaling operation.

) ] ) The iteration number in the microrotation and scaling phase now
Step 6: Perform the Semigreedy Algorithm with &, 46— 3 andR, = 5, respectively. Since no improvement
and R,,.. ) _ is possible, the optimization procedure is terminated. Then, we
Step 7: Check if SQNR is Improved can apply the semigreedy algorithm wi, = 3, R, = 5, and

By using (19), we can check if any SQNR improvemery |arge value ofD (D = 4 in this case). The resultant SQNR
can be obtained with the modifiet,, and R.. If yes, \ajue can be further improved to 87.39 dB.

accept the modification and go back to Step 5 to further Fig. 10 shows all the possible combinationsif, and R,
improve the SQNR performance. If not, the optimizatiognq their corresponding SQNR results under the constraint

process is terminated. _ _ _ R,, + R, = Ryr. Based on the results, we can make the
Step 8: Perform the Semigreedy Algorithm with Large following observations.
Value of D.

1) The proposed design procedure can provide the optimal
solution in the determination at,,, andR,. That is, the
resultant®,,, and R, computed by our design flow are
the same as the optimal ones in Fig. 10. The important
issue is that, with the aid of proposed design flow, we
can obtain the optimal solution within only one design
iteration, in this case, instead of checking exhaustively all
possible combinations dt,,, andR,.

The final step of the design procedure is to perform the
semigreedy algorithm with larger value bfas well as the
optimizedR,,, and R, which are obtained in the iteration
optimization procedure.

C. Design Example 2) As can be seen from Fig. 10(b), the theoretical SQNR
Consider rotational angle = 0.753 98 in the application of values, which are obtained by simply using (19), coin-

MVR-CORDIC algorithm. Assum&r = 8 and the wordlength cides exactly with the simulated results. The simulated

is W = 12. We initially setR,, = R, = 4, and apply the semi- SQNR values are calculated by ensemble-averaging of

greedy algorithm with smalD (D = 2 in this case). Based on 10 000 output SQNR values generated by MVR-CORDIC

the SQNR refinement schemes developed in Sections V and VI,  rotation with 10 000 random input vectdts0), %(0)]%.

it can be found thag,,, = 7.012 * 10~ and¢, = 2.842 104 The results indeed confirm the validity of (19) in the fast

for Type-I rotation and Type-Il scaling operation, respectively. estimation of the SQNR value.
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Fig. 10. (a) All possible combinations d@?,,, and R, under the constraint Fig. 11. The implementation of the MVR-CORDIC processor.

R,. + R, = Ry. (b) The corresponding theoretical and simulated SQNR
values.
MVR-CORDIC algorithm requires an average/®f, = N/3it-
_ ~erations to reach comparable error performance of conventional
3) The optimal SQNR (83.44 dB) occurs under the situatiaDORDIC in microrotation phase. In the scaling phase, Hu [3]

that¢,,, and¢; are about of the same magnitude. The resiias reported thal’ = N/3 on the average. Similar result
confirms with our earlier argument for (19). of R, ~ N/3 also can be obtained for MVR-CORDIC algo-
rithm. Hence Rr = 2N/3 andN + N’ = 4N/3. That is, we
VIII. VLSI | MPLEMENTATION OF MVR-CORDIC can save about 50% execution time in the iterative implementa-
) tion of MVR-CORDIC algorithm compared with conventional
A. lterative MVR-CORDIC Structure CORDIC algorithm.

In Fig. 11, we illustrate the iterative structure for the proposed Note that theexecution times different from theruntime
MVR-CORDIC algorithm. It is similar to the conventional iter-mentioned in Section Ill. They are two different design issues in
ative CORDIC structure [3]. The major difference of these twihie proposed MVR-CORDIC algorithm. Given a target argle
implementations lies in their control units. As shown in Fig. 11he runtime denotes the time to determine the design parameters
two separate phases are performed to complete single M\@the MVR-CORDIC. The execution is defined as the hardware
CORDIC rotation, i.e., the microrotational phase (marked [8xecution time to perform the vector rotation in VLSI circuits.
solid line) and the scaling phase (marked by dash line). In each
phase, three kinds of control signal are used to control the dp- Parallel and Pipelined MVR-CORDIC Structure

erations: By unfolding the iterative implementation of Fig. 11, we
* s(4) in microrotation phase ang in scaling phase: it con- can obtain the parallel MVR-CORDIC structure as depicted
trols the number of bits to be shifted by barrel shifters. jn Fig. 12(a). The structure is composed B basic MVR-
* «(i) in microrotation phase and; in scaling phase: it CORDIC processors connected in cascade form, in which
determines the operations of adder/subtracter. the R,, leading processors perform the microrotations and
« Control signal,C’: it governs the phase switching of thethe following R, processors execute the scaling operations.
iterative MVR-CORDIC structure and the scaling typgach basic MVR-CORDIC processor performs one iteration
(Type-I or Type-ll) in scaling phase. as specified in Fig. 11. Moreover, for the case that the parallel
All the control signals can be generated by the propossttucture is dedicated to perform a particular rotation angle, the
searching algorithm in advance, and are stored in ROM. operation of each processor is kept fixed. We can thus save the
To evaluate the speed performance of the iterative structuneydware complexity easily by replacing all the control circuits,
we assume thak, denotes the execution time to carry out singlbarrel shifters, and multiplexers with only wire routing.
iteration of microrotation (or scaling). For MVR-CORDIC al- To achieve a higher data throughput rate, we can further in-
gorithm, the total execution time {$2,,, + R;)To = RrT,. On sert pipeline stages (latches) between successive processors of
the other hand, for conventional CORDIC algorithm, it takés parallel structure, which results in the pipelined MVR-CORDIC
iterations in microrotation phase and anoti#ér iterations in structure in Fig. 12(b). The pipelined structure is very suitable
scaling phase. Thus, it requires tofa& + N’)T;, to complete for real-time applications at high data bandwidth.
one CORDIC rotation. To make a fair comparison between theseDue to the reduced iteration number, for parallel MVR-
two approaches, we compare these two numi&s+ R.)and CORDIC structure, we can save about 50% silicon area
(N + N’), under the condition of equal SQNR performance&ompared with the conventional parallel CORDIC structure.
From Section IV, we know that by using semigreedy search, tlibe reason is that the silicon area is directly proportional to
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Latch
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[ ]
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Fig. 12. (a) Parallel structure of conventional CORDIC processor array. (b) Parallel structure of MVR-CORDIC processor array.

the number of basic processors, and the numbers of processousiding errorof the fixed-point arithmetic operations. In the
for MVR-CORDIC and conventional CORDIC a&V/3 and following, we consider their impacts on the overall SQNR per-
4N/3, respectively. For the same reason, the critical path fufrmance by modeling these errors as additive white noises.
parallel structure in Fig. 12(a) is only 50% compared with the « The Noise Variance N,, Caused by Residue Angle
conventional pipelined CORDIC structure. The latency intro-  Error | ¢,,:

duced by pipelined structure can also be halved by employing Substitutingd in (A.2) with 6 +&,,, (oré —&,,,), we can

the proposed MVR-CORDIC algorithm. obtain the corresponding “ideal” output vecfef,, y/,]”
under the influence of,,. Hence, the variance of the
IX. CONCLUSION noise, N,,, is equal to the, norm of the vectofzy —

In this paper, we present a new modified CORDIC algo- s Yd — ya]*; or equivalently
rithm, called the MVR-CORDIC algorithm, to accelerate the 9 9 .9
CORDIC operation. It can be applied to the DSP applications N & (7 &m)™ =717 & for &, <1 (A.3)
where rotation angles are known in advance, such as digital lat- \yhere,2 is the variance of the input vector, given =
tice filter and discrete orthogonal transformations. In addition, 2(0)? + 1(0)2 or 2 = 22 + 2. That is, N, can be well
by applying the three SQNR refinements techniques developed N -
in the paper, we can save at least 50% execution time in the
iterative CORDIC structure, and 50% hardware complexity |
in the parallel CORDIC structure compared with the con-
ventional CORDIC algorithm. Hence, low-power/high-speed
CORDIC-based VLSI architectures for high-performance DSP
applications become achievable.

approximated by the squared arc-length spread by residue
angle¢,, and radius-.
The Noise Variance/N, Caused by Scaling Approxima-
tion Error , &;:

To expressy,, in terms ofé,, we define thadeally-
scaled vectar|z,, y.]*, and thequantized-scaled vector
[}, yi]", as

APPENDIX Ts| _p. z(Ry,) and | p. z(Ro,)
ANALYSIS OF SQNRAND ITS RELATIONSHIP WITH &,,, AND &, Ys | Y(Rm) |’ vl y(Rpy)

Consider an input vectdr:(0), %(0)]* and a corresponding (A.4)
output vector[zs, ys]* after the MVR-CORDIC rotation of

anglef. The SONR [21] of such an operation is defined as respectively. By definition, we can model the noise vari-

ancelN, as follows

/ H | V .
SQNR(dB)=101log;, { Signal Variance Je

_ _1N\2 AW
Quantization Noise Varian Ns = (s — )" + (ys — ¥)

= [xQ(Rm) + QQ(Rm)] : (P - P)Q

=10log;q |: .T(Z + y(% 2:| (A.1) N2 P 2
(o =g+ (wa =) =(5) - @=-p?=+ <1 ) F) =& (A5)
where[z 4, yq]* is the ideal output vector, given by the floating-
point operation as e« The Noise Variance N, Caused by Arithmetic
vy cos 6 sin 8] [x(0) Rou.nding. Errors:
= ) . (A.2) Given internal wordlength}¥/, we can model the
[yd} |:—Sln9 cos 9} [u(O)}

rounding errors introduced by arithmetic operator as a
We can identify three error sources of the quantization noise: white noise with zero mean and variance 20f*"" /12

1) theresidue angle errar¢,,, in microrotation phase, 2) the [21, Chapter 6]. As can be seen in Section VII-A, it takes
scaling approximation errqgré,, in scaling phase and 3) the Ry iterations to complete the MVR-CORDIC algorithm.
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Thus,(Rr — 1) add/subtract operations are performed on[12] N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with
the intermediater(:) andy(i). Accordingly, the variance 2 g;ﬁ;?;jgﬁ'zgagg’fgfgg Se aggpﬁoig‘glcompUtat'ﬁEE Trans.
of the overall round'ng noise of the output vector can be[13] E. F. Deprettere, P Dewilde, and R. Udo, “Pipelined CORDIC architec-

simply modeled as tures for fast VLS filtering,” inProc. IEEE Int. Conf. ASSFAL984, pp.
1-4.
9—2W [14] L. W. Chang and S. W. Lee, “Systolic arrays for the discrete Hartley
N.=2-(Rp—1)- (A.6) transform,” [EEE Trans. Signal Processingol. 29, pp. 2411-2418,
12 Nov. 1991.

) ] [15] W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational al-
Assume that all the noise sources are independent of each other, gorithm for the discrete cosine transfornZEE Trans. Communvol.

; ; ; COM-25, pp. 1004-1009, Sept. 1977.
the variance of the combined noise sources of the output VeCt?fe] Y. H. Hu and S. Naganathan, “Efficient implementation of the Chirp

after MVR-CORDIC rotation can be written as Z-transform using a CORDIC processafEE Trans. Acoust. Speech,
A Signal Processingvol. 38, pp. 352-354, Feb. 1990.
Nt =N, + N, + N,. (A.7) [17] —, “An angle recoding method for CORDIC algorithm implementa-

tion,” IEEE Trans. Computersol. 42, pp. 99-102, Jan. 1993.

P . . . 18] G. L. Haviland and A. A. Tuszynski, “A CORDIC arithmetic processor
In most applications, the first two noise terms dominate thé chip.” IEEE Trans. Computersol. 29, pp. 68—79. 1980.

overall quantization noise due to the fact thgt + NV, is several  [19] H. M. Ahmed, J. M. Delosme, and M. Morf, “Highly concurrent com-

magnitude orders greater thai. Putting all of these together, pCuting ?tructlurf; for nl1atrix ggitgr;e{igfsezmd signal processitgEE
. omputey vol. 15, no. 1, pp. 65-82, .
we can relate the SQNR to the performance indicatprsand [20] J. M. Delosme, “A processor for two-dimensional symmetric eigenvalue
&, as and singular value arrays,” iRroc. 21st Asilomar Conf. Circuits, Sys-
tems, Computerd 987, pp. 217-221.
r2 [21] A. V. Oppenheim and R. W. SchafeDiscrete-Time Signal Pro-
SQNR(dB)=: 10log;, P R s & cessing Englewood Cliffs, NJ: Prentice-Hall, 1989.
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iteration numbers oR?, andR,,, in Section VII-A.
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