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.e whale optimization algorithm (WOA) is a powerful swarm intelligence method which has been widely used in various fields
such as parameter identification of solar cells and PV modules. In order to better balance the exploration and exploitation of
WOA, we propose a novel modified WOA (MWOA) in which both the mutation strategy based on Levy flight and a local search
mechanism of pattern search are introduced. On the one hand, Levy flight can make the algorithm get rid of the local optimum
and avoid stagnation; thus, it is able to prevent the algorithm from losing diversity and to increase the global search capability. On
the other hand, pattern search, a direct search method, has not only high convergence rate but also good stability, which can boost
the local optimization ability of theWOA..erefore, the combination of these twomechanisms can greatly improve the capability
of WOA to obtain the best solution. In addition, MWOAmay be employed to estimate parameters in single diode model (SDM),
double diode model (DDM), and PV modules and to identify unknown parameters of two different types of PV modules under
diverse light irradiance and temperature conditions..e analytical results demonstrate the validity and the practicality of MWOA
for estimating parameters of solar cells and PV modules.

1. Introduction

Solar power generation is an emerging renewable energy
technology, and photovoltaic system is a type of power
generation system that uses the photovoltaic effect of solar
cell semiconductor materials to convert sunlight radiation
energy into electricity. Moreover, due to its advantages such
as safety, reliability, being nonpolluting, and unlimitedness
by the distribution of resources, photovoltaic system has
been widely used in many fields [1, 2]. .us, the research on
the features of solar cells and photovoltaic modules, which
are important components of PV systems, is an ongoing

focus of attention. .e properties of solar cells and PV
modules are usually determined by the current-voltage
curve. However, because of its strong nonlinear character-
istics, just the current-voltage curve is not sufficient to
analyze the changes in the characteristics of the new battery
with temperature, light intensity, and so on. .erefore, the
modeling and the parameter searching of solar cells and PV
systems is one of the hot topics in the current study.

A suitable model and an appropriate parameter ex-
traction method are essential for the simulation, design,
evaluation, control, and optimization of PV systems [3].
Currently the models used to characterize the cells include
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SDM, DDM, and TDMwith SDM and DDM being the most
commonly used [4]. .e methods for extracting parameters
can be roughly classified as analytical method [5–7], method
with Lambert W function [8, 9], method of constructing or
using special function [10, 11], or method with swarm in-
telligence algorithm. Among these methods, swarm intel-
ligence algorithms have received great attention in recent
years, and, compared with traditional methods, the swarm
intelligence algorithm has a simple structure, fewer pa-
rameters, and high efficiency, such as particle swarm opti-
mization (PSO) [12], differential evolution (DE) [13], naked
mole-rat algorithm (NMR) [14], Harris hawks optimizer
(HHO) [15], and slime mould algorithm (SMA) [16]. Fur-
thermore, a large number of studies have focused on using
such methods or their variants for modeling and parameter
extraction of solar cells and PV modules [17–24].

Messaoud et al. [25] used Salp Swarm Algorithm (SSA)
for the parameter estimation in SDM and DDM and applied
it to three different PV parameter identification problems.
Abbassi et al. [26] proposed an efficient method by using
SSA to extract DDM parameters of PV cells and an oppo-
sition-based learning modified SSA (OLMSSA) [27] for
identification of PV cells and modules. Pourmousa et al. [28]
considered an improved Lozi Map based Chaotic Optimi-
zation Algorithm (ILCOA) for parameter estimation of solar
cells. Chen et al. [29] studied a new hybrid teaching learning-
based artificial bee colony (TLABC) to obtain solar PV
parameter estimates, which combined a teaching-learning-
based optimization algorithm (TLBO) with an artificial bee
colony (ABC). Li et al. [30] suggested an improved teaching-
learning-based optimization (ITLBO) algorithm for
estimating the parameters of SDM, DDM, and three
photovoltaic modules. Liang et al. [31] proposed an
evolutionary multitask optimization algorithm to simulta-
neously extract parameters from several different PV
models. Li et al. [32] gave an enhanced adaptive differential
evolution algorithm for PV parameter extraction, which
performed well for SDM, DDM, and PVmodules. Li andWu
[33] discussed a memetic adaptive differential evolution
(MADE) algorithm for the parameter estimation of pho-
tovoltaic models. Chen et al. [34] considered a hybrid
metaheuristic called biogeography-based heterogeneous
cuckoo search (BHCS) algorithm in order to enhance the
parameter estimation capability of solar PV models. Yousri
et al. [35] proposed novel chaotic heterogeneous compre-
hensive learning PSO variants, in which the chaotic het-
erogeneous comprehensive learning PSO is combined with
ten different chaos diagrams to adjust model parameters,
and they applied this new approach for parameter extraction
of PV models. Liang et al. [36] studied a classified pertur-
bation mutation based particle swarm optimization algo-
rithm for the extraction of parameters from five different PV
models. Lin [37] proposed an optimization algorithm based
on niche particle swarm optimization in parallel computing
(NPSOPC) to determine the parameters of photovoltaic
models. Jian et al. [38] suggested a logistic chaotic JAYA
algorithm (LCJAYA) for parameter identification of PV cells
and modules. Zhang [39] discovered a backtracking search
algorithm with Levy flight (LGBSA) to estimate parameters

in three different PV models. Zhang et al. [40] suggested an
orthogonal moth-fighting optimization algorithm (MFO)
with local search (NMSOLMFO) to identify the parameters
of PV cell models.

Traditional swarm intelligence algorithms such as PSO
and ABC have already performed well in this field. However,
the problem of photovoltaic system parameter evaluation is
a multimodal problem; hence, there is no way to obtain the
global optimal solution due to prematurity of some basic
algorithms. According to the principle of no free lunch, it is
still necessary to develop an efficient optimizer for accurately
extracting model parameters. Subsequently, WOA is con-
sidered because of its simple structure, few parameters,
strong search ability, and easy implementation; it has been
successfully applied in various fields such as reactive
scheduling [41], neural networks [42], image segmentation
[43] and feature selection [44], and wind speed prediction
[45]. Besides, many scholars are also committed to im-
proving its existing shortcomings to develop more effective
optimizers; for example, Salgotra et al. [46] utilized oppo-
sition-based learning, exponentially decreasing parameters,
and elimination or reinitialization of worst particles to
enhance the basicWOA. Chen et al. [47] introduced random
replacement and double adaptive weight to speed up con-
vergence and improve exploratory convergence direction.
.ree new versions of the WOA were designed by using
nonlinear convergence factors and introducing the concept
of chaos in the initialization stage as well as in the calculation
of internal weights [48]. Ling et al. [49] used the Levy flight
trajectory to improve the disadvantage that the underlying
WOA is premature and prone to fall into local optimum.
Zhou et al. [50] improved WOA by teaching learning-based
algorithm and simplex method and applied it to train
multilayer perceptron neural network. Niu et al. [51] de-
veloped an optimizer by dynamically combining the con-
ventional WOA with the Levenberg–Marquardt (LM)
algorithm and applied it to the alignment star sensor. Luo
et al. [52] utilized a ranking-based mutation operation to
modify WOA for identify the infinite impulse system.
Moreover, WOA and its variants are also utilized for
identifying parameters of solar cells and PV modules. Long
et al. [53] introduced logistic models and a new refractive-
learning strategy based on the refractive principle of light
into WOA and proposed a new approach (RLWOA) for
parameter estimation in PV models. Xiong et al. [54] de-
veloped two prey searching mechanisms to balance ex-
ploitation and exploration and proved that the method can
effectively avoid premature phenomena for the accurate
extraction of parameters from different PV models. Elazab
et al. [55] studied a novel whale optimization algorithm for
the parameter estimation of SDM, DDM, and TDM of PV
modules. Oliva et al. [56] suggested the chaotic whale op-
timization algorithm (CWOA) for estimating parameters of
solar cells. Although a number of studies about WOA have
been investigated for the parameter estimation of solar cells
and photovoltaic modules, there is room for the improve-
ment of WOA for this problem in both the accuracy and the
speed of convergence. Consequently, it is believed that
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developing an improved optimizer based on WOA is
necessary.

Like other swarm intelligence optimization algorithms,
in the basic WOA, individuals in the population are con-
stantly approaching the food source as the iteration prog-
resses, causing a gradual loss of diversity in the population.
However, the problem of evaluating the parameters of a
photovoltaic system is a nonlinear, multimodal problem, so
it is highly susceptible to local optimum due to the loss of
population diversity when using WOA to solve the problem.
Moreover, since WOA relies on a stochastic convergence
factor to convert from exploration to exploitation, it also
suffers from a weak local search capability. Accordingly, in
this paper, a variation strategy using Levy flight and a local
search mechanism (pattern search) is introduced to improve
the performance ofWOA..is modified whale optimization
algorithm is referred to as MWOA. Specifically, as the it-
eration progresses, individuals in the population constantly
approach the current optimal solution in order to find the
source of food, which makes the search space solution
gradually concentrate on the current optimal solution.
However, the problem of PV model parameter evaluation is
a multimodal problem. In other words, the current solution
may not be the global optimum, and the population indi-
viduals may miss better solutions when they keep
approaching it, which is often said to fall into the local
optimum. However, the random step of Levy flight mainly
consists of small strides with occasional large ones or long
jumps, which allows Levy flight to generate a fraction of the
solutions far from the current optimal solution so that
MWOA can get rid of local optimum and avoid stagnation.

.e random step length of Levy flight is mainly com-
posed of small step lengths, and occasionally there will be
large step lengths or long jumps, which allows Levy flight to
generate some solutions far away from the current optimal
solution [57]. To a certain extent, this can guarantee the
quality of the population during the entire evolution process,
thereby helping MWOA to get rid of the local optimum and
avoid stagnation. Consequently, it can be considered that the
introduction of Levy flight can prevent the algorithm from
losing its overall diversity and enhance global search ca-
pabilities. Since the pattern search mechanism usually
searches around the current best solution, it has high sta-
bility and good convergence rate. .e pattern search algo-
rithm is considered in order to be able to enhance the local
search capability of the basic WOA and improve the opti-
mization accuracy. .e addition of the two mechanisms has
improved the optimization of WOA in terms of its ability to
seek out the best solution and the balance between explo-
ration and exploitation of the algorithm. Moreover, MWOA
can be employed to identify unknown parameters of SDM,
DDM, and PV modules. For two different types of PV
modules, MWOA can identify their parameters under
various temperature and light irradiance conditions, which
demonstrates its validity and practicality.

.e structure of this paper is as follows. Section 2
provides the problem formulation of SDM, DDM, and PV
module models. MWOA is proposed in detail in Section 3.
.e experiments are displayed in Section 4. .e conclusions
are delivered in Section 5.

2. Problem Definition

.e problem of parameter identification in solar cells and
photovoltaic systems is to determine the parameters in the
model by using the measured current and voltage values.
However, the equivalence model to simulate the nonlinear
current-voltage relationship of solar cells and PV modules
mainly includes SDM and DDM, while SDM is commonly
adopted in application.

2.1. Solar Cell Model

2.1.1. SDM. SDM is simple and its structure is shown in
Figure 1. In Figure 1, there are several major physical pa-
rameters including photocurrent Iph, diode current Id, shunt
resistor Ish, shunt resistance Rsh, series resistance RS, and
input current IL. As seen from Figure 1, we can easily know
the calculation of output current of SDM, whose expression
is shown in the following equation:

IL � Iph − Id − Ish. (1)

According to the Shockley equation, diode current Id in
equation (1) can be expressed as equation (2) while Ish can be
given by equation (3):

Id � Isd · exp
VL + RS · IL
n · Vt

( ) − 1[ ],
(2)

Ish �
VL + RS · IL

Rsh

, (3)

Vt �
kT

q
. (4)

In equation (2),VL is output voltage, Ish represents diode
reverse saturation current, and nmeans diode ideality factor.
Besides, Vt can be written as equation (4) with k being
Boltzmann constant, 1.3806503 × 10− 23 (J/K), q stands for
electronic charge, and T is the Kelvin temperature of cell.
.us, equation (1) can be rewritten as follows:

IL � Iph − Isd · exp
VL + RS · IL
n · Vt

( ) − 1[ ] − VL + RS · IL
Rsh

,

(5)
with five unknown parameters Iph, Ish, RS, Rsh, and n.
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2.1.2. DDM. Compared to SDM, DDM considers the effect
of compound current loss, and its structure is displayed in
Figure 2. As its name implies, DDM has two diodes in
parallel with the current source. .e output current of DDM
is written mathematically as

IL � Iph − Isd1 · exp
VL + IL · RS
n1 · Vt

( ) − 1[ ]
− Isd2 · exp

VL + IL · RS
n2 · Vt

( ) − 1[ ] − VL + IL · RS
Rsh

,

(6)

where Isd1 and Isd2 are, respectively, the diffusion current and
saturation current and n1 and n2 are the ideality factors of
two diodes. From equation (6), there are seven unknown
parameters, Iph, Isd1, Isd2

, RS, Rsh, n1, and n2, in DDM.

2.2. PVModuleModel. PV module consists of multiple solar
cells connected in series and in parallel, as shown in Figure 3.
.e SDM or DDM for PV modules can be represented by
equation (7) or (8), respectively.

IL � IphNp − IsdNp exp
VL + NsRSIL/Np( )

nNsVt
  − 1 

−
VL + NsRSIL/Np( )

NsRsh/Np( ) ,

(7)

IL � IphNp − Isd1Np exp
VL + NsRSIL/Np( )

n1NsVt
  − 1 

− Isd2Np exp
VL + NsRSIL/Np( )

n2NsVt
  − 1 

−
VL + NsRSIL/Np( )

NsRsh/Np( ) ,

(8)

whereNp andNs are the number of solar cells in parallel and
in series of the PV module, respectively. From the above two
formulations, it is clear that the unknown parameters in the
two PV module models are the same as those in SDM and in
DDM.

2.3. Objective Function. .e data of output voltage and
output current are actually collected in the problem of
parameter identification of PV cells and modules. In the
identification process, all that needs to be done is to find the
optimal set of values of unknown parameters which mini-
mizes the error between the current calculated based on the
simulation model and the actual measured one. .erefore,
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Figure 2: Equivalent circuit diagram of DDM.
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Figure 1: Equivalent circuit diagram of SDM.
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Figure 3: Equivalent circuit diagram of PV.
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the root mean square of the error between these two current
values is used as an objective function, as shown in equation
(9), in this problem [58]. .us, the problem studied in this
paper can be equivalent to finding the optimal value of the
objective function in

RMSE �

����������������������∑Mi�1 Isimulated − Imeasured( )2
M

√
, (9)

where Isimulated is the current estimated from the model,
Imesured is the actual measured current, andM is the quantity
of current. Furthermore, the estimated current Isimulated for
each model can be obtained according to (5)–(8).

3. Background of WOA

3.1. 7e Basic WOA. WOA is an intelligent optimization
algorithm implemented by simulating the foraging behavior
of humpback whales. .e algorithm divides the behavior of
humpback whales into three parts: encircling prey, bubble-
net attacking, and searching for prey.

3.1.1. Encircling Prey. In various solving problems, the
optimal solution is not a priori known, so it is assumed that
the current optimal solution is the target prey or is close to
the prey in WOA. After the prey location is defined, indi-
viduals in humpback whale populations will attempt to
update their locations in the direction of the prey by

X(t + 1)
���������→

� Xprey(t)
��������→

− A
→
· D
→
, (10)

where t is the number of current iteration and Xprey(t)
��������→

indicates the vector of current prey position. Both A
→

and D
→

are coefficient vectors given in the following equations:

A
→
� 2 r

→
· a
→
− a
→
, (11)

D
→
� C
→
·Xprey(t)
��������→

−X(t)
����→

|.
∣∣∣∣∣∣ (12)

In equation (11), a
→

is the linearly decreasing parametric
vector from 2 to 0 while r

→
is the random vector within [0, 1].

In equation (12), denotes the absolute value and C
→

is the
coefficient vector expressed as

C
→
� 2 r

→
. (13)

3.1.2. Bubble-Net Attacking. Humpback whales swim si-
multaneously around their prey along a spiral path in a
narrow circle, which is known as a bubble-net attack. .eir
behavior is simulated in WOA by both the contraction
bracketing mechanism and the spiral model. In the opti-
mization process, the selection probability of individuals in
the population is the same for two ways. Besides, the specific
mathematical model is written as follows:

X(t + 1)
���������→

� Xprey(t)
��������→

− A
→
· D
→
, p< 0.5, D→ · ebl · cos(2πl) +Xprey(t)

��������→
, p≥ 0.5,{ (14)

where the parameter b is the constant used to define the
logarithmic spiral shape and l is the random number within
the interval [−1, 1] while p is within [0, 1].

In equation (14), the whale chooses the contraction
bracketing mechanism to update its position when p< 0.5.
Under this circumstance, the coefficient vector A

→
varies with

a
→
, and its variation is fixed within the interval [−1, 1]. By

selecting the contraction bracketing mechanism, the loca-
tion of new individual will be defined anywhere between the
original individual and the prey. When p≥ 0.5, the spiral
model is chosen to update the position of new individual. In
this event, the distance between the whale and the prey is
firstly calculated, and D

→
measures their distance expressed

in equation (15). After that, a spiral equation is created
between the position of the whale and the prey to simulate
the spiral motion of a humpback whale.

D
→
� |Xprey(t)

��������→
−X(t)
����→

|. (15)

3.1.3. Searching for Prey. In the stage of searching for prey,
WOA updates the location of the population by the fol-
lowing equation:

X(t + 1)
���������→

� Xrand(t)
��������→

− A
→
· D
→
, (16)

whereXrand(t)
��������→

is a position vector of a random individual in
the current population and D

→
is calculated as follows:

D
→
� |C

→
·Xrand(t)
��������→

−X(t)
����→

|. (17)

At this phase, humpback whales are randomly searched
based on the positions of each other. Although the algorithm
explores the best agent according to the change of A

→
, it is

different from the contraction bracketing mechanism in
which the module of A

→
is greater than 1, which means that

whales in the search are forced away from the prey location.
In other words, WOA at this stage emphasizes global search.

3.2. Inferences from Literature and Motivation behind this
Work. WOAhas a strong global search capability because of
its efficient location update method. Accordingly, its variants
are applied inmany fields, such as parameter evaluation [59],
feature selection [60, 61], resource scheduling in cloud
computing [62], and clustering [63]. .e wide application of
WOA in various fields directly shows that the algorithm is a
developable tool in practical applications [64–67].

Complexity 5



While the traditional WOA has strong global search
capabilities, it also has weak local search capabilities due to
its overreliance on stochastic convergence factors to convert
exploration to exploitation..erefore, it is an important task
to help the basic WOA improve its local search capabilities.
Because of its freedom of local derivative optimization,
pattern search has been widely used in solving many op-
timization problems outside the scope of standard optimi-
zation techniques. Furthermore, in this work, pattern search
has become a useful tool to improve the local search ca-
pabilities of WOA. Typically, in traditional swarm intelli-
gence algorithms, the imbalance between exploration and
exploitation is also an important factor affecting the per-
formance of the algorithm. However, Levy flight is a non-
Gaussian random walk distribution model that has an in-
determinate step length..emethod is also highly stochastic
and has a trajectory very similar to that of natural biological
activity, which can help swarm intelligence algorithms to
adjust the balance between exploration and exploitation.
.erefore, the mechanism is considered in this study.
Moreover, some improved WOAs have been designed and
applied to the problem of photovoltaic model parameter
evaluation. However, according to the law of no free lunch, it
is still necessary to develop more optimizers to make the
problem better solved.

4. The Proposed Algorithm

In this section, several mechanisms will be introduced in
detail, and the framework of the proposed algorithm will be
outlined.

4.1. Basic Preliminaries of the Proposed Algorithm

4.1.1. Levy Flight. Randomization plays a role in both ex-
ploration and exploitation as well as both diversification and
intensification. In addition, the essence of randomization is a
random walking, which is a random process that involves
performing a series of consecutive random steps. Levy flight
is one of these random processes. Moreover, Levy flight has
been employed as an optimization technique to improve the
performance of multiple metaheuristic algorithms [68–71].
Note that Levy flight is a random walking obeying the Levy
distribution defined in the following equation:

Levy(s) ∼ |s|− 1− β, β ∈ (0, 2), (18)

where β is an exponential function that determines the shape
of Levy distribution and s is a random step, which can be
expressed in the following form:

s �
μ

|]|
(1/β)

, (19)

with μ and ] being parameters subject to normal distribu-
tion, i.e.,μ ∼ N(0, σ2μ) and ] ∼ N(0, σ2

]
). .e expressions for

σμ and σ
]
are given as follows:

σμ �
Γ(1 + β) · sin(πβ/2)

Γ(1 + β/2) · β · 2(β−1/2)
( )(1/β),

(20)

σ
]
� 1, (21)

where Γ stands for the gamma function.

4.1.2. Pattern Search. It is universally acknowledged that
pattern search is a local derivative free optimization method
which is ideal for solving many optimizations problems
beyond the scope of standard optimization techniques.

.e initial process of pattern search begins around a set
of points called dots. .en, the grid is made by adding the
nearest point to a set of scalar multiples of a vector called
pattern. Besides, a point with better fitness is selected from
the points in the grid as the initial point for the next iter-
ation. .e specific steps in the pattern search are as follows:

Step 1: determine the initial point x0 and calculate its
fitness f(x0).

Step 2: calculate other points xi around the initial point
x0 according to equation (22), while calculating their
objective fitness f(xi). If there is one point better than
x0, perform step 3; otherwise, perform step 4.

xi � x0 + v(j) · L, (22)

where v(j) indicates the pattern vector in which
j ∈ (1, 2, . . . , 2d), with d being the dimension of the
problem to be solved, and L signifies the search step.

Step 3: update L based on equation (23), where δ > 1
and is used to expand the search space. .en execute
step 5.

L � δL. (23)

Step 4: update L according to equation (24), where λ< 1
and is used to narrow the search space. .en execute
step 5.

L � λL. (24)

Step 5: if termination condition is not met, continue
with step 1; otherwise, stop the iteration and output the
optimal point.

4.2. Framework of MWOA. We propose the modified whale
optimization algorithm (MWOA) in this paper. .e pseu-
docode of MWOA is shown as follows in Algorithm 1, and
Figure 4 displays its flowchart. In MWOA, Levy flight is
initially employed to improve the performance of the al-
gorithm to avoid falling prematurely into a local optimum.
In summary, MWOA first performs the basic strategy of the
original whale optimization algorithm to update the pop-
ulation. .en, Levy flight is operated as follows. According
to equation (25), the individual Vi that has undergone Levy
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Initialize the whale’s population X;
Calculate the fitness of each search agent;
Leader_pos� the best search agent;
while (t<maximum number of iterations)

for each search agent
Update a, A, C, l and p;
if (p< 0.5)
if (|A|< 1)

Update the position of the current search agent by equation (10);
else if (|A|≥ 1)

Update the position of the current agent by equation (16);
end if
else if (p≥ 0.5)

Update the position of the current search agent by equation (14);
end if

Carry on the Levy flight for each agents using equation (25);
end for

Using pattern search to the best agent Leader_pos;
Check if any search agent goes beyond the search space and amend it;
Calculate the fitness of each search agent;
Update Leader_pos if there is a better solution;
t� t+ 1;

end while

return Leader_pos;

ALGORITHM 1: MWOA.

Calculate the fitness of
individuals in the

population

Start
Initial population size N,
maximum iterations T,

current iteration t

Initial
population

Update parameters
a, A, c, l, p

Get the location of the
current best individual

|A| < 1 p < 0.5

Update individual i according
to equation (14)

Update individual i according
to equation (16)

Update individual i according
to equation (10)

Perform Levy mutation on
individual i

i > N i = i + 1

t = t + 1
Perform pattern

search for the current
best individual

EndReturn the best agent

t < TYES

NO

YES

NO

YES

NO

YES
NO

Figure 4: Flowchart of MWOA.
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variation is obtained and its fitness f(Vi) is calculated
concurrently. If f(Vi) is better than f(Xi), then Vi will be
substituted for Xi. In equation (25), Leader pos means the
current optimal solution and α is the constant coefficient
with a value of 0.75 and β � 1.5.

Vi � Xi + α · Levy(β)⊕ Xi − Leader pos( ). (25)

After performing Levy flight on the entire population,
the optimal solution in the current population is picked as
the initial point of pattern search. A new solution, Xps, is
found by pattern search. .en, compared with the current
optimal solution, the better one is chosen. With respect to
pattern search, the function patternsearch () in MATLAB is
used directly. For the iteration termination condition of the
pattern search, it is set to 0.1 times the maximum number of
MWOA iterations, and the remaining parameters are default
values.

4.3. Time Complexity Analysis. Before analyzing the time
complexity of the proposed method, it is first divided into
the following steps:

Step 1: initialization parameters: initialize the genera-
tion counter t, the number of maximum iterations T,
the population sizeN, the dimensionality of the space d,
and the boundary of the searching area [lb, ub].

Step 2: initialization of random whale populations

Step 3: calculate the fitness of whales and choose the
best agent

Step 4: update whales: update the whales in the pop-
ulation according to equations (10)–(17).

Step 5: Levy flight: get the variant V by performing the
Levy flight based on equation (25), and then update the
population if the fitness of V is better than the original
one. Bring new whales back if there is someone outside
the boundaries.

Step 6: pattern search: choose the current optimal
Leader_pos to perform pattern search mechanism to
generate the candidate position and bring it back if it is
over the border. .en, update Leader_pos if the fitness
of the candidate obtained previously is superior to that
of Leader_pos.

Step 7: stop or continue the iterative process: repeat
step 3 to step 8 until the exit condition is met, and then
return Leader_pos.

Next, we proceed to the time complexity analysis. .e
primary time complexity of MWOA mainly relies on steps
3–7. .us, the overall time complexity of MWOA (O
(MWOA)�O (population initialization) +G ∗ (O (fitness
evaluation) +O (whales updating)) +O (the Levy flight
strategy) +O (the pattern search mechanism)). Considering
that the population has n individuals, the time complexity of
the initialization is O (n ∗ d), and computing the fitness of
whales in population is O (G ∗ (nd)). Besides, updating the
location of the whales is O (G ∗ (6nd+ 7n)). .us, the time
complexity of the original WOA is O (n ∗ d) +O

(G(n ∗ d)) +O (G ∗ (6nd+ 7n)). In addition, the time
complexity of the Levy flight strategy is O
(G ∗ (nd+ nd+ 4n)), while pattern search is O
(G ∗ (0.1 ∗ G+ 6)). .erefore, the time complexity of
MWOA is approximately equal to O (nd) +O
(G ∗ (9nd+ 11n+ 0.1G+ 6)). Note that both the proposed
MWOA and the classical WOA have a complexity of O (nd)
based on the large O notation.

5. Experimental Results and Analysis

To verify the effectiveness of MWOA, parameter identifi-
cation of solar cells and PV modules is carried out for the
two datasets provided in the literature [72]. .ese two
datasets relate to RTC France cell and Photowatt-PWP 201
PV module, and they have been widely used to validate the
performance of the new methods [3, 73, 74]. .e dataset of
RTC France contains 26 pairs of current and voltage values
measured under standard test conditions (33°C, 1000W/m2

light intensity) while that of Photowatt-PWP 201 consisting
of 36 polysilicon cells in series includes 25 pairs of data
measured under standard test conditions (45°C, 1000W/m2

light intensity).
In this part, MWOA was implemented by MATLAB

R2014a and was conducted in 30 runs independently on each
model. Each experiment was terminated by reaching the
maximum number (10,000) of iterations. .e range of pa-
rameters to be identified for SDM, DDM, and PV module is
reported in Table 1.

To further check the validity and reliability of MWOA, it
was applied to estimate parameters of the two different types
of PV modules: thin-film PV module ST40 and mono-
crystalline silicon PV module SM55. .e experimental data
are obtained from their product data book, including data
under different light intensity and temperatures. In this part
of experiment, the maximum iterations and the population
size were set to 5000 and 30, respectively.

5.1. Results of RTC France Solar Cell. In this part, the ex-
perimental results of MWOA on single diode and double
diode solar cells and photovoltaic modules will be given in
detail. Among them, because some competing algorithms
have relatively good performance on a certain model, it may
perform poorly on other models. .erefore, the selected
competition algorithm on the three models may be different.
However, to ensure fairness, the settings of each algorithm
are consistent on the same model.

5.1.1. Results of SDM. Table 2 lists the results including the
values of five parameters in SDM and RMSE based on
MWOA along with the other seven algorithms for com-
parison, which are CPSO [75], LMSA [76], EHHO [77],
ABSO [3], GOTLBO [78], LWOA [49], and CWOA [79].
Additionally, Figure 5 demonstrates the I-V characteristic
(I-VC) and the P-V characteristic (P-VC) of the best SDM
obtained based on MWOA. To further reveal the quality of
the results, Table 3 lists the absolute errors (IAEs) and the
relative errors (REs) between the simulated and the
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experimental data, while Figure 6 displays the IAE and the
RE between these data with their definitions given in
equations (26) and (27), respectively. Besides, IAE and RE
can more intuitively help readers observe the error between
the actual measured data and the data obtained by the
simulation experiment at each measurement point, thereby
further reflecting the performance of the proposed
algorithm.

IAE � Imeasured − Isimulated

∣∣∣∣ ∣∣∣∣, (26)

RE �
Imeasured − Isimulated

∣∣∣∣ ∣∣∣∣
Imeasured

. (27)

We can see from Table 3 that, for SDM,MWOA not only
performs better than other competing algorithms, but also
has more satisfactory optimization accuracy compared to
other improved WOAmethods. As shown in Figure 6, I-VC
and P-VC of the best SDM obtained by themethod proposed
in this paper are in good agreement with the experimental
data over all measured points. Moreover, the IAEs of all
simulated currents are less than 8.25668E− 05, and the
corresponding REs are within the interval [−1.9962e− 02,
2.1517e− 02]. Above all, we conclude that the actual be-
havior of solar cells can be accurately described by SDM
which is estimable by MOWA.

5.1.2. Results of DDM. For DDM of RTC France, the values
of parameters and RMSE obtained based on the seven
different algorithms including MWOA are reported in Ta-
ble 4: SA [80], HS [81], GGHS [81], IGHS [81], LWOA,
CWOA, and MWOA. Besides, Figure 7 depicts the com-
parison of I-VC and P-VC of the estimated DDM based on
MWOA with the experimental data. Furthermore, the IAE
and the RE of simulated currents are shown in Figure 8 while
the specific values of simulated data are provided in Table 5.

It can be evidently seen from the figures and tables
mentioned above that MWOA still performs well for DDM
although it is slightly inferior to some algorithms. From the
perspective of fitness, RMSE obtained by MWOA is worse
than ABC and ICHS, only ranking the third place. However,
MWOA is much better than the remaining algorithms. I-VC
and P-VC of the estimated model are in good agreement

with the experimental data. Moreover, all the IAE of sim-
ulated currents are less than 2.524E− 02, and all RE are
within the interval [−2.0108E− 02, 1.3199E− 01]. All of these
results show that it is possible to identify the unknown
parameters of DDM with high precision based on MWOA.

5.2. Results of Photowatt-PWP 201 Module. We need to
identify five parameters in PV module model, and the results
based on the eight algorithms are given in Table 6: Newton,
CPSO, EHHO, CARO, LWOA, CWOA MWOA, and the
method in [82]. As we can see in the table, MWOA produces
the smallest RMSE (2.42508E− 03) among all the algorithms,
while CARO and LWOA are, respectively, the second and the
third best in terms of RMSE. Moreover, the accuracy of
MOWA is much higher than that of the other algorithms,
indicating that the improved approach is effective in im-
proving the performance of WOA in the parameter recog-
nition of PVmodules. Figure 9 shows the comparison of I-VC
and P-VC between the best model constructed by MWOA
and the experimental data. From Figure 9, we can see that the
fit between these two is high. IAE and RE of the simulated
currents are also shown in Figure 10. In themeantime, specific
data including currents, powers, and their related IAE and RE
are available in Table 7. We can see from the table that all the
IAE of the simulated currents are less than 4.84E− 03, while
all RE are within the interval [−3.973E− 02, 5.0336E− 02].
.erefore, MWOA is satisfactory for the parameter dis-
crimination of PV module model.

Figure 11 presents the convergence curve of MWOA for
three models, which reveals the performance in 30 runs. It is
obvious that the proposed method converges faster and
better than the original algorithm for parameter identifi-
cation in SDM, DDM, and PVmodule. Moreover, compared
to the newly published EHHO and another improved WOA
called CWOA, MWOA always has the fastest convergence
speed and the most prominent accuracy.

Based on the performance of the above MWOA on the
three models, it can be found that, in terms of optimization
accuracy, MWOA not only is better than other competitive
algorithms, but also has a competitive advantage compared
to other improved WOAs. Accordingly, there is a reason to
say that MWOA is a promising tool in the field of evaluating
unknown parameters of photovoltaic models.

5.3. Discussion. It can be known from the above that
MWOA introduces two strategies, Levy flight and pattern
search. In order to further prove the contribution of these
two mechanisms to the proposed algorithm, the maximum
(max), minimum (min), mean value (mean), and standard
deviation (std) of RMSE are introduced. Table 8 shows the
comparison results of MWOA with its variants involving
only one of these mechanisms. Among them, the method
that only introduces Levy flight is recorded as LWOA, and
the method that only involves pattern search is recorded as
PSWOA. From Table 8, whether it is the max, min, or mean,
MWOA always has the best performance in the three ex-
perimental models, which demonstrates that MWOA has
the most satisfactory optimization accuracy. What is more,

Table 1: Bounds of parameters for three different models.

Parameters

Single diode/double
diode

PV module

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Iph (A) 0 1 0 2
Isd (μA) 0 1 0 50
Rs(Ω) 0 0.5 0 2
Rsh(Ω) 0 100 0 2000
N 1 2 1 50
Isd1 (μA) 0 1 0 50
Isd2 (μA) 0 1 0 50
n1 1 2 1 50
n2 1 2 1 50
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Table 2: Identification results of SDM based on seven algorithms.

Item CPSO LMSA EHHO ABSO GOTLBO LWOA CWOA MWOA

Iph (A) 0.7607 0.76078 0.7611 0.7608 0.760780 0.7602 0.7605 0.760773
Isd (μA) 0.4 0.31849 0.3613 0.30623 0.331552 0.4607 0.5047 3.23
Rs(Ω) 0.0354 0.03643 0.03583 0.03659 0.036265 0.0350 0.0341 0.036375
Rsh(Ω) 59.012 53.32644 53.752 52.2903 54.11543 75.4619 51.4778 53.76689
n 1.5033 1.47976 1.4814 1.47878 1.483820 1.5177 1.52783 1.48127
RMSE 1.3900E− 03 9.8640E− 04 1.0484E− 03 9.9124E− 04 9.8744E− 04 1.2352E− 03 1.5792E− 03 9.8602E−04
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Figure 5: I-VC (a) and P-VC (b) of the best SDM obtained based on MWOA.

Table 3: Simulated data and associated IAE obtained by MWAO for SDM.

Item
Measured data Simulated current data Simulated power data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(W)

1 −0.2057 0.7640 0.764082567 8.25668E− 05 −0.15717178 1.69840E− 05
2 −0.1291 0.7620 0.762659230 0.000659230 −0.09845930 8.51067E− 05
3 −0.0588 0.7605 0.761352627 0.000852627 −0.04476753 5.01345E− 05
4 0.0057 0.7605 0.760152391 0.000347609 0.004332869 1.98137E− 06
5 0.0646 0.7600 0.759054593 0.000945407 0.049034927 6.10733E− 05
6 0.1185 0.7590 0.758042625 0.000957375 0.089828051 0.000113449
7 0.1678 0.7570 0.757092741 9.27410E− 05 0.127040162 1.55619E− 05
8 0.2132 0.7570 0.756143167 0.000856833 0.161209723 0.000182677
9 0.2545 0.7555 0.755089260 0.000410740 0.192170217 0.000104533
10 0.2924 0.7540 0.753666678 0.000333322 0.220372137 9.74633E− 05
11 0.3269 0.7505 0.751393925 0.000893925 0.245630674 0.000292224
12 0.3585 0.7465 0.747356624 0.000856624 0.267927350 0.000307100
13 0.3873 0.7385 0.740119380 0.001619380 0.286648236 0.000627186
14 0.4137 0.7280 0.727383310 0.000616690 0.300918475 0.000255125
15 0.4373 0.7065 0.706972335 0.000472335 0.309159002 0.000206552
16 0.4590 0.6755 0.675278304 0.000221696 0.309952741 0.000101759
17 0.4784 0.6320 0.630755139 0.001244861 0.301753258 0.000595542
18 0.4960 0.5730 0.571924465 0.001075535 0.283674535 0.000533465
19 0.5119 0.4990 0.499603044 0.000603044 0.255746798 0.000308698
20 0.5265 0.4130 0.413645441 0.000645441 0.217784324 0.000339824
21 0.5398 0.3165 0.317507878 0.001007878 0.171390753 0.000544053
22 0.5521 0.2120 0.212154111 0.000154111 0.117130285 8.50846E− 05
23 0.5633 0.1035 0.102251839 0.001248161 0.057598461 0.000703089
24 0.5736 −0.0100 −0.00871617 0.001283834 −0.00499959 0.000736407
25 0.5833 −0.1230 −0.12550541 0.002505411 −0.07320731 0.001461406
26 0.5900 −0.2100 −0.20847066 0.001529341 −0.12299877 0.000902311
Sum of IAE NA NA NA 0.021516718 NA 0.008728789
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Figure 6: IAE (a) and RE (b) between the simulated data by SDM and the experimental data.

Table 4: Identification results of DDM based on seven algorithms.

Item SA HS GGHS IGHS EHHO LWOA CWOA MWOA

Iph (A) 0.7623 0.76176 0.7606 0.7608 0.7603 0.7608 0.7598 0.7608
Isd1 (μA) 0.4767 0.1255 0.3701 0.9731 0.0602 0.1667 0.2415 2.6500
Isd2 (μA) 0.0100 0.2547 0.1350 0.1679 0.2273 0.0361 0.6000 3.1200
Rs(Ω) 0.0345 0.03545 0.03562 0.0369 0.0349 55.2366 1.4565 0.0367
Rsh(Ω) 43.1034 46.8270 62.7899 53.8368 79.1512 1.6086 1.9899 53.3477
n1 1.5172 1.49439 1.49638 1.9213 1.95621 0.2323 0.0367 1.4638
n2 2.0000 1.4999 1.9300 1.4281 1.5025 1.4658 55.2016 1.9796
RMSE 1.664E− 02 1.26E− 03 1.07E− 03 9.8635E− 04 1.312E− 04 1.000E− 03 1.789E− 03 9.8694E− 04
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Figure 7: I-VC (a) and P-VC (b) of the best DDM obtained based on MWOA.
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the smallest std indicates that MWOA has the best ro-
bustness on the three models. In conclusion, there is no way
to achieve the expected results with a single mechanism, but
the combination of the two can have better performance.

Besides, timeCost records the average CPU time of three
versions of WOA after running independently for 30 times

on a PC with main frequency of 3.4 GHZ, a memory of
8 GB, and an operating system of Win10 with MATLAB
R2016a implementation. It can be seen that although the
pattern search algorithm has strong local search capabil-
ities, its introduction has significantly increased the
computational cost. Nevertheless, it is worthwhile to spend

Table 5: Simulated data and associated IAE obtained by MWAO on SDM.

Item
Measured data Simulated current data Simulated power data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(A)

1 −0.2057 0.7640 0.764128657 0.000128657 −0.15718127 2.64647E− 05
2 −0.1291 0.7620 0.762694119 0.000694119 −0.09846381 8.96107E− 05
3 −0.0588 0.7605 0.761377154 0.000877154 −0.04476898 5.15766E− 05
4 0.0057 0.7605 0.760167171 0.000332829 0.004332953 1.89713E− 06
5 0.0646 0.7600 0.759059926 0.000940074 0.049035271 6.07288E− 05
6 0.1185 0.7590 0.758038137 0.000961863 0.089827519 0.000113981
7 0.1678 0.7570 0.757077118 7.71183E− 05 0.127037540 1.29405E− 05
8 0.2132 0.7570 0.756113872 0.000886128 0.161203478 0.000188922
9 0.2545 0.7555 0.755043390 0.000456610 0.192158543 0.000116207
10 0.2924 0.7540 0.753602153 0.000397847 0.220353270 0.000116330
11 0.3269 0.7505 0.751312692 0.000812692 0.245604119 0.000265669
12 0.3585 0.7465 0.747267653 0.000767653 0.267895454 0.000275204
13 0.3873 0.7385 0.740041090 0.001541090 0.286617914 0.000596864
14 0.4137 0.7280 0.727341210 0.000658790 0.300901058 0.000272542
15 0.4373 0.7065 0.706990350 0.000490350 0.309166880 0.000214430
16 0.4590 0.6755 0.675367421 0.000132579 0.309993646 6.08538E− 05
17 0.4784 0.6320 0.630900439 0.001099561 0.301822770 0.000526030
18 0.4960 0.5730 0.572089519 0.000910481 0.283756402 0.000451598
19 0.5119 0.4990 0.499742182 0.000742182 0.255818023 0.000379923
20 0.5265 0.4130 0.413712372 0.000712372 0.217819564 0.000375064
21 0.5398 0.3165 0.317482559 0.000982559 0.171377085 0.000530385
22 0.5521 0.2120 0.212040732 4.07323E− 05 0.117067688 2.24883E− 05
23 0.5633 0.1035 0.102089898 0.001410102 0.057507240 0.000794310
24 0.5736 −0.0100 −0.00883403 0.001165972 −0.00506720 0.000668801
25 0.5833 −0.1230 −0.12552400 0.002523998 −0.07321815 0.001472248
26 0.5900 −0.2100 −0.20830259 0.001697414 −0.12289853 0.001001474
Sum of IAE NA NA NA 0.021441 NA 0.008687
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Figure 8: IAE (a) and RE (b) between the simulated data by DDM and the experimental data.
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a certain amount of time as a cost to improve accuracy.
However, for large-scale problems, computing time will be
an important issue worthy of attention. .erefore,

reducing the computational cost without changing the
accuracy is still a problem we need to pay attention to in
the future.

Table 6: Identification results of PV module model based on eight algorithms.

Item Newton [72] CPSO EHHO Method in [82] CARO [83] LWOA CWOA MWOA

Iph (A) 1.0318 1.0286 1.0302 1.0310 1.03185 1.0293 1.0272 1.030529
Isd (μA) 3.2875 8.3010 3.6469 3.8236 3.28401 3.6916 4.2334 3.4744947
Rs(Ω) 1.2057 1.0755 1.1964 1.0920 1.20556 1.1985 1.1879 1.201498
Rsh(Ω) 555.5556 1850.100 833.333 689.660 841.321 11198.783 1923.9615 979.3934
n 48.4500 52.2430 48.8202 48.9300 48.4036 48.8626 49.390 48.6343
RMSE 7.8050E− 01 3.5000E− 03 2.429E− 03 1.02E− 01 2.427E− 03 2.4529E− 03 2.5962E− 03 2.42508E− 03
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Figure 9: I-VC (a) and P-VC (b) of the best PV module model obtained based on MWOA.
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Figure 10: IAE (a) and RE (b) between the simulated data by PV module model and the experimental data.
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Table 7: Simulated data and associated IAE obtained by MWAO on PV module model.

Item
Measured data Simulated current data Simulated power data

V(V) I(A) Isim(A) IAEI(A) Psim(W) IAEP(A)

1 0.1248 1.0315 1.029129620 0.002370380 0.128435377 0.000295823
2 1.8093 1.0300 1.027387041 0.002612959 1.858851373 0.004727627
3 3.3511 1.0260 1.025743729 0.000256271 3.437369810 0.000858790
4 4.7622 1.0220 1.024105540 0.002105540 4.876995401 0.010027001
5 6.0538 1.0180 1.022287230 0.004287230 6.188722436 0.025954036
6 7.2364 1.0155 1.019923904 0.004423904 7.380577341 0.032013141
7 8.3189 1.0140 1.016355126 0.002355126 8.454956661 0.019592061
8 9.3097 1.0100 1.010488234 0.000488234 9.407342308 0.004545308
9 10.2163 1.0035 1.000622548 0.002877452 10.22266014 0.029396911
10 11.0449 0.9880 0.984544825 0.003455175 10.87419914 0.038162061
11 11.8018 0.9630 0.959521942 0.003478058 11.32408605 0.041047349
12 12.4929 0.9255 0.922843077 0.002656923 11.52898628 0.033192675
13 13.1231 0.8725 0.872607161 0.000107161 11.45131103 0.001406283
14 13.6983 0.8075 0.807283342 0.000216658 11.05840940 0.002967848
15 14.2221 0.7265 0.728345244 0.001845244 10.35859889 0.026243239
16 14.6995 0.6345 0.637144626 0.002644626 9.365707433 0.038874683
17 15.1346 0.5345 0.536216243 0.001716243 8.115418353 0.025974653
18 15.5311 0.4275 0.429510822 0.002010822 6.670775525 0.031230275
19 15.8929 0.3185 0.318770524 0.000270524 5.066188057 0.004299407
20 16.2229 0.2085 0.207383220 0.001116780 3.364357235 0.018117415
21 16.5241 0.1010 0.096159717 0.004840283 1.588952787 0.079981313
22 16.7987 −0.0080 −0.00833096 0.000330958 −0.13994927 0.005559666
23 17.0499 −0.1110 −0.11093900 6.09964E− 05 −1.89149892 0.001039982
24 17.2793 −0.2090 −0.20924515 0.000245153 −3.61560977 0.004236069
25 17.4885 −0.3030 −0.30085484 0.002145160 −5.26149987 0.037515629
Sum of IAE NA NA NA 0.048918 NA 0.517259
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Figure 11: Continued.
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5.4. Results of ST40 and SM55. To further test the utility of
the method proposed in this paper, we apply MWOA to
parameter extraction in the two different types of PV
modules: thin-film PV module ST40 [84] and monocrys-
talline silicon PV module SM55 [85]. Both the two PV
modules are modeled by SDM and DDM. For each module
type, experiments were conducted at different temperatures
and different light intensities. When the temperature
changes, the light intensity needs to keep constant; con-
versely, when the light intensity changes, the temperature
keeps constant.

.e initial range of the photogenic current Iph in this
part is determined by the short circuit current ISC and its
temperature coefficient α under standard test conditions
(STC). .e calculation of Iph is as follows:

ISC(G, T) � ISC_STC ·
G

GSTC

+ α · T − TSTC( ), (28)

where G and T represent the light intensity and the tem-
perature under non-STC, respectively. .us, the parameter
ranges are given in Table 9.

Tables 10 and 11 give the two PV modules’ best pa-
rameter values in SDM and DDM extracted by MWOA at
different irradiances. In addition, their values of parameters
under different temperature conditions are listed in Ta-
bles 12 and 13. Furthermore, Figures 12 and 13 present the
results of the comparison between the simulated current and
experimental data at various irradiances for both SDM and
DDM, while comparative results at different temperatures

Table 8: Comparisons of MWOA with its variants for three models.

Model Algorithm max min mean std timeCost (ms)

SDM
MWOA 0.00560131 0.00098609 0.00180880 0.00091696 1308
LWOA 0.04599369 0.00112371 0.01627346 0.01822288 191

PSWOA 0.00375842 0.00098643 0.00176644 0.00057628 1284

DDM
MWOA 0.0026339 0.00098602 0.00137714 0.00050241 4318
LWOA 0.04601357 0.00107692 0.00953996 0.01368628 205

PSWOA 0.00369537 0.00098964 0.00177870 0.00075721 3298

PV
MWOA 0.0094304 0.00242787 0.00343322 0.00167523 1816
LWOA 0.27431195 0.00251422 0.11064789 0.12821913 192

PSWOA 0.01171526 0.00242508 0.00350586 0.00203750 1693
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Figure 11: Convergence graphs of MWOA for three models: (a) SDM; (b) DDM; (c) PV.

Table 9: Ranges of parameters for ST40 and SM55.

Parameters Iph(A) Isd(A) Rs(Ω) Rp(Ω) n

Lower limit 0 0 0 0 1
Upper limit 2ISC 100e− 6 2 5000 4
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Table 10: Parameter estimates by MWOA for ST40 at different irradiances with a temperature of 25°C.

Parameter
Irradiance (W/m2)

200 400 600 800 1000

SDM
IPh (A) 0.53331757 1.066988270 1.60810360 2.134525548 2.672172239
Isd (mA) 1.26871E− 06 2.25447E− 06 5.7171E− 07 2.13585E− 06 2.49412E− 06
Rs(Ω) 1.246907638 1.044231634 1.22988867 1.072832043 1.077531612
Rsh(Ω) 342.7239747 373.8873942 301.602681 396.1091591 431.4419003
n 1.731262353 1.805362555 1.63808006 1.794001397 1.811129005
RMSE 0.000482114 0.000719576 0.00197090 0.002108032 0.001978270
DDM
IPh (A) 0.533334706 1.067494405 1.603128611 2.135349650 2.672683458
Isd1(mA) 3.18603E− 05 1.10843E− 05 2.01305E− 07 2.63126E− 05 3.68549E− 07
Isd2(mA) 1.82510E− 07 1.73461E− 06 9.10872E− 05 9.23098E− 08 6.39422E− 05
Rs(Ω) 1.607320066 1.086406066 1.228284977 1.193810586 1.154094959
Rsh(Ω) 362.7821760 365.4957689 424.7460606 411.8634978 463.7373381
n1 2.954593428 3.999998684 1.538718540 2.581648985 1.601798267
n2 1.517748630 1.770462365 3.259517500 1.479398414 3.062640621
RMSE 0.000464494 0.000640640 0.001199160 0.001561701 0.001413850

Table 11: Parameter estimates by MWOA for SM55 at different irradiances with a temperature of 25°C.

Parameter
Irradiance (W/m2)

200 400 600 800 1000

SDM
IPh(A) 0.691124151 1.375557785 2.060699041 2.754700747 3.445108764
Isd(mA) 3.14217E− 07 2.59878E− 06 5.59042E− 06 8.35283E− 07 5.71094E− 06
Rs(Ω) 0.045346426 0 0.025746037 0.226456305 0.168590083
Rsh(Ω) 460.8732310 982.5299237 3737.137718 826.8341087 5000
n 1.450790398 1.679741930 1.769714298 1.539436492 1.761010518
RMSE 7.33928E− 04 5.30961E− 03 9.59915E− 03 5.03150E− 03 1.95455E− 02
DDM
IPh (A) 0.691774691 1.382238669 2.069823060 2.760191237 3.444815843
Isd1(mA) 2.67313E− 05 6.75894E− 05 3.32656E− 05 1.18388E− 07 4.47349E− 07
Isd2(mA) 1.21842E− 07 7.43739E− 08 1.83266E− 07 2.02677E− 05 3.20927E− 08
Rs(Ω) 0.301600858 0.410528644 0.315554320 0.344567527 0.294658909
Rsh(Ω) 452.4222904 465.8227848 500.5793324 475.8515534 835.4957903
n1 3.999998927 3.999999857 3.999999242 1.365722181 1.479773104
n2 1.364883480 1.328568747 1.401671201 3.530470772 3.999998105
RMSE 5.55361E− 04 6.42907E− 03 1.13452E− 03 7.36226E− 04 4.85349E− 03

Table 12: .e optimal extracted parameters for SM55 based on MWOA at various temperatures with irradiance of 1000 (W/m2).

Parameter
Temperature

25°C 40°C 50°C 70°C

SDM
IPh (A) 2.670805171 2.678136578 2.692226584 2.692391664
Isd(mA) 2.99498E− 06 7.45505E− 06 1.82816E− 05 8.72477E− 05
Rs(Ω) 1.063555711 1.109929841 1.151349018 1.126145392
Rsh(Ω) 468.8521810 425.9939767 291.6453129 366.3672871
n 1.834954118 1.759078925 1.714508611 1.726804626
RMSE 2.63628E− 03 1.823996E− 03 1.825667E− 03 7.77905E− 04
DDM
IPh (A) 2.671398029 2.679666230 2.689671608 2.692165113
Isd1(mA) 2.11052E− 06 4.11310E− 06 6.53862E− 06 4.07806E− 05
Isd2(mA) 5.16008E− 05 9.13747E− 05 7.44782E− 05 5.01099E− 05
Rs(Ω) 1.083233193 1.139556934 1.170833251 1.126314671
Rsh(Ω) 465.8813651 409.7291090 350.2016170 372.8377988
n1 1.790806924 1.683990294 1.596889739 1.687289644
n2 4 3.459103314 2.383804127 1.787270097
RMSE 2.026022E− 03 1.434158E− 03 1.691410E− 03 7.86324E− 03
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Figure 12: I-VC of (a) SDM and (b) DDM for thin-film ST40 at different irradiances.

Table 13: .e optimal extracted parameters for SM55 based on MWOA at various temperatures with irradiance of 1000 (W/m2).

Parameter
Temperature

25°C 40°C 60°C

SDM
IPh (A) 3.439753496 3.464789448 3.496202107
Isd(mA) 1.09955E− 06 2.12791E− 06 5.76199E− 06
Rs(Ω) 0.258317606 0.288320732 0.326680838
Rsh(Ω) 3185.898949 920.0665445 420.4346275
n 1.568081730 1.478821787 1.386130001
RMSE 9.36221E− 03 5.238358E− 03 3.943069E− 03
DDM
IPh (A) 3.444339148 3.468216376 3.494227304
Isd1(mA) 4.84749E− 07 1.69984E− 06 5.56214E− 06
Isd2(mA) 1.48188E− 06 1.30229E− 06 9.81529E− 05
Rs(Ω) 0.291523040 0.308086727 0.324250130
Rsh(Ω) 897.8080508 584.7482411 535.3914659
n1 1.487262815 3.999999340 1.383430623
n2 4 1.430089460 3.060301029
RMSE 5.262165E− 03 3.865419E− 03 3.890039E− 03
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Figure 13: I-VC of (a) SDM and (b) DDM for monocrystalline SM55 at different irradiances.
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Figure 14: I-VC of (a) SDM and (b) DDM for thin-film ST40 at different temperatures.
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are given in Figures 14 and 15. It can be seen from the figures
that the two PVmodules’ I-VCs of the two models estimated
by MWOA are both in good accordance with the experi-
mental data no matter under different irradiance or tem-
perature conditions.

6. Conclusions and Future Directions

In this paper, we propose a modified whale optimization
algorithm for identifying the unknown parameters in the
optimal models which characterize solar cells and photo-
voltaic modules. .e new algorithm MWOA is formed by
introducing Levy flight strategy and pattern search mech-
anism. MWOA follows the population update approach of
the original WOA to find the current optimal solution which
is used as the initial point of pattern search; then, it searches
for potential better solutions in the domain of this solution.
Meanwhile, it makes use of Levy flight to maintain the
diversity of solutions; thus, it enhances the ability to explore
the entire search space. .ese two improvement mecha-
nisms balance the relationship between exploration and
exploitation and allow the algorithm to increase the solution
accuracy, while they mitigate the possibility of the algorithm
falling into local optimization. Moreover, we demonstrate
the validity and the utility of the proposed method in the
problem of identifying parameters of solar cell and PV
modules by analyzing the experimental results.

.ere are still interesting aspects that can be further
explored in future work. Firstly, we have utilized MWOA to
obtain satisfactory results in parameter estimation for solar
cells and PV modules, and we will investigate its application
to other problems including engineering application [86],
multithreshold image segmentation [87, 88], bankruptcy

prediction [89], engineering design [65, 90–93], financial
stress prediction [94], constrained practical engineering
problems [95], support vector machines [66, 96, 97], extreme
learning machine (ELM) [98–103], convolutional neural
networks [104–107], medical image recognition [108], fea-
ture selection [66, 109–113], feature information fusion
[114], social evolutionmodeling [115], recommender system
[116], text clustering [117], and unsupervised band selection
[118]. Secondly, since MWOA is a population-based sto-
chastic optimizer that may still encounter population
stagnation problems for some more complex datasets,
further improvement of the algorithm performance based
on other optimization mechanisms is also a meaningful
research direction.
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