
548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

Modified Vector Rotational CORDIC
(MVR-CORDIC) Algorithm and Architecture

Cheng-Shing Wu and An-Yeu Wu, Member, IEEE

Abstract—The CORDIC algorithm is a well-known iterative
method for the computation of vector rotation. However, the major
disadvantage is its relatively slow computational speed. For appli-
cations that require forward rotation (or vector rotation) only, we
propose a new scheme, the modified vector rotational CORDIC
(MVR-CORDIC) algorithm, to improve the speed performance
of CORDIC algorithm. The basic idea of the proposed scheme
is to reduce the iteration number directly while maintaining the
SQNR performance. This can be achieved by modifying the basic
microrotation procedure of CORDIC algorithm. Meanwhile, three
searching algorithms are suggested to find the corresponding
directional and rotational sequences so as to obtain the best SQNR
performance. Three SQNR performance refinement schemes are
also suggested in this paper. Namely, the selective prerotation
scheme, selective scaling scheme, and iteration-tradeoff scheme.
They can reduce and balance the quantization errors encountered
in both microrotation and scaling phases so as to further improve
the overall SQNR performance. Then, by combining these three
refinement schemes, we provide a systematic design flow as well as
the optimization procedure in the application of MVR-CORDIC
algorithm. Finally, we present two VLSI architectures for the
MVR-CORDIC algorithm. It shows that by using the proposed
MVR-CORDIC algorithm, we can save 50% execution time in
the iterative CORDIC structure, or 50% hardware complexity in
the parallel CORDIC structure compared with the conventional
CORDIC scheme.

Index Terms—CORDIC algorithm, DSP, MVR-CORDIC algo-
rithm, searching algorithms, VLSI.

I. INTRODUCTION

T HE COordinate Rotational DIgital Computer (CORDIC)
algorithm is a well-known iterative technique to perform

various basic arithmetic operations [1]–[3]. The algorithm is
very attractive for hardware implementation because it uses only
elementary shift-and-add steps to perform vector rotation in a
two-dimensional (2-D) plane. Hence, the CORDIC algorithm
can be applied to many DSP applications where rotation-based
arithmetic functions are heavily utilized, such as linear system
solver [4], [5], digital lattice filter [6], [7], singular value prob-
lems [8], and the fast Fourier transformation (FFT) [9], [10].

However, the major disadvantage of the CORDIC algorithm
is its slow computational speed. For iterative CORDIC structure
(to be discussed in Section VIII-A), the speed performance of

Manuscript received September 1999; revised June 2001. This paper was
supported in part by the National Science Council, R.O.C., under Grant
NSC89-2218-E-002-108. This paper was recommended by Associate Editor
M. Zaghloul.

C.-S. Wu is with the Department of Electrical Engineering, National Central
University, Chung-Li 320, Taiwan, R.O.C (e-mail: benior@ee.ncu.edu.tw).

A.-Y. Wu is with the Department of Electrical Engineering, National Taiwan
University, Taipei 106, Taiwan, R.O.C. (e-mail: andywu@cc.ee.ntu.edu.tw).

Publisher Item Identifier S 1057-7130(01)07497-3.

CORDIC operation is limited by the large iteration number,,
which is generally equal to the internal wordlength,. At algo-
rithmic level, one trivial solution to overcome such a problem is
to reduce the iteration number directly; however, signal will be
seriously distorted by the approximation and quantization noise
in practical implementations [11]. At circuit level, the CORDIC
operation can be accelerated by introducing redundant number
representation into the internal data processing, which can elim-
inate the carry propagation encountered in addition/subtraction
operations [8], [12].

In this paper, we propose an algorithmic-level improved
scheme, which is called modified vector rotational CORDIC
(MVR-CORDIC) algorithm. It is very suitable for applications
that use the CORDIC algorithm in only forward rotation mode
(also known as vector rotation mode),1 i.e., the rotation angles
are fixed and known in advance, such as digital lattice filter
[6], [7], [13] and discrete linear transformation [10], [14]–[16].
The major feature of the aforementioned applications is that the
directional sequence, , which controls the rotation direction
of each elementary angle in the microrotation phase, can be
computed in advance. By reformatting and searching for
new sequences, we can reduce the iteration number signifi-
cantly, while not increase the quantization noise level. This can
be achieved by modifying the basic microrotation procedure of
conventional CORDIC algorithm. Then, we can improve the
speed performance of the conventional CORDIC algorithm.

Similar work has been reported by Hu and Naganathan
[17]. In [17], with the aid of greedy search, the directional
sequence, , of the angle rotated by CORDIC algorithm is
recoded. However, the length of the resultant recoded sequence,
which determines the iteration number in the microrotation
phase, is not fixed but varied with the rotation angle. For
certain cases, the length of the recoded sequence can be large
and quite close to the upper bound of , where is the
number of elementary angles [17]. Under such situation, in
synchronous circuit design, the overall speed performance of
the CORDIC-based arithmetic operation is therefore limited by
those angles. Besides, the nonuniform feature of the iteration
number is not suitable for modular design in VLSI imple-
mentation. To avoid the drawback, in our work, the design
parameters are computed under a fixed iteration number. To
solve the constrained optimization problem, we propose three
searching algorithms for the MVR-CORDIC algorithm. They
can provide tradeoff between computational complexity and
signal-to-quantization-noise ratio (SQNR) performance.

1The CORDIC algorithm can be operated in either forward rotation mode
(vector rotational mode), or backward rotation mode (angle accumulation mode)
[2], [3].

1057–7130/01$10.00 © 2001 IEEE

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 549

Moreover, we propose three SQNR refinement schemes for
the MVR-CORDIC algorithm. The first SQNR refinement
scheme introduces the concept of selective prerotation. It can
carry out the microrotation phase of MVR-CORDIC algorithm
with a reduced angle approximation error compared with
existing approaches. The second scheme, which is employed
in the scaling phase of MVR-CORDIC algorithm, is used to
reduce the quantization error in the approximation of scaling
factor. This can be achieved by using a selective scaling oper-
ation that combines two existing scaling techniques. The third
refinement technique is called the iteration-tradeoff scheme.
With this scheme, we can make tradeoff on the iteration
number between the microrotation and scaling phase of the
MVR-CORDIC algorithm. It can balance the quantization
errors encountered in these two phases so as to further improve
the overall SQNR performance.

Next, with aid of the proposed refinement schemes as well
as SQNR analysis developed in the Appendix, we provide a
systematic design flow and optimization procedure to facilitate
the design process of MVR-CORDIC algorithm. The corre-
sponding VLSI architectures show that we can save at least 50%
execution time in the iterative CORDIC structure, and 50% hard-
ware complexity in the parallel CORDIC structure, compared
with the conventional CORDIC algorithm. Hence, low-power/
high-speed CORDIC VLSI architectures become feasible.

The rest of the paper is organized as follows. In Section II,
the conventional CORDIC algorithm is briefly reviewed. Then,
we will discuss the strategies of MVR-CORDIC algorithm to
accelerate the CORDIC rotation in vector rotational mode. In
Section III, three searching algorithms are proposed to solve
the problem under the constraints set by MVR-CORDIC al-
gorithm. Then, we compare the computational complexity as
well as the error performance of these three searching algo-
rithms. In Section IV, computer simulations are performed to
illustrate the relationship between error performance and de-
sign parameters. From Sections V–VII, we discuss three SQNR
performance refinement schemes. The design flow is also ad-
dressed in detail. Finally, two corresponding VLSI architectures
of MVR-CORDIC algorithm are derived in Section VIII, fol-
lowed by the conclusions in Section IX.

II. CORDIC AND MVR-CORDIC ALGORITHM

A. CORDIC Algorithm

The CORDIC algorithm decomposes the rotation angle,,
into predefined elementary angles, i.e.,

(1)

where
number of elementary angles;

—rotation sequence, which determines
the rotation angle ;

— th elementary angle;

residue angle.

TABLE I
SUMMARY OF CORDIC ALGORITHM IN CIRCULAR ROTATIONAL MODE

Based on (1), the CORDIC recurrence equations can be written
as

(2)

for . Due to the nature of the recurrence
relation above, for data of bits wordlength, no more than
iterations need be performed, i.e., . In addition, the final
values, and , need to be scaled by an accumulated
scaling factor

(3)

to retain the norm of the initial vector . Several
CORDIC-like iteration schemes are proposed to perform the
scaling operation [18]–[20]. In Table I, we summarize the basic
iteration procedure of the CORDIC algorithm in the circular
mode.2 It consists of two major phases: the microrotation phase
and scaling phase.

B. SQNR and Performance Indices

Before the derivation of the MVR-CORDIC algorithm, we
first introduce the residue angle error as the performance
index for the rotational results. The residue angle erroris de-
fined as the angle difference between the target angleand the
angle that can be represented by CORDIC (or MVR-CORDIC)
algorithm. That is

(4)

Additionally, another performance index, signal-to-quantiza-
tion-noise ratio (SQNR), is also employed. The usage of SQNR
can give a more straightforward view about the signal quality
in practical implementations. The detailed discussion of SQNR
and its relationship with are addressed in the Appendix.

2There are three rotational modes in CORDIC algorithm; circular mode, hy-
perbolic mode, and linear mode. In this paper, we focus on circular CORDIC
system only.

550 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

C. The Proposed MVR-CORDIC Algorithm

In the development of the MVR-CORDIC algorithm, we
make the following modifications on the microrotation proce-
dure of the conventional CORDIC algorithm.

• Skip Some Microrotation Angles:
As opposed to conventional CORDIC, we are forced

to skip some microrotations in the modified scheme. By
doing so, we cannot only reduce the iteration number
but also improve the error performance for certain an-
gles. For example, we can rotate the angle of
by performing the microrotation of elementary angle

once, and skipping all remaining
microrotations. Then, the residue angle error .
On the contrary, the conventional CORDIC has to go
through all the microrotations with sequence of

, while the residue angle error
is for .

• Repeat Some Microrotation Angles:
In the conventional CORDIC of Table I, each microro-

tation angle, , is allowed to be used
only once. However, in our modified scheme, we make it
more flexible so that each microrotation can be performed
repeatedly. By doing so, for a rotation angle that is
times of one microrotation angle, i.e., , we
can simply execute the microrotation of by times
instead of performing microrotation in the conventional
way. Therefore, better error performance can be obtained
but with reduced iteration number. For example, we can
obtain for rotation angle of by simply
rotating elementary angle of twice,3

whereas the conventional CORDIC uses the sequence
and the residue angle error is

as large as .
• Confine the Number of Microrotations to :

In Table I, all microrotations need to be executed se-
quentially to complete the CORDIC rotation. To obtain
the best performance, is often set to be equal to the in-
ternal wordlength, , which is the upper bound of in
practical implementations [11]. However, in our modified
algorithm, we confine the iteration number in the microro-
tation phase to (). As we will see, this will
lead to significant speed improvement in the CORDIC op-
eration.

Putting all of these modifications together, we can rewrite (1) as

(5)

where is the rotational sequence
that determines the microrotation angle in theth iteration, and

is the directional sequence that controls the
direction of the th microrotation of .

To see the effects of the above modifications, we show the
constellation of reachable angles of MVR-CORDIC in Fig. 1(b).

3The example of�=2 is used to emphasize the impacts of repeating microro-
tation angles. However, in practical implementation, rotation of angle�=2 can
be simply accomplished by settingx = �y(0) andy = x(0) without going
through CORDIC rotation.

(a) (b)

Fig. 1. Constellation of reachable angles. (a) Conventional CORDIC with
N = R = 3. (b) MVR-CORDIC withW = 4 andR = 3.

TABLE II
SUMMARY OF THE MVR-CORDIC ALGORITHM

The wordlength, , is assigned to be 4, and the restricted iter-
ation number, , is 3. The reachable angles of conventional
CORDIC for iteration number are also
shown in Fig. 1(a) for comparison purpose. Note that the com-
parison is made under the condition of equal iteration number in
the microrotation phase. As we can see in Fig. 1, the number of
reachable angles of the proposed MVR-CORDIC is much more
than the conventional CORDIC. This implies that, given the
same iteration number, the MVR-CORDIC will outperform the
conventional CORDIC in terms of residue angle error. Namely,
given a target residue angle error, the MVR-CORDIC rotation
requires fewer iterations compared with conventional approach.
Consequently, the speed performance of CORDIC-based arith-
metic operations can be greatly improved.

In Table II, we summarize the microrotation procedure as
well as the scaling operation (to be discussed in Section VI) of
the MVR-CORDIC algorithm. The main feature of the proposed
MVR-CORDIC algorithm can be stated as follows.

Given a rotation angle, the MVR-CORDIC attempts
to accomplish the rotation in a more flexible way. It takes
fewer iterations than the conventional CORDIC algorithm,
while the SQNR performance is still maintained.

III. SEARCHING ALGORITHMS AND COMPARISON

A. Searching Algorithms

Consider (5) in the previous section. Now the key issue in
the MVR-CORDIC algorithm is to find the best sequences
of and to minimize , subject to the constraint
that the total iteration number is confined to . To solve the
constrained problem, we consider the following three searching
algorithms.

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 551

Fig. 2. The flowcharts of the proposed searching algorithms. (a) Greedy algorithm. (b) Exhaustive algorithm. (c) Semigreedy algorithm.

1) Greedy Algorithm:
In the greedy algorithm, we try to approach the target

rotation angle, , step by step. That is, in each step, deci-
sions are made on and by choosing the best com-
bination of so as to minimize . Specif-
ically, and are determined such that the error
function of is minimized,
where is the residue angle inth step, defined as

(6)

The searching algorithm is terminated if no further
improvement can be found, i.e., , or

and are determined at the end of
the searching algorithm. The detailed flowchart of the
greedy algorithm is shown in Fig. 2(a). This approach
is similar to the one used in [17]. However, the major
difference is that in [17], the greedy algorithm terminates
only when the residue angle error cannot be further
reduced. The total iteration number is not fixed.

2) Exhaustive Algorithm:
The second approach to solve the constrained problem

is the exhaustive algorithm. The idea is to search for the

entire solution space, i.e., all the possible combinations
of , in one single step. Decisions for

and , for , are made such that
the error function

(7)

is minimized. Obviously, the exhaustive searching algo-
rithm produces global optimal solution. The flowchart of
the algorithm is depicted in Fig. 2(b).

3) Semigreedy Algorithm:
The last searching algorithm is the semigreedy algo-

rithm. Actually, we can treat the semigreedy algorithm as
a combination of greedy and exhaustive algorithm. The
whole searching space of and for

are divided into several sections with itera-
tions as a segment. We call such a segment as a block,
and is termed as the block length. The segmentation
scheme is illustrated in Fig. 3. In the semigreedy algo-
rithm, the exhaustive search is performed within each iso-
lated block, and the connection between each consecutive
blocks is determined in the greedy manner. Specifically,
in the th block (corresponds toth step in performing the
searching algorithm), the decisions of and for

552 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

Fig. 3. The segmentation of the searching space with block lengthD in the semigreedy algorithm.

TABLE III
COMPUTATIONAL COMPLEXITY OF THE PROPOSEDTHREE SEARCHING ALGORITHMS

TABLE IV
THE COMPUTATIONAL COMPLEXITY WITH N = 16; R = 6, AND D = 3, AND THE ERRORPERFORMANCECOMPARISONWITH N = 8; R = 4, AND D = 2

are made to minimize the cost
function

(8)

where

(9)

is the residue angle in theth step. Fig. 2(c) illustrates the
detailed flowchart of the proposed semigreedy algorithm.

B. Comparison of Computational Complexity and Error
Performance

Next, we compare the computational complexity and error
performance for the three searching algorithms developed
above. The comparison results are shown in Table III. Three
parameters , and are the number of elementary
angles, the restricted iteration number, and the searching
block length of the semigreedy algorithm, respectively. The
conventional CORDIC algorithm is also included here for

comparison purpose. Note that the complexity is represented in
terms of loop number. We use it to approximate the execution
time, since the number of loops dominates the computational
complexity in performing these searching algorithms.

In addition, in Table VI, we show the numerical results of the
loop number by setting and . The
Normalized Loop Number is defined as

Normalized
Loop number of the proposed searching algorithm

Loop number of the conventional CORDIC algorithm
(10)

It can be used to illustrate the complexity gaps between these
searching algorithms. In the last row, we show the averaged
residue angle error for and . The
ensemble average was carried out over 65 angles from 0 to

with equal space, i.e.,
.

Based on the results in Tables III and IV, we can make the
following observations:

• The greedy algorithm requires the least computational
complexity among the three algorithms,

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 553

while it generates the sequences with worst error per-
formance . This algorithm can be
used to give the designers a quick but rough index about
the performance of a specified application by using the
MVR-CORDIC algorithm. It can be also applied to the
situations where iterative-design is often involved, such
as lattice filter design. In this case, designer may have
to go through many design iterations to determine the
restricted iteration number, , and the wordlength, ,
so as to meet the filter specification. With the greedy
search, the designer can therefore choose these design
parameters within short design period.

• The exhaustive algorithm consumes the longest execution
time while resulting in the best error
performance . This can be applied to
those angles that are often employed in DSP applications,
such as the twiddle factors, ,
in FFT/IFFT. In such applications, for a given angle, we
only have to perform the algorithm once to find the results
of rotational sequence and directional sequence. This al-
gorithm can be also applied to the applications where the
performance is of most importance while with no restric-
tion on execution time.

• The exhaustive algorithm can provide the best SQNR per-
formance. However, for large or , it becomes prac-
tically impossible due to its heavy computational com-
plexity. In such a situation, the semigreedy algorithm can
be employed instead. Actually, the semigreedy algorithm
plays the role in providing tradeoffs between the other two
algorithms described above. The parameterof the semi-
greedy algorithm is used to control the algorithm so as to
generate well error performance
within moderate execution time . We can
treat semigreedy algorithm as the generalized version for
the three proposed searching algorithms, i.e., the greedy
algorithm is the semigreedy algorithm with , and
the exhaustive algorithm is the semigreedy algorithm with

.

IV. RELATIONSHIP BETWEEN ERRORPERFORMANCE AND

DESIGN PARAMETERS

In this section, three experiments are conducted to illustrate
the relationship between error performance and the parameters
used in the three searching algorithms. As with the previous
experiments, the averaged residue angle error,, is obtained
based on ensemble averaging of 65 angles from 0 towith
equal space.

• Error Performance Versus Number of Elementary An-
gles ():

In Fig. 4, the averaged residue angle error is plotted
versus the number of elementary angles,, for a fixed it-
eration number . Note that, to obtain the best error
performance in the conventional CORDIC algorithm, the
number of elementary angle is set to be . In Fig. 4,
for all the searching algorithms, the error performance
improves as the number of elementary angles increases.

Fig. 4. Error performance versus number of elementary anglesN withR =

4 andD = 3.

Fig. 5. Error performance versus restricted iteration numberR withN = 8

andD = 3.

This can be explained that we have more choices in ap-
proximating the rotation angle,, thus resulting in smaller
residue angle error. However, the error curves are grad-
ually saturated as is above certain value. The reason
is that the error performance cannot be improved unlim-
itedly only by increasing when the restricted iteration
number is kept fixed. Actually, the saturation phenom-
enon of error performance suggests that we can perform
the searching algorithms by using a smaller number of el-
ementary angles, (say in this case), instead
of using directly. By doing so, we can reduce the com-
putational complexity in running the searching algorithms
while retaining compatible error performance.

• Error Performance Versus Restricted Iteration
Number ():

Fig. 5 emphasizes on the relationship between the error
performance and the restricted iteration number,, for
the algorithms of interest. Similar to Fig. 4, the results
presented in Fig. 5 show that increasing has the effect
of improving error performance. Also, the error curves
also saturate gradually for large . The phenomenon can
be explained in the similar way as with Fig. 4.

One important observation is as follows. First, we
use the horizontal dashed line to represent the averaged
noise level of conventional CORDIC algorithm with

. We can find that by using greedy search, the

554 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

Fig. 6. Error performance versus searching block length,D, with N = 6;

N = 8; N = 10, andR = 3.

MVR-CORDIC algorithm can perform equally well as
conventional CORDIC algorithm with only 4 iterations

. For the semigreedy and the exhaustive search,
even fewer iterations (in this case) are needed
to achieve compatible error performance. Recall that
the conventional CORDIC algorithm has to go through
8 () microrotations to reach such a noise level.
In addition, computer simulations also indicates that
by using semigreedy algorithm with moderate, the
MVR-CORDIC algorithm requires only iterations
(microrotations), in an average sense, to achieve compa-
rable (or even better) error performance compared with
the conventional CORDIC algorithm.

• Error Performance Versus Searching Block Length
():

Fig. 6 depicts the residue angle error versus the
searching block length (). As can be seen, we can obtain
better performance by increasing the searching block
length of semigreedy algorithm. The results confirm our
argument that, for larger , the semigreedy behaves
like exhaustive algorithm. On the other hand, when
is small, the essence of greedy algorithm will arise due
to the confined searching space. Moreover, the satura-
tion phenomenon suggests that we can use semigreedy
algorithm with moderate value of (say in
this case) to obtain a near optimum error performance
without going through exhaustive search. Meanwhile, the
saving in computational complexity is significant. For
example, in this experiment with and , the
computational complexity rate between exhaustive search
and semigreedy search is only about 0.0326%, and the
performance difference is below60 dB.

V. SELECTIVE PREROTATION SCHEME FORMVR-CORDIC
ALGORITHM

A. Conventional Prerotation Scheme

From (5), we can easily verify that all the reachable angles
of MVR-CORDIC algorithm are confined to the range of

with the setting and
, for . Hence, to perform vector

rotation of arbitrary angle, i.e., , directly, the

MVR-CORDIC requires at least 4 iterations () to
cover all possible rotation angles. However, the residue angle
error will be increased approximately with the value of
for . This can be easily explained by observing
the constellation of the reachable angles in Fig. 1(a): the
distribution is sparse for of large value, which results in
large residue angle error. In general, the error can be suppressed
by dividing the rotation of a large (i.e.,) into
two steps (assume) [17]:

1) Prerotate the initial vector by an angle of
to .

2) Rotate the vector by an angle of ().

In step 1), the prerotation can be easily accomplished without
going through CORDIC algorithm. In step 2), we can continue
to perform the MVR-CORDIC rotation of angle (), which
is a smaller angle compared with original. By doing so, we
can keep the rotation angle in step 2) below , and hence
prevent the MVR-CORDIC from rotating a large angle directly.
Consequently, better error performance can be obtained.

B. Selective Prerotation Scheme

Based on above design concept, we develop an improved
scheme, called the Selective Prerotation Scheme, for the MVR-
CORDIC rotation of arbitrary angle. The main concept of the
new scheme is that we attempt to approach the rotation angle
in either clockwise or counterclockwise. The bidirectional rota-
tion scheme can be achieved by introducing two different pre-
rotation angles, where one prerotation angle is greater than,
and the other one is smaller than. In general, these two types
of rotation with different prerotation angles behave differently
in terms of . Then, from the alternative candidates, the one
with smaller is selected so as to perform the MVR-CORDIC
rotation of , hence the name of the method.

To be more specific, in the proposed scheme, we first divide
the MVR-CORDIC rotation into 4 groups based on the quad-
rant of the rotation angle in the complex plane. Then, in each
group, two rotation types with different prerotation angles are
suggested to carry out the rotation. To obtain better SQNR per-
formance, we have to evaluate the respectivefor each type.
Then, choose the better one from these two candidates. Similar
to the conventional prerotation scheme, two steps are required to
complete each MVR-CORDIC rotation: one step for rotation of
prerotation angle, and other step for rotation of remaining angle
with MVR-CORDIC algorithm. We summarize the proposed al-
ternative prerotation scheme in Table V. The proposed scheme
can provide a better error performance than conventional ap-
proach without increasing any hardware complexity.

C. Design Example and Simulation

To illustrate the modified scheme developed earlier, we con-
sider the example of . First, the rotation angle be-
longs to the second group, i.e., . According to the
selective prerotation scheme in Table V, the following two types
of rotation procedure may be adopted:

• Type I: Prerotate angle of , followed by
MVR-CORDIC rotation of .

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 555

• Type II: Prerotate angle of, followed by MVR-CORDIC
rotation of .

Here, the semigreedy algorithm (with parameters of
, and) is used to search for the

directional sequence, , as well as the rotational sequence,
, for these two angles. The results for these two rotation

types are listed in Table VI, where the directional and rotational
sequence are represented in the vector form as

The corresponding SQNR values are calculated based on (A.1)
with .4 It can be seen clearly that, in this
case, we can obtain better error performance by using Type-I
rotation. As a result, we can perform the rotation of
with MVR-CORDIC rotation procedure of Type-I in Group-II.

Moreover, in Fig. 7, the residue angle error,, is plotted
versus 65 angles distributed from 0 towith equal space for
three rotation schemes discussed in this section; namely, the di-
rect rotation (no prerotation phase), the conventional scheme,
and the proposed modified scheme. The experiment is carried
out based on the semigreedy algorithm with parameters of

, and . Based on the simulation re-
sults in Fig. 7, we can make the following observations.

• Unlike the direct rotation approach, the error performance
of the selective prerotation scheme will not degrade as
increases.

• The selective prerotation scheme can provide apparent
improvement compared with conventional prerotation
scheme for . The reason is that,
for , we can still perform the
MVR-CORDIC rotation of that is smaller than .
However, the conventional scheme has to perform the
rotation with angle that is greater than .

• The proposed scheme consistently behaves best among
the three schemes for all the rotation angles. The aver-
aged residue angle error of the 65 angles for direct rota-
tion scheme, conventional scheme, and proposed scheme
are , and , respectively.

VI. SELECTIVE SCALING SCHEME FORMVR-CORDIC
ALGORITHM

A. Scaling Operation

In this section, we consider an implementation issue: the
scaling phase of MVR-CORDIC algorithm. The use of scaling
operation is intended to ensure the preservation of the norm of
the vector, , after the sequence of microrotations.
For convenience of representation, the scaling factor,, of
MVR-CORDIC algorithm in Table II is represented as [1]–[3]

(11)

4These SQNR values are obtained without considering the effects of scaling
operation, which will be discussed in the next section.

TABLE V
SUMMARY OF THE ROTATION PROCEDURE OFSELECTIVE PREROTATION

SCHEME FORMVR-CORDIC ALGORITHM

TABLE VI
SQNR RESULTS FORROTATION ANGLE OF� = 21�=32 FOR MVR-CORDIC

ALGORITHM WITH THE PROPOSEDROTATION SCHEME

To save hardware complexity, in practical implementation the
scaling operation is performed by quantizing the scaling factor,

, in two forms [18]–[20], i.e.,

Type I: (12)

Type II: (13)

where
quantized value of ;
restricted iteration number in the scaling phase;

; and
.

The corresponding iteration procedures for these two scaling
types are as follows:

Type I: (14)

with , and ,

Type II: (15)

556 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

Fig. 7. SQNR performance comparison of three rotation schemes, based on semigreedy search of 65 angles uniformly distributed from 0 to�.

with and . Note that
provide successive approximation of ide-

ally scaled vector. It takes iterations to complete the
scaling phase, and the resultant vector of MVR-CORDIC is

. By doing so, we canapprox-
imate the multiplication of with only shift-and-add
operations, and the scaling operation can share the same
circuits with the MVR-CORDIC microrotation module (to be
discussed in the Section VIII), which eliminates the significant
overhead of scaling multipliers.

As one can expect, this process will introduce some quanti-
zation noise, and the noise increases asdecreases. Similar to
the microrotation phase described in Section II-B, we introduce
another performance index,, to describe the amount of error
introduced by the approximation process of (12) and (13). The
scaling approximation error, , is defined as

(16)

The relationship between and SQNR performance is dis-
cussed in the Appendix.

B. Selective Scaling Scheme

In Fig. 8(a) and (b), we illustrate the distribution of the values
that can be represented by (12) and (13) with and

. It is interesting to see that the distributions for these two
types of representation are quite different, i.e., thedistribution
of Type-I is dense in the region of ; on the contrary,
the distribution of Type-II concentrated in the different region
of . Based on the observation and apply the similar
idea used in Section V-B, we are motivated to propose a novel
scaling operation, calledSelective Scaling Schemefor the MVR-
CORDIC algorithm.

The basic idea of the selective scaling scheme is to combine
these two types scaling operation in (12) and (13). That is, for
a given scaling factor, a better strategy to quantizeis to find
out the smallest (the closest to) with respect to these

Fig. 8. The distribution of values that can be represented by (a) Scaling Type-I
(b) Scaling Type-II.

two types of representation. We can then choose the one with
smaller from the two candidate scaling types. Hence, we can
carry out the scaling operation with better SQNR performance.

C. Design Example

We use the example of to demonstrate the pro-
posed scaling procedure. First, by substituting into
(11), we obtain

Assume that . We summarize the results for these two
scaling types in Table VII, where and for

are represented in vector form as

respectively. The SQNR result before performing the such a
quantized scaling operation (i.e., assume floating-point scaling)
is 60.76 dB. In Type-I scaling, the SQNR value drops to 47.93
dB due to the introduced quantization error of

. On the other hand, Type-II scaling has relatively low

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 557

TABLE VII
RESULTS OF THESCALING TYPES FORROTATION ANGLE OF� = 21�=32,

WHERE THEPARAMETERS ARE SET ASR = 2 AND W = 9

quantization noise of , and the SQNR degrada-
tion is below 0.01 dB. Thus, by carefully choosing the proposed
scaling scheme, we can achieve better SQNR performance of
the MVR-CORDIC algorithm.

VII. I TERATION-TRADEOFFSCHEME AND DESIGNFLOW

Due to the similar nature and operations of the microrotation
phase and scaling phase, one question may arise in the appli-
cation of MVR-CORDIC algorithm: how to determine and

in an optimal sense? In this section, we provide a systematic
design flow to determine these two important design parameters
for the MVR-CORDIC algorithm.

A. Iteration-Tradeoff Scheme for and

From previous discussions, we known that to carry out the
complete MVR-CORDIC algorithm in Table II, we have to go
through two separate phases with a total of iterations. We
define as

(17)

where and are the restricted iteration number in micro-
rotation phase and scaling phase, respectively. When the total
iteration number is of major concern, (17) implies that we can
make tradeoff between and . That is, we can change
and to and , respectively, subject to the constraint

(18)

We are justified to do so since the basic iterative operations in
these two phases are almost the same. The modification can
help to further improve the SQNR performance for certain rota-
tion angles. In the following, we develop two tradeoff schemes
depending on the characteristics of the rotation angle in the
MVR-CORDIC algorithm.

• Case I: Trading for
In this case, we attempt to gain additional rotation ac-

curacy in the microrotation phase at the expanse of de-
grading precision in the scaling operation. This can be
applied to the MVR-CORDIC rotation when the residue
angle error, , dominates the overall SQNR performance
(). It is suitable for the situation that the rota-
tion angle lies in the region with relatively sparser distribu-
tion [see Fig. 1(a)]. Meanwhile, the corresponding scaling
factor, , can be well represented with iterations. Of
course, it is only meaningful that the extra SQNR gained

TABLE VIII
CASE I: TRADING R FOR R WITH � = 7�=32,

N = 16; D = 2; R = 3; R = 3; R = 4 AND R = 2

TABLE IX
CASE II: TRADING R FOR R WITH � = 8�=32,

N = 16; D = 2; R = 3; R = 3; R = 2 AND R = 4

in microrotation phase can compensate for the SQNR loss
in scaling phase. An example of Case I is presented in
Table VIII.

• Case II: Trading for
On the other hand, when the overall SQNR perfor-

mance is dominated by the introduced quantization error
in scaling operation, (). We attempt to obtain
more accurate representation of the scaling factor but
sacrificing the angle resolution in microrotation phase. It
is suitable for the situation that the scaling factor lies in
the region with relatively sparser distribution (see Fig. 8),
while the rotation angle,, can be well represented with

elementary angles. An example of such a tradeoff
case is presented in Table IX.

B. Design Flow for the MVR-CORDIC Algorithm

Based on the above iteration-tradeoff scheme, we derive the
design flow as well as the optimization procedure to determine
the optimal and for the MVR-CORDIC algorithm.

• Step 1: Determine .
In practical implementation, must be determined

according to the system requirement, such as speed, power
consumption, silicon area, and, of course, the SQNR per-
formance.

• Step 2: Initialize and .
Once is determined, we have to allocate and

for microrotation and scaling phase, respectively. As a rule
of thumb, we initially set and
(assume is an even integer). With this initial setting,
the design flow is likely to converge to the optimum solu-
tion within fewest design iterations, in an average sense.

• Step 3: Perform the Searching Algorithm with and
.
With and , we can apply the semigreedy algo-

rithm to compute , , , and , as well as
and in these two phases. For iterative design process, it

558 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

is better to use moderately small (say , 2, or 3)
to accelerate the computation.

• Step 4: Estimate the SQNR Performance.
In general, the estimation of SQNR is a time-consuming

process because we have to go through extensive computer
simulation to obtain a reliable SQNR value. Fortunately,
with the SQNR analysis developed in the Appendix, i.e.,

SQNR(dB) (19)

we can accurately estimate the SQNR value by simply
substituting and into (19).

Moreover, (19) indicates thatwhen and are of
the same magnitude, the SQNR reaches its maximum value
due to the dependency of these two error indices. That is,
decreasing may have the effects of increasing, and
vice versa. We can use this property as the design guide-
line in determining the optimal and . Based on the
observation as well as the iteration-tradeoff scheme devel-
oped earlier in this section, we are able to derive an opti-
mization procedure, as described from Step 5 to Step 7.

• Step 5: Apply the Iteration-Tradeoff Scheme
The selection of the tradeoff-type depends on the quan-

tities of the errors, and , in these two phases. To be
specific, modifications are made on and as

if

or if (20)

• Step 6: Perform the Semigreedy Algorithm with
and .

• Step 7: Check if SQNR is Improved.
By using (19), we can check if any SQNR improvement

can be obtained with the modified and . If yes,
accept the modification and go back to Step 5 to further
improve the SQNR performance. If not, the optimization
process is terminated.

• Step 8: Perform the Semigreedy Algorithm with Large
Value of .

The final step of the design procedure is to perform the
semigreedy algorithm with larger value ofas well as the
optimized and , which are obtained in the iteration
optimization procedure.

In Fig. 9, we illustrate the corresponding design flowchart of
the proposed design methodology and optimization procedure.

C. Design Example

Consider rotational angle in the application of
MVR-CORDIC algorithm. Assume and the wordlength
is . We initially set , and apply the semi-
greedy algorithm with small (in this case). Based on
the SQNR refinement schemes developed in Sections V and VI,
it can be found that and
for Type-I rotation and Type-II scaling operation, respectively.

Fig. 9. The proposed design flowchart and the optimization procedure in the
application of MVR-CORDIC algorithm.

The SQNR value is 70.93 dB. Next, by applying the Case-II
tradeoff on and in (20), we can obtain an improved re-
sults of , , and 83.44 dB
SQNR value with Type-I rotation and Type-II scaling operation.
The iteration number in the microrotation and scaling phase now
are and , respectively. Since no improvement
is possible, the optimization procedure is terminated. Then, we
can apply the semigreedy algorithm with , , and
a large value of (in this case). The resultant SQNR
value can be further improved to 87.39 dB.

Fig. 10 shows all the possible combinations of and
and their corresponding SQNR results under the constraint

. Based on the results, we can make the
following observations.

1) The proposed design procedure can provide the optimal
solution in the determination of and . That is, the
resultant and computed by our design flow are
the same as the optimal ones in Fig. 10. The important
issue is that, with the aid of proposed design flow, we
can obtain the optimal solution within only one design
iteration, in this case, instead of checking exhaustively all
possible combinations of and .

2) As can be seen from Fig. 10(b), the theoretical SQNR
values, which are obtained by simply using (19), coin-
cides exactly with the simulated results. The simulated
SQNR values are calculated by ensemble-averaging of
10 000 output SQNR values generated by MVR-CORDIC
rotation with 10 000 random input vectors .
The results indeed confirm the validity of (19) in the fast
estimation of the SQNR value.

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 559

Fig. 10. (a) All possible combinations ofR andR under the constraint
R + R = R . (b) The corresponding theoretical and simulated SQNR
values.

3) The optimal SQNR (83.44 dB) occurs under the situation
that and are about of the same magnitude. The result
confirms with our earlier argument for (19).

VIII. VLSI I MPLEMENTATION OF MVR-CORDIC

A. Iterative MVR-CORDIC Structure

In Fig. 11, we illustrate the iterative structure for the proposed
MVR-CORDIC algorithm. It is similar to the conventional iter-
ative CORDIC structure [3]. The major difference of these two
implementations lies in their control units. As shown in Fig. 11,
two separate phases are performed to complete single MVR-
CORDIC rotation, i.e., the microrotational phase (marked by
solid line) and the scaling phase (marked by dash line). In each
phase, three kinds of control signal are used to control the op-
erations:

• in microrotation phase and in scaling phase: it con-
trols the number of bits to be shifted by barrel shifters.

• in microrotation phase and in scaling phase: it
determines the operations of adder/subtracter.

• Control signal, : it governs the phase switching of the
iterative MVR-CORDIC structure and the scaling type
(Type-I or Type-II) in scaling phase.

All the control signals can be generated by the proposed
searching algorithm in advance, and are stored in ROM.

To evaluate the speed performance of the iterative structure,
we assume that denotes the execution time to carry out single
iteration of microrotation (or scaling). For MVR-CORDIC al-
gorithm, the total execution time is . On
the other hand, for conventional CORDIC algorithm, it takes
iterations in microrotation phase and another iterations in
scaling phase. Thus, it requires total to complete
one CORDIC rotation. To make a fair comparison between these
two approaches, we compare these two numbers, and

, under the condition of equal SQNR performance.
From Section IV, we know that by using semigreedy search, the

Fig. 11. The implementation of the MVR-CORDIC processor.

MVR-CORDIC algorithm requires an average of it-
erations to reach comparable error performance of conventional
CORDIC in microrotation phase. In the scaling phase, Hu [3]
has reported that on the average. Similar result
of also can be obtained for MVR-CORDIC algo-
rithm. Hence, and . That is, we
can save about 50% execution time in the iterative implementa-
tion of MVR-CORDIC algorithm compared with conventional
CORDIC algorithm.

Note that theexecution timeis different from theruntime
mentioned in Section III. They are two different design issues in
the proposed MVR-CORDIC algorithm. Given a target angle,
the runtime denotes the time to determine the design parameters
of the MVR-CORDIC. The execution is defined as the hardware
execution time to perform the vector rotation in VLSI circuits.

B. Parallel and Pipelined MVR-CORDIC Structure

By unfolding the iterative implementation of Fig. 11, we
can obtain the parallel MVR-CORDIC structure as depicted
in Fig. 12(a). The structure is composed of basic MVR-
CORDIC processors connected in cascade form, in which
the leading processors perform the microrotations and
the following processors execute the scaling operations.
Each basic MVR-CORDIC processor performs one iteration
as specified in Fig. 11. Moreover, for the case that the parallel
structure is dedicated to perform a particular rotation angle, the
operation of each processor is kept fixed. We can thus save the
hardware complexity easily by replacing all the control circuits,
barrel shifters, and multiplexers with only wire routing.

To achieve a higher data throughput rate, we can further in-
sert pipeline stages (latches) between successive processors of
parallel structure, which results in the pipelined MVR-CORDIC
structure in Fig. 12(b). The pipelined structure is very suitable
for real-time applications at high data bandwidth.

Due to the reduced iteration number, for parallel MVR-
CORDIC structure, we can save about 50% silicon area
compared with the conventional parallel CORDIC structure.
The reason is that the silicon area is directly proportional to

560 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 6, JUNE 2001

Fig. 12. (a) Parallel structure of conventional CORDIC processor array. (b) Parallel structure of MVR-CORDIC processor array.

the number of basic processors, and the numbers of processors
for MVR-CORDIC and conventional CORDIC are and

, respectively. For the same reason, the critical path of
parallel structure in Fig. 12(a) is only 50% compared with the
conventional pipelined CORDIC structure. The latency intro-
duced by pipelined structure can also be halved by employing
the proposed MVR-CORDIC algorithm.

IX. CONCLUSION

In this paper, we present a new modified CORDIC algo-
rithm, called the MVR-CORDIC algorithm, to accelerate the
CORDIC operation. It can be applied to the DSP applications
where rotation angles are known in advance, such as digital lat-
tice filter and discrete orthogonal transformations. In addition,
by applying the three SQNR refinements techniques developed
in the paper, we can save at least 50% execution time in the
iterative CORDIC structure, and 50% hardware complexity
in the parallel CORDIC structure compared with the con-
ventional CORDIC algorithm. Hence, low-power/high-speed
CORDIC-based VLSI architectures for high-performance DSP
applications become achievable.

APPENDIX

ANALYSIS OF SQNRAND ITS RELATIONSHIP WITH AND

Consider an input vector and a corresponding
output vector after the MVR-CORDIC rotation of
angle . The SQNR [21] of such an operation is defined as

SQNR(dB)
Signal Variance

Quantization Noise Variance

(A.1)

where is the ideal output vector, given by the floating-
point operation as

(A.2)

We can identify three error sources of the quantization noise:
1) the residue angle error, , in microrotation phase, 2) the
scaling approximation error, , in scaling phase and 3) the

rounding errorof the fixed-point arithmetic operations. In the
following, we consider their impacts on the overall SQNR per-
formance by modeling these errors as additive white noises.

• The Noise Variance Caused by Residue Angle
Error , :

Substituting in (A.2) with (or), we can
obtain the corresponding “ideal” output vector
under the influence of . Hence, the variance of the
noise, , is equal to the norm of the vector

; or equivalently

for (A.3)

where is the variance of the input vector, given by
or . That is, can be well

approximated by the squared arc-length spread by residue
angle and radius .

• The Noise Variance Caused by Scaling Approxima-
tion Error , :

To express in terms of , we define theideally-
scaled vector, , and thequantized-scaled vector,

, as

and

(A.4)

respectively. By definition, we can model the noise vari-
ance as follows

(A.5)

• The Noise Variance Caused by Arithmetic
Rounding Errors :

Given internal wordlength, , we can model the
rounding errors introduced by arithmetic operator as a
white noise with zero mean and variance of
[21, Chapter 6]. As can be seen in Section VII-A, it takes

iterations to complete the MVR-CORDIC algorithm.

WU AND WU: MVR-CORDIC ALGORITHM AND ARCHITECTURE 561

Thus, add/subtract operations are performed on
the intermediate and . Accordingly, the variance
of the overall rounding noise of the output vector can be
simply modeled as

(A.6)

Assume that all the noise sources are independent of each other,
the variance of the combined noise sources of the output vector
after MVR-CORDIC rotation can be written as

(A.7)

In most applications, the first two noise terms dominate the
overall quantization noise due to the fact that is several
magnitude orders greater than. Putting all of these together,
we can relate the SQNR to the performance indicators,and

, as

SQNR(dB)

(A.8)

Equation (A.8) plays an important role in determining optimal
iteration numbers of and in Section VII-A.

REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing technique,”IRE
Trans. Electron. Computers, vol. C-8, pp. 330–334, Sept. 1959.

[2] J. S. Walther, “A unified algorithm for elementary functions,” inSpring
Joint Comp. Conf., 1971, pp. 379–385.

[3] Y. H. Hu, “CORDIC-based VLSI architectures for digital signal pro-
cessing,”IEEE Signal Processing Mag., pp. 16–35, July 1992.

[4] K. Jainandunsing and E. F. Deprettere, “A new class of parallel algo-
rithm for solving systems of linear equation,”SIAM J. Sci. Stat. Comput.,
vol. 10, pp. 880–912, Sept. 1989.

[5] Y. H. Hu and H. M. Chern, “VLSI CORDIC array structure implemen-
tation of Toeplitz eigensystem solvers,” inProc. IEEE Int. Conf. Acoust.
Speech, Signal Processing, NM, 1990, pp. 1575–1578.

[6] P. P. Vaidyanathan, “A unified approach to orthogonal digital filters and
wave digital filters based on the LBR two-pair extraction,”IEEE Trans.
Circuits Syst., vol. CAS-32, pp. 673–686, July 1985.

[7] A. Y. Wu, K. J. R. Liu, and A. Raghupathy, “System architecture of an
adaptive reconfigurable DSP computing engine,”IEEE Trans. Circuits
Syst. Video Technol., vol. 8, pp. 54–73, Feb. 1998.

[8] M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC: Ap-
plication to matrix triangularization and SVD,”IEEE Trans. Computers,
vol. 39, pp. 725–740, June 1990.

[9] A. M. Despain, “Fourier transform computers using CORDIC itera-
tions,” IEEE Trans. Computers, vol. 23, pp. 993–1001, Oct. 1974.

[10] , “Very fast Fourier transform algorithms for hardware implemen-
tation,” IEEE Trans. Computers, vol. 28, pp. 333–341, May 1979.

[11] Y. H. Hu, “The quantization effects of the CORDIC algorithm,”IEEE
Trans. Signal Processing, vol. 40, pp. 834–844, Apr. 1992.

[12] N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with
a constant scale factor for sine and cosine computation,”IEEE Trans.
Computers, vol. 40, pp. 989–995, Sept. 1991.

[13] E. F. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC architec-
tures for fast VLSI filtering,” inProc. IEEE Int. Conf. ASSP, 1984, pp.
1–4.

[14] L. W. Chang and S. W. Lee, “Systolic arrays for the discrete Hartley
transform,” IEEE Trans. Signal Processing, vol. 29, pp. 2411–2418,
Nov. 1991.

[15] W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational al-
gorithm for the discrete cosine transform,”IEEE Trans. Commun., vol.
COM-25, pp. 1004–1009, Sept. 1977.

[16] Y. H. Hu and S. Naganathan, “Efficient implementation of the Chirp
Z-transform using a CORDIC processor,”IEEE Trans. Acoust. Speech,
Signal Processing, vol. 38, pp. 352–354, Feb. 1990.

[17] , “An angle recoding method for CORDIC algorithm implementa-
tion,” IEEE Trans. Computers, vol. 42, pp. 99–102, Jan. 1993.

[18] G. L. Haviland and A. A. Tuszynski, “A CORDIC arithmetic processor
chip,” IEEE Trans. Computers, vol. 29, pp. 68–79, 1980.

[19] H. M. Ahmed, J. M. Delosme, and M. Morf, “Highly concurrent com-
puting structures for matrix arithmetic and signal processing,”IEEE
Computer, vol. 15, no. 1, pp. 65–82, 1982.

[20] J. M. Delosme, “A processor for two-dimensional symmetric eigenvalue
and singular value arrays,” inProc. 21st Asilomar Conf. Circuits, Sys-
tems, Computers, 1987, pp. 217–221.

[21] A. V. Oppenheim and R. W. Schafer,Discrete-Time Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Cheng-Shing Wu was born in Taiwan, R.O.C., in
1973. He received the B.S. and M.S. degrees in
electrical engineering in 1996 and 1997, respectively,
from National Central University, Taiwan, R.O.C.,
where he is currently working toward the Ph.D.
degree in the field of digital signal processing (DSP).

His research interests are in the areas of VLSI im-
plementation of DSP algorithms, adaptive digital fil-
ters, and digital communication systems.

An-Yeu Wu (S’91–M’96) received the B.S. degree
from National Taiwan University in 1987 and
the M.S. and Ph.D. degrees from the University
of Maryland, College Park, in 1992 and 1995,
respectively, all in electrical engineering.

During 1987–1989, he served as a signal officer
in the Army, Taipei, Taiwan, R.O.C., for mandatory
military service. During 1990–1995, he was a
graduate teaching assistant with the Department
of Electrical Engineering, University of Maryland,
College Park. From August 1995 to July 1996, he

was a Member of Technical Staff at AT&T Bell Laboratories, Murray Hill, NJ,
working on high-speed transmission IC designs. From 1996 to July 2000, he
was with the Electrical engineering Department, National Central University.
He is currently an Associate Professor with the Electrical Engineering
Department of National Taiwan University, taiwan, R.O.C. His research
interests include low-power/high-performance VLSI architectures for DSP and
communication applications, adaptive signal processing, and multirate signal
processing.

