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Abstract. The exponential, Rayleigh, linear failure rate and Weibull dis-
tributions are the most commonly used distributions for analyzing life-
time data. These distributions have several desirable properties and nice
physical interpretations. This paper introduces a new distribution named
modified Weibull distribution. This distribution generalizes the following
distributions: (1) exponential, (2) Rayleigh, (3) linear failure rate, and
(4) Weibull. The properties of the modified Weibull distribution are dis-
cussed. The maximum likelihood estimates of its unknown parameters
are obtained. A real data set is analyzed and it observed that the present
distribution can provide a better fit than some other known distributions.

M.S.C. 2000: 46N30, 47N30, 65C60.
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1 Introduction

In analyzing lifetime data one often uses the exponential, Rayleigh, linear failure rate
or Weibull distribution. These distributions have several desirable properties and nice
physical interpretations which enable them to be used frequently, for more details we
refer to [2]-[10]. In this paper, we present a new distribution called modified Weibull
distribution (MWD). The MWD generalizes all the above mentioned ones.

The linear failure rate distribution with the parameters α, β ≥ 0, such that α+β >
0, and will be denoted by LFRD(α, β), has the following cumulative distribution
function (CDF)

(1.1) FLF (x; α, β) = 1− exp
{−αx− βx2

}
, x ≥ 0.

It is easily observed that the exponential distribution (ED(α)) and the Rayleigh dis-
tribution (RD(β)) can be obtained from LFRD(α, β) by putting β = 0 and α = 0
respectively. Moreover, the probability density function (PDF) of the LFRD(α, β) can
be decreasing or unimodal but the failure rate function is either constant or increasing
only.
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The Weibull distribution with the parameters β, γ > 0 and will be denoted by
WD(β, γ), has the following cumulative distribution function (CDF)

(1.2) FW (x;β, γ) = 1− exp {−βxγ} , x ≥ 0.

It is easily observed that the exponential distribution (ED(α)) and the Rayleigh dis-
tribution (RD(β)) can be obtained from WD(β, γ) by putting γ = 1 and γ = 2
respectively. Moreover, the probability density function (PDF) of the WD(β, γ) can
be decreasing or unimodal but the failure rate function is either constant or increasing
(starting from the origin) or decreasing.

In this paper we introduce a new three-parameter distribution function called as
modified Weibull distribution with three parameters α, β, γ and it will be denoted as
MWD(α, β, γ). It is observed that the MWD(α, β, γ) has decreasing or unimodal PDF
and it can have increasing (starting from the value of α), decreasing and constant
hazard functions. We provide statistical properties of this MWD. The maximum
likelihood estimates (MLEs) of the unknown parameters are derived. The asymptotic
confidence intervals of the parameters are discussed. A set real data is analyzed and
it is observed that the present distribution provides better fit than many existing well
known distributions.

The rest of the paper is organized as follows. In section 2 we present MWD(α, β, γ)
and discuss its properties in Section 3. The MLEs are provided in Section 4. Section 5
gives an application to explain how a real data set can be modeled by MWD(α, β, γ).
Finally we conclude the paper in Section 6.

2 The MWD

The CDF of the MWD(α, β, γ) takes the following form

(2.1) F (x; α, β, γ) = 1− e−αx−βxγ

, x > 0,

where γ > 0, α, β ≥ 0 such that α + β > 0. Here α is a scale parameter, while β and
γ are shape parameters.

The MWD(α, β, γ) generalizes the following distributions: (1) LFRD(α, β) by
setting γ = 2, (2) WD(β, γ) by setting α = 0; (3) RD(β) by setting α = 0, γ = 2; and
(4) ED(α) by setting β = 0.
The PDF of MWD(α, β, γ) is

(2.2) f(x; α, β, γ) =
(
α + βγxγ−1

)
e−αx−βxγ

, x > 0,

and the hazard function of MWD(α, β, γ) is

(2.3) h(x; α, β, γ) = α + βγxγ−1, x > 0.

One can easily verify from (2.3) that: (1) the hazard function is constant when γ = 1;
(2) when γ < 1, the hazard function is decreasing; and (3) the hazard function will
be increasing if γ > 1.

Figure 1 and 2 show, respectively, different patterns of the probability density
function and the hazard rate function of MWD(α, β, γ) for different parameter values.
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Figure 1: The probability density function

From these Figures, it is immediate that the PDFs can be decreasing or unimodal
and the hazard functions can be increasing or decreasing.
Interpretation: It is interesting to observe that the CDF of the MWD(α, β, γ) has
a nice physical interpretation. It represents the CDF of the lifetime of a series system.
This system consists of two independent units. The lifetime of one unit follows ED(α)
and the lifetime of the other follows the WD(β, γ).

3 Statistical properties

In this section we provide some of the basic statistical properties of the MWD(α, β, γ).

3.1 Quantile and median

The quantile xq of the MWD(α, β, γ) is the real solution of the following equation:

(3.1) βxq
γ + αxq + ln(1− q) = 0

The above equation has no closed form solution in xq, so we have to use a numerical
technique such as a Newton-Raphson method to get the quantile.
One can use (3.1), to derive the following special cases:

1. The q-th quantile of the LFRD(α, β), by setting γ = 2, as

xq =
1
2β

{
−α +

√
α2 − 4β ln (1− q)

}
.
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Figure 2: The hazard rate function

2. The q-th quantile of the WD(β, γ), by setting α = 0,

xq =
{
− 1

β
ln (1− q)

} 1
γ

.

3. The q-th quantile of the RD(β), by setting γ = 2 and α = 0,

xq =
√
− 1

β
ln (1− q).

4. The q-th quantile of the ED(α), by setting β = 0,

xq = − 1
α

ln (1− q) .

or by putting γ = 1 .

xq = − 1
(α + β)

ln (1− q) .

Put q = 0.5 in equation (3.1) one gets the median of MWD(α, β, γ).

3.2 Mode

The mode of MWD(α, β, γ) can be obtained as a solution of the following non-linear
equation with respect to x

(3.2) α2 + β2γ2x2(γ−1) + 2αβγxγ−1 − βγ(γ − 1)xγ−2 = 0.
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As it seems, the equation (3.2) has not an explicit solution in the general case. There-
fore, we discuss the following special cases:

(1) α 6= 0: there are two cases:

(a) If γ = 1, the ED(α + β) case , in this case equation (3.2) reduces to
α + β = 0. Since α + β must be greater than zero, we get a contradiction
which means that there is no mode in this case.

(b) For γ = 2, the LFRD(α, β) case, in this case (3.2) takes the following form
2β − (α + 2βx)2 = 0. Solving this equation in x, we get the mode as
Mod(X) =

√
2β−α
2β , such that

√
2β > α.

(2) α = 0: the WD(β, γ) case. In this case equation (3.2) reduces to

βγxγ−2 {γ − 1− βγxγ} = 0.

Hence, we have either x = 0 or x =
(

γ−1
βγ

) 1
γ

. Since x > 0, therefore the mode

in this case becomes Mod(X) =
(

γ−1
βγ

) 1
γ

such that γ > 1. It is known that
RD(β) can be derived from WD(β, γ) when γ = 2, therefore the mode of RD(β)
becomes Mod(X) = 1√

2β
.

3.3 Moments

The following theorem gives the kth moment of MWD(α, β, γ).

Theorem 3.1. If X has the MWD(α, β, γ), the kth moment of X, say µk, is given
as follows:

(3.3) µk =





∑∞
i=0

(−β)i

i!

[
Γ(iγ+k+1)

αiγ+k + βγ Γ(k+iγ+γ)
αiγ+γ+k

]
for α, β > 0 ,

Γ(k/γ+1)
βk/γ for α = 0, β > 0 ,

Γ(k+1)
αk for α > 0, β = 0 .

The proof of this theorem is provided in the Appendix.
Based on the results given in theorem (3.1), the measures of skewness and kurtosis of
the MWD can be obtained according to the following relations, respectively,

(3.4) α∗ =
µ3 − 3µ1 µ2 + 2µ3

1

(µ2 − µ2
1)

3
2

and

(3.5) β∗ =
µ4 − 4µ1µ3 + 6µ2

1 µ2 − 3µ4
1

(µ2 − µ2
1)

2 .

In Figure 3 and 4 we provide α∗ and β∗ for different values of γ, when α = 1 and
β = 0.5. It is observed that α∗ and β∗ first increase and then start decreasing. Also,
α∗ takes negative values when γ becomes large.
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Figure 3: The Skewness measure α∗.

3.4 The moment generating function

The following theorem gives the moment generating function (mgf) of MWD(α, β, γ)

Theorem 3.2. If X has the MWD(α, β, γ), then the mgf of X, say M(t) is :

(3.6) M(t) =





∑∞
i=0

(−β)i

i!

[
αΓ(iγ+1)
(α−t)iγ+1 + βγΓ((i+1)γ)

(α−t)(i+1)γ

]
for α, β > 0, α > t,

∑∞
i=0

ti Γ(i/γ+1)
βi/γ for α = 0, β > 0 ,

α
α−t for α > 0, β = 0, α > t.

The proof of this theorem is provided in the Appendix.
Note: Theorem 3.1 can be deduced from theorem 3.2 by using the relation between
the moments and moment generating function.

4 Parameter estimations

In this section, we derive the maximum likelihood estimates of the unknown parame-
ters α, β and γ of MWD(α, β, γ) based on a complete sample. Let us assume that we
have a simple random sample X1, X2, · · · , Xn from MWD(α, β, γ). The likelihood
function of this sample is

(4.1) L =
n∏

i=1

f(xi; α, β, γ)
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Figure 4: The Kurtosis measure β∗.

Substituting from (2.2) into (4.1), we get

(4.2) L =
n∏

i=1

(
α + βγxγ−1

i

)
e−(αxi+βxγ

i )

The log-likelihood function is

(4.3) L =
n∑

i=1

ln(α + βγxγ−1
i )− α

n∑

i=1

xi − β

n∑

i=1

xγ
i .

Computing the first partial derivatives of L and setting the results equal zeros, we
get the likelihood equations as in the following form

0 =
n∑

i=1

1
α + βγxγ−1

i

−
n∑

i=1

xi ,(4.4)

0 =
n∑

i=1

γxγ−1
i

α + βγxγ−1
i

−
n∑

i=1

xγ
i ,(4.5)

0 =
n∑

i=1

xγ−1
i (1 + γ ln(xi))

α + βγxγ−1
i

−
n∑

i=1

xγ
i ln(xi) .(4.6)

Using (4.4) and (4.5), one can derive β as a function of α and γ as in the form

(4.7) β = g(α, γ) =
n− α

∑n
i=1 xi∑n

i=1 xγ
i

.
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Substituting (4.7) into (4.4) and (4.6), we get the following system of two non-linear
equations

0 =
n∑

i=1

1
α + g(α, γ)γxγ−1

i

−
n∑

i=1

xi,(4.8)

0 =
n∑

i=1

xγ−1
i (1 + γ ln(xi))

α + g(α, γ)γxγ−1
i

−
n∑

i=1

xγ
i ln(xi)(4.9)

To get the MLE of the parameters α and γ, α̂ and γ̂, we have to solve the above
system of two non-linear equations with respect to α and γ. Then substituting α̂ and
γ̂ instead of α and γ in (4.7) we get the MLE of β. The solution of equations (4.8)
and (4.9) is not possible in closed form, so numerical technique is needed to get the
MLE.

Asymptotic Confidence bounds. Since the MLE of the unknown parameters
α, β, and γ are not obtained in closed forms, then it is not possible to derive the exact
distributions of the MLE. In this paragraph, the approximate confidence intervals of
the parameters based on the asymptotic distributions of their MLE are derived. For
the observed information matrix of α, β, γ, we find the second partial derivatives of
L as

∂2L
∂α2

= −I11 =
n∑

i=1

1

(α + βγx
(γ−1)
i )2

(4.10)

∂2L
∂α∂β

= −I12 =
n∑

i=1

γxγ−1
i

(α + βγi(γ−1))2
(4.11)

∂2L
∂α∂γ

= −I13 =
n∑

i=1

βxγ−1
i (1 + γ ln(xi))

(α + βγx
(γ−1)
i )2

(4.12)

∂2L
∂β2

= −I22 =
n∑

i=1

γ2x
2(γ−1)
i(

α + βγi(γ−1)
)2(4.13)

∂2L
∂β∂γ

= −I23 =
n∑

i=1

αxγ−1
i (1 + γ ln(xi))

(α + βγx
(γ−1)
i )2

+
n∑

i=1

xγ
i ln(xi)(4.14)

∂2L
∂γ2

= −I33 = β

n∑

i=1

xγ−1
i (αγ ln2(xi) + 2α ln(xi)− βxγ−1

i )
(α + βγi(γ−1))2

+ β

n∑

i=1

xγ
i ln2(xi)(4.15)

Then the observed information matrix is given by

I =




I11 I12 I13

I21 I22 I23

I31 I32 I33


 ,

so that the variance-covariance matrix may be approximated as

V =




V11 V12 V13

V21 V22 V23

V31 V32 V33


 =




I11 I12 I13

I21 I22 I23

I31 I32 I33



−1

.
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It is known that the asymptotic distribution of the MLE
(
α̂, β̂, γ̂

)
is given by, see

Miller (1981),

(4.16)




α̂

β̂
γ̂


 ∼ N







α
β
γ


 ,




V11 V12 V13

V21 V22 V23

V31 V32 V33





 .

Since V involves the parameters α, β, γ, we replace the parameters by the correspond-
ing MLE’s in order to obtain an estimate of V, which is denoted by

V̂ =




Î11 Î12 Î13

Î12 Î22 Î23

Î13 Î23 Î33



−1

.(4.17)

where Îij = Iij when (α̂, β̂, γ̂) replaces (α, β, γ).
By using (4.16), approximate 100(1 − θ)% confidence intervals for α, β, γ are deter-
mined, respectively, as

α̂± zθ/2

√
V̂11 , β̂ ± zθ/2

√
V̂22 , and γ̂ ± zθ/2

√
V̂33 ,(4.18)

where zθ is the upper θ−th percentile of the standard normal distribution.

5 Application

In this section we provide a data analysis to see how the new model works in practice.
The data have been obtained from Aarset [1] and it is provided below. It represents
the lifetimes of 50 devices.

.1 .2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18
21 32 36 40 45 46 47 50 55 60 63 63 67 67 67 67 72 75
79 82 82 83 84 84 84 85 85 85 85 85 86 86

We have used the following different distributions: Rayleigh distribution (RD), expo-
nential distribution (ED), Weibull distribution (WD), linear failure rate distribution
(LFRD), and modified Weibull distribution (MWD) to analyze the data. The MLE(s)
of the unknown parameter(s) and the corresponding Kolmogorov-Smirnov (K-S) test
statistics for different models are given in Table 1.

Table 1. The MLE of the parameter(s) and the associated K-S values.
The model MLE of the parameter(s) MK−S

RD(β) β̂ = 6.362× 10−4 0.1058
ED(α) α̂ = 0.022 0.0933
WD (α, β) α̂ = 0.022, β̂ = 0.949 0.0750
LFRD(α, β) α̂ = 0.014, β̂ = 2.4× 10−4 0.0923
MWD(α, β, γ) α̂ = 0.012, β̂ = 2.159× 10−8, γ̂ = 4.014 0.0739

To to show that the likelihood equations have a unique solution in the parameters,
we plot the profile log-likelihood functions of α, β and γ. Figures 5-7 show these
functions.
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Figure 5: The log-likelihood as a function of α.

Table 2. The MLE, the values of log-likelihood function and p-values.
The model H0 L Λ d.f. p-value
RD(β) α = 0, γ = 2 -260.053 67.028 2 2.776× 10−15

ED(α) β = 0 -241.090 21.102 2 4.255× 10−6

WD (α, β) α = 0 -241.002 20.926 1 4.773×10−6

LFRD(α, β) γ = 2 -238.064 15.05 1 1.047× 10−4

Since RD(β), ED(α), WD(α, β) and LFRD(α, β)are special cases of MWD(α, β, γ),
we perform the following testing of hypotheses; (i) H0 : α = 0, γ = 2, (ii) H0 : β = 0,
(iii) α = 0, (iv) H0 : γ = 2. We present the log-likelihood values (L), the values of the
likelihood ratio test statistics (Λ) and the corresponding p-values in Table 2. From
the p values it is clear that we reject all the hypotheses at any level of significance.

The nonparametric estimate of the survival function and the fitted survival func-
tions are computed and provided in Figure 8. It is clear from Figure 8 that the
modified Weibull distribution provides a good fit to the data set.

Substituting the MLE of the unknown parameters in (4.17), we get estimation of
the variance covariance matrix as

(5.1) I−1 =




1.546× 10−5 6.412× 10−11 −4.859× 10−4

6.412× 10−11 1.989× 10−14 −1.081× 10−7

−4.859× 10−4 −1.081× 10−7 0.594.




Therefore, the approximate 95% two sided confidence intervals of the parameters α,
β and γ are [0.01, 0.025624],

[
0, 3.19128× 10−7

]
and [2.29922, 5.3203] respectively.
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Figure 6: The log-likelihood as a function of β.

6 Conclusions

In this paper we introduced a three-parameter modified Weibull distribution (MWD)
and studied its different properties. It is observed that the proposed MWD has several
desirable properties and several existing well known distributions can be obtained as
special cases of this distribution. It is observed that the MWD can have constant,
increasing and decreasing hazard rate functions which are desirable for data analysis
purposes. Both point and asymptotic confidence interval estimates of the parameters
are derived using the maximum likelihood method. Application on set of real data
showed that the MWD can be used rather than other known distribution. To study
the properties of the MLEs of the parameters extensive simulations are required.
Also, the Bayes procedure can be used to derive the point interval estimates of the
parameters. More work is needed in this direction.

Appendix

The Proof of Theorem 3.1. Starting with

µk =
∫ ∞

0

xkf(x; α, β, γ)dx

then substituting from (2.2) into the above relation we have

(6.1) µk =
∫ ∞

0

xk(α + βγxγ−1) e−αx−βxγ

dx
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Figure 7: The log-likelihood as a function of γ.

Now, there are three cases. Let us start with the first general case, namely, when
α > 0 and β > 0. Using the following expansion of e−βxγ

given by

(6.2) e−βxγ

=
∞∑

i=0

(−1)iβixiγ

i!

equation (6.1) takes the following form

µk =
∞∑

i=0

(−1)iβi

i!

∫ ∞

0

xk(α + βγxγ−1)xiγe−αxdx

which can be rewritten as

µk =
∞∑

i=0

(−1)iβi

i!

[∫ ∞

0

αxk+iγe−αxdx +
∫ ∞

0

βγxk+(i+1)γ−1e−αxdx

]

=
∞∑

i=0

(−1)iβi

i!

[
Γ(k + iγ + 1)

αk+iγ
+

βγΓ(k + (i + 1)γ)
αk+(i+1)γ

]

In the second case, we assume that α = 0 and β > 0. In this case relation (6.1)
reduces to

µk =
∫ ∞

0

βγxk+γ−1e−βxγ

dx

Setting βxγ = u, then

µk =
∫ ∞

0

(
u

β

) k
γ

e−udu =
Γ( k

γ + 1)

β
k
γ
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Figure 8: The empirical and fitted survival function.

Finally, assume that β = 0 and α > 0, then

µk =
∫ ∞

0

αxke−αxdx =
Γ(k + 1)

αk

which completes the proof.

The Proof of Theorem 3.2. Starting with

M(t) = E
[
etX

]
=

∫ ∞

0

etxf(x; α, β, γ)dx

then substituting (2.2) into the above relation we have

(6.3) M(t) =
∫ ∞

0

(α + βγxγ−1) etx−αx−βxγ

dx

Now, there are three cases. Let us start with the case when α > 0 and β > 0. Using
the relation (6.2), equation (6.3) takes the following form

M(t) =
∞∑

i=0

(−1)iβi

i!

∫ ∞

0

(α + βγxγ−1)xiγe−(α−t)xdx

which can be rewritten as

M(t) =
∞∑

i=0

(−1)iβi

i!

[∫ ∞

0

αxiγe−(α−t)xdx +
∫ ∞

0

βγx(i+1)γ−1e−(α−t)xdx

]

=
∞∑

i=0

(−1)iβi

i!

[
αΓ(iγ + 1)
(α− t)1+iγ

+
βγΓ((i + 1)γ)
(α− t)(i+1)γ

]
, α > t.
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Now, assume that α = 0 and β > 0. In this case relation (6.3) reduces to

M(t) =
∫ ∞

0

βγxγ−1etx−βxγ

dx

Using the expansion etx =
∑∞

i=0
(xt)i

i! , and the transformation u = βxγ , we get

M(t) =
∞∑

i=0

(t)i

i!

∫ ∞

0

(
u

β

) i
γ

e−udu =
∞∑

i=0

(t)i Γ(1 + i/γ)
i! βi/γ

.

Finally, assume that β = 0 and α > 0, then

M(t) =
∫∞
0

α e−(α−t)xdx = α
α−t , α > t. ¤
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