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Amodified version of the nonlinear iterative Chahine algorithm is presented and applied to the inversion
of spectral extinction data for particle sizing. Simulated data were generated in a l range of 0.2–2 µm,
and particle-size distributions were recovered with radii in the range of 0.14–1.4 µm. Our results show
that distributions and sample concentrations can be recovered to a high degree of accuracy when the
indices of refraction of the sample and of the solvent are known. The inversion method needs no a priori
assumptions and no constraints on the particle distributions. Compared with the algorithm originally
proposed by Chahine, our method is much more stable with respect to random noise, permits a better
quality of the retrieved distributions, and improves the overall reliability of the fitting. The accuracy
and resolution of the method as functions of noise were investigated and showed that the retrieved
distributions are quite reliable up to noise levels of several rms percent in the data. The sensitivity to
errors in the real and imaginary parts of the refraction index of the particles was also examined.
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1. Introduction

Optical techniques are well-established methods for
characterizing particle-size distributions in a variety
of application fields.1–4 Indeed they have several
advantages over other methods, such as electron
microscopy and sieving, because high-qualitymeasure-
ments can be performed in situ and in real time.
Optical techniques can provide either direct informa-
tion on particle distributions when measurements
are carried out on single particles one at a time or
indirect information when the techniques are used to
study samples containing many particles. The last
case is the most convenient because measurements
can be performed simultaneously on a large number
of particles and because of simpler experimental
setups. Indirect optical characterization is primar-
ily achieved by measuring 112 the angular distribution
of the scattered light of a fixed wavelength, 122 the
light scattered at several wavelengths for a fixed
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angle, 132 the intensity autocorrelation function of the
light scattered at a fixed angle for a fixed wavelength,
or 142 the spectral extinction of light through the
sample.
In principle, measurements of scattered light are

superior because higher sensitivities can be achieved
and independent information can be provided by the
two orthogonal polarizations of the incident light.
However, in certain experimental configurations, typi-
cally encountered when dealing with natural aero-
sols, the large illuminated volumes and the large
collection solid angles do not permit the separation of
the two polarizations.5 On the other hand, the mul-
tispectral extinction technique is very simple in terms
of measurement principle and very convenient with
regard to the optical arrangement and can be easily
performed by the adaptation of commercial spectro-
photometers. This technique is suitable for remote
sensing too and has indeed been applied to the
characterization of the atmospheric aerosol size distri-
bution for a long time.6,7
The main difficulty in retrieving the particle-size

distribution from measurements of light attenuation
at several wavelengths lies in the solution of a
Fredholm integral equation of the first kind. Vari-
ous inversion methods have been developed to solve
this classic ill-posed problem, whose characteristics
are common to many other indirect sensing experi-
ments. In practice, ill-posed problems invariably
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lead to highly unstable solutions because even arbi-
trarily small noise components in themeasured quan-
tities can give rise to extremely large spurious oscilla-
tions in the solution.8,9
The simplest approach to tackling the inversion

problem consists of making an a priori assumption
about the shape of the size distribution; the param-
eters defining the distribution are then determined by
a best-fit procedure on the experimental data. Par-
ticle-size information based on the assumed shapes of
the distributions was recovered for air suspensions,10
liquid suspensions,11 and atmospheric aerosols.12,13
However, these methods are very restrictive because,
in many circumstances, the forms of the distributions
are unknown, and consequently more general meth-
ods are preferred.
Two of the most popular inversion techniques are

the methods of Philips,14 Twomey,15 and Backus and
Gilbert,16 which are linear constrained algorithms
and are described in detail in Ref. 17; a quantitative
comparison of them is also reported in Refs. 18 and
19. Linear inversion methods and their successive
modifications were applied to a variety of experimen-
tal situations including atmospheric aerosols20,21 and
condensation of water droplets in supersonic steam
flows.22 However, in spite of their popularity and
wide applicability, the linear constrained methods
have some evident disadvantages in that their suc-
cess depends on the accurate tuning of certain fitting
parameters, which vary from case to case and are user
dependent. Moreover some constraints, such as
smoothness and positiveness, are to be imposed on
the solutions.
In more recent years, McWhirter and Pike23 intro-

duced a new approach, known as the analytic eigen-
function theory, which is based on the Mellin trans-
form of the kernel function. This technique, which is
particularly suited to problems in which the kernel is
a relatively simple analytical function, was applied by
Viera and Box24 and by Bertero and co-workers25,26 to
the inversion of spectral extinction data in the anoma-
lous diffraction approximation. Recently Box et al.27
applied the eigenfunction theory, using the exact Mie
extinction kernel, and obtained satisfactory computer
simulations, although with a tendency to overesti-
mate the content in small particles.
A different approach was suggested by Chahine28,29

who proposed a nonlinear iterative method to deter-
mine temperature profiles of the atmosphere from
measurements of its emerging radiance as a function
of frequency. The Chahine method was first applied
by Grassl30 to invert spectral transmission data and
later on was used for the inversion of light-scattering
data.31–33 The main advantages of the Chahine
method rely on the fact that no tuning of external
parameters is needed, no constraints are imposed on
the solutions that are always positive, and large
amounts of data can be reduced efficiently. On the
other hand, the technique is sensitive to the presence
of noise, so that highly unstable and noisy solutions
may occur. To increase the stability, a modification
5830 APPLIED OPTICS @ Vol. 34, No. 25 @ 1 September 1995
of this inversion procedure, the Twomey–Chahine
algorithm, was proposed8,17 and applied successfully
to the inversion of spectral extinction data.34
However, the method must be handled with care
because, as pointed out in Ref. 35, it may lack
convergence if the estimated initial distribution is too
different from the actual distribution.
In this paper we propose a new inversion algorithm

that is based on the classical Chahine scheme. We
have applied the method to the inversion of spectral
extinction data and tested it by computer simulations.
An exhaustive analysis of its accuracy, resolution, and
reliability as a function of noise has been performed.
Our results show that the method permits a large
variety of particle distributions to be accurately recon-
structed, greatly improves the stability of the solu-
tions against noise, and is able to suppress the typical
indented and spiky-shaped appearance of the distribu-
tions obtained with the classical Chahine method.
Moreover, when the kernel function exhibits second-
arymaxima and has high-frequency oscillations super-
imposed, as in the current case of spectral extinction
data, our technique seems to be particularly suitable.
We also present a quantitative analysis of the sensitiv-
ity of the method to errors in the refraction index of
the particles and discuss the possibility of recovering
it by means of spectral extinction measurements.

2. Theory

When a beam of monochromatic radiation impinges
on a sample containing particles with an index of
refraction that is different from that of the medium,
scattering and absorption lead to an attenuation of
the transmitted beam. If P0 and PT denote the
powers of the incident and transmitted beams, respec-
tively, when multiple scattering can be neglected, it
results that36

PT 5 P0 exp32a1l2L4, 112

where a1l2 is the extinction coefficient and L is the
length of the sample. If the sample is a diluted
homogeneous suspension of noninteracting polydis-
perse spheres, the extinction coefficient a1l2 is given
by

a1l2 5 e pr2Qext1r, l, m2N1r2dr, 122

where N1r2dr is the concentration of particles 1cm232
with radii between r and r 1 dr and Qext is a known
function of the Mie theory.37 Here l is the wave-
length of the radiation in the medium, and m is the
refraction index of the particles relative to themedium.
Equation 122 is a first-kind Fredholm integral equation
where a1l2 is provided by the experiment, pr2Qext is
the kernel, and N1r2 is the unknown function. Qext is
an adimensional quantity called an extinction effi-
ciency factor that actually depends on r and l only
through the ratio x 5 2pr@l. The function Qext is
shown in Fig. 1 as a function of x for different values



of m. For small x, when m is real, Qext increases as
x4, which corresponds to Rayleigh scattering. Then
it reaches a maximum for r that is comparable with l

and, for large x, tends, with oscillatory behavior,
toward a value of 2, which corresponds to the diffrac-
tion limit. Figure 1 shows that the real part of the
refraction index of the particle affects the positions of
the principal and secondary peaks ofQext, whereas the
presence of an imaginary part smears out its fine
structure and depresses the amplitude of its oscilla-
tions. We can deduce from Fig. 1 that particles of
different radii have maxima located at different l

values, which is fundamental in the use of spectral
extinction data for particle sizing.
To invert Eq. 122, we should consider that only a

finite number of l values can be accessed experimen-
tally and within a limited range 1lmin, lmax2. As a
consequence,N1r2 can be recovered only over a limited
range of radii 1rmin, rmax2. Let us call l1, l2, . . . , lq
the q measured wavelengths and divide the radius
range in q intervals or classes. Assuming that inside
each class N1r2 is a constant equal to Nj, we can
transform Eq. 122 into

a1li2 5 o
j
NjAi j, j 5 1, 2, . . . , q, 132

where Ai j is a q 3 qmatrix given by

Ai j 5 e
rj21

rj

pr2Qext1r, li, m2dr, 142

where 1rj21, rj2 is the interval that defines the jth class
of width dj 5 rj 2 rj21. If the relative refraction index
m is known for all wavelengths, the elements of the
matrixAi j are known and depend on the jth class and
the ith wavelength only. Equation 132 is then a
complete set of q linear algebraic equations.
Let us now consider how to subdivide the interval

1rmin, rmax2 into classes. Although this is somewhat
arbitrary, it is fairly convenient to define the classes
so that their relative width is constant over the entire
range 1rmin, rmax2. To do that, we should scale rk as a

Fig. 1. Behavior of the extinction efficiencyQext1x, m2 as a function
of the adimensional parameter x 5 2pr@l for different values of the
relative refraction index of the particlem.
geometrical progression given by

rk 5 rmina k, k 5 0, 1, . . . , q, 152

where a is the ratio of the progression given by a 5

1rmax@rmin21@q. If we denote with Rj the average radius
of the jth class, it results from Eqs. 152 that the
relative width dj@Rj is given by dj@Rj , a 2 1. We
have now to find how the two ranges, 1rmin, rmax2 and
1lmin, lmax2, are related to each other. Following the
idea originally proposed by Chahine, we associate for
each lj a class of particles that gives a signal sequence
a1l2 with the maximum located as close as possible to
lj. This is equivalent to, if the classes are narrow
enough, their average radius Rj being given by

Rj 5
xpeak
2p

lj, j 5 1, 2, . . . , q, 162

where xpeak is the value of x for which the functionQext
has its maximum 1see Fig. 12. Equation 162 provides
the recipe for selecting the lj values when a distribu-
tion with assigned Rj values is wanted, and vice versa
it gives the values of Rjwhen a set of lj is available for
the experiment. From Eqs. 152 and 162 it follows that
the wavelengths lj scale as a geometrical progression:

lj 5 lminaj21. 172

We now briefly recall how the classical Chahine
algorithmworks. As we know, this inversionmethod
is an iterative nonlinear scheme that tells you how to
obtain the next iteration distribution once the previ-
ous distribution is known. Let us suppose that a
distributionNj

p has been recovered after p iterations.
This distribution gives rise to a sequence of signals
acalc

p1lj2 3calculated according to Eq. 1324, which will be
different from the sequence of the measured signals
ameas1lj2. To find a better distribution at the p 1 1
iteration, the Chahine scheme corrects the population
of the jth classNj

p in the following way:

Nj
p11 5 Nj

p
ameas1lj2

acalc
p1lj2

. 182

Note that one performs the correction by comparing
the measured and calculated signals only for the lj
associated with the class being corrected. Indeed
the largest relative contribution to the extinction at
lj is given by particles with radius Rj. By use of
Eq. 182 a good match between the calculated and
measured signals can be achieved fairly quickly.
However, although this match remains stable as the
number of iterations rises, an instability mechanism
can arise and make the distributions noisier and
noisier. This effect is particularly disturbing in the
presence of experimental noise and in the case of
kernels with secondary maxima and high-frequency
oscillations superimposed, as those used in the inver-
sion of spectral extinction data and shown in Fig. 1.
The final result is a spikylike distribution where only
a limited number of classes are used to reconstruct
1 September 1995 @ Vol. 34, No. 25 @ APPLIED OPTICS 5831



the desired distribution. Examples of this effect can
be found in Refs. 19 and 32 and will be shown below.
Our improvement of the classical Chahine method

consists of using the whole signal sequence ameas1li2 to
correct the population of each class Nj. This is
carried out in the following way:

Nj
p11 5 Nj

p o
i51

q

Wi j

ameas1li2

acalc
p1li2

, 192

whereWij is a normalized weight function given by

Wij 5
Ai j

o
i
Ai j

. 1102

Note that, for each term of the sum of Eq. 192, the
correction factors 3ameas1li2@acalc

p1li24 are of the same
type as those used in the classical Chahine scheme.
Equation 192 is therefore a sort of smooth version of
Eq. 182, which is fundamental in making the algorithm
much more stable and reliable in the presence of
noise. Note also that, because of Eq. 142, in the limit
of infinitesimal classes, Wij has the same shape as
Qext. As a result the highest weight to the correction
factors is for i 5 j, i.e., for that wavelength associated
with the class being corrected. Note that the choice
of Wij defined by Eq. 1102 is somehow arbitrary.
Actually we used different weight functions 1for ex-
ample, Gaussian functions with different widths2 and
obtained distributions that are alwaysmuch smoother
and more reliable with respect to noise than those
retrieved with the classical Chahine algorithm.
However, these distributions are still characterized
by a slight tendency to present some spurious oscilla-
tions that depend on the particular weight function
that was adopted. We think that this is due to the
presence of secondary maxima in the kernel function
Qext, and, in this respect, a weight function equal to
the kernel is the one that optimizes the relative
contributions of the different channels. Finally, note
that the idea of using Qext as a weight function was
suggested several years ago by Twomey and was
applied to another version of the Chahine method
known as the Twomey–Chahine algorithm.8,17
However, we found that the Twomey–Chahine scheme
may be highly unstable when the supposed initial
distribution is too different from the distribution to be
retrieved, and we think that this is due to a nonad-
equate normalization in the weight function used in
that method. On the contrary, our technique seems
to be completely reliable in this respect, and we never
noticed a dependence of the results on different
starting distributions.
We estimated the convergence and the reliability of

our method by monitoring the behavior, as a function
of the number of iterations, of the following param-
eter:

rme 5 51q o
i51

q 3ameas1li2 2 acalc1li24
2

3acalc1li24
2 6

1@2

. 1112
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The root mean error 1rme2 describes the average rms
relative deviation of the retrieved signals, acalc1li2,
from the measured signals, ameas1li2.
In all our tests we observed that the rme decreases

with the number of iterations, and no evidence of a
minimum was ever observed. We found that, for
noiseless signals, the inversion procedure is very
stable with respect to the number of iterations. As
the procedure goes on, the retrieved distributions
match the expected ones better, and no sign of instabil-
ity is observed whatsoever. We thus stopped the
inversion procedure when the retrieved distributions
had attained their steady-state shapes.
The case of noisy signals is different. Although

the rme decreases with the number of iterations,
some instabilities in the retrieved distributions might
grow if the inversion procedure is pushed too far
away. This occurs when the rme reaches a value
comparable with the rms amount of noise present on
the data, which is a fair indication that the signal
sequence has been reconstructed as well as possible.
We noted also that broad distributions permit a much
faster convergence than narrow distributions but
exhibit a higher tendency to produce instabilities.
Astopping criterion should then be optimized, depend-
ing on both the particular distribution being tested
and the level of noise present in the signals. How-
ever, because these data are not readily available in
an experiment, some general criteriamust be adopted.
We found that a good method is to stop the procedure
when the relative variation of the rme parameter
between one iteration and the next one goes below a
fixed threshold. We fixed this value equal to 1023

and determined that this is a reasonable trade-off to
permit both narrow and broad distributions to be
retrieved fairly well.

3. Computer Simulations

We have tested our inversion method by computer
simulations. Each simulation consists of two steps.
First, simulated extinction signals 1input signals2 are
generated by computer according to Eq. 122 for a given
number distributionNinp1r2 1input distribution2 and for
a given relative refraction index minp. Second, the
refraction index mout is supposed to be known, and
then the input signals are processed through our
algorithm. The retrieved number distributionNout1r2
1output distribution2 is compared with the input
distribution on the basis of the three parameters:
the average radius, the standard deviation, and the
overall number concentration. The retrieved sig-
nals 1output signals2 associated with Nout1r2 are ob-
tained with Eq. 132 and are compared with the input
distributions on the basis of the rme parameter
defined in Eq. 1112. In most cases random noise is
added to the input signals, and for each level of noise
the procedure is repeated with 100 different samples
of noise. Consequently the output distributions and
the output signals are characterized by means of the
average and standard deviations of the above param-
eters. In the following we use the symbols rinp, sinp,



and cinp to indicate, respectively, the average radius,
the standard deviation, and the concentration of the
input distribution; the symbols 7rout8, 7sout8, and 7cout8
indicate the average values of the corresponding
parameters for the output distributions, whereas the
symbol 7rme8 will represent the average relative root-
mean deviation of the output to input signals. Here
7· · ·8 stands for an average over 100 samples of noise.
In all the tests described below, both the input and
output distributions are number distributions and
the associated parameters are number average param-
eters.
In our simulations we selected q 5 50 wavelengths,

scaled as in Eq. 172 and spanning a range of a decade
10.2–2 µm2. Therefore the ratio of the geometrical
progression was a 5 1.047, and the relative width of
the classes dj@Rj 5 4.7%. According to Eq. 162, we
studied distributions covering a range of radii Rj of a
decade with Rmin 5 0.14 µm and Rmax 5 1.4 µm. The
index of refraction of the particles relative to the
medium was minp 5 1.50 at all wavelengths. The
zero-iteration distribution was chosen to be constant
1Nj 5 const.2, and we verified that the final results
were independent of this initial guess.

A. Results for the mout 5 minp Case

In this series of tests, we supposed the refraction
index of the particles to be known exactly, so that all
the inversions were carried out by imposition of
mout 5 minp.
In the first test we show how the method works

with monodisperse distributions. We chose three
input distributions with rinp equal to 0.25, 0.50, and
1.0 µm, and we added a 3% rms noise to the input
signals. As reported in Table 1, the parameters of
the input distributions are recovered fairly well for all
three cases with an accuracy of better than 2% for the
concentration and the average radius. The full
widths of the three distributions are ,20% of the
respective average radii, and this is a reasonable
estimate of the resolution of our method. In Fig.
21a2 we show the output distributions for the case of
0.50 µm corresponding to the noiseless case and to the
first 10 samples of noise. Note that the noiseless
distribution is somewhat narrower than the noisy
distributions. This is due to the input signals for a
monodisperse distribution always being very struc-
tured with deep oscillations superimposed 3see Fig.
21b24. As a consequence the convergence of the
method is somewhat slowed, and, for the noisy cases,

Table 1. Output Parameters Corresponding to Three Different
Monodisperse Input Distributions a

rinp
11023 µm2

7rout8
11023 µm2

7sout8
11023 µm2

7cout8
1106 cm232

7rme8
1%2

250 246 6 1 23 6 1 1.02 6 0.01 5.4 6 0.4
500 493 6 1 49 6 3 1.02 6 0.01 6.0 6 0.4
1000 992 6 5 101 6 9 1.01 6 0.01 5.9 6 0.3

aFor all three cases cinp 5 1.00 3 106 cm23, and the noise added to
the input data was 3% rms.
the inversion procedure is stopped when the rme is
still higher than the rms level of the noise added to
the data. Vice versa in the noiseless case the inver-
sion procedure is stopped when convergence has been
attained, and consequently the distribution is much
narrower.
The second test was devised to study how the

algorithm works with broader distributions, and the
results are shown in Fig. 3. A Gaussian-shaped
input distribution characterized by rinp 5 0.5 µm,
sinp 5 0.1 µm, cinp 5 106 cm23 was used, and a 3% rms
noise was added to the input signals. As a result of
the inversion we obtain 7rout8 5 0.496 6 0.004 µm,
7sout8 5 0.1146 0.005 µm, and 7cout8 5 11.005 6 0.0012 3
1026 cm23, which are in excellent agreement with
the input parameters. Figure 31a2 shows the input
distribution, the output distribution for the noiseless
case, and the output distributions corresponding to
the first 10 samples of noise. Without noise the
output distribution is reconstructed in an excellent
way, whereas with noise there is a slight tendency for
tails to grow on the left side of the range. However,
note that the distributions reported in Fig. 31a2 are
number distributions, which are much more sensitive
to the presence of small particles than volume or
weight distributions. Had we plotted weight distri-
butions, the match between input and output would
have beenmuch better, with no tails on small particles.
In Fig. 31b2 the output signals corresponding to the

Fig. 2. Results of our inversion method in the case of a monodis-
perse input distribution with rinp 5 0.5 µm: 1a2 Output distribu-
tions for the noiseless case 1solid lines2 and for 10 different samples
of 3% rms noise 1dotted lines2. 1b2 Input signals 1circles2 and output
signals corresponding to the noiseless case 1solid curve2.
1 September 1995 @ Vol. 34, No. 25 @ APPLIED OPTICS 5833



noiseless output distribution are compared with the
input signals. These data are fitted much better
than in the case of monodisperse distributions as we
expect because of the smoothness of the input signals.
Correspondingly the average stopping value of the
rme parameter was 7rme8 5 13.1 6 0.22%, which is very
close to the 3% rms noise added to the input signals.
In the next figure we show an example of how our

method works compared with the classical Chahine
method. We have repeated the test shown in Fig. 3,
inverting the same input signals 1with the same 100
samples of 3% rms noise2 but using the classical
Chahine method. Results are shown in Fig. 4 where
we report the input distribution 1solid curve2, the
output distribution for the noiseless case 1solid lines2,
and, for clarity, only one output distribution corre-
sponding to a noisy case 1dashed lines2, all the others
being very similar. The distributions reported in
Fig. 4 are typical of the classical Chahine method.
With noiseless data the distribution is likely to be
characterized by the presence of spurious and deep
oscillations; when noise is present in the data, this
effect is strongly enhanced and the distribution may
become dramatically noisy and spiked. However,
noisy distributions do not always mean inaccurate
results. Indeed, coarse grain averaging gives the

Fig. 3. Results of our inversion method in the case of a Gaussian
input distribution characterized by rinp 5 0.5 µm and sinp 5 0.1
µm, cinp 5 106 cm23: 1a2 Input distribution 1solid curve2, output
distribution for the noiseless case 1solid lines2, and output distribu-
tions for 10 different samples of 3% rms noise 1dotted lines2. 1b2
Input signals 1circles2 and output signals corresponding to the
noiseless case 1solid curve2.
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following results: 7rout8 5 0.495 6 0.008 µm, 7sout8 5
0.117 6 0.009 µm, and 7cout8 5 11.04 6 0.032 3 1026

cm23, which are fairly satisfactory. Nevertheless
note that, although the average values of the above
parameters are somewhat comparable with those
obtained with our method, the error bars associated
with them are at least twice as large 1for cout there is
even more than 1 order of magnitude2, implying that
our method is much more immune to noise than the
classical Chahine method. This is also confirmed by
the fact that the average stopping value of the rme
parameter is 7rme8 5 14.8 6 0.72%, meaning that the
input signals have been more poorly reconstructed.
A summary of the results of the comparison between
our method and the classical Chahine method is
reported in Table 2.
To investigate the effect of noise on our method, we

used the same Gaussian distribution of Fig. 3 and
added different levels of noise to the input signals.
The results for the parameters of interest are in Fig.
51a2where the ratios 7rout@rinp8, 7sout@sinp8, 7cout@cinp8, and
respective error bars are plotted as a function of the
noise level. Figure 51a2 shows that there are two
effects on increasing the noise level. First, the mis-
matching between input and output parameters grows
larger, implying that the accuracy of the method
deteriorates at high noise levels; the systematic trend
to reduce the average radius and increase both the
standard deviation and the concentration is consis-
tent with that shown in Fig. 31a2, i.e., with the
presence of spurious tails on the left side of the
particle range. Second, the error bars associated
with the output parameters become larger, indicating

Fig. 4. Results of the classical Chahine inversion method for the
same input distribution of Fig. 3: input distribution 1solid curve2,
output distribution for the noiseless case 1solid lines2, and a typical
output distribution for a 3% rms noise 1dotted lines2.

Table 2. Comparison between the Classical Chahine Method and our
Method for a Gaussian Input Distribution Characterized by rinp 5 0.5 mm,

sinp 5 0.1 mm, and cinp 5 1.00 3 106 cm23a

Method
7rout8

11023 µm2
7sout8

11023 µm2
7cout8

1106 cm232
7rme8
1%2

Chahine 495 6 8 117 6 9 1.04 6 0.03 4.8 6 0.7
Ours 496 6 4 114 6 5 1.005 6 0.001 3.1 6 0.2

aThree percent rms noise was added to the input signals.



that the method is becoming more and more sensitive
to noise, with sout being the most critical parameter.
This implies that, depending on the particular sample
of noise being considered, the output distributions
will be significantly different from the input distribu-
tion and their number will increase, statistically
increasing the noise level. 1We observed that, for
noise levels near 10–20% rms, this number is of the
order of 10%.2 Figure 51a2 shows also that the above
effects, i.e., the systematic and statistical deviations
between input and output parameters, are of the
same order of magnitude. Therefore they are both
to be taken into account when the performances of
the method are to be ascertained on noisy data. In
particular, the parameters 7rout8 and 7cout8 can be
recovered quite well, and, even with 10% rms noise,
their accuracy can be ,3% and ,4%, respectively.
However, for the parameter 7sout8 a noise level of 3%
rms is sufficient to reduce its accuracy to ,14%.
As a final comment, to improve the results of Fig.
51a2, a better or different stopping criterion could be
selected, and we are still working on this. However,
the criterion adopted here is fairly satisfactory, and
this is shown in Fig. 51b2 where we report the
stopping value of the 7rme8 parameter as a function of
the noise level. It is remarkable that, within the

Fig. 5. Comparison between output and input parameters charac-
terizing the same Gaussian distribution shown in Fig. 3: 1a2
Behavior of the ratios 7rout8@rinp, 7sout8@sinp, and 7cout8@cinp as a
function of the noise level. The error bars show the spread of the
results obtained over 100 different samples of noise. The lines
through the symbols are guides to the eye. 1b2 Behavior of the
stopping value of the 7rme8 as a function of the noise level. The
line corresponds to 7rme8 5 rms noise.
error bars, 7rme8 is equal to the rms noise for the entire
range of noise.
From the above test we notice that s is the param-

eter most sensitive to noise. To investigate further
the ability of our inversion procedure to recover
distributions with different s values, we have gener-
ated input signals corresponding to Gaussian distribu-
tions with rinp 5 0.5 µm and s varying between 0 and
0.2 µm. The dependence of the output ratio 7sout8@7rout8
on the input ratio sinp@rinp for different levels of noise
is reported in Fig. 6. As shown, the output distribu-
tions tend to be always larger than the input ones,
with the mismatching increasing with the noise level.
For broad distributions the accuracy of the results is
fairly satisfactory, although for narrow distributions
the discrepancy is obviously a result of the finite
resolution of the inversion procedure.
As a further test for investigating the resolving

power of our method, we considered bi-Gaussian
input distributions and looked for the minimum dis-
tance between the two peaks, which can be resolved.
We performed the tests by adding 3% rms noise to the
input data. We show in Fig. 7 the results when the
two Gaussians are located near the minimum re-
solved distance. The two input Gaussians are char-
acterized by rinpa 5 0.40 µm, sinp

a 5 0.02 µm, cinpa 5
0.53 106 cm23 and by rinpb 5 0.60 µm, sinp

b 5 0.03 µm,
cinpb 5 0.5 3 106 cm23. Figure 7 is consistent with
the estimated resolution of the method reported in
Table 1 where we show that, for 3% rms noise, the full
width of a monodisperse distribution is of the order of
20% of the average radius, corresponding to approxi-
mately five classes of particles.
Finally, we investigated the ability of the method to

reconstruct multipeaked distributions. We chose a
tri-Gaussian input distribution characterized by the
three average radii equal to 0.30, 0.60, and 1.20 µm.
Their standard deviations were equal to 10% of their
average radii, the concentrations were all equal to
0.33 3 106 cm23, and 1% rms noise was added to the
input signals. The results are in Fig. 8 where it can
be seen that the three peaks are reconstructed fairly

Fig. 6. Behavior of the output ratio 7sout8@7rout8 as a function of
the input ratio sinp@rinp for different levels of noise. Input distri-
butions were Gaussians with rinp 5 0.5 µm and sinp varying
between 0 and 0.2 µm. The error bars indicate the spread of the
different values obtained over 100 different samples of noise.
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well, with the first being less accurate. We have not
investigated how much further we can push our
method, but from Fig. 8 we can conclude that, with 1%
rms noise present on the data, at least 3 peaks@decade
can be resolved.

B. Results for the mout fi minp Case

This last series of tests is aimed at the investigation of
the sensitivity of the inversion method to errors in the
estimate of the index of refraction of the particles.
These tests were done with no noise added to the
input signals. In the first test we studied the depen-
dence on the real part of the refraction index for a
Gaussian distribution with rinp 5 0.5 µm, sinp 5 0.05
µm, cinp 5 1.00 3 106 cm23, and minp 5 1.50. The
data were inverted by use of different values of mout,
and the results are in Fig. 9 for themout 5 1.45,mout 5

Fig. 7. Results of our inversion method in the case of a bi-
Gaussian input distribution with the two peaks located near the
minimum resolved distance. The two Gaussians are character-
ized by rinpa 5 0.4 µm, sinp

a 5 0.02 µm, cinpa 5 0.5 3 106 cm23 and
by rinpb 5 0.6 µm, sinp

b 5 0.03 µm, cinpb 5 0.5 3 106 cm23. Three
percent rms noise was added to the input signals. The input
distribution 1solid curve2, output distribution for the noiseless case
1solid lines2, and output distributions for 10 different samples of
noise 1dotted lines2 are shown.

Fig. 8. Results of our inversion method in the case of a tri-
Gaussian input distribution characterized by rinpa 5 0.3 µm and
sinp 5 0.03 µm, rinpb 5 0.6 µm and sinp

b 5 0.06 µm, and rinpc 5 1.2
µm and sinp

c 5 0.12 µm. The concentrations were all the same
equal to cinp 5 0.33 3 106 cm23. One percent rms noise was added
to the input data. The input distribution 1solid curve2, output
distribution for the noiseless case 1solid lines2, and output distribu-
tions for 10 different samples of noise 1dotted lines2 are shown.
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1.50, andmout 5 1.55 cases. It is consistent with Fig.
1 that when minp , mout the output distribution is
shifted toward small particles and is enhanced,
whereas if minp . mout it is shifted toward large
particles and is depressed. In both cases the errors
in the output average radii and concentrations were
of the order of 10% and 16%, respectively. Figure 9
shows also that the widths of the distributions were
approximately the same for the three retrieved distri-
butions.
In the second test we inverted the same data,

supposing that mout has an imaginary part. The
results are shown in Fig. 101a2 for the mout 5 1.50 1
0.05i case. The average radius and concentration of
the input distribution are recovered fairly well, with
an accuracy of <1% and <5%, respectively, whereas
the width of the output distribution is approximately
one half that of the input one. This can be under-
stood by consideration of the large mismatch between
the input and output signals shown in Fig. 101b2.
Indeed, it is consistent with Fig. 1 that the two signal
sequences havemaxima located at the same l, but the
output signals are much flatter than the input ones.
As a consequence the output distribution is centered
correctly but its width is artificially narrowed.
To study the behavior of the parameters of the

output distributions as a function of mout, we have
repeated the same tests as in Figs. 9 and 10 over a
range of values of Re5mout6 and Im5mout6, and results
are reported in Figs. 11 and 12. Figure 11 shows
that rout and cout are very sensitive to errors in
Re5mout6, and, if they are desired with an accuracy of
1%, Re5mout6 has to be known with a precision of
nearly 0.4% and 0.2%, respectively. Figure 11 shows
also that sout is slightly less sensitive to Re5mout6,
because the corresponding curve presents a mini-
mum when Re5mout6 5 Re5minp6. In fact, as long as
errors in Re5mout6 are less than a few percent, the
artificial broadening of the output distribution is
always smaller than its intrinsic width because of the
finite resolution of the inversion procedure. Figure
12 shows the behavior of the same parameters of Fig.

Fig. 9. Results of our inversion method when Re5mout6 fi Re5minp6.
The input distribution is a Gaussian with rinp 5 0.5 µm, sinp 5 0.05
µm, cinp 5 106 cm23, andminp 5 1.50 1solid curve2. We retrieve the
output distributions supposing thatmout 5 1.45 1dashed lines2,mout

5 1.50 1solid lines2, and mout 5 1.55 1dotted lines2. All the
tests were done with no noise added to the input signals.



11 as a function of Im5mout6. In this case rout and cout
are the most insensitive parameters, and they can be
recovered with accuracies of 1% and 5%, respectively,
even if particles with a purely real refraction index
are supposed to be fairly absorbing with Im5mout6 5
0.05. On the contrary the parameter sout is ex-

Fig. 10. Results of our inversion method when Im5mout6 fi

Im5minp6. The input distribution is a Gaussian with rinp 5 0.5 µm,
sinp 5 0.05 µm, cinp 5 106 cm23, and minp 5 1.50. 1a2 Input
distribution 1solid curve2 and output distribution retrieved if
mout 5 1.50 1 0.05i is supposed. 1b2 Input signals 1circles2 and
output signals 1solid curve2. The test was done with no noise
added to the input signals.

Fig. 11. Behavior of the ratios rout@rinp, sout@sinp, and cout@cinp as a
function of Re5mout6. The input distribution was the same as in
Fig. 9 with minp 5 1.50. All the tests were done with no noise
added to the input data. The lines through the symbols are
guides to the eye.
tremely sensitive to Im5mout6, and a value of Im5mout6 5
0.01 is enough to lower the accuracy of sout to <25%.
As a final comment, note that the curves in Figs.

9–12 and the relative results refer to a specific case in
which a particular distribution has been considered;
so we should take care when generalizing to other
cases. Nevertheless we think that the above results
indicate the accuracies attainable when samples with
an unknown index of refraction are studied. More-
over the strong dependence of the parameters shown
in Figs. 11 and 12 could be exploited to measure the
index of refraction of particles. Indeed, if samples of
particles with known distributions but unknown re-
fraction index are considered, we could recover their
refraction index by finding that value of mout that
permits the best fit between input and output distribu-
tions and signals.

4. Conclusions

In this work we have tested the accuracy, reliability,
and sensitivity of an innovative inversion algorithm
applied to the inversion of spectral extinction data for
particle sizing.
The technique proposed is a modified version of the

algorithm originally developed by Chahine in 1968,
but, compared with it, our technique is much more
stable, reliable, and accurate with respect to noise.
Moreover, in contrast to the original scheme, which
works well when the kernel is a smooth function with
a single maximum, our method is able to cope with
kernels that present oscillations and secondary
maxima, as in the case of spectral extinction data.
The results of our computer simulations show that

the method can accurately recover a large variety of
different distributions, including monodisperse, nar-
row, and broad bell-shaped distributions and multi-
peaked distributions as well. The accuracy and reso-
lution of the inversion scheme have been studied as a
function of the noise level present in the data and
showed that the first three moments of the particles’
distributions, i.e., concentration, average radius, and
standard deviation, can be recovered fairly well. In

Fig. 12. Behavior of the ratios rout@rinp, sout@sinp, and cout@cinp as a
function of Im5mout6. The input distribution was the same as in
Fig. 9 with minp 5 1.50. All the tests were done with no noise
added to the input data. The lines through the symbols are
guides to the eye.
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particular, we have shown that, for monodisperse
distributions with up to 3% rms noise, the accuracies
on radius and concentration are better than 2%; in
these conditions the resolution of the method is of the
order of 20%. For broader distributions the perfor-
mances of the method are even better and accuracies
of a few percent on the average radius and concentra-
tion can be reached even in the presence of 10% rms
noise. The overall shape of the distributions is also
reconstructed fairly well, with no sign of spurious
oscillations or noisy peaks. In particular, the noisy
and indented appearance typical of the distributions
recovered with the classical Chahinemethod has been
removed. Distributions retrieved with our method
are always very smooth, and there is only a slight
tendency for tails to grow toward the small particle
side of the range. However, this discrepancy would
have been more negligible if we had expressed our
results in terms of volume or weight distributions.
We have also studied the influence of errors in the

estimated refractive index of the particles on the
retrieved distributions. Our results show that there
is a strong sensitivity of the parameters characteriz-
ing the output distributions on both the real and
imaginary parts of the particle’s refractive index.
This suggests the possibility of exploiting spectral
extinction data to measure the refractive index of
samples with known size distributions.
Finally, we have applied our method to the inver-

sion of real extinction data obtained by adapting a
commercial spectrophotometer. Our results are quite
satisfactory and will be published in another paper.
After we submitted this paper, M. Bertero drew to

our attention that the inversion method proposed
here for particle sizing has also been used in the field
of medical imaging and emission tomography. In
this area the method is known as the expectation
maximization method and was originally proposed by
Richardson38 and Lucy.39

We thank A. Andreoni, Institute of Mathematical,
Physical and Chemical Sciences–Como, for helpful
discussions and M. Bertero, Department of Physics,
University of Genova–Genova, for drawing our atten-
tion to the existence of the expectation maximization
method.
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