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Abstract

The fuzzy transportation problem is a very popular, well-known optimization problem in the area of fuzzy set and system. 

In most of the cases, researchers use type 1 fuzzy set as the cost of the transportation problem. Type 1 fuzzy number 

is unable to handle the uncertainty due to the description of human perception. Interval type 2 fuzzy set is an extended 

version of type 1 fuzzy set which can handle this ambiguity. In this paper, the interval type 2 fuzzy set is used in a fuzzy 

transportation problem to represent the transportation cost, demand, and supply. We define this transportation problem 

as interval type 2 fuzzy transportation problems. The utility of this type of fuzzy set as costs in transportation problem 

and its application in different real-world scenarios are described in this paper. Here, we have modified the classical 

Vogel’s approximation method for solved this fuzzy transportation problem. To the best of our information, there exists 

no algorithm based on Vogel’s approximation method in the literature for fuzzy transportation problem with interval type 

2 fuzzy set as transportation cost, demand, and supply. We have used two Numerical examples to describe the efficiency 

of the proposed algorithm.

Keywords Fuzzy set · Interval type 2 fuzzy set · Transportation problem · Vogel’s approximation method

Introduction

The fuzzy transportation problem is one of the most well-known 

optimization problems in the field of fuzzy set and system. This 

problem appears in many real-life applications, e.g., computer 

networks, routing, shortest path problems [1–8], communication, 

etc. It has been researched extensively in many engineering fields 

such as electronics engineering, electrical engineering, and com-

puter science in terms of effective algorithms.

The supply and demand costs are considered as real 

numbers, i.e., crisp numbers in classical transportation 

problems. It computes a solution on the base of demand 

and supply. It has been applied in many fields, including 

optimal control, inventory, logistics management, and sup-

ply chain management. Many researchers have used fuzzy 

variables/numbers (especially triangular fuzzy number and 

trapezoidal fuzzy number) to express the approximate inter-

vals, linguistic terms, and unequally possible data set. Zim-

mermann [9] has introduced a fuzzy linear programming 

model. It has applied to solve different fuzzy transportation 

problem (FTP) [10–14]. Chanas et al. [15] proposed a fuzzy 

linear programming model to determine the solution of an 

FTP with fuzzy supply and demand, but transportation costs 

are in real number. Dinagar and Palanivel [16] described 

an FTP where demand, supply, and transportation costs are 

trapezoidal fuzzy numbers. Kaur and Kumar [17] have intro-

duced an algorithmic for solving the fuzzy transportation 

problem. Some researchers used the rough set to handle the 

uncertainty of transportation problems. Liu [18] has initiated 

the concept of rough variables to manage the uncertainty of 

the problem. Xu and Yao [19] have proposed an algorith-

mic approach for solving the two-person zero-sum matrix 

games with payoffs as rough variables. Kundu et al. [20] 

introduced a solid transportation model with crisp and rough 

costs. Some other researchers [21–30] also have studied this 

transportation problem in a fuzzy environment.

Usually, human perception [31, 32] is used to evaluate the 

degree of membership of an ordinary fuzzy set, which is a 
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crisp value. However, it may not be possible to find an exact 

membership degree using a type-1 (ordinary) fuzzy set, i.e., 

fuzzy variable/number because of various types of compli-

cations, insufficient information, noises, multiple sources 

of available data. The type 2 fuzzy set is an extension of 

a fuzzy set, and it can be used to solve them. Type 2 fuzzy 

set (T2FS) [33, 34] has also been proposed by Zadeh [33] 

as an extension of type 1 fuzzy set (T1FS), about 10 years 

after he has introduced T1FS. Zadeh [33] has described the 

T2FS as the fuzzy set, which is a mapping from U to [0, 1] 

with the membership function of this set, classified as type 

1. The uncertainty associated with the linguistic descrip-

tion of information [35–39] is not represented properly by 

T1FS due to incorrectness of human perception in the evalu-

ation of membership degrees having crisp values. Mendel 

and Karnik [40] have enhanced the number of degrees of 

freedom for fuzzy sets. They have described the idea to add 

at least one higher degree to T1FSs. It provides a meas-

urement of dispersion for a certain membership degree of 

T1FS. Hence, T2FS is the extension of the T1FS to a higher 

degree. T2FSs have a degree of membership that is itself 

determined by T1FSs. The membership function of T2FS is 

known as secondary membership functions. T2FS enhances 

the number of degrees of immunity to handle the ambiguity 

of the problem T2FS and has a better ability to cover inexact 

information is logically appropriate behavior. Since the gen-

eralized T2FSs are demanding for computation, most of the 

researchers use interval type-2 fuzzy set (IT2FS) in practical 

fields [41–48]. Computation in IT2FS is more manageable 

compared to generalize T2FS. Both IT2F membership func-

tion and generalized fuzzy membership function are three 

dimensions, but the secondary membership value of the 

IT2F membership function is all-time equal to 1.

Let A is a type-1 fuzzy set and Ã is an interval type-two 

fuzzy set as displayed in Figs. 1 and 2, respectively. For a 

certain value of x, say x
i
 , a single membership value r

1
 is 

obtained in A. However, there is an interval of membership 

degree between r
1
 and r

2
 in Ã for the same value of x

i
.

The motivation of this paper is to present an algo-

rithmic approach for the transportation problem, which 

will be simple enough and efficient in real-world situa-

tions. In transportation problems, transportation param-

eters (e.g., demands, supplies, transportation costs) are 

not always crisp, and that parameters could be uncertain 

due to several reasons. Therefore, computing the exact 

parameters in such scenarios could be challenging. Fuzzy 

can be used in transportation problems to handle this type 

of uncertainty, and many researchers have described this 

transportation problem with type 1 fuzzy variables. T2FS 

extends the degrees of freedom to present uncertainties, 

and it increases the capacity to deal uncertain/fuzzy/inex-

act information of any real-life problem in a logically 

appropriate manner. The main objective of this paper is 

to consider transportation problems with T2FSs. In this 

paper, we have mainly investigated the following things: 

1. We propose an algorithm to solve the fuzzy transpor-

tation problem based on Modified Vogel‘s approxima-

tion method (MVAM), where the costs are trapezoidal 

IT2FSs.

2. We introduce a linear programming problem (LPP) 

method for solving this problem.

The rest of our paper is arranged as follows.

In Sect. 2, we briefly describe some ideas about the fuzzy 

set, T1FS, T2FS, IT2FS and centroid-based ranking method 

[49]. In Sect. 3, we introduce the interval type 2 fuzzy 
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Fig. 1  Crisp grades of membership for type-1 fuzzy set (T1FS) A
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Fig. 2  Fuzzy grades of membership for IT2FS Ã (color figure online)
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transportation problems and some algorithms with flow-

charts to solve this problem. In Sect. 4, the two numerical 

examples are illustrated to describe our proposed algorithm. 

We present the conclusion in Sect. 5.

Preliminaries

Definition 1 Modification form of classical set is called the 

fuzzy set, where the elements have various degrees of mem-

bership. In the classical set, the logic is based on two truth 

values, either it will be true or it will be false. It is sometimes 

insufficient when relating human thoughts. Fuzzy logic can 

use the whole interval between 1 (true) and 0 (false) for bet-

ter result. A fuzzy set accommodate its members with dif-

ferent membership degrees in the interval [0, 1]. Let x be an 

element of X, then a fuzzy set Ã in X is a set of ordered pairs 

in which the value of �
Ã
(x, u) lies between 0 and 1. Here, x 

is primary variable, T
x
 is primary membership function of 

x, u is the secondary variable and �
Ã
(x, u) is the secondary 

member function of x.

Definition 2 [50]. A T2FS, represented as Ã , is described 

by a type-2 membership function �
Ã
(x, u) , where u ∈ T

x
 ⊆ [ 

0, 1 ] and x ∈ X, i.e.,

where ∫ ∫  describes union over all primary variable x and 

secondary variable u and T
x
⊆ [0, 1] . For discrete universes 

of discourse, ∫ ∫  is changed by 
∑

.

Definition 3 [50] : IT2FS is a simpler version of T2FS. 

IT2FS has uniform shading over the footprint of uncertainty 

(FOU). A T2FS with all �
Ã
(x, u) =1 is named an IT2FS. Let 

Ã represent an IT2FS, then it is described as

where primary variable is x,the primary membership of x is 

T
x
 an interval in [0,1], the secondary variable is u and the 

secondary membership function at x is ∫
u∈T

x

1∕u.

(1)Ã =
{

x,�
Ã
(x)|x ∈ X

}
.

(2)Ã =
{(

(x, u),�
Ã
(x, u)

)

∣ ∀x ∈ X,∀u ∈ T
x
⊆ [0, 1]

}

(3)∫
x∈X

∫
u∈T

x

�
Ã
(x, u)

/

(x, u),

(4)∫
x∈X

∫
u∈T

x

1
/

(x, u) = ∫
x∈X

[

∫
u∈T

x

1
/

u

]/

x,

In this paper, we initiate an algorithmic problem for solv-

ing Transportation problem using IT2FS. Heights of the 

lower and upper membership functions of IT2FS represent 

an IT2FS of a reference point. We consider trapezoidal 

IT2FS in our algorithm. A trapezoidal IT2FS Ã is shown in 

Fig. 3. The shaded region is the FOU. It is bounded by a 

lower membership function (LMF) �
i

(

x
i

)

 and an upper 

membership function (UMF) �
i

(

x
i

)

 . The LMF and UMF 

have represented type-1 fuzzy sets.

Definition 4 [51]: Let us consider two trapezoidal IT2FSs 

Ã
1
 and Ã

2
 , where

Ã1 =

(

Ã
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L

1
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=
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.

Addition [51] operation ( ⊕ ) among the two trapezoidal 

IT2FSs Ã
2
 and Ã

1
 is defined in (5) as follows.

The result of Addition is also a IT2FS. Multiplication [51] 

operation ( ⊗ ) between the two trapezoidal IT2FSs Ã
1
 and 

Ã
2
 is defined in (6) as follows.

(5)
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U

)

H1(Ãi
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Fig. 3  Trapezoidal interval type 2 fuzzy set (IT2FS) Ã
i
 with footprint 

of uncertainty (FOU) (color figure online)
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The result of Multiplication is also a IT2FS.

Definition 5 [52]: The centroid value,i.e., C(B̃) of an IT2FS 

B̃ is the union of the centroid values of all its embedded type 

1 fuzzy set B
e
 as follows.

Here ∪ represents the union operation and

It is expressed in [40, 52–54] that c
l

(

B̃

)

 and c
r

(

B̃

)

 can be 

described as follows:

Here R and L are right and left switch points. First, we calcu-

late the centroids for IT2FS B̃ , then we find out the average 

centroid

Here centroid-based ranking value [49] of IT2FS B̃ is C(B̃).

Definition 6 [55]: Let B̃
1
 and B̃

2
 be considered two interval 

type 2 fuzzy sets (IT2FSs). Then

The value of IT2FS B̃
1
 is greater than B̃

2
 if c(B̃

1
) > c(B̃

2
).

The value of IT2FS B̃
1
 is less than B̃

2
 if c(B̃

1
) < c(B̃

2
).

The value of IT2FS B̃
1
 is equal to B̃

2
 if c(B̃

1
) = c(B̃

2
).

(6)
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B
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c
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)
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.
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C

(
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)

=

c
l

(
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)

+ c
r

(
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)

2
.

Proposed algorithm for fuzzy interval type 2 
transportation problem

Mathematical statement

Suppose that there are p numbers of sources and q desti-

nation. Let s̃
i
 represent the fuzzy numbers of sources i 

( i = 1, 2, 3,… , p ) and let d̃j represent the fuzzy numbers of 

destinations j ( j = 1, 2, 3,… , q).

Mathematical model of fuzzy transportation problem is 

given below:

subject to

where c̃ij is the interval type 2 fuzzy set that represents the 

transportation cost for one unit from source node i to the 

destination node j and z̃ij is the interval type 2 fuzzy set of 

units transported from source i to destination j. s̃
i
 is the sup-

ply at source i and d̃j is the demand at destination j.

Proposed algorithm 1

The Vogel’s approximation method algorithm is a well-

known algorithm to compute the transportation problem. 

In this article, we modify the VAM algorithm to handle the 

transportation problem in a fuzzy environment. Most of the 

cases, researches use T1FS or fuzzy number as transporta-

tion cost value. T1FS is unable to handle the ambiguity due 

to the inaccuracy of human conception. An interval type-2 

fuzzy set (IT2FS) is an extension of the type 1 fuzzy set. 

IT2FS can handle this ambiguity. The flowchart of modified 

Vogel’s approximation method is shown in Fig. 4.

Step 1 :  In this problem, the cell cost, demand, and supply 

are considered as trapezoidal IT2FSs. The centroid 

value of IT2FS, i.e., the real values of each cell, 

demand, and supply have computed using Eq. (13). 

These are used for computation purposes.

Step 2:  For the given transportation table, determine the 

cost of the penalty, distinction between minimum 

(14)Minimize Z̃ =

p
∑

i=1

q
∑

j=1

c̃ijz̃ij,

(15)

q
∑

j=1

z̃ij = s̃i, i = 1, 2,… , p

(16)

p
∑

i=1

z̃ij = d̃j, j = 1, 2,… , q

(17)z̃ij ≥ 0 ∀i, j,
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cost and next minimum cost of every column and 

rows.

Step 3:  Select the largest penalty value from all column 

and row difference, which is found out in Step 2 

and select the corresponding row or column.

Step 4:  In this step, select the least cost in row or column 

which is identified in Step 3.

Step 5:  This step allocates minimum value corresponding 

row and column value which is select in Step 4.

Step 6:  Depending upon this cell which column or row has 

adjusted, this column or row has removed.

Step 7:  Same methodology from Step 2 to Step 6 has been 

applied to the rest of all the unallocated cells until 

all demands and supplies have been adjusted.

Proposed Algorithm 2

Step 1 :  Formulate the given transportation problem into 

linear programming method using Eqs. (14) and 

(17).

Step 2 :  Using definition of centroid ranking (Definitions 5 

and 6), write the standard linear model as given 

below. 

 subject to 

 where c̃R
ij
= C(c̃ij) , ã

R

i
= C(ã

i
) , b̃R

j
= C(b̃i) , C is the cen-

troid rank.

Step 3:  We use Definition 4 in Eq. (19) and find out the 

crisp standard model.

Step 4:  Solve the given problem using the standard linear 

programming technique and find out the optimal 

value and objective value.

Step 5:  We get the fuzzy optimal cost to use this value in 

Eq. (14).

Step 6: End.

The flowchart of the proposed LPP method is shown in 

Fig. 5.

Modified MODI method

Optimality tests always conduct depend upon the initial 

basic feasible solution of a transportation problem, where 

the value of m + n − 1 is equal to the number of non-nega-

tive unoccupied cells and n is the number of columns and 

m is the number of row. These all allocated cells stay in 

an independent position. This type of method always uses 

for better solutions than the initial basic feasible solution. 

The flowchart of the modified MODI (MMODI) method is 

shown in Fig. 6.

Step 1:  Calculate u
i
 and vj with the expression ui + vj = cij 

for each occupied cell.

Step 2:  Consider the value of u
i
 or vj equal to 0 to any row 

or column, respectively, with having maximum no 

(18)Minimize Z̃ =

m
∑

i=1

n
∑

j=1

c̃R
ij
z̃ij,

(19)

n
∑

j=1

z̃ij = ãR
i
, i = 1, 2,… , m

(20)

m
∑

i=1

z̃ij = b̃R
j
, j = 1, 2,… , n

(21)z̃ij ≥ 0 ∀i, j,

Start

The cell value, demand, and supply

are considered as trapezoidal IT2FSs.

Determine the cost of the penalty, dis-

tinction between minimum cost and next

minimum cost of every column and row.

Select the largest penalty value from all col-

umn and row difference, which was found out

and select the corresponding row or column.

Allocate the minimum value corresponding

row or column which was selected and elimi-

nate row or column that has been adjusted.

Are all the

supply and

demands

adjusted?

Stop

No

Yes

Fig. 4  Flowchart of modified Vogel’s approximation method (color 

figure online)
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of allocation. If it is more than one then choose any 

one of them arbitrarily and calculate rest of all u
i
 

and vj for all rows and columns, respectively.

Step 3:  Compute the value of every unoccupied cell with 

the equation x̃ij = cij − ( u
i
 + vj).

Case I:  Have an unique solution and it is an optimal solu-

tion if all �xij > 0.

Case II:  Have an alternative solution and it is optimal if all 

�xij >= 0.

Case III:  It has no optimal solution if �xij < 0 . For that type, 

the case considers the next step for the optimal 

solution.

Step 4:  If case III occurs, then select the maximum nega-

tive value of x̃ij and form a close loop with occu-

pied cell and assign “+” and “−” sign alternately. 

Find out the minimum allocation with a negative 

sign. It will be added to the positive allocation cell 

and subtract from the negative allocation cell.

Step 5:  Compute and reallocate the occupied cell for find-

ing the new set of basic feasible solutions.

Step 6:  Repeat Step 1 to Step 5 until optimal basic feasible 

solution occurs.

Start

Calculate an initial basic feasi-
ble solution to the problem by
Vogel’s Approximation Method

Calculate ui and vj with the expression
ui + vj = cij for each occupied cell.

Calculate all ui and vj for all
row and column respectively.

Compute the value of every unoccupied cell
with the Equation x̃ij = cij - (ui + vj).

Are all
x̃ij >= 0?

Have an unique or alter-
native optimal solution

Select the maximum negative value of x̃ij

form a close loop and realocate the cell.

Stop

Yes

No

Fig. 6  Flowchart of modified MODI method

Start

Formulate the given transportation problem
into linear programming method using

expression Equation (14) to Equation (17).

Write the standard linear model us-
ing the Definition 5 and Definition 6.

Find out the crisp standard
model using Definition 4.

Solve the given problem and find out the
optimal value and objective value using
standard linear programming technique.

Stop

Fig. 5  Flowchart of proposed LPP method

Numerical illustration

We have used two examples for demonstrating our modi-

fied Vogel’s approximation method to solve FTP with IT2FS 

cost, i.e., transporting each unit from source to destination.

Numerical Example I

Now we are consider first example with three supply and 

four demand base problem and solve it using our proposed 

modified Vogel’s approximation method.

Example 1 We have taken IT2FSs from [56] and which are 

indexed in Tables 1 and 2. In Table 1, IT2FSs transportation 

cost is indexed, and in Table 2 IT2FSs supply and demand 

are indexed.
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Solution: We calculate the centroid based rank of cell 

cost, demand, and supply using Definitions 5 and 6.

In Table 3, the costs of transportation, supplies, and 

demands represent as centroid-based ranking values and 

Table 4 represents the final allocation table of Example I, 

respectively.

Step 1:  Select the first row S̃
1
 in Table 3 and calculate the 

value of the difference between the lowest cost and 

the next lowest cost, which is 2.87. Using the same 

procedure, calculate the value of every correspond-

ing column and row.

Step 2:  Select the highest value of these column difference 

and row difference values say 2.87.

Step 3:  Select minimum cost cell say C̃
11

 and allocate the 

value of the corresponding minimum value of sup-

ply and demand say 2.19.

Step 4:  Since demand value adjusts with cell allocation 

value, eliminate the first column say D̃
1

Step 5:  For creating a new table, we should be use above 

steps.

Step 6:  The same procedure is used in the rest of the table 

for finding BFS using the proposed algorithm.

In Table 4, the total number of source (m) is 3, the total 

number of destination (n) is 4, and total number of non-

negative allocation 6 is equal to m + n − 1 = 3 + 4 − 1 = 6.

So, it has a basic feasible solution. The total cost can be 

computed by multiplying the units assigned to the allocated 

value of each cell with the concerned transportation cost of 

respective cell.

Therefore, basic feasible solution of the problem = 

2.32 ∗ 2.19 + 7.25 ∗ 3.22 + 5.19 ∗ 2.19 + 8.12 ∗ 1.91 + 

2.13 ∗ 3.91 + 2.13 ∗ 2.59 = 69.1461.

Compute optimal value of Example I using MMODI 
method

To calculate the optimal value, we use the MMODI 

method. Tables  5 and  6 represent the initial and final 

allocation table of MMODI method, respectively. 

In Table  5, C̃
21

= S̃
2
D̃

1
− (S̃

2
+ D̃

1
) is negative and 

C̃
31

= S̃
3
D̃

1
− (S̃

3
+ D̃

1
) is Negative. Hence, does not have 

any optimal solution here. Proceed to next step until all C̃ij 

are positive.

In Table  6, all C̃ij are positive. So, there is an 

optimal solution and this optimal solution is dis-

played in Table  7. Required optimal solution 

= 5.19 ∗ 0.28 + 7.25 ∗ 5.13 + 2.13 ∗ 2.19 + 5.19 ∗ 1.91

+2.13 ∗ 3.91 + 2.13 ∗ 2.59 = 67.0683 , which is more bet-

ter than the initial basic feasible solution 69.1461.

Solution of Example 1 using LINGO is 67.0683, which is 

exactly equal to the optimal solution of proposed algorithm.

Corresponding type 2 fuzzy optimization solution is:

= 0.28 * C̃
12

 + 5.13 * C̃
13

 + 2.19 * C̃
21

 + 1.91 * C̃
22

 + 

3.91 * C̃
24

 + 2.59 * C̃
34

 = ( ( 33.6337, 56.7825, 76.0925, 

104.6313 ), ( 57.002, 65.8038, 65.8038, 72.5788, 0.27 ) ).

Numerical Example II

We considered another example with six supply and eight 

demand base problems and solve it modified Vogel’s approx-

imation algorithm same as the first one.

Example 2 We have taken IT2FSs as transportation cost 

which are indexed in Tables 8 and 9, assigned to the IT2FSs 

supply and demand. Table 10 represents the corresponding 

ranking values and Table 11 represents the required optimal 

solution of Example II.

Solution: We have calculated the centroid based rank of 

cost value, demand and supply using Definitions 5 and 6.

Required optimal solution = 378.2358.

Hence type 2 fuzzy optimization solution is =

((124.3066, 285.530, 440.0125, 674.5364), (351.9588, 3

53.8824, 399.6022, 0.27)).

Results and discussion

In this study, we have worked on two transportation problems. 

In the first problem, there are three sources and four destina-

tion nodes. We have used IT2FSs to represent those costs. 

The Lingo software is used to solve this problem. In Exam-

ple 1, we get IT2FSTP cost is ((33.6337, 56.7825, 76.0925, 

104.6313), (57.002, 65.8038, 65.8038, 72.5788, 0.27)) and 

the predicted optimal transportation cost is 67.0683. Here, 

it is clear that our predicted cost is within the IT2FS fuzzy. 

The efficiency of our proposed algorithm is shown in Fig. 7.
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Table 1  The cell costs of the transportation problem represented as 

IT2FSs for Example I

Arc IT2F Cost

C̃
11

(( 0.09, 1.50, 3.00, 4.62), (1.79, 2.28, 2.28, 2.81, 0.40))

C̃
12

(( 3.59, 4.75, 5.50, 6.91 ), (4.86, 5.03, 5.03, 5.14, 0.27 ))

C̃
13

(( 4.38, 6.50, 8.25, 9.62), (7.19, 7.58, 7.58, 8.21, 0.37 ))

C̃
14

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

C̃
21

(( 0.38, 1.50, 2.50, 4.62 ), (1.09, 1.83, 1.83, 2.21, 0.53 ))

C̃
22

(( 3.59, 4.75, 5.50, 6.91 ), (4.86, 5.03, 5.03, 5.14, 0.27 ))

C̃
23

((5.98, 7.75, 8.60, 9.52 ), (8.03, 8.36, 8.36, 9.17, 0.57))

C̃
24

(( 0.38, 1.50, 2.50, 4.62 ), (1.09, 1.83, 1.83, 2.21, 0.53 ))

C̃
31

(( 0.09, 1.50, 3.00, 4.62), (1.79, 2.28, 2.28, 2.81, 0.40))

C̃
32

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

C̃
33

((7.37, 9.41, 10, 10), (8.72, 9.91, 10, 10,1 ))

C̃
34

(( 0.38, 1.50, 2.50, 4.62 ), (1.09, 1.83, 1.83, 2.21, 0.53 ))

Table 2  The supplies and demands of the transportation problem rep-

resented as IT2FSs for Example I

Arc IT2F Supply/Demand

S̃
1

(( 3.59, 4.75, 6.00, 7.41 ), (4.79, 5.30, 5.30, 5.71, 0.42 ))

S̃
2

(( 5.38, 7.50, 8.75, 9.81), (7.79, 8.30, 8.30, 9.21, 0.53 ))

S̃
3

(( 0.59, 2.00, 3.25, 4.41), (2.29, 2.70, 2.70, 3.21, 0.42))

D̃
1

(( 0.09, 1.25, 2.50, 4.62 ), (1.67, 1.92, 1.92, 2.21, 0.30 ))

D̃
2

(( 0.09, 1.25, 2.50, 4.62 ), (1.67, 1.92, 1.92, 2.21, 0.30 )))

D̃
3

(( 2.17, 4.25, 6.00, 7.83), (4.79, 5.29, 5.29, 6.02, 0.41))

D̃
4

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

Table 3  Initial allocation table of the IT2F transportation problem for 

Example I

D̃
1

D̃
2

D̃
3

D̃
4

Supply

S̃
1

2.32 5.19 7.25 6.50 5.41

S̃
2

2.13 5.19 8.12 2.13 8.01

S̃
3

2.32 6.50 9.30 2.13 2.59

Demand 2.19 2.19 5.13 6.50 16.01

Table 4  Final allocation table of the IT2F transportation problem for 

Example I

D̃1 D̃2 D̃3 D̃4 Supply

S̃1 2.19 3.22 5.41

2.32 5.19 7.25 6.50

S̃2 2.19 1.91 3.91 8.01

2.13 5.19 8.12 2.13

S̃3 2.59 2.59

2.32 6.50 9.30 2.13

Demand 2.19 2.19 5.13 6.50

Table 5  Initial allocation table for MMODI method

D̃1 = 3.19 D̃2 = 5.19 D̃3 = 8.12 D̃4 = 2.13 Supply

S̃1 = −0.87 2.19 3.22 5.41

2.32 5.19 7.25 6.50

S̃2 = 0 2.19 1.91 3.91 8.01

2.13 5.19 8.12 2.13

S̃3 = 0 2.59 2.59

2.32 6.50 9.30 2.13

Demand 2.19 2.19 5.13 6.50

Table 6  Final allocation table of MMODI method

D̃1 D̃2 D̃1 D̃4 Supply

S̃1 0.28 5.13 5.41

2.32 5.19 7.25 6.50

S̃2 2.19 1.91 3.91 8.01

2.13 5.19 8.12 2.13

S̃3 2.59 2.59

2.32 6.50 9.30 2.13

Demand 2.19 2.19 5.13 6.50

Table 7  Optimal solution of Example I

Result using LINGO Result using our proposed algo-

rithm

Minimize Z̃ = 67.0683 Total cost=67.0683

x̃
12

= 0.28 , x̃
13

= 5.13 , x̃
21

= 2.19 Optimal transportation value are

x̃
22

= 1.91 , x̃
24

= 3.91 , x̃
34

= 2.59 x̃
12

= 0.28 , x̃
13

= 5.13 , x̃
21

= 2.19

x̃
22

= 1.91 , x̃
24

= 3.91 , x̃
34

= 2.59
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Table 8  The cell costs of the transportation problem represented as 

IT2FSs for Example II

Arc IT2F Cost

C̃
11

(( 0.38, 1.50, 2.50, 4.62), (1.09, 1.83, 1.83, 2.21, 0.53))

C̃
12

(( 5.38, 7.50, 8.75, 9.81 ), (7.79, 8.22, 8.22, 8.81, 0.45 ))

C̃
13

(( 5.38, 7.50, 9.00, 9.81), (8.29, 7.56, 8.56, 9.21, 0.38 )

C̃
14

(( 2.59, 4.00, 5.50, 7.62 ), (4.29, 4.75, 4.75, 5.21,0.38 ))

C̃
15

(( 3.59, 4.75, 5.50, 6.91 ), (7.86, 5.03, 5.03, 5.14,0.27 ))

C̃
16

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

C̃
17

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
18

(( 5.38, 7.50, 8.75, 9.83 ), (7.69, 8.19, 8.19, 8.81,0.47 ))

C̃
21

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
22

(( 0.09, 1.50, 3.00, 4.62 ), (1.79, 2.28, 2.28, 2.81, 0.40 ))

C̃
23

((0.38, 2.50, 5.00, 7.83 ), (2.88, 3.61, 3.61, 4.21, 0.35))

C̃
24

(( 5.38, 7.50, 8.75, 9.81 ), (7.79, 8.30, 8.30, 9.21, 0.53 )

C̃
25

(( 3.59, 4.75, 5.50, 6.91 ), (7.86, 5.03, 5.03, 5.14,0.27 ))

C̃
26

(( 3.59, 4.75, 6.00, 7.41 ), (4.79, 5.30, 5.30, 5.71,0.42 ))

C̃
27

(( 0.38, 1.50, 2.50, 4.62), (1.09, 1.83, 1.83, 2.21, 0.53))

C̃
28

(( 3.59, 4.75, 6.00, 7.41 ), (4.79, 5.30, 5.30, 5.71,0.42 ))

C̃
31

(( 0.09, 1.50, 3.00, 4.62 ), (1.79, 2.28, 2.28, 2.81, 0.40 ))

C̃
32

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

C̃
33

(( 5.38, 7.50, 8.75, 9.81 ), (7.79, 8.22, 8.22, 8.81, 0.45 ))

C̃
34

((0.38, 2.50, 5.00, 7.83 ), (2.88, 3.61, 3.61, 4.21, 0.35))

C̃
35

((2.17, 4.25, 6.00, 7.83 ), (4.79, 5.29, 5.29, 6.02, 0.41))

C̃
36

((5.98, 7.75, 8.60, 9.52 ), (8.03, 8.36, 8.36, 9.17, 0.57))

C̃
37

((2.17, 4.25, 6.00, 7.83 ), (4.79, 5.29, 5.29, 6.02, 0.41))

C̃
38

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
41

((0.38, 2.50, 5.00, 7.83 ), (2.88, 3.61, 3.61, 4.21, 0.35))

C̃
42

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
43

(( 1.17, 3.50, 5.50, 7.83 ), (4.09, 4.65, 4.65, 5.41,0.40 ))

C̃
44

(( 1.17, 3.50, 5.50, 7.83 ), (4.09, 4.65, 4.65, 5.41,0.40 ))

C̃
45

(( 2.59, 4.00, 5.50, 7.62 ), (4.29, 4.75, 4.75, 5.21,0.38 ))

C̃
46

(( 5.38, 7.50, 9.00, 9.81), (8.29, 7.56, 8.56, 9.21, 0.38 )

C̃
47

(( 3.59, 4.75, 6.00, 7.41 ), (4.79, 5.30, 5.30, 5.71,0.42 ))

Table 8  (continued)

Arc IT2F Cost

C̃
48

(( 0.09, 1.25, 2.50, 4.62 ), (1.67, 1.92, 1.92, 2.21,0.30 ))

C̃
51

(( 3.59, 4.75, 6.00, 7.41 ), (4.79, 5.30, 5.30, 5.71,0.42 ))

C̃
52

(( 0.59, 2.00, 3.25, 4.41 ), (2.29, 2.70, 2.70, 3.21,0.42 ))

C̃
53

(( 5.38, 7.50, 8.75, 9.81 ), (7.79, 8.22, 8.22, 8.81, 0.45 ))

C̃
54

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
55

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

C̃
56

(( 3.59, 4.75, 5.50, 6.91 ), (7.86, 5.03, 5.03, 5.14,0.27 ))

C̃
57

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
58

(( 0.09, 1.50, 3.00, 4.62 ), (1.79, 2.28, 2.28, 2.81, 0.40 ))

C̃
61

(( 0.09, 1.25, 2.50, 4.62 ), (1.67, 1.92, 1.92, 2.21,0.30 ))

C̃
62

(( 0.09, 1.50, 3.00, 4.62 ), (1.79, 2.28, 2.28, 2.81, 0.40 ))

C̃
63

(( 0.09, 1.25, 2.50, 4.62 ), (1.67, 1.92, 1.92, 2.21,0.30 ))

C̃
64

(( 3.59, 4.75, 6.00, 7.41 ), (4.79, 5.30, 5.30, 5.71,0.42 ))

C̃
65

(( 4.38, 6.50, 8.00, 9.41 ), (6.79, 7.38, 7.38, 8.21,0.49 ))

C̃
66

(( 4.38, 6.50, 8.25, 9.62 ), (7.19, 7.58, 7.58, 8.21,0.37 ))

C̃
67

(( 3.38, 5.50, 7.50, 9.62 ), (5.79, 6.50, 6.50, 7.21,0.41 ))

C̃
68

(( 4.38, 6.50, 8.25, 9.62 ), (7.19, 7.58, 7.58, 8.21,0.37 ))

Table 9  The supplies and demands of the transportation problem 

represented as IT2FSs for Example II

Arc IT2F Supply/Demand

S̃
1

(( 18.68, 19.91, 20.00, 20.00 ), (19.61, 19.97, 20.00, 20.00, 1.00 ))

S̃
2

(( 17.37, 19.73, 20.00, 20.00), (19.34, 19.95, 20.00, 20.00, 

1.00 ))

S̃
3

(( 17.37, 19.82, 20.00, 20.00), (19.37, 19.95, 20.00, 20.00, 

1.00))

S̃
4

(( 17.37, 19.82, 20.00, 20.00), (19.74, 19.98, 20.00, 20.00, 

1.00))

S̃
5

(( 17.37, 19.59, 20.00, 20.00), (18.95, 19.93, 20.00, 20.00, 

1.00))

S̃
6

(( 17.37, 19.41, 20.00, 20.00), (18.72, 19.91, 20.00, 20.00, 

1.00))

D̃
1

(( 15.38, 17.50, 18.75, 19.81 ), (17.79, 18.22, 18.22, 18.81, 

0.45 ))

D̃
2

(( 14.38, 16.50, 18.25, 19.62 ), (17.19, 17.58, 17.58, 

18.21,0.37 ))

D̃
3

(( 5.38, 7.50, 8.75, 9.81 ), (7.79, 8.22, 8.22, 8.81, 0.45 ))

D̃
4

(( 13.38, 15.50, 17.50, 19.62 ), (15.79, 16.50, 16.50, 

17.21,0.41 ))

D̃
5

(( 13.59, 14.75, 15.50, 16.91 ), (17.86, 15.03, 15.03, 

15.14,0.27 ))

D̃
6

(( 14.38, 16.50, 18.00, 19.41 ), (16.79, 17.38, 17.38, 

18.21,0.49 ))

D̃
7

(( 13.59, 14.75, 15.50, 16.91 ), (17.86, 15.03, 15.03, 

15.14,0.27 ))

D̃
8

(( 7.37, 9.41, 10.00, 10.00), (8.72, 9.91, 10.00, 10.00, 1.00))
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Fig. 7  Comparison chart of our proposed algorithms for Numerical 

Example I

Table 10  The cell cost, supply 

and demand of the IT2F 

transportation problem for 

Example II, represented as 

centroid base ranking value

Source D̃
1

D̃
2

D̃
3

D̃
4

D̃
5

D̃
6

D̃
7

D̃
8

Supply

S̃
1

2.13 7.90 8.03 4.95 5.19 6.50 7.16 7.91 19.69

S̃
2

7.16 2.32 3.90 8.01 5.19 5.41 2.13 5.41 19.37

S̃
3

2.32 6.50 7.90 3.90 5.13 8.12 5.13 7.16 19.38

S̃
4

3.90 7.16 4.56 4.56 4.95 8.03 5.41 2.19 19.31

S̃
5

5.41 2.59 7.90 7.16 6.50 5.19 7.16 2.32 19.34

S̃
6

2.19 2.32 2.19 5.41 7.16 7.25 6.50 7.25 19.30

Demand 17.90 17.25 7.90 16.50 15.19 17.16 15.19 9.30 116.39

Table 11  Optimal solution of Example II

Result using LINGO Result using proposed algorithm

Minimize Z̃ = 378.2358 Total cost=378.2358

x̃
11

= 17.90 , x̃
15

= 1.79 , 

x̃
22

= 4.18

Optimal value =

x̃
27

= 15.19 , x̃
34

= 16.50 , 

x̃
35

= 2.88

x̃
11

= 17.90 , x̃
15

= 1.79 , 

x̃
22

= 4.18

x̃
45

= 10.52 , x̃
48

= 8.79 , 

x̃
52

= 1.67

x̃
27

= 15.19 , x̃
34

= 16.50 , 

x̃
35

= 2.88

x̃
56

= 17.16 , x̃
58

= 0.51 , 

x̃
62

= 11.4

x̃
45

= 10.52 , x̃
48

= 8.79 , 

x̃
52

= 1.67

x̃
63

= 7.90 x̃
56

= 17.16 , x̃
58

= 0.51

x̃
62

= 11.4,x̃
63

= 7.90

Conclusion

The VAM algorithm is a common algorithm to solve the 

transportation problem. In this paper, the classical VAM 

algorithm is modified to solve the fuzzy transportation 

problem fuzzy. We represent all the demand, supply, and 

transportation costs as IT2FSs. The idea of our proposed 

algorithm is elementary and effective to apply for real-

world scenarios, e.g., management, transportation system, 

and many other network optimization problems. Here, we 

present two small numerical examples to demonstrate our 

proposed algorithm. Therefore, as future research, we have 

to solve a large scale practical transportation problem using 

the proposed algorithm. Furthermore, we will try to modify 

our proposed algorithm for the Pythagorean fuzzy set [57] 

and interval type-2 intuitionistic fuzzy sets [58–61].
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