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Abstract: The quantitative structures activity  relationships 

(QSAR) and quantitative structures property relationships 

(QSPR) between the chemical compounds are studied with 

the help of topological indices (TI’s) which are the fixed 

real numbers directly linked with the molecular graphs. 

Gutman and Trinajstic (1972) defined the first degree 

based TI to measure the total π-electrone energy of a mole-

cular graph. Recently, Ali and Trinajstic (2018) restudied 

the connection based TI’s such as first Zagreb connection 

index, second Zagreb connection index and modified first 

Zagreb connection index to find entropy and accentric 

factor of the octane isomers. In this paper, we study the 

modified second Zagreb connection index and modified 

third Zagreb connection index on the T-sum (molecular) 

graphs obtained by the operations of subdivision and 

product on two graphs. At the end, as the applications of 

the obtained results for the modified Zagreb connection 

indices of the T-sum graphs of the particular classes of 

alkanes are also included. Mainly, a comparision among 

the Zagreb indices, Zagreb connection indices and modi-

fied Zagreb connection indices of the T-sum graphs of the 

particular classes of alkanes is performed with the help 

of numerical tables, 3D plots and line graphs using the 

 statistical tools.

Keywords: modified Zagreb indices; connection number; 

T-sum graphs

1  Introduction 

A topological index (TI) is represented as a graphical 

invariant in chemical graph theory with graphical terms 
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vertex and edge are equal to chemical terms atom and 

bond respectively. Briefly, a TI is a numerical value for 

correlation between chemical structure and various 

physical properties of biological activity or chemical 

reactivity. So, these TI’s predict the chemical and 

physical aspects that encoded or shown in the molecular 

graphs such as heat of formation, heat of evaporation, 

polarizability, solubility, surface tension, connectivity, 

critical temperature, boiling, melting and freezing point. 

The medical behaviors of the different drugs and their 

compounds, crystalline materials and their nano materials 

which are very important for the pharmaceutical fields, 

chemical industries and its widely extended networks 

have studied with the help of various TI’s (Gonzalez-Diaz 

et al., 2007; Hall and Kier, 1976; Matamala and Estrada, 

2005).

In addition, the quantitative structures activity 

relationships (QSAR) and quantitative structures property 

relationships (QSPR) are useful in the study of molecules 

with the help of these TI’s. For more details, we refer to 

Todeschini and Consonni (2009, 2010) and Yan et al.  

(2015). It is also investigated that these relationships 

play an important role in the subject of cheminformatics 

(Todeschini and Consonni, 2009).

Wiener defined first TI when he was working on the 

boiling point of paraffin (Wiener, 1947). Classical Zagreb 

indices was defined in Gutman and Trinajstic (1972) and 

Gutman et al. (1975). These are very well known and 

frequently used in the study of chemical graph theory. 

These are called first Zagreb index (M
1
(G)) and second 

Zagreb index (M
2
(G)). Furtula and Gutman (2015) defined 

another degree based TI and they called it as third Zagreb 

index (M
3
(G)). It was appeared after a long gap, due to that 

instance, (M
3
(G)) -index is also known as forgotten index 

(F(G)). At present time, so many TI’s have been explored 

with their properties and they have revolutionized the 

fruitful results in the study of science especially in the 

lattest field of cheminformatics that is the combination of 

three subjects Mathematics, Chemistry and Information 

Technology (Borovicanin et al., 2017; Das and Gutman, 

2004; Liu et al., 2019a, 2019e, 2019f; Shirinivas et al., 2010; 

Todeschini and Consonni, 2002), Therefore, degree based 
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TI’s are more studied and well applicabled (Du et al., 2019; 

Liu et al., 2019b, 2020; Tang et al., 2019).

Recently, Ali and Trinajstic studied the Zagreb 

connection indices and also checked their capability on 

thirteen physicochemical properties of octane isomers. 

They also reported that Zagreb connection indices has 

better correlation value than classical Zagreb indices 

(Ali and Trinajstic, 2018). Till now, many work have 

been started on this descriptor such as Du et al. (2019), 

defined extremal alkanes to use modified first Zagreb 

connection index. Ducoffe et al. (2018a, 2018b) presented 

their work on the 16th cologne-twente workshop on 

graphs and combinatorial optimization, France, on the 

topic of extremal graphs with respect to the modified 

first Zagreb connection index. Shao et al. (2018) studied 

extremal graphs for alkanes and cycloalkanes under some 

conditions. Tang et al. (2019) also used Zagreb connection 

indices and modified first Zagreb connection index to find 

the new results of the T-sum graphs.

In the computational graph theory, the operations 

on different graphs have to play an important role in the 

generalized optimization of graphs (Cvetkocic et al., 1980; 

Shao et al., 2012). By the use of various operations, a variety 

of graphs can be developed from the simplest graphs that 

show as their novel constructed pillars. Supported by this, 

many researchers have studied the well-frame families of 

graphs under the subdivision-related operations on graphs. 

For this ambition, Yan et al. (2007) studied the subdivision-

related operations on graphs and computed the Wiener 

index of the resultant graphs.  Eliasi and Taeri (2009) used 

these operations to develop new sums of graphs. Deng et al. 

(2016), Akhter and Imran (2017), Shirdel et al. (2013), and 

Liu et al. (2019c, 2019d) computed the first Zagreb index 

(M
1
(G)), second Zagreb index (M

2
(G)), third Zagreb index 

(M
3
(G)), hyper-Zagreb index (HM(G)) and computed the 

exact formulas of first general Zagreb index (Mα(G), where 

α is a real number) of the T-sum graphs and also computed 

the generalized T
k
-sum graphs. Recently, Tang et al. (2019) 

derived the exact formulas of the Zagreb connection indices 

( )ZC G ZC G ZC G( ), ( )& ( )1 2 1
*  of the T-sum graphs with the 

help of these subdivision-related operations.

In this paper, we extend the study of Tang et al. (2019), 

and computed modified Zagreb connection indices such 

as modified second Zagreb connection index ( )ZC G( )2
*  and 

modified third Zagreb connection index ( )ZC G( )3
*  of the 

T-sum graphs G
1
 +

T
 G

2
 which are achieved by the cartesian 

product of T(G
1
) and G

2
, where T ϵ {T

1
,T

2
}, G

1
 and G

2
 are 

any connected graphs and T(G
1
) is a graph gained after 

operating the operation T on G
1
. Mainly, we included the 

comparison among the classical Zagreb indices, Zagreb 

connection indices and modified Zagreb connection 

indices for the aforsaid family of graphs obtains from 

alkanes. The current article is framed as follows: Section II 

presents the preliminary definitions of the classical/novel 

Zagreb indices, Section III holds the general results and 

section IV covers the applications and conclusion. 

2  Notations and preliminaries

Let G = (V(G), E(G)) be a simple and connected graph. 

The vertex and edge set of G is denoted by V(G) and 

E(G) respectively. The degree of a vertex b in any graph 

G is the number of edges incident to a particular vertex. 

Todeschini and Consonni (2002) defined generalized form 

of a degree. In particularly,

• Number of incident edges at distance one from b is 

called simple degree,

• Number of incident edges at distance two from b is 

called connection number as well as leap degree. For 

more detail see Ali and Trinajstic (2018) and Naji et 

al. (2017).

In molecular graph, atom and covalent bond between 

atoms are represented by vertex and edge respectively. 

Throughout the study of this paper, we assume that G
1
 

and G
2
 are two connected graphs such that G

1
 and G

2
 are 

two connected graphs such that |V(G
1
) |= n

1
, |V(G

2
)|= n

2
, 

|E(G
1
)|= e

1
 and |E(G

2
)|= e

2
.

Definition 2.1

For a graph G, the first Zagreb index (M
1
(G)), second 

Zagreb index (M
2
(G)) and third Zagreb index (M

3
(G)) are 

defined as:

∑∑ [ ] [ ]= = +
∈∈

M G d b d a d b( ) ( ) ( ) ( )G G G

ab E Gb V G

1

2

( )( )

,

∑ [ ]= ×
∈

M G d a d b( ) ( ) ( )G G

ab E G

2

( )

 and

∑∑ [ ]= = +⎡⎣ ⎤⎦
∈∈

M G d b d a d b( ) ( ) ( ) ( )G G G

ab V Gb V G

3

3 2 2

( )( )

.

These degree-based indices are defined by Gutman 

and Trinajstic (1972), Gutman et al., (1975), and Furtula 

and Gutman (2015). These are continuously used to 

predict better results in molecular structures such as 

heat capacity, entropy, acentric factor, absolute value of 

correlation coefficient and ZE-isomerism (Gutman and 

Polansky, 1986). These indices also played an important 
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role in the study of QSPR and QSAR (Devillers and 

Balaban, 1999; Diudea, 2001).

Corresponding to these degree-based TI’s, the 

connection-based TI’s are defined in Definition 2.2. For 

further studies of connection-based TI’s (Ali and Trinajstic, 

2018; Ducoffe et al., 2018a, 2018b; Naji and Soner, 2018; 

Naji et al., 2017; Tang et al., 2019).

Definition 2.2

For a graph G, the first Zagreb connection index (ZC
1
(G)) 

and second Zagreb connection index (ZC
2
(G)) are 

defined as:

∑ τ[ ]=
∈

ZC G b( ) ( )G

b V G

1

2

( )

 and ∑ τ τ[ ]= ×
∈

ZC G a b( ) ( ) ( )G G

ab E G

2

( )

.

Suppose that V
0
(G) be the set of the isolated vertices of 

the graph G such that |V
0
(G)|= n

0
. In the reference of Doslic 

et al. (2011), the following relation was derived:

∑∑ ( ) ( ) ( )= +⎡⎣ ⎤⎦
∈∈

d a f d a f d a f d b( ) ( ) ( ) ( )G G G G

ab E Ga V G V G ( )( )\ ( )0

,

where f is defined on the set of degrees of vertex set that 

is as a real value function of graph G. Ali and Trinajstic 

(2018) discussed the reality of the following identity on 

the same pattern:

∑∑ = +⎡⎣ ⎤⎦
∈∈

d a g a g a g b( ) ( ) ( ) ( )G

ab E Ga V G V G ( )( )\ ( )0

,

where g has same properties as of f. Moreover, they defined 

the modified first Zagreb connection index ( )ZC G( )1
*  using 

g(a) = τ
G
(a) and g(b) = τ

G
(b) in the above equation as

∑ τ τ[ ]= +
∈

ZC G a b( ) ( ) ( )G G

ab E G

1
*

( )

.

Now, if we put g(a) = d
G
(a)τ

G
(b) and g(b) = d

G
(b)τ

G
(a) 

or g(a) = d
G
(a)τ

G
(a) and g(b) = d

G
(b)τ

G
(b) in the above 

identity, the extended modified Zagreb connection indices 

are obtained as follows:

Definition 2.3

For a graph G, modified second Zagreb connection index 

( )ZC G( )2
*  and modified third Zagreb connection index 

( )ZC G( )3
*  are defined as

(a) ∑ τ τ[ ]= +
∈

ZC G d a b d b a( ) ( ) ( ) ( ) ( )G G G G

ab E G

2
*

( )

.

(b) ∑ τ τ[ ]= +
∈

ZC G d a a d b b( ) ( ) ( ) ( ) ( )G G G G

ab E G

3
*

( )

.

Now, we describe the T-sum graphs i.e. subdivision 

and semi-total point operations on graphs as follow:

• T
1
(G) is a graph that is obtained by including a new 

vertex between each edge of the graph G.

• T
2
(G) is a graph that is obtained from T

1
(G) by adding 

the edges between old vertices which are adjacent 

in G.

The more details of these operations can be found 

in  Harary (1969) and Sampathkumar and Chikkodimath 

(1973). For further understanding, see Figure 1. The 

concept of T-sum graphs is defined as in the following 

definition.

Definition 2.4

For i ϵ {1,2} and T ϵ {T
i
}, assume that G

i
 are connected 

graphs and the graph T(G
1
) having vertex set V(T(G

1
)) 

and edge set E(T(G
1
)) is happened after operating the 

operations T on G
1
. Then, the graphs G

1
 +

T
 G

2
 having 

vertex set V(G
1
 +

T
 G

2
) = V(T(G

1
)) × (V

2
) = (V

1
 ∪ E

1
) × 

(V
2
) and edge set E(G

1
 +

T
 G

2
) are called T-sum graphs 

if for (a
1
,b

1
)(a

2
,b

2
) ∈ E(G

1
 +

T
 G

2
) either a

1
 = a

2
 in V(G

1
) 

and b
1
b

2
 ∈E(G

2
) or b

1
 = b

2
 in V(G

2
) and a

1
a

2
 ∈E(S(G

1
)), 

where (a
1
,b

1
), (a

2
,b

2
) ∈V(G

1
 +

T
 G

2
). This scheme has 

been presented according to cartesian product because 

cartesian product is the best fitted and the most stylish 

apparatus to construct a large network from a simple 

graph and is also important for designing as well as 

exploration of networks (Xu, 2001). For more clearance, 

see Figures 2 and 3. 

Figure 1: G, T
1
(G), T

2
(G)



46   U. Ali et al.: Modified Zagreb connection indices of the T-sum graphs

Definition 2.5

Coefficient of variation (Allan, 2010):

if X is a random variable then a relative measure of 

dispersion is called coefficient of variation (C.V) in which 

standard deviation is absolute measure of dispersion. 

Mathematically, it will be written as:

= ×C V X
S

X
. ( ) 100%,

where, 

∑( )
=

−
S

X X

n

2

and 

∑
=X

X

n

are called standard deviation (S) and arithmetic mean ( )X  

for ungroup data. C.V is used to draw the results of at least 

two commodities or variables. 

• All of those commodities which commodity has 

greater value of X  is considered more variability 

among the corresponding or remaining commodities.

• All of those commodities which commodity has less 

value of C.V is observed more consistent.

Now, we present some important results which are 

used in the main results.

Lemma 2.1 (Yamaguchi, 2008)

Let G be a connected graph with n vertices and e edges. 

Then 

∑τ ( )+ ≤
∈

a d a d b( ) ( ) ( )G G G

b N a( )G

,

where equality holds if and only if G is a {C
3
, C

4
}-free graph.

Lemma 2.2 (Tang et al., 2019)

Let G be a connected and {C
3
, C

4
}-free graph with n vertices 

and e edges. Then, 

(i) ∑ =
∈

d b e( ) 2G

b V G( )

, 

(ii) ∑ τ = −
∈

b M G e( ) ( ) 2G

b VG

1

)

.

Lemma 2.3

Let G be a connected and {C
3
, C

4
}-free graph with n vertices 

and e edges. Then, 

(i) d
T1(G1)

(a) = d
G2

 (b) + τ
G2

 (b), 

(ii) E | T
1
(G) |=2 | E(G) |= 2e,

(iii) ∑ =
( )∈

d b( ) 2T G

ab E T G

( )

( )

1

1

 or d
G
 (b) = d

T1(G)
 (b) = 2.

Lemma 2.4

Let G be a connected and {C
3
, C

4
}-free graph with n vertices 

and e edges. Then,

Figure 2: (a) G
1
 ≅ C

4
 (b) G

2
 ≅ P

2
 (c) T

1
(G

1
) (d) G

1
 +

T 
G

2
 iff T = T

1

Figure 3: (e) T
2
(G

1
) (f) G

1
+

T
G

2
 iff T=T

2
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(i) d
T2(G)

 (a) = 2d
G
(a), 

(ii) ∑ =
( )∈

d b( ) 2T G

ab E T G

( )

( )

2

2

 or d
G
 (b) = d

T2(G)
 (b) = 2.

Lemma 2.5

Let G be a connected graph and G ≅ P
n
, then

(i) = −ZC G n( ) 8 222
*  if n ≥ 4,

(ii) = −ZC G n( ) 8 223
*  if n ≥ 3.

For more study, we refer to Naji et al. (2017).

Lemma 2.6 (Deng et al., 2016)

Let G be a connected graph and G
1
 ≅ P

m
 and G

2
 ≅ P

n
. 

Also let θ = +P Pm T n1 1
 and θ = +P Pm T n2 2

, if m,n ≥ 3. Then,

(i) M
1
(θ

1
) = 20mn − 14m − 18n + 8 and M

1
(θ

2
) = 40mn − 

22m − 44n + 16,

(ii) M
2
(θ

1
) = 32mn − 32m − 34n + 26 and M

2
(θ

2
) = 96mn − 

78m − 132n + 86.

Lemma 2.7 (Tang et al., 2019)

Let G be a connected graph and G
1
 ≅ P

m
 and G

2
 ≅ P

n
. 

Also let θ = +P Pm T n1 1
 and θ = +P Pm T n2 2

, if m,n ≥ 5. Then,

(i) ZC
1
(θ

1
) = 100mn − 148m − 136n + 172 and ZC

1
(θ

2
) = 

245mn − 332m − 443n + 512,

(ii) ZC
2
(θ

1
) = 160mn − 274m − 236n + 358 and ZC

2
(θ

2
) = 

588mn − 906m − 1196n + 1628,

(iii) θ = − − +ZC mn m n( ) 44 50 50 441
*

1  and θZC ( )1
*

2  = 98mn − 

98m − 146n + 112.

3  Results and discussion

This section consists on the main results.

3.1  Subdivision operation

Let G
1
 and G

2
 be two connected and {C

3
,C

4
}-free graphs. 

Then, the modified second and third Zagreb connection 

indices of the T-sum graphs are:

Theorem 3.1

ZC G G n ZC G e ZC G n M G

n M G e M G e

( ) ( ) 2 ( ) ( )

2 ( ) 4 ( ) 14

T2
*

1 2 1 2
*

2 1 1
*

2 2 3 1

2 2 1 1 2 2 2

1
+ = + +

+ + +

M
1
(G

1
) + 10e

1
M

1
(G

2
) + M

1
(G

1
)M

1
(G

2
) − 16e

1
e

2
.

Proof

Let τ τ= +a b a b( , ) ( , )G GT1 1 2
 be a connection number of the 

vertex (a,b) in the graph +G GT1 21
. Then,

∑+ =
∈ +

ZC G G( )T

a b a b E G G

2
*

1 2

( , )( , ) ( )T

1

1 1 2 2 1 1 2

d a b a b d a b a b( , ) ( , ) ( , ) ( , )1 1 2 2 2 2 1 1τ τ[ ]+

d a b a b d a b a b[ ( , ) ( , ) + ( , ) ( , )]

a V G b b E G( )

1 2 2 1

( )1 1 2 2

∑ ∑ τ τ=
∈ ∈

∑∑ τ τ[ ]+ +
∈∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , ) .

a a E T Gb V G

1 2 2 1

( ( ))( ) 1 2 1 12

Taking

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 2 2 1

( )1 1 2 2

∑ ∑ τ τ[ ]+
∈ ∈

∑ ∑=
∈ ∈a V G b b E G( ) ( )1 1 2 2  

d a d b d a d a d b b

d a d b d a d a d b b

[{ ( ) ( )}{ ( ) ( ) ( ) ( )}

{ ( ) ( )}{ ( ) ( ) ( ) ( )}]

G G G G G G

G G G G G G

1 2 2

2 1 1

1 2 1 1 2 2

1 2 1 1 2 2

τ

τ

+ + +

+ + + +

d a d a d b d b

d a b b d a

d b d b d a d b d b

d b b d b b

[2 ( ) ( ){ ( ) ( )}

( ){ ( ) ( )} ( )

{ ( ) ( )} 2 ( ) ( ) ( )

{ ( ) ( ) ( ) ( )}]

a V G b b E G

G G G G

G G G G

G G G G G

G G G G

( ) ( )

2 2
1 2

1 2

1 2 1 2

1 2 2 1

1 1 2 2

1 1 2 2

1 2 2 1

2 2 1 2 2

2 2 2 2

∑ ∑
τ τ

τ τ

= + +

+ + +

+ +

+ +

∈ ∈

e M G M G M G e ZC G

e M G e M G n ZC G

2 ( ) ( ) ( ) 2 ( )

2 ( ) 4 ( ) ( ).

2 1 1 1 1 1 2 1 1
*

2

1 1 2 1 2 2 1 2
*

2

= + +

+ + +

Also taking

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

b V G a a E T G( )

1 2 2 1

( ( ))2 1 2 1 1

∑ ∑ τ τ[ ]+
∈ ∈

d a d b d a d b

d a d a d a

d b b d a d a d b b

d a d b d a

d b d a

d a d a

d b d a d a d a d a

d b d b b

n M G e M G n M G e M G

e e e M G e

[[{ ( ) ( )}{ ( ) 2 ( )

( ) 2} 2{ ( ) ( )

( ) ( )}] [2{ ( ) ( ) ( ) ( )}

{ ( ) ( )}{ ( ) 2

( ) ( ) 2}]]

[{ ( ) ( )}

6 ( ){ ( ) ( )} 2{ ( ) ( )}

4 ( ) 4 ( ) 4 ( )]

( ) 12 ( ) 2 ( ) 4 ( )

8 4 [ ( ) 2 ]

b V G

G G G G

a a E G

G G G

G G G G G G

G G G

G G

G G

a a E Gb V G

G G G G G

G G G

( )

1 1

( )

2 1 1

2 2

2 1

2

2
1

2
2

( )( )

1 2 1 2

2

2 3 1 2 1 1 2 2 1 1 1 2

1 2 1 1 2 2

2

1 2 1 2

1 2 1

1 1 1

2 2 1 1 2 2

1 2 1

2 1

1 1

1 2 12

2 1 1 1 1

2 2 2

∑ ∑

∑∑

τ τ

τ

= + +

+ − + +

+ + + +

+ + +

+ −

= +

+ + +

+ − +

= + + +

− + −

∈ ∈

∈∈
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Consequently,

ZC G G n ZC G e ZC G

n M G n M G e M G e

( ) ( ) 2 ( )

( ) 2 ( ) 4 ( ) 14

T2
*

1 2 1 2
*

2 1 1
*

2

2 3 1 2 2 1 1 2 2 2

1
+ = +

+ + + +

M
1
(G

1
) + 10e

1
M

1
(G

2
) + M

1
(G

1
)M

1
(G

2
) − 16e

1
e

2
.

Theorem 3.2

ZC G G n ZC G e ZC G

n e M G e M G e n

( ) ( ) 4 ( )

( 2 ) ( ) 2 ( ) 2( 2 )

T3
*

1 2 1 3
*

2 1 1
*

2

2 2 3 1 1 3 2 2 2

1
+ = +

+ + + + +

M
1
(G

1
) + 2e

1
M

1
(G

2
) + 3M

1
(G

1
)M

1
(G

2
) + 8e

1
(2e

2
 − n

2
).

Proof

∑+ =
∈ +

ZC G G( )T

a b a b E G G

3
*

1 2

( , )( , ) ( )T

1

1 1 2 2 1 1 2

τ τ[ ]+d a b a b d a b a b( , ) ( , ) ( , ) ( , )1 1 1 1 2 2 2 2  

∑ ∑ τ τ[ ]= +
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 1 2 2

( )1 1 2 2

∑ ∑ τ τ[ ]+ +
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , ) .

b V G a a E T G( )

1 1 2 2

( ( ))2 1 2 1 1

Taking

∑ ∑ τ τ[ ]+
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 1 2 2

( )1 1 2 2

∑ ∑=
∈ ∈a V G b b E G( ) ( )1 1 2 2

d a d b d a d a d b b

d a d b d a d a d b b

[{ ( ) ( )}{ ( ) ( ) ( ) ( )}

{ ( ) ( )}{ ( ) ( ) ( ) ( )}]

G G G G G G

G G G G G G

1 1 1

2 2 2

1 2 1 1 2 2

1 2 1 1 2 2

τ

τ

+ + +

+ + + +

e M G M G M G e ZC G

e M G e M G n ZC G

2 ( ) ( ) ( ) 2 ( )

2 ( ) 2 ( ) ( ).

2 1 1 1 1 1 2 1 1
*

2

1 1 2 1 3 2 1 3
*

2

= + +

+ + +

Also taking

∑ ∑ τ τ[ ]+
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

b V G a a E T G( )

1 1 2 2

( ( ))2 1 2 1 1

∑ ∑= + +
∈ ∈

d a d b d a d a d b[[{ ( ) ( )}{ ( ) ( ) ( )

b V G

G G G G G

a a E G( )

1 1 1

( )2

1 2 1 1 2

1 2 1

τ+ + + + −b d a d b d a( )} 2{ ( ) 2 ( )} ( ) 2}]G G G G1 22 1 2 1

+ + + −d a d b d a[2{ ( ) 2 ( ) ( ) 2}G G G1 21 2 1

τ+ + + +d a d b d a d a d b b{ ( ) ( )}{ ( ) ( ) ( ) ( )}]]G G G G G G2 2 21 2 1 1 2 2

n M G e M G M G e M G

e M G M G M G e

( ) 2 ( ) { ( ) 2 } ( )

2 ( ) ( ) ( ) 2

2 3 1 2 3 1 1 2 2 1 1

2 1 1 1 2 1 1 1

= + + −

+ + +  

+ + −ZC G n M G e e n e( ) 4 ( ) 16 81
*

2 2 1 1 1 2 2 1.

Consequently,

ZC G G n ZC G e ZC G

n e M G e M G e n

( ) ( ) 4 ( )

( 2 ) ( ) 2 ( ) 2( 2 )

T3
*

1 2 1 3
*

2 1 1
*

2

2 2 3 1 1 3 2 2 2

1
+ = +

+ + + + +

M
1
(G

1
)+2e

1
M

1
(G

2
)+3M

1
(G

1
)M

1
(G

2
)+8e

1
(2e

2
-n

2
).

Semi-total point operation (Tang et al., 2019), or triangle 

parallel graph (Ahmad et al., 2019)

Let G
1
 and G

2
 be two connected and {C

3
,C

4
}-free graphs. 

Then, the modified second and third Zagreb connection 

indices of the T-sum graphs are:

Theorem 3.3

ZC G G n ZC G n ZC G

e n ZC G e ZC G n M G

e n M G e M G M G M G

e M G e n M G e e

( ) 4 ( ) ( )

4(3 ) ( ) 6 ( ) 2 ( )

4(4 ) ( ) 8 ( ) 10 ( ) ( )

4 ( ) 2(8 ) ( ) 12 .

T2
*

1 2 2 2
*

1 1 2
*

2

2 2 1
*

1 1 1
*

2 2 3 1

2 2 2 1 1 2 2 1 1 1 2

1 1 2 2 2 1 1 1 2

2
+ = +

+ + + +

+ + + +

+ + − −

Proof

Let τ τ= +a b a b( , ) ( , )G GT1 2 2
 be a connection number of the 

vertex (a,b) in the graph +G GT1 22
. Then,

∑+ =
∈ +

ZC G G( )T

a b a b E G G

2
*

1 2

( , )( , ) ( )T

2

1 1 2 2 1 2 2

τ τ[ ]+d a b a b d a b a b( , ) ( , ) ( , ) ( , )1 1 2 2 2 2 1 1

∑ ∑ τ τ[ ]= +
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 2 2 1

( )1 1 2 2

∑ ∑ τ τ[ ]+ +
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

b V G a a E T G( )

1 2 2 1

( ( ))2 1 2 2 1 . 

Taking

∑ ∑ ∑ τ τ[ ]= +
∈ ∈

d a b a b d a b a b1 ( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 2 2 1

( )1 1 2 2

∑ ∑ τ τ= + +
∈ ∈

d a d b a b[{2 ( ) ( )}{2 ( ) ( )

a V G

G G G G

b b E G( )

1 2

( )1

1 2 1 2

1 2 2

τ τ+ + + +d a d b d a d b a b2 ( ) ( )} {2 ( ) ( )}{2 ( ) ( )G G G G G G2 2 11 2 1 2 1 2

+ d a d b2 ( ) ( )}]G G 11 2

∑ ∑ τ τ τ= + +
∈ ∈

d a a d a b b[8 ( ) ( ) 2 ( ){ ( ) ( )}

a V G

G G G G G

b b E G( )

1 2

( )1

1 1 2 2

1 2 2

τ+ + + +d a d b d b a d b d b( ){ ( ) ( )} 2 ( ){ ( ) ( )}G G G G G G
2

1 2 1 21 2 2 1 2 2

τ τ+ + +d b b d b b d a d b d b{ ( ) ( ) ( ) ( )} 4 ( ){ ( ) ( )}]G G G G G G G1 2 2 1 1 22 2 2 2 1 2 2

e ZC G e ZC G M G M G

M G e M G n ZC G e M G

8 ( ) 4 ( ) 4 ( ) ( )

2[ ( ) 2 ] ( ) ( ) 8 ( )

2 1
*

1 1 1
*

2 1 1 1 2

1 1 1 1 2 1 2
*

2 1 2 2

= + +

+ − + + .
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Also taking

∑ ∑ τ τ[ ]+
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

b V G a a E T G( )

1 2 2 1

( ( )2 1 2 2 1

∑∑= +2 3

∑ ∑ ∑ τ τ= + +
∈ ∈

d a d b a b2 [{2 ( ) ( )}{2 ( ) ( )

b V G

G G G G

a a E G( )

1 2

( )2

1 2 1 2

1 2 1  

τ+ + +d a d b d a d b a2 ( ) ( )} {2 ( ) ( )}{2 ( )G G G G G2 2 11 2 1 2 1

τ+ +b d a d b( ) 2 ( ) ( )}]G G G12 1 2

Similarly,

n ZC G e ZC G e ZC G

M G M G e M G e M G

2 4 ( ) 4 ( ) 2 ( )

4 ( ) ( ) 4 ( ) 16 ( ).

2 2
*

1 2 1
*

1 1 1
*

2

1 1 1 2 2 1 1 2 2 1

∑ = + +
+ − +

And

∑ ∑ ∑= + +
∈ ∈

d a d b d a d a3 [[{2 ( ) ( )}{ ( ) ( )

b V G

G G G G

a a E G( )

1 1 2

( )2

1 2 1 1

1 2 1  

τ τ+ − + + +d b a b d a d b2 ( ) 1} 2{2 ( ) ( ) 2 ( ) ( )}]G G G G G1 12 1 2 1 2

τ τ+ + +a b d a d b[2{2 ( ) ( ) 2 ( ) ( )}G G G G2 21 2 1 2

+ + + + −d a d b d a d a d b{2 ( ) ( )}{ ( ) ( ) 2 ( ) 1}]]G G G G G2 1 21 2 1 1 2

Similarly,

∑ = + +

− + −

+ + −

n M G n M G e M G

n M G e M G e e

n ZC G e M G e

3 2 ( ) 4 ( ) 20 ( )

2 ( ) 4 ( ) 4

4 ( ) 4 [ ( ) 2 ].

2 3 1 2 2 1 2 1 1

2 1 1 1 1 2 1 2

2 1
*

1 1 1 1 2

Consequently,

∑∑∑+ = + +ZC G G( ) 1 2 3T2
*

1 22

n ZC G n ZC G e n ZC G

e ZC G n M G e n

4 ( ) ( ) 4(3 ) ( )

6 ( ) 2 ( ) 4(4 )

2 2
*

1 1 2
*

2 2 2 1
*

1

1 1
*

2 2 3 1 2 2

= + + +

+ + + +

M G e M G M G M G

e M G e n M G e e

( ) 8 ( ) 10 ( ) ( )

4 ( ) 2(8 ) ( ) 12 .

2 1 1 2 2 1 1 1 2

1 1 2 2 2 1 1 1 2

+ +

+ + − −

Theorem 3.4

ZC G G n ZC G n ZC G e ZC G

e ZC G e M G e M G

e M G M G M G

n e M G e M G

e e n

( ) ( ) 8 ( ) 16 ( )

8 ( ) 4 ( ) 4[4 ( )

( )] 14 ( ) ( )

4[( 2 ) ( ) ( )]

4 (4 ).

T3
*

1 2 1 3
*

2 2 3
*

1 2 1
*

1

1 1
*

2 1 3 2 2 3 1

1 3 2 1 1 1 2

2 2 1 1 1 1 2

1 2 2

2
+ = + +

+ + +

+ +

+ − −

+ −

Proof

∑+ =
∈ +

ZC G G( )T

a b a b E G G

3
*

1 2

( , )( , ) ( )T

2

1 1 2 2 1 2 2  

τ τ[ ]+d a b a b d a b a b( , ) ( , ) ( , ) ( , )1 1 1 1 2 2 2 2  

∑ ∑ τ τ[ ]= +
∈ ∈

d a b a b d a b a b( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 1 2 2

( )1 1 2 2

d a b a b d a b a b( , ) ( , ) ( , ) ( , ) .

b V G a a E T G( )

1 1 2 2

( ( ))2 1 2 2 1

∑ ∑ τ τ[ ]+ +
∈ ∈

Taking

∑ ∑ ∑ τ τ[ ]= +
∈ ∈

A d a b a b d a b a b( , ) ( , ) ( , ) ( , )

a V G b b E G( )

1 1 2 2

( )1 1 2 2

∑ ∑ τ τ= + +
∈ ∈

d a d b a b[{2 ( ) ( )}{2 ( ) ( )

a V G

G G G G

b b E G( )

1 1

( )1

1 2 1 2

1 2 2  

τ+ + +d a d b d a d b a2 ( ) ( )} {2 ( ) ( )}{2 ( )G G G G G1 21 2 1 2 1

τ+ +b d a d b( ) 2 ( ) ( )}]G G G2 22 1 2

Similarly,

∑ = + +A e ZC G e ZC G M G M G8 ( ) 4 ( ) 4 ( ) ( )2 1
*

1 1 1
*

2 1 1 1 2

 

M G e M G n ZC G e M G2[ ( ) 2 ] ( ) ( ) 4 ( ).1 1 1 1 2 1 3
*

2 1 3 2+ − + +

Also taking

∑ ∑∑∑ τ τ[ ]+ = +
∈∈

d a b a b d a b a b B C( , ) ( , ) ( , ) ( , )

a a E T Gb V G

1 1 2 2

( ( )( ) 1 2 2 12  

∑ ∑ ∑ τ τ= + +
∈ ∈

B d a d b a b[{2 ( ) ( )}{2 ( ) ( )

b V G

G G G G

a a E G( )

1 1

( )2

1 2 1 2

1 2 1  

d a d b d a d b a2 ( ) ( )} {2 ( ) ( )}{2 ( )G G G G G1 2 21 2 1 2 1
τ+ + +

τ+ +b d a d b( ) 2 ( ) ( )}]G G G22 1 2

Similarly,

B n ZC G M G e M G e M G

e ZC G e ZC G M G M G

4 ( ) 2[ ( ) 2 ] ( ) 8 ( )

4 ( ) 2 ( ) 2 ( ) ( ).

2 3
*

1 1 2 2 1 1 2 3 1

2 1
*

1 1 1
*

2 1 1 1 2

∑ = + − +
+ + +

And similarly,

C n ZC G M G e M G

e M G e ZC G e ZC G

M G M G n M G e e n e

4 ( ) 2[ ( ) 2 ] ( )

8 ( ) 4 ( ) 2 ( )

2 ( ) ( ) 4 ( ) 16 4 .

2 3
*

1 1 2 2 1 1

2 3 1 2 1
*

1 1 1
*

2

1 1 1 2 2 1 1 1 2 2 2

∑ = + −

+ + +

+ + + −
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Consequently,

∑∑∑+ = + +ZC G G A B C( )T3
*

1 22

n ZC G n ZC G e ZC G e ZC G

e M G e M G e M G M G M G

n e M G e M G e e n

( ) 8 ( ) 16 ( ) 8 ( )

4 ( ) 4[4 ( ) ( )] 14 ( ) ( )

4[( 2 ) ( ) ( )] 4 (4 )

1 3
*

2 2 3
*

1 2 1
*

1 1 1
*

2

1 3 2 2 3 1 1 3 2 1 1 1 2

2 2 1 1 1 1 2 1 2 2

= + + +

+ + + +

+ − − + −

4  Applications and conclusion

Let G
1
 ≅ P

m
 and G

2
 ≅ P

n
 be two particular alkanes 

called by paths. Then, the second and third modified 

Zagreb connection indices of their T-sum graphs as 

the consequences of the obtained main results as 

follows:

1. For m ≥ 3 and n ≥ 4, we have + =ZC P P( )m T n2
*

1
 144mn − 

198m − 186n + 216,

2. For m,n ≥ 3, we have ZC P P mn m( ) 152 214m T n3
*

1
+ = − −

n198 244,+

3. For m,n ≥ 3, we have ZC P P mn m( ) 476 574m T n2
*

2
+ = − −

n820 840,+

4. For m,n ≥ 3, we have ZC P P mn m( ) 532 646m T n3
*

2
+ = − −

n932 968.+

Figure 4: 3D plot of ZC P P( )
m T n2

1

+

Figure 5: 3D plot of ZC P P( )
m T n3

1

+

Figure 6: 3D plot of ZC P P( )
m T n2

2

+

Figure 7: 3D plot of ZC P P( )
m T n3

2

+
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FIGURE 8: (a) 3D plot of M
1
(θ

1
) and M

2
(θ

1
) are labbled in red and blue graphs, (b) 3D plot of ZC

1
(θ

1
) and ZC

2
(θ

1
) are labbled in green and 

purple graphs, (c) 3D plot of ZC ( ),
1 1

θ  ZC ( )
2 1

θ  and ZC ( )
3 1

θ  are labbled in golden, ferozi and mehroon graphs, (d) 3D plot of M
1
(θ

2
) and M

2
(θ

2
) 

are labbled in red and blue graphs, (e) 3D plot of ZC
1
(θ

2
) and ZC

2
(θ

2
) are labbled in green and purple graphs, (f) 3D plot of ZC ( )

1 2
θ , ZC ( )

2 2
θ  

and ZC ( )
3

*

2
θ  are labbled in golden, ferozi and mehroon graphs

Figure 9: (a) 3D plot of M
1
(θ

1
), M

2
(θ

1
), ZC

1
(θ

1
), ZC

2
(θ

1
), ZC ( )

1 1
θ , ZC ( )

2 1
θ , and ZC ( )

3 1
θ are labbled in blue, red, purple, green, orange, gray and 

mehroon graphs, (b) 3D plot of M
1
(θ

2
), M

2
(θ

2
), ZC

1
(θ

2
), ZC

2
(θ

2
), ZC ( )

1 2
θ , ZC ( )

2 2
θ , and ZC ( )

3 2
θ  are labbled in blue, red, green, purple, orange, 

gray, and mehroon graphs
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4.1  Comparisons with 3D plots

Maple 15 software is used to construct a simple comparison 

of the classical Zagreb (Lemma 2.6), novel Zagreb 

connection (Lemma 2.7) and extended modified Zagreb 

connection (given above) indices related to operations T
1
 

and T
2
 into 3D plots (Figures 4-9).

4.2  Comparisons with numerical values

Tables 1 and 2 are constructed for a simple comparison 

of the classical Zagreb (Lemma 2.6), novel Zagreb 

connection (Lemma 2.7) and extended modified Zagreb 

connection (given above) indices related to operations T
1
 

and T
2
.

Table 1: Numeric comparison of the indicated Zagreb indices related to T
1
-operation.

(m,n) M
1
(θ

1
) M

2
(θ

1
) ZC

1
(θ

1
) ZC

2
(θ

1
) ZC

1
*(θ

1
) ZC

2
*(θ

1
) ZC

3
*(θ

1
)

(5,5) 348 496 1252 1808 644 1896 1984

(5,6) 430 622 1616 2372 814 2430 2546

(5,7) 512 748 1980 2936 984 2964 3108

(5,8) 594 874 2344 3500 1154 3498 3670

(5,9) 676 1000 2708 4064 1324 4032 4232

(5,10) 758 1126 3072 4628 1494 4566 4794

(6,5) 434 624 1604 2334 814 2418 2530

(6,6) 536 782 2068 3058 1028 3096 3244

(6,7) 638 940 2532 3782 1242 3774 3958

(6,8) 740 1098 2996 4506 1456 4452 4672

(6,9) 842 1256 3460 5230 1670 5130 5386

(6,10) 944 1414 3924 5954 1884 5808 6100

(7,5) 520 752 1956 2860 984 2940 3076

(7,6) 642 942 2520 3744 1242 3762 3942

(7,7) 764 1132 3084 4628 1500 4584 4808

(7,8) 886 1322 3648 5512 1758 5406 5674

(7,9) 1008 1512 4212 6396 2016 6228 6540

(7,10) 1130 1702 4776 7280 2274 7050 7406

(8,5) 606 880 2308 3386 1154 3462 3622

(8,6) 712 1102 2972 4430 1456 4428 4640

(8,7) 890 1324 3636 5474 1758 5394 5658

(8,8) 1032 1546 4300 6518 2060 6360 6676

(8,9) 1174 1768 4964 7562 2362 7326 7694

(8,10) 1316 1990 5628 8606 2664 8292 8712

(9,5) 692 1008 2660 3912 1324 3984 4168

(9,6) 872 1262 3424 5116 1670 5094 5338

(9,7) 1016 1516 4188 6320 2016 6204 6508

(9,8) 1178 1770 4952 7524 2362 7314 7678

(9,9) 1340 2024 5716 8728 2708 8424 8848

(9,10) 1502 2278 6480 9932 3054 9534 10018

(10,5) 778 1136 3012 4438 1494 4506 4714

(10,6) 960 1422 3876 5802 1884 5760 6036

(10,7) 1142 1708 4740 7166 2274 7014 7358

(10,8) 1324 1994 5604 8530 2664 8268 8680

(10,9) 1506 2280 6468 9894 3054 9522 10002

(10,10) 1688 2566 7332 11258 3444 10776 11324
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4.3  Comparisons with line graphs

Now, we close our discussion with the following 

conclusion: 

• In Figures 9a and 9b, we obtain that among all the 

indices (classical Zagreb indices, Zagreb connection 

indices and modified Zagreb connection indices), 

the third modified Zagreb connection index ZC3
*  of 

θ ≅ +P Pm T n1 1
 and θ ≅ +P Pm T n2 2

 are better than the 

other indices with most upper increasing layer.

• The numerical values of Tables 1 and 2 also present 

that the third modified Zagreb connection index 

ZC3
*  of θ ≅ +P Pm T n1 1

 and θ ≅ +P Pm T n2 2
 are better 

than the other indices having larger values.

Table 2: Numeric comparison of the indicated Zagreb indices related to T
2
-operation.

(m,n) M
1
(θ

2
) M

2
(θ

2
) ZC

1
(θ

2
) ZC

2
(θ

2
) ZC

1
*(θ

2
) ZC

2
*(θ

2
) ZC

3
*(θ

2
)

(5,5) 686 1436 2762 5818 1342 5770 6378

(5,6) 842 1784 3544 7562 1686 7330 8106

(5,7) 998 2132 4326 9306 2030 8890 9834

(5,8) 1154 2480 5108 11050 2374 10450 11562

(5,9) 1310 2828 5890 12794 2718 12010 13290

(5,10) 1466 3176 6672 14538 3062 13570 15018

(6,5) 864 1838 3655 7852 1734 7576 8392

(6,6) 1060 2282 4682 10184 2176 9612 10652

(6,7) 1256 2726 5709 12516 2618 11648 12912

(6,8) 1452 3170 6736 14848 3060 13684 15172

(6,9) 1648 3614 7763 17180 3502 15720 17432

(6,10) 1844 4058 8790 19512 3944 17756 19692

(7,5) 1042 2240 4548 9886 2126 9382 10406

(7,6) 1278 2780 5820 12806 2666 11894 13198

(7,7) 1514 3320 7092 15726 3206 14406 15990

(7,8) 1750 3860 8364 18646 3746 16918 18782

(7,9) 1986 4400 9636 21566 4286 19430 21574

(7,10) 2222 4940 10908 24486 4826 21942 24366

(8,5) 1220 2642 5441 11920 2518 11188 12420

(8,6) 1496 3278 6958 15428 3156 14176 15744

(8,7) 1772 3914 8475 18936 3794 17164 19068

(8,8) 2048 4550 9992 22444 4432 20152 22392

(8,9) 2324 5186 11509 25952 5070 23140 25716

(8,10) 2600 5822 13026 29460 5708 26128 29040

(9,5) 1398 3044 6334 13954 2910 12994 14434

(9,6) 1714 3776 8096 18050 3646 16458 18290

(9,7) 2030 4508 9858 22146 4382 19922 22146

(9,8) 2346 5240 11620 26242 5118 23386 26002

(9,9) 2662 5972 13382 30338 5854 26850 29858

(9,10) 2978 6704 15144 34434 6590 30314 33714

(10,5) 1576 3446 7227 15988 3302 14800 16448

(10,6) 1932 4274 9234 20672 4136 18740 20836

(10,7) 2288 5102 11241 25356 4970 22680 25224

(10,8) 2644 5930 13248 30040 5804 26620 29612

(10,9) 3000 6758 15255 34724 6638 30560 34000

(10,10) 3356 7586 17262 39408 7472 34500 38388
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• Figures 10 and 11 statistically prove that M
1
 is more 

consistent and ZC3
*  has better variability than 

other indicated indices respectively. Moreover, ZC3
*  

is averagely consisitent by Figure 10 for both the 

graphs θ ≅ +P Pm T n1 1
 and θ ≅ +P Pm T n2 2

. Additionally 

by Figures 10 and 11, all the indicated indices 

of θ ≅ +P Pm T n2 2
 are more variability and more 

consisitent than θ ≅ +P Pm T n1 1
, respectively.
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