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Abstract

The process industries are characterized by a large number of continu-
ously operating plants, for which optimal operation is of economic im-
portance. However, optimal operation is particularly difficult to achieve
when the process model used in the optimization is inaccurate or in
the presence of process disturbances.

In highly automated plants, optimal operation is typically ad-
dressed by a decision hierarchy involving several levels that include
plant scheduling, real-time optimization (RTO), and process control.
At the RTO level, medium-term decisions are made by considering eco-
nomic objectives explicitly. This step typically relies on an optimizer
that determines the optimal steady-state operating point under slowly
changing conditions such as catalyst decay or changes in raw mate-
rial quality. This optimal operating point is characterized by setpoints
that are passed to lower-level controllers. Model-based RTO typically
involves nonlinear first-principles models that describe the steady-state
behavior of the plant.

Since accurate models are rarely available in industrial applications,
RTO typically proceeds using an iterative two-step approach, namely a
parameter estimation step followed by an optimization step. The idea
is to repeatedly estimate selected uncertain model parameters and use
the updated model to generate new inputs via optimization. This way,
the model is expected to yield a better description of the plant at its
current operating point. The classical two-step approach works well
provided that (i) there is little structural plant-model mismatch, and
(ii) the changing operating conditions provide sufficient excitation for
estimating the uncertain model parameters. Unfortunately, such con-
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ditions are rarely met in practice and, in the presence of plant-model
mismatch, the algorithm might not converge to the plant optimum, or
worse, to a feasible operating point. As far as feasibility is concerned,
the updated model should be able to match the plant constraints.

Alternatively, feasibility can be enforced without requiring the so-
lution of a parameter estimation problem by adding plant-model bias
terms to the model outputs. These biases are obtained by subtracting
the model outputs from the measured plant outputs. A bias-update
scheme, where the bias terms are used to modify the constraints in the
steady-state optimization problem, has been used in industry. How-
ever, the analysis of this scheme has received little attention in the re-
search community. In the context of this thesis, such an RTO scheme is
referred to as constraint adaptation. The constraint-adaptation scheme
is studied, and its local convergence properties are analyzed.

Constraint adaptation guarantees reaching a feasible operating
point upon convergence. However, the constraints might be violated
during the iterations of the algorithm, even when starting the adap-
tation from within the feasible region. Constraint violations can be
avoided by controlling the constraints in the optimization problem,
which is done at the process control level by means of model predic-
tive control (MPC). The approach for integrating constraint adapta-
tion with MPC described in this thesis places high emphasis on how
constraints are handled. An alternative constraint-adaptation scheme
is proposed, which permits one to move the constraint setpoints grad-
ually in the constraint controller. The constraint-adaptation scheme,
with and without the constraint controller, is illustrated in simulation
through the real-time optimization of a fuel-cell system.

It is desirable for a RTO scheme to achieve both feasibility and op-
timality. Optimality can be achieved if the underlying process model
is able to predict not only the constraint values of the plant, but also
the gradients of the cost and constraint functions. In the presence of
structural plant-model mismatch, this typically requires the use of ex-
perimental plant gradient information. Methods integrating parameter
estimation with a modified optimization problem that uses plant gra-
dient information have been studied in the literature. The approach
studied in this thesis, denoted modifier adaptation, does not require
parameter estimation. In addition to the modifiers used in constraint
adaptation, gradient-modifier terms based on the difference between
the estimated and predicted gradient values are added to the cost and
constraint functions in the optimization problem. With this, a point
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that satisfies the first-order necessary conditions of optimality for the
plant is obtained upon convergence. The modifier-adaptation scheme is
analyzed in terms of model adequacy and local convergence conditions.
Different filtering strategies are discussed. The constraint-adaptation
and modifier-adaptation RTO approaches are illustrated experimen-
tally on a three-tank system.

Finite-difference techniques can be used to estimate experimental
gradients. The dual modifier-adaptation approach studied in this the-
sis drives the process towards optimality, while paying attention to
the accuracy of the estimated gradients. The gradients are estimated
from the successive operating points generated by the optimization
algorithm. A novel upper bound on the gradient estimation error is
developed, which is used as a constraint for locating the next operat-
ing point.

Keywords: Real-time optimization, constraint adaptation, constraint
control, modifier adaptation, estimation of experimental gradients.





Version abrégée

Les procédés industriels sont typiquement composés d’un grand
nombre d’installations opérant de façon continue, pour lesquelles
l’opération optimale revêt une grande importance économique. Cepen-
dant, il est particulièrement difficile de déterminer les conditions opti-
males de fonctionnement lorsque l’on dispose de modèles de procédés
imprécis ou en présence de perturbations. Dans des usines hautement
automatisées, l’opération optimale est généralement réalisée par une
hiérarchie de décisions, sur plusieurs niveaux, comme la planifica-
tion des opérations, l’optimisation en temps réel, et la commande des
procédés.

Au niveau de l’optimisation en temps réel, des décisions à moyen
terme sont prises en considérant les objectifs économiques de façon ex-
plicite. Ce niveau se base sur un optimiseur qui détermine le point de
fonctionnement optimal, à l’état stationnaire, pour des perturbations
à dynamiques lentes, telles la dégradation d’un catalyseur ou une va-
riation de la qualité des matières premières. En pratique, il s’agit de
déterminer les consignes qui seront assignées à des régulateurs à un
niveau de hiérarchie plus bas, c’est-à-dire au niveau de la commande
de procédés. L’optimisation en temps réel basée sur le modèle implique
typiquement l’utilisation de modèles de connaissance qui décrivent le
comportement du procédé à l’état stationnaire.

Comme des modèles précis sont rarement disponibles pour les ap-
plications industrielles, l’implantation classique de l’optimisation en
temps réel se fait de deux étapes, à savoir une étape d’estimation de
paramètres, suivie d’une étape d’optimisation. L’idée est d’utiliser les
mesures disponibles pour identifier la valeur d’un certain nombre de
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paramètres incertains du modèle, choisis a priori. Suite à la mise à
jour du modèle du procédé, une optimisation basée sur le modèle est
réalisée pour déterminer un nouveau point de fonctionnement pour le
procédé réel. Enfin, cette séquence d’étapes est répétée aussi longtemps
que le comportement du procédé réel diffère de celui du modèle, et le
comportement du modèle est ainsi sensé se rapprocher itérativement
du comportement du procédé. Cette approche donne de bons résultats
dans le cas où (i) les erreurs structurelles du modèle sont faibles, et
(ii) la variation des points de fonctionnement fournit une excitation
suffisante pour estimer les paramètres incertains du modèle.

Malheureusement, de telles conditions sont rarement réunies dans
la pratique et, en présence d’erreurs structurelles dans le modèle, cette
approche classique peut ne pas converger à l’optimum du procédé réel,
ou pire, peut converger vers un point infaisable, c’est-à-dire violant
les contraintes du procédé réel. Dans ce contexte, la seule garantie de
faisabilité à la convergence pour l’approche classique réside dans la
capacité du modèle mis à jour de pouvoir estimer avec précision les
contraintes du procédé réel.

Alternativement, il est possible de garantir la faisabilité sans re-
courir à la résolution d’un problème d’estimation paramétrique, par
l’ajout des termes de correction aux sorties du modèle. Ces termes
correctifs sont obtenus en soustrayant les sorties du modèle aux sor-
ties mesurées du procédé. Une approche de ce genre, pour laquelle
des termes de correction sont employés pour modifier les contraintes
du problème d’optimisation d’état stationnaire, a déjà été employée
avec succès dans l’industrie. Cependant, rares sont les travaux traitant
de façon théorique de l’analyse de cette approche dans la littérature.
Cette thèse développe cette approche d’optimisation en temps réel,
nommée adaptation des contraintes, et étudie ses propriétés locales de
convergence.

L’analyse de convergence montre que l’adaptation de contraintes
garantit, sous réserve de convergence, l’atteinte d’un point de fonction-
nement faisable. Cependant, sans autres précautions, les contraintes
peuvent être violées pendant les itérations de l’algorithme, même
lorsque l’adaptation est initialisée dans le domaine de faisabilité. Ces
violations de contraintes peuvent être évitées à un niveau hiérarchique
plus bas, celui de la commande de procédés, en contrôlant directe-
ment les contraintes du problème d’optimisation, ce qui est réalisé par
commande prédictive. Dans cette thèse, une nouvelle approche pour
combiner l’adaptation des contraintes et la commande prédictive est
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décrite. L’accent est mis sur la façon dont les contraintes sont mani-
pulées, et la méthode proposée permet de déplacer graduellement les
consignes des contraintes dans le régulateur de contraintes. L’approche,
avec et sans le régulateur de contraintes, est illustrée par l’optimisation
en temps réel d’un système de pile à combustible simulé.

Si la faisabilité est nécessaire, il est souhaitable que l’approche
d’optimisation assure en outre l’optimalité. L’optimalité peut être ga-
rantie si le modèle du processus peut prédire non seulement les va-
leurs des contraintes du procédé, mais également les gradients de la
fonction de coût et des contraintes. En présence d’erreurs structu-
relles de modèle, ceci exige typiquement l’utilisation d’informations
expérimentales pour le calcul des gradients du procédé. Des méthodes
combinant estimation des paramètres et modification du problème
d’optimisation, et employant de telles informations expérimentales, ont
déjà été étudiées dans la littérature. Comme pour l’adaptation des
contraintes, l’approche proposée dans cette thèse, nommée adaptation
des modificateurs, présente l’avantage de ne pas nécessiter d’estima-
tion paramétrique. En plus des modificateurs utilisés pour l’adapta-
tion des contraintes, des termes de correction des gradients, basés sur
la différence entre les gradients du procédé et ceux du modèle, sont
ajoutés au coût et aux contraintes du problème d’optimisation. Il est
montré que cette approche permet, sous réserve de convergence, d’at-
teindre un point qui satisfait les conditions nécessaires d’optimalité
de premier ordre, pour le procédé réel. Cette approche est analysée
en termes d’adéquation du modèle ; de plus, des conditions nécessaires
de convergence et différentes stratégies de filtrage sont discutées. Les
approches d’optimisation en temps réel par adaptation des contraintes
et adaptation des modificateurs sont illustrées expérimentalement au
moyen d’un système de trois réservoirs.

En pratique, les gradients ne sont pas mesurés et il est nécessaire de
les estimer. Pour cela, des techniques de différences finies peuvent être
employées. L’approche d’adaptation duale des modificateurs, étudiée
dans cette thèse, conduit le procédé vers l’optimalité, tout en faisant
attention à la précision de l’estimation des gradients, réalisée à partir
de la séquence de points de fonctionnement. Une limite supérieure
sur l’erreur d’estimation du gradient est déterminée théoriquement
et est intégrée dans le problème d’optimisation sous la forme d’une
contrainte, pour localiser le prochain point de fonctionnement.
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Mots-clés : Optimisation en temps réel, adaptation des contraintes,
régulation de contraintes, adaptation des modificateurs, estimation des
gradients.



Contents

Frequently used Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The Real-Time Optimization Paradigm . . . . . . . 2
1.2.2 Real-Time Optimization as part of a Multilevel

Control Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Input-Output Selection and Constraint Control 6
1.2.4 Real-Time Optimization with Model Update . . . 8
1.2.5 Real-Time Optimization without Model Update 9
1.2.6 Determination of Plant Gradients . . . . . . . . . . . . 12

1.3 Scope, Organization and Contributions of the Thesis . . 13

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Static Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Formulation of a NLP Problem . . . . . . . . . . . . . . 18
2.1.2 First-Order Necessary Conditions of Optimality 20
2.1.3 Second-Order Sufficient Conditions . . . . . . . . . . . 21
2.1.4 Reduced Gradient and Hessian . . . . . . . . . . . . . . . 22
2.1.5 Post-Optimal Sensitivity . . . . . . . . . . . . . . . . . . . . 23

2.2 Williams-Otto Reactor Problem . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Description and Model Equations . . . . . . . . . . . . 25
2.2.2 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Classical Two-Step Approach to RTO . . . . . . . . . . . . . . . 29
2.3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xiv

2.3.2 Model-Adequacy Criterion . . . . . . . . . . . . . . . . . . . 30
2.3.3 Numerical Illustration . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 ISOPE and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 ISOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 ISOPE with Model Shift . . . . . . . . . . . . . . . . . . . . 39
2.4.3 ISOPE with FFD Approach . . . . . . . . . . . . . . . . . 39
2.4.4 Dual ISOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Real-Time Optimization via Constraint Adaptation . 43
3.1 Variational Analysis of NCO in the Presence of

Parametric Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Constraint Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Principles of Constraint Adaptation . . . . . . . . . . 49
3.2.2 Constraint-Adaptation Algorithm . . . . . . . . . . . . 51
3.2.3 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.4 Active Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.6 Effect of Measurement Noise . . . . . . . . . . . . . . . . . 60
3.2.7 Alternative Constraint-Adaptation Algorithm . . 61
3.2.8 Case Study: Isothermal CSTR . . . . . . . . . . . . . . . 64

3.3 Combination of Constraint Adaptation with
Constraint Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Constraint-Adaptation Scheme for

Combination with MPC . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Enforcing Constraints via MPC . . . . . . . . . . . . . . 76
3.3.3 Case Study: Planar Solid Oxide Fuel Cell System 81

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Real-Time Optimization via Modifier Adaptation . . . 99
4.1 Modifier Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1.1 Principles of Modifier Adaptation . . . . . . . . . . . . 100
4.1.2 Modifier-Adaptation Algorithm . . . . . . . . . . . . . . 103
4.1.3 KKT Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.1.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.5 Model Adequacy for Modifier-Adaptation

Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.1.6 Alternative Schemes . . . . . . . . . . . . . . . . . . . . . . . . 114
4.1.7 Link to Previous Work . . . . . . . . . . . . . . . . . . . . . . 120
4.1.8 Case Study: Experimental Three-Tank System . 120

4.2 Dual Modifier Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 126



xv

4.2.1 Estimation of Experimental Gradient from
Past Operating Points . . . . . . . . . . . . . . . . . . . . . . 127

4.2.2 Dual Modifier Adaptation for Unconstrained
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2.3 Dual Modifier Adaptation for Constrained
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.2.4 Case Study: Williams-Otto Reactor . . . . . . . . . . . 152
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A Solid Oxide Fuel Cell Model . . . . . . . . . . . . . . . . . . . . . . . . 165

B Affine Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173





Frequently used Nomenclature

Abbreviations

CSTR continuous stirred-tank reactor
DMC dynamic matrix control
FFD forward finite differencing
FU fuel utilization
ISOPE integrated system optimization and parameter es-

timation
KKT Karush-Kuhn-Tucker
LICQ linear-independence constraint qualification
LP linear program
MPC model predictive control
NCO necessary conditions of optimality
NLP nonlinear programming
NMPC nonlinear model predictive control
QP quadratic program
RTO real-time optimization
SISO single-input single-output
SOFC solid oxide fuel cell



xviii

Operators

argminx f(x) minimising argument of f(x)

(·)−1
inverse of a matrix

(·)T transpose of a vector or matrix
diag(a1, . . . , an) diagonal matrix whose diagonal entries starting in

the upper left corner are a1, . . . , an

̺{·} spectral radius of a matrix
inf infimum
‖ · ‖ norm of a vector or matrix

Subscripts, superscripts and indices

(·)L lower bound
(·)U upper bound
(·)⋆ optimal value
(·)k value at RTO iteration k
(·)m modified
(·)p plant

Symbols

Latin symbols

Scalars

bi diagonal element of gain matrix B

gi(u,y) inequality constraint i
Gi,p(u) inequality constraint i for the plant
Gi(u,θ) inequality constraint i for the model
h step size used in FFD
k RTO iteration index
L(u,θ) restricted Lagrangian function
ng dimension of vector g(u,y)
nh dimension of vector h̄
nK dimension of vectors Λ and C (nK = ng + nu(ng +

1))
nu dimension of vector u



xix

nx dimension of vector x
ny dimension of vector y
nz dimension of vector z(u,θ) (nz = ng + 2nu)
nθ dimension of vector θ

ui input or decision variable i
v measurement noise
yi output variable i
zi(u,θ) inequality constraint or input bound i

Vectors

ej jth unit vector
g(u,y) inequality constraints
Gp(u) inequality constraints for the plant
G(u,θ) inequality constraints for the model
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1

Introduction

1.1 Motivation

It is sufficient to type the words “real-time optimization” on an In-
ternet search engine and to navigate through the generated results to
realize the tremendous importance of real-time optimization (RTO)
in today’s scenario, both in industry and in the research community.
Nowadays, RTO implementations are proposed for a wide variety of
applications that go far beyond the initial applications in the chemical
and petrochemical industries. These include the RTO of food produc-
tion processes, biological processes, pulp and paper production, min-
eral production, etc. Also, numerous companies offer RTO solutions
and related software. The main reason for such success is that RTO
can provide significant economic payoffs. For a high capacity plant,
even a 1% improvement in yield can lead to significant annual savings
[21]. RTO is targeted at reducing costs and improving profitability
while taking into account security, quality, environmental and equip-
ment constraints. These are the very issues that are of capital impor-
tance in today’s highly competitive markets, even in times of economic
slowdown.

RTO relies on a process model that is used to compute optimal op-
erating conditions. One of the main challenges in RTO systems comes
from the fact that models are simplified representations of the reality
and are thus subject to uncertainty. With the availability of plant oper-
ating data, the process model can be updated in order to give a better
prediction of the plant outputs. In the “classical” iterative two-step ap-
proach, a parameter estimation step is performed in order to update
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the model, which is subsequently used in the optimization step to com-
pute the new operating point. As one might expect, the performance
of RTO systems depends on how accurately the model represents the
process behavior [35, 91]. However, accurate models are difficult to ob-
tain with affordable effort. In the presence of plant-model mismatch
and unmeasured disturbances, the solution provided by the real-time
optimizer might result in suboptimal operation for the plant. Worse,
if the constraints are not well predicted by the model, an infeasible
solution might result. Furthermore, it is not straightforward to decide
which model parameters to adapt by means of parameter estimation,
and which ones to keep at fixed values [97]. The key model parameters
should be identifiable from the available measurements, which is not
always the case [89]. Parameter estimation is further complicated by
the nonlinearity of the model, poor quality of the data, and the lack
of tight bounds on the parameter search space [49]. Hence the interest
in devising and studying RTO methodologies that are tailored to en-
forcing feasibility and optimality, while alleviating model accuracy and
model updating requirements. With this in mind, this thesis extends
and formalizes several ad hoc techniques that are available in the area
of real-time optimization.

1.2 State of the Art

1.2.1 The Real-Time Optimization Paradigm

The chemical industry is characterized by continuous operating plants
operating at near steady-state. The synthesis of control structures for
these plants presents several difficulties which can be summarized as
follows:

• Imperfect models
• Nonlinearities
• Presence of operating constraints

– Equipment constraints: Pressure drop through equipment, valve
positions, compressor speeds, horsepower limits, column load-
ing, etc.

– Safety constraints: Explosive limits, critical pressure and tem-
peratures.

– Quality constraints: Reaction yields and selectivities, product
purity, etc.
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– Environmental constraints: CO2 emissions, pollution levels, etc.
• Multivariable nature
• Measurement noise and process disturbances
• Changing optimum due to:

– Process degradation: From the start-up of a process until its
shutdown for maintenance, the process goes through a continu-
ous state of degradation, including wearing of mechanical equip-
ment, fouling of heat exchangers, decaying of catalyst activities,
plugging of lines and distributors, fouling of turbines, bypassing
in packed beds and reactors due to fouling, etc.

– Weather conditions: External weather conditions affect cooling
water temperatures, air cooler efficiencies and heat loss from
equipment.

– Changes in production goals: Production objectives change with
the market demands.

In response to these difficulties, the use of process control and opti-
mization technology has become the rule for a large number of chemical
and petrochemical plants. The advantages of on-line computer-aided
process operation are largely recognized [21].

In any RTO application, the optimum plant operating conditions
may change as a result of process degradation, weather conditions,
and changes in production goals. The RTO system attempts to track
the plant optimum changing at low frequency to maintain the plant
at its most profitable operating point [98]. Real-time optimization,
on-line optimization and optimizing control are different terms that
have been used in the literature to designate the same purpose, which
is the continuous reevaluation and alteration of operating conditions
of a process so that economic productivity is maximized subject to
operational constraints [2, 46, 63].

RTO emerged in the chemical process industry in the seventies to-
gether with model predictive control (MPC), at the time when on-line
computer control of chemical plants became available. Since then, there
has been extensive research in the area of RTO, and numerous indus-
trial applications have been reported. A number of successful industrial
applications is listed in [63]. Today RTO is a very extensive research
field, strongly connected with other fields such as input-output selec-
tion, MPC, parameter estimation, state estimation, data reconciliation
and results analysis.
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1.2.2 Real-Time Optimization as part of a Multilevel
Control Structure

In highly automated plants, the goal of an economically optimal opera-
tion is typically addressed by an automation decision hierarchy involv-
ing several levels, as shown in Figure 1.1 [23, 63, 92]. This is essentially
a cascade structure, which is in general appropriate because of the dif-
ference in time scale associated with the disturbance frequencies and
decisions at each level [63].

At the upper level, the planning and scheduling addresses long
term issues like production rate targets and raw material allocation.
The disturbances associated with this level are market fluctuations,
demand and price variations. At the lowest level, sensor measurements
are collected from the plant, and basic flow, pressure, and temperature
control is implemented, possibly via advanced regulatory controllers
that include cascade controllers and multivariable controllers. Linear
model predictive controllers (MPC) have gained wide acceptance be-
cause they can handle large multivariable systems with operating con-
straints [70]. The process control layer achieves safety, product quality,
production rate goals and stable operation. The associated time scale
is usually in the order of seconds to minutes.

The RTO level provides the bridge between plant scheduling and
process control. At this level, medium-term decisions are made on a
time scale of hours to days by considering economics explicitly in op-
erations decisions. This step typically relies on a real-time optimizer,
which determines the optimal operating point under changing condi-
tions, e.g., low frequency process disturbances such as catalyst decay
or changes in raw material quality. The operating point is character-
ized by setpoints for a set of controlled variables that are passed to the
lower-level controllers. Model-based RTO typically involves nonlinear
first-principle models describing the steady-state behavior of the plant.
These models are often relatively large, and the model-based optimiza-
tion may require substantial computing time [63].

Uncertainty is present in the form of plant-model mismatch and
unmeasured disturbances. In order to combat uncertainty, all levels
utilize process measurements as inputs to their feedback loops, and
each higher level provides guidance to the subsequent lower level.

The multilevel structure leads to a vertical decomposition of the
automation tasks. There is a second type of decomposition that is
done horizontally, and is known as multiechelon decomposition [65].
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Fig. 1.1. Automation Decision Hierarchy.

This decomposition gives rise to the approaches known as decentralized
optimizing control [65], optimizing control for integrated plants [3],
optimizing control of interconnected systems [13], or plant-wide control
[52, 55, 80]. The plant is divided into interacting groups of processing
units, for which the optimization is carried out separately. These are
coordinated from time to time by a coordinator.

The multilevel structure given in Figure 1.1 has some drawbacks.
The main disadvantage is that sampling and optimization have to be
delayed until the controlled plant has settled to a new steady state
[29]. This delay occurs at each RTO step after a change in the input
variables, and worse, after the occurrence of disturbances. As the opti-
mization is only performed intermittently at a rate such that the con-
trolled plant is assumed to be at (pseudo) steady state, the adaptation
of the operating conditions can be slow. Also, inconsistencies may arise
from the use of different models at the different levels. Schemes aiming
to reduce the gap between the regulation and RTO levels have been
proposed in order to address these issues. A review of these schemes
is given in [29]. Notice that, for the case of measured disturbances
and known changes in operating conditions, it is possible to carry out
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the optimization using the current steady-state model without waiting
for steady state [77]. The model parameters are only updated using
measurements obtained at steady-state. However, the optimization is
carried out at a much faster rate using the updated disturbance values.

For applications exhibiting strongly nonlinear and complex dynam-
ics, the replacement of linear MPC controllers by nonlinear model-
predictive controllers (NMPC), for which the RTO and regulatory lev-
els are completely merged into a single level, is gaining interest in the
research community [4, 50, 67, 84]. One of the advantages of NMPC
is that it can react quickly to disturbances since it does not require to
wait for the controlled plant to reach a steady state. Also, no inconsis-
tencies arise from the use of different models on different layers [29].
The use of a rigorous first-principle prediction model has the disadvan-
tage, however, of requiring the solution of an optimal control problem
in real-time [25]. Computational complexities, the requirement of real-
time identification techniques for nonlinear processes, and the lack of
stability and robustness results for the case of nonlinear systems, are
important limitations to a practical implementation of NMPC [16, 50].

1.2.3 Input-Output Selection and Constraint Control

The selection of manipulated and controlled variables for the regula-
tory level, as well as the choice of decision (input) variables at the
optimization level, is not unique. Several authors have treated the rel-
ative importance of control objectives in the synthesis of optimizing
control structures for chemical processes (see e.g. [65, 80] and references
therein). In this context, operating constraints have a fundamental role
to play.

In RTO systems, high-priority objectives such as safety, product
quality and production rates are often formulated as equality con-
straints. It is generally recognized that equality constraints should al-
ways be controlled. A number of manipulated variables are assigned
to keep these constraints tight. The degrees of freedom available for
optimization are the remaining ones that are not used to control the
equality constraints [63].

Inequality constraints can be active or inactive at the optimum.
If some constraints are known to be active irrespective of the process
operating conditions and the disturbances entering the process, these
constraints can be controlled all the time and treated as equality con-
straints with selected manipulated variables being assigned to keeping
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them active [56]. Heuristics have been proposed for identifying which
constraints are active for different types of processes [32].

Other constraints might become critical depending on the process
conditions and disturbances. This means that the optimal operating
point can switch from the intersection of one set of active constraints to
another, as process disturbances change with time. When this occurs,
the control system should be capable of automatically switching to the
new active set. This is referred to as constraint control [56]. Constraint
control requires the controlled constrained quantities to be measured
(or estimated) online. The advantages of controlling the constraints
are [2, 40]:

1. Constraint control avoids infeasibilities due to short-term distur-
bances and during the dynamic regimes that take place when the
plant is not operating at a steady state.

2. If the active constraints are regulated, the need for on-line opti-
mization may be eliminated for a certain set of middle-term dis-
turbances, for which the set of constraints that determine the op-
timum does not change.

3. The control of active constraints can be implemented with minimal
modeling using direct process measurement. Offset-free behavior
can be achieved despite the absence of a process model.

Changes in the active set due to different operating conditions have
been considered in [56]. When a constraint becomes active, the feed-
back controllers override each other. Single-input single-output (SISO)
loops are employed, although it is suggested that, in case of severe in-
teraction, some form of non-interacting control be applied. The loops
for each possible active set are predetermined.

An approach on how to handle changing active sets in the regula-
tory level by altering the regulatory control structure is presented in
[2]. In order to move the operation towards the new optimum, which
is determined by a new set of active constraints, the constraint control
loops are partitioned into servo loops and regulation loops. The con-
straint setpoints of the servo loops are changed, while keeping the reg-
ulated constraints tight. Using this approach, alternative operational
routes to the new optimum are possible, each route involving different
sequencing of control structures. Screening criteria are given to select
the best feasible sequencing route.
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1.2.4 Real-Time Optimization with Model Update

Since accurate models are rarely available in industrial applications,
RTO typically proceeds by an iterative two-step approach [20, 46, 63],
namely a model-update step followed by an optimization step. The
model-update step typically consists of a parameter estimation prob-
lem. The objective is to find values of selected (adjustable) model
parameters for which the (steady-state) model gives a good predic-
tion of the measured plant outputs at the current operating point.
In the optimization step, the updated model is used to determine a
new operating point by solving a model-based optimization problem
that typically consists in a nonlinear programming (NLP) problem.
Besides model update and optimization, RTO systems also encompass
subsystems for data validation and results analysis. A typical closed-
loop RTO system is represented in Figure 1.2. The performance of
the overall RTO system will depend on the design of the sub-systems
[34, 63, 74]. Important design decisions include the selection of the de-
cision variables at the RTO level and of the controlled variables at the
process control level, measurement selection, partitioning of the model
parameters into those that will be adjusted online, and those that will
be fixed at nominal values, model structure, model updating approach
and results analysis methods.

Since the models used in most RTO applications are nonlinear
steady-state models, it is important to verify that the plant is near
steady-state operation before carrying out data validation and up-
dating the model. The validation of process measurements includes
steady-state detection, gross error detection, and data reconciliation.
Steady-state detection is complicated by the fact that different sections
of the plant may be at different transient states. Data reconciliation
uses material and energy balances to ensure that the data used for
model update is self-consistent.

The classical two-step approach works well provided that (i) there
is little structural plant-model mismatch [91], and (ii) the changing
operating conditions provide sufficient excitation for estimating the
uncertain model parameters. Unfortunately, such conditions are rarely
met in practice. Regarding (i), in the presence of structural plant-
model mismatch, it is typically not possible to satisfy the necessary
conditions of optimality (NCO) of the plant simply by estimating the
model parameters that predict the plant outputs well. Some informa-
tion regarding plant gradients needs to be incorporated into the RTO
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Fig. 1.2. Closed-loop RTO system with model update [98].

scheme. In the so-called integrated system optimization and parameter
estimation (ISOPE) method [13, 74], a gradient-modification term is
added to the cost function of the optimization problem to force the it-
erations to converge to a point that satisfies the plant NCO. Regarding
(ii), the use of multiple data sets has been suggested to increase the
number of identifiable parameters [89]. How to select the additional
data sets based on the design of plant experiments has also been ad-
dressed [90].

In response to both (i) and (ii), methods that do not rely on a
model update based on a parameter estimation problem have gained
in popularity in recent years.

1.2.5 Real-Time Optimization without Model Update

This class of methods encompasses the model-free and fixed-model
methods that are discussed next.

Model-Free Methods

Model-free methods do not use a process model on-line for imple-
menting the optimization. Two classes of approaches can be further
distinguished. In the first one, successive operating points are deter-
mined by “mimicking” iterative numerical optimization algorithms.
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For example, evolutionary-like schemes have been proposed that im-
plement the Nelder-Mead simplex algorithm to approach the optimum
[9]. To achieve faster convergence rates, techniques based on gradient-
based algorithms have also been developed [40]. The second approach
to model-free methods consists in recasting the NLP problem into that
of choosing outputs whose optimal values are approximately invariant
to uncertainty. The idea is then to use measurements to bring these
outputs to their invariant values, thereby rejecting the uncertainty. In
other words, a feedback law is sought that implicitly solves the op-
timization problem, as it is done in self-optimizing control [78], and
NCO tracking [36].

Fixed-Model Methods

Fixed-model methods utilize both a nominal process model and ap-
propriate measurements for guiding the iterative scheme towards the
optimum. The process model is embedded within an NLP problem
that is solved repeatedly. But instead of refining the parameters of a
first-principles model from one RTO iteration to the next, the mea-
surements are used to update the cost and constraint functions in the
optimization problem so as to yield a better approximation of the plant
cost and constraints at the current point. Fixed-model RTO methods
encompass the bias-update approach [33], and the recent approach by
Gao and Engell [37].

Bias-update Approach. Optimizing process performance in the pres-
ence of constraints requires the use of a mathematical model of the
process to anticipate the effect of the constraints and take appropriate
control actions [15]. Thus, model-based control systems such as dy-
namic matrix control (DMC) [22], model algorithmic control (MAC)
[71], and internal model control (IMC) [39] provide a natural setting
for dealing with constraints. All the forgoing make use of plant-model
biases. The manipulated variables are driven by the model, while the
effects of disturbances are taken into account by subtracting the model
outputs from the measured plant outputs. These methods differ only in
the design of the controller. For discrete-time control of linear systems,
it has been shown that plant-model biases yield interesting properties
such as zero offset and robustness to modeling errors [41]. The success
of the bias-update method at the control level motivates its incorpo-
ration into the steady-state optimization level. However, the analysis
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of bias update at the steady-state optimization level has received little
attention in the research community. In [33], adjustable bias terms are
added to the equality and inequality constraints of the steady-state
RTO problem. These constraint-correction factors, or modifiers, are
obtained as the difference between the measured and predicted val-
ues of the constraints. The analysis undertaken in [33] is restricted to
problems where there are as many independent, active constraints as
decision variables at the plant optimum. For this particular case, the
analysis in [33] considers how model adequacy in the sense of Forbes
et. al [35] (see Subsection 2.3.2) applies to the bias-update case. Model
adequacy is shown to be determined by the gradient of the cost func-
tion and of the active constraints predicted by the model. It is also
shown that, when the constraints are affine and the model is ade-
quate, the bias-update scheme will converge to the true process op-
timum (which by assumption is completely determined by the active
constraints) provided the filter is designed to ensure stability. A similar
scheme has also been presented in [24] where the approach, referred to
as IMC optimization, is applied using two models. The computational
burden of performing a direct optimization based on a complex non-
linear model is reduced by performing the optimization on a reduced
(internal) model that is embedded in an IMC optimization structure.
The solution, however, may be sub-optimal. Recently, a bias-update
approach was applied in the RTO of a pulp mill benchmark problem
using a reduced linear model [64].

Bias and Gradient-update Approach. A modified ISOPE approach,
which eliminates the need to estimate the model parameters, was pro-
posed by Tatjewski [82]. Following this idea, Gao and Engell [37] re-
cently formulated a modified optimization problem, wherein both the
constrained values and the cost and constraint gradients are corrected.
The main contribution in [37] lies in the way in which the process con-
straints are corrected. In addition to the correction term for the con-
straint values used in bias update [17, 33], gradient-correction terms
are added to the constraints. These are based on the difference between
the estimated and predicted values of the constraint gradients. This
way, an operating point that satisfies the plant NCO is obtained upon
convergence.
Comparisons between different RTO approaches have been published
in [28], and more recently in [18, 98].
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1.2.6 Determination of Plant Gradients

The major difficulty in the implementation of ISOPE approaches, and
of the modifier-adaptation approach studied in this thesis, is the de-
termination of the gradient of the plant outputs with respect to the
inputs, also called experimental gradients. In the context of RTO, sev-
eral methods for estimating experimental gradients have been pro-
posed. These methods have been compared by several authors [58, 98].
A distinction can be made between steady-state perturbation methods
and dynamic perturbation methods. Steady-state perturbation methods
require at least (nu + 1) steady-state operating points in order to esti-
mate the gradients, where nu is the number of decision variables. The
idea behind dynamic perturbation methods is to estimate the experi-
mental gradient using information obtained during the transition be-
tween steady-state operating points corresponding to successive RTO
iterations. One such approach is dynamic model identification, where
the experimental gradients are obtained from a dynamic model that is
identified during transient operation [5, 38, 93, 98]. The major advan-
tage of dynamic perturbation methods is that the waiting time needed
to reach a new steady state can be avoided. However, they have the
disadvantage of requiring additional excitation to identify the dynamic
model.

Regarding steady-state perturbation methods, the most straight-
forward approach to estimate experimental gradients is to apply finite-
difference techniques directly on the plant. These techniques consist in
perturbing each input variable individually around the current oper-
ating point to get an estimate of the corresponding gradient from the
measured plant outputs at steady state. The use of finite differences
was suggested in the original ISOPE paper [72]. However, since a new
steady state must be attained for each perturbation in order to evalu-
ate the plant derivatives, the time between successive RTO iterations
increases significantly, and the approach becomes experimentally in-
tractable with several input variables.

Other steady-state perturbation methods use the current and past
operating points to estimate the gradients. In the so-called dual ISOPE
algorithms [13, 81], a constraint on the search region for the next op-
erating point, which takes into account the position of the past ones,
is added to the model-based optimization problem. This way, the opti-
mization objective and the requirement of generating sufficient steady-
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state perturbations in the operating points for the purpose of estimat-
ing the gradient are dealt with simultaneously.

1.3 Scope, Organization and Contributions of the

Thesis

This thesis is dedicated to the study of the fixed-model RTO methods
described in Subsection 1.2.5. It considers only the optimizing control
of a single unit (or of the whole plant considered as an integrated sys-
tem). The characteristics of decentralized optimizing control are not
discussed. The reader interested in this topic is directed to the litera-
ture referenced in Subsection 1.2.2. Data validation and results analysis
are not discussed either, a description of these RTO components and
reference to related bibliography is given in [63]. An RTO application
where data validation with steady state detection and gross error de-
tection are discussed in detail can be found in [99].

After a brief description of the state of the art in RTO in connex-
ion with the approaches studied in this thesis, a number of preliminary
results are given in Chapter 2.

Chapter 2: Preliminaries. The RTO static optimization problem is
formulated as a nonlinear program (NLP). Theoretical results on NLP
are presented, which will be used in the theoretical analysis carried
out in subsequent chapters. The effect of plant-model mismatch in the
RTO closed-loop system of Figure 1.2 is discussed, model-adequacy is
reviewed, and the ISOPE approach tailored to deal with plant-model
mismatch is revisited.

The main contributions of this thesis to the RTO literature can be
found in Chapters 3 and 4, which are summarized next:

Chapter 3: Real-Time Optimization via Constraint Adapta-
tion. In the context of this thesis, the correction of the constraint
functions in the model-based optimization problem, using bias updates
as in [33], is referred to as constraint adaptation [17, 60]. As discussed
in Subsection 1.2.5, the analysis of the merits of constraint adapta-
tion has received little attention in the RTO literature. This chapter
undertakes a novel study of various aspects of constraint adaptation,
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including the necessary conditions for convergence. Unlike the analy-
sis undertaken in [33], the analysis in Chapter 3 is not restricted to
problems where the optimal solution is completely determined by the
active constraints. Furthermore, the analysis in Chapter 3 is made in-
dependently of which constraints become active. Several illustrative
examples are studied. A strategy for integrating constraint adaptation
at the RTO level with MPC at the process control level is presented.
The MPC is tailored to control the constraints. The integration strat-
egy includes two important features: (i) a novel way of adapting the
constraints permits to update the constraint setpoints passed to the
constraint controller at each iteration. The actual constraint bounds
for the active constraints are reached upon convergence. And (ii), the
residual degrees of freedom are exploited by enforcing the inputs to
their optimal values along selected directions in the input space. In
the context of a collaboration with the Laboratoire d’Énergétique In-
dustrielle of EPFL (LENI), the constraint-adaptation approach is ap-
plied in simulation to a solid-oxide fuel cell stack [62]. An experimental
validation of the results is foreseen for an experimental SOFC system
available at LENI.

Chapter 4: Real-Time Optimization via Modifier Adaptation.
In this chapter, additional modifiers are introduced into the optimiza-
tion problem in order to correct the gradients of the cost and con-
straint functions. These gradient corrections require information on
the plant gradients that should be available at every RTO period.
The approach used to modify the cost and constraint functions is sim-
ilar to the approach recently proposed in [37] for the modification
of the constraint functions. This chapter formalizes the idea of using
plant measurements to adapt the optimization problem in response
to plant-model mismatch, following the paradigm of modifier adapta-
tion. Model-adequacy requirements and local convergence conditions
are discussed. Two filtering strategies are proposed to achieve stabil-
ity and reduce sensitivity to measurement noise. Links between modi-
fier adaptation and related work in the literature are highlighted. The
applicability of the constraint-adaptation and modifier-adaptation ap-
proaches is shown through an experimental application to a three-tank
system. Following the ideas advanced by the dual ISOPE approach, a
dual modifier-adaptation approach is proposed in order to estimate
experimental gradients reliably from past operating points while up-
dating the operating point. The error in the gradient estimates ob-
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tained from past operating points is analyzed. Based on this analysis,
a norm-based constraint is formulated. This constraint is incorporated
into the dual modifier-adaptation scheme.

Finally, Chapter 5 concludes the thesis.

Chapter 5: Conclusions. This chapter concludes the thesis and dis-
cusses the perspectives in terms of new research topics.

The constraint adaptation approach has also been extended to batch
processes in [59]. However, this extension falls outside the scope of this
thesis.
Concerning the strategy for integrating constraint adaptation with an
MPC constraint controller proposed in Chapter 3, the emphasis is not
on MPC, but on the integration strategy from a methodological point
of view. The analysis of the integrated scheme, as well as a comparison
with other strategies such as LP-MPC and QP-MPC [88], are beyond
the scope of this thesis.
In order to estimate the experimental gradients required by modifier
adaptation, only steady-state perturbation approaches are considered
in this thesis. No attempt is made to compare steady-state perturba-
tion methods with dynamic perturbation methods, which fall outside
the scope of this thesis.
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Preliminaries

The optimization of steady-state operating conditions involves static
optimization as opposed to dynamic optimization. This chapter begins
by presenting several preliminary results on static optimization in Sec-
tion 2.1. The static optimization problem is formulated as a nonlinear
programming (NLP) problem, for which the first-order necessary con-
ditions of optimality (NCO) and the second-order sufficient conditions
are presented, as well as first-order sensitivity results based on second-
order assumptions. A case study corresponding to a continuous reactor
example is presented in Subsection 2.2, which includes a simple, but
realistic, example of structural modeling error. This example is used in
Section 2.3 to illustrate some of the difficulties of the classical two-step
approach to RTO (see Subsection 1.2.4). Model-adequacy conditions
proposed in the literature are also discussed in Section 2.3.

Next, the integrated system optimization and parameter estima-
tion (ISOPE) approach, is presented in Section 2.4, as well as a few
of its variants. Their description will help understand the link and the
differences between ISOPE and the modifier-adaptation approach pre-
sented in Chapter 4. The dual ISOPE approach presented in Subsec-
tion 2.4.4 is the motivator for the dual modifier-adaptation approach
of Chapter 4.

2.1 Static Optimization

The usual objective in RTO is the minimization or maximization of
some steady-state operating performance of the process (e.g., mini-
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mization of operating cost or maximization of production rate), while
satisfying a number of constraints (e.g., bounds on process variables
or product specifications).

Throughout this thesis, for simplicity, only inequality constraints
are considered in the RTO problem. The inclusion of equality con-
straints to the constraint-adaptation and modifier-adaptation schemes
studied in this thesis poses no conceptual difficulty, since equality con-
straints would behave like inequality constraints that are always ac-
tive. However, equality constraints are explicitly considered in Sub-
section 3.3.1, where constraint adaptation is combined with constraint
control.

2.1.1 Formulation of a NLP Problem

In the context of RTO, since it is important to distinguish between
the plant and the model, we will use the notation (·)p for the variables
associated with the plant.

The steady-state optimization problem for the plant is formulated
as follows:

u⋆
p ∈ argmin

u
φ(u,yp) (2.1)

s.t. g(u,yp) ≤ 0

uL ≤ u ≤ uU,

where u ∈ IRnu denote the decision (or input) variables, and yp ∈ IRny

are the measured (or output) variables; φ : IR
nu×IR

ny → IR is the scalar
cost function to be minimized; gi : IRnu × IRny → IR, i = 1, . . . , ng, is
the set of inequality constraint functions; and uL, uU are the bounds
on the decisions variables.

An equivalent formulation of the optimization problem (2.1) is as
follows:

u⋆
p ∈ argmin

u
Φp(u) (2.2)

s.t. Gp(u) ≤ 0

uL ≤ u ≤ uU,

with Φp and Gp being defined as Φp(u) := φ(u,yp(u)) and Gp(u) :=
g(u,yp(u)).
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In any practical application, the input-output mapping represent-
ing the plant operation at steady-state, yp(u), is not known precisely,
as only an approximate model is available:

f(u,x,θ) = 0

y = F(u,x,θ),

where f ∈ IR
nx is the set of process model equations including mass

and energy balances, thermodynamic relationships, etc., x ∈ IRnx are
the model states, y ∈ IRny are the output variables predicted by the
model, which are evaluated through the functions F , and θ ∈ IRnθ is
the set of adjustable model parameters. For simplicity, we shall assume
that the model outputs y can be expressed explicitly as functions of
u and θ only, y(u,θ). Thereby, the solution to the original problem
(2.2) can be approached by solving the following NLP problem:

u⋆ ∈ argmin
u

Φ(u,θ) (2.3)

s.t. G(u,θ) ≤ 0

uL ≤ u ≤ uU,

with Φ and G defined as Φ(u,θ) := φ(u,y(u,θ)) and G(u,θ) :=
g(u,y(u,θ)).

This formulation assumes that φ(u,yp) and g(u,yp) are known
functions of u and yp, i.e., they can be evaluated directly from the
measurements. On the other hand, the dependency on the model pa-
rameters θ of the cost and constraint values predicted by the model,
φ(u,y) and g(u,y), is implicit via the model outputs y(u,θ).

It is assumed throughout that Φ and G are twice continuously
differentiable with respect to u. Under the assumptions that the fea-
sible set U := {u ∈ [uL,uU] : G(u,θ) ≤ 0} is nonempty for θ

given, the infimum for Problem (2.3), labeled Φ⋆, is assumed some-
where on [uL,uU] and thus a minimum exists by Weierstrass’ the-
orem (see, e.g., [7], Theorem 2.3.1). Here, we shall denote by u⋆ a
minimizing solution for Problem (2.3), i.e., Φ(u⋆,θ) = Φ⋆, and by
A := {i : Gi(u

⋆,θ) = 0, i = 1, . . . , ng} the set of active inequality
constraints at u⋆. In the presence of plant-model mismatch, a model-
based solution u⋆ does not in general match the plant optimum u⋆

p.
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Although the emphasis in this thesis is placed on the RTO of con-
tinuous processes operating at steady state, it is worth recalling that
the static optimization problem formulated above is also encountered
in the framework of run-to-run optimization of batch and semi-batch
processes [36]. The optimization of batch and semi-batch processes typ-
ically involves solving a dynamic optimization problem with path and
terminal constraints. The solution consists of time-varying input pro-
files, m(t). Numerically, such problems can be solved by parameterizing
the input profiles using a finite number of parameters u, e.g., piece-
wise polynomial approximations of m(t). This way, the inputs profiles
can be expressed as m(t) = U(u, t), and the optimization is performed
with respect to u. Although the process is dynamic in nature, a static
map can then be used to describe the relationship between the inputs
u and the outcome of the batch yp. Making use of this static map,
the dynamic optimization problem can be reformulated into a static
optimization problem similar to (2.2) [36].

In the context of this thesis, a distinction is made between model
inaccuracies due to structural errors and parametric uncertainties. A
process model is said to be structurally correct if there exist values
of the adjustable model parameters θ such that the model yields a
precise representation of the input-output mapping of the plant. This
is formalized in the definition below:

Definition 2.1 (Structural Model Errors)
A process model y(u,θ) is said to be structurally correct, if there exist
values of the adjustable model parameters θ such that y(u,θ) = yp(u),

∂y

∂u
(u,θ) =

∂yp

∂u
(u), and ∂2y

∂u2 (u,θ) =
∂2yp

∂u2 (u), for all u ∈ U . On the
other hand, if such parameter values do not exist, the process model is
said to be structurally incorrect.

Notice that, for all points u in the interior of U (not belonging
to the boundary of U), the condition y(u,θ) = yp(u) for all u ∈ U
implies ∂y

∂u
(u,θ) =

∂yp

∂u
(u), and ∂2y

∂u2 (u,θ) =
∂2yp

∂u2 (u).

2.1.2 First-Order Necessary Conditions of Optimality

Theorem 2.1 (Karush-Kuhn-Tucker Necessary Conditions)
Let u⋆ be a (local) optimum of Problem (2.3) and assume that the
linear-independence constraint qualification (LICQ) holds at u⋆:
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rank





∂G
∂u

diag(G)
Inu

diag(u− uU)
−Inu

diag(uL − u)





u⋆,θ

= ng + 2nu

(2.4)

i.e., this (ng + 2nu)× (ng + 3nu) matrix is of full row rank. Then,
there exist (unique) values for the Lagrange multiplier vectors µ ∈ IRng ,
ζU, ζL ∈ IRnu such that the following first-order Karush-Kuhn-Tucker
(KKT) conditions hold at u⋆:

G ≤ 0, uL ≤ u ≤ uU (2.5)

µTG = 0, ζUT

(u− uU) = 0, ζLT

(uL − u) = 0 (2.6)

µ ≥ 0, ζU ≥ 0, ζL ≥ 0 (2.7)

∂L
∂u

=
∂Φ

∂u
+ µT

∂G

∂u
+ ζU − ζL = 0, (2.8)

with the Lagrangian function defined as:

L(u,µ, ζU, ζL,θ) := Φ+ µTG + ζUT

(u− uU) + ζLT

(uL − u) (2.9)

Proof. See, e.g., [7, Theorem 4.2.13]. ✷

The necessary conditions of optimality (2.5) are referred to as the pri-
mal feasibility conditions, (2.6) as the complementarity slackness con-
ditions, and (2.7, 2.8) as the dual feasibility conditions. Together these
conditions are called the KKT conditions. Any point u⋆ for which there
exist Lagrange multipliers µ⋆, ζU⋆

, ζL⋆
, such that (u⋆, µ⋆, ζU⋆

, ζL⋆
)

satisfies the KKT conditions is called a KKT point. The linear-
independence constraint qualification implies that the associated La-
grange multipliers are determined uniquely at the KKT point u⋆.

The conditions in Theorem 2.1 are necessary conditions that must
hold at each local minimum point for which LICQ holds. Neverthe-
less, these conditions may be satisfied by a point that is not a local
minimum. Sufficient conditions for a KKT point to be a strict local
minimum are given next.

2.1.3 Second-Order Sufficient Conditions

Let us denote the inequality constraints G and the input bounds col-
lectively as
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z(u,θ) :=





G(u,θ)
uL − u
u− uU



 ≤ 0, (2.10)

and the corresponding Lagrange multipliers as υT =
(

µT, ζ
UT

, ζ
LT)

.

Theorem 2.2 (KKT Second-Order Sufficient Conditions)
Let u⋆ be a KKT point for Problem (2.3), with the Lagrange multi-

pliers υ⋆T =
(

µ⋆T, ζU⋆T

, ζL⋆T)

. Let Az := {i : zi(u
⋆,θ) = 0, i =

1, . . . , nz}, with nz = ng + 2nu, and denote the strongly active con-
straints as A+

z := {i ∈ Az : υ⋆
i > 0} and the weakly active constraints

as A0
z := {i ∈ Az : υ⋆

i = 0}. Define the restricted Lagrangian function
as

L(u,θ) := L(u,µ⋆, ζU⋆
, ζL⋆

,θ) = Φ(u,θ) +
∑

i∈Az

υ⋆
i zi(u,θ), (2.11)

and denote its Hessian at u⋆ by

∂2L

∂u2
(u⋆,θ) :=

∂2Φ

∂u2
(u⋆,θ) +

∑

i∈Az

υ⋆
i

∂2zi

∂u2
(u⋆,θ). (2.12)

Define the cone

C =
{

d 6= 0 :
∂zi

∂u
(u⋆,θ)d = 0 for i ∈ A

+
z ;

∂zi

∂u
(u⋆,θ)d ≤ 0 for i ∈ A

0
z

}

Then, if dT ∂2L
∂u2 (u⋆,θ)d > 0 for all d ∈ C, u⋆ is a strict local minimum

for Problem (2.3).

Proof. See, e.g., [7, Theorem 4.4.2]. ✷

When the Lagrangian function L(u,θ) displays a positive curvature at
a KKT point u⋆ along directions restricted to lie in the cone specified
above, we claim that u⋆ is a strict local minimum for Problem (2.3).

2.1.4 Reduced Gradient and Hessian

Let us assume that, at the optimum u⋆ of Problem (2.3), there are na
g

active inequality constraints Ga, nU inputs at their upper bound, and
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nL inputs at their lower bound. The active inequality constraints Ga

and the active input bounds are denoted collectively by za. The null
space of the Jacobian of the active constraints can be defined from the
relation:

∂za

∂u
(u⋆,θ)Z = 0

where the columns of Z ∈ IRnu×ns , with ns = nu−na
g −nU−nL, are a

set of basis vectors for the null space of the active constraint Jacobian.
The reduced gradient of the cost function, ∇rΦ ∈ IR1×ns , is given by:

∇rΦ(u⋆,θ) =
∂Φ

∂u
(u⋆,θ)Z (2.13)

and the reduced Hessian of the cost function, ∇2
rΦ ∈ IRns×ns , is given

by [42]:

∇2
rΦ(u⋆,θ) := ZT

[

∂2L

∂u2
(u⋆,θ)

]

Z (2.14)

2.1.5 Post-Optimal Sensitivity

Conditions under which a solution to Problem (2.3) exists and is unique
for values of the adjustable parameters θ in the neighborhood of some
nominal values θ◦ are given in the following theorem.

Theorem 2.3 (Sensitivity analysis) Let the functions Φ and Gi,
i = 1, . . . , ng, be twice continuously differentiable with respect to (u,θ).
Consider Problem (2.3) for the nominal parameter values θ◦, and let
u⋆(θ◦) be such that:

1. the second-order sufficient conditions for a local minimum of Prob-
lem (2.3) hold at u⋆(θ◦), with the associated Lagrange multipliers

µ⋆(θ◦), ζU⋆
(θ◦) and ζL⋆

(θ◦) (see Section 2.1.3);
2. the regularity LICQ condition (2.4) holds at u⋆(θ◦);
3. the following strict complementarity conditions hold, µ⋆

i (θ◦) > 0
for each i ∈ A(θ◦), ζL

i
⋆
(θ◦) > 0 for each i such that u⋆

i = uL
i , and

ζU
i

⋆
(θ◦) > 0 for each i such that u⋆

i = uU
i .

Then, there is some η > 0 such that, for each θ ∈ Bη(θ◦) – a ball
of radius η centered at θ◦, there exist unique continuously differen-
tiable vector functions u⋆(θ), µ⋆(θ), ζL⋆

(θ) and ζU⋆
(θ) satisfying
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the second-order sufficient conditions for a local minimum of Prob-
lem (2.3). That is, u⋆(θ) is an isolated (local) minimizer of (2.3) with

associated (unique) Lagrange multipliers µ⋆(θ), ζ
L⋆

(θ), ζ
U⋆

(θ). More-
over, the set of active constraints remains identical, the Lagrange mul-
tipliers are such that µ⋆

i (θ) > 0, ζL
i

⋆
(θ) > 0 and ζU

i
⋆
(θ) > 0 for the

active constraints, and the active constraints are linearly independent
at u⋆(θ).

Proof. See, e.g., [30, Theorem 3.2.2]. ✷

The derivatives of the vector functions u⋆(θ), µ⋆(θ), ζL⋆
(θ) and

ζU⋆
(θ) at θ◦ are obtained by differentiating the first-order neces-

sary conditions (2.6) and (2.8), which are to be satisfied for each
θ ∈ Bη(θ◦):











∂u⋆

∂θ
(θ◦)

∂µ⋆

∂θ
(θ◦)

∂ζU⋆

∂θ
(θ◦)

∂ζL⋆

∂θ
(θ◦)











= −M(θ◦)
−1 N(θ◦). (2.15)

The matrix M(θ◦) ∈ IR(ng+3nu)×(ng+3nu) stands for the Jacobian of
(2.6, 2.8) with respect to (u,µ, ζU, ζL) at θ◦,

M(θ) :=





















∂2L
∂u2

∂G1

∂u

T · · · ∂Gng

∂u

T

Inu
−Inu

µ1
∂G1

∂u
G1

...
. . .

µng

∂Gng

∂u
Gng

diag(ζU) diag(u− uU)

− diag(ζL) diag(uL − u)





















(2.16)

this is the so-called KKT matrix, the inverse of which is guaranteed
to exist under the assumptions of Theorem 2.3. The matrix N(θ) ∈
IR(ng+3nu)×nθ stands for the Jacobian of (2.6, 2.8) with respect to θ at
θ◦,
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N(θ) :=

















∂2L
∂u∂θ

µ1
∂G1

∂θ
...

µng

∂Gng

∂θ

02nu×nθ

















. (2.17)

2.2 Williams-Otto Reactor Problem

The reactor in the Williams-Otto plant [85], as modified by Roberts
[72], will be used to illustrate the difficulties faced in RTO when the
process model is subject to structural mismatch, and it will serve as
a motivating example for the approaches studied in this thesis. Note
that this reactor example has been used to illustrate model adequacy
and RTO performance in numerous studies [34, 35, 89, 97].

2.2.1 Description and Model Equations

FA; XA,in = 1 FB ; XB,in = 1

TR

W

F = FA + FB

XA, XB, XC , XE , XG, XP

Fig. 2.1. Williams-Otto Reactor.

The reactor is illustrated in Figure 2.1. It consists of an ideal CSTR
in which the following reactions occur:
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A+B −→ C k̄1 = 1.6599× 106e−6666.7/(TR+273.15)

B + C −→ P + E k̄2 = 7.2117× 108e−8333.3/(TR+273.15)

C + P −→ G k̄3 = 2.6745× 1012e−11111/(TR+273.15)

(2.18)

where the reactants A and B are fed with the mass flow rates FA

and FB, respectively. The desired products are P and E. C is an
intermediate product and G is an undesired product. The product
stream has the mass flow rate F = FA + FB. Operation is isothermal
at the temperature TR. The reactor mass holdup is W = 2105 kg.

Simulated reality: Plant equations

The steady-state model for the simulated reality results from the ma-
terial balance equations:

0 = FA − (FA + FB)X̄A −Wr̄1

0 = FB − (FA + FB)X̄B −
MB

MA
Wr̄1 −Wr̄2

0 = −(FA + FB)X̄C +
MC

MA
Wr̄1 −

MC

MB
Wr̄2 −Wr̄3

0 = −(FA + FB)X̄P +
MP

MB
Wr̄2 −

MP

MC
Wr̄3

0 = −(FA + FB)X̄G +
MG

MC
Wr3

X̄E =
ME

MP
X̄P +

ME

MG
X̄G

with,

r̄1 = k̄1X̄AX̄B, r̄2 = k̄2X̄BX̄C , r̄3 = k̄3X̄CX̄P

The variables are: X̄i: mass fraction of species i, Mi: molecular weight
of species i. W : mass holdup. kj : kinetic coefficient of reaction j given
in (2.18).

In this example, the reaction scheme (2.18) corresponds to the simu-
lated reality. However, since it is assumed that the reaction scheme is
not well understood, the following two reactions have been proposed
to model the system [35]:

A+ 2B −→ P + E k1 = η1e
−ν1/(TR+273.15)

A+B + P −→ G k2 = η2e
−ν2/(TR+273.15) (2.19)
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Two-reaction model: Model equations

The steady-state model for the two-reaction approximation results
from the material balance equations:

0 = FA − (FA + FB)XA −Wr1 −Wr2

0 = FB − (FA + FB)XB −
MB

MA
2Wr1 −

MB

MA
Wr2

0 = −(FA + FB)XP +
MP

MA
Wr1 −

MP

MA
Wr2

0 = −(FA + FB)XE +
ME

MA
Wr1

XG =
MG

ME
XE +

MG

MP
XP

with,

r1 = k1XAX
2
B, r2 = k2XAXBXP .

The kinetic coefficients k1 and k2 are given in (2.19).

By assuming MA = MB = MP , all the molecular weight ratios that
appear in the model equations are defined from the stoichiometry of
the reactions.

Process Measurements

Forbes and Marlin [34] considered the process measurements yp =

(F̄B T̄R X̄A X̄B X̄C X̄E X̄G X̄P F̄ )T. However, since in this work
measurement noise on the decision variables is not considered (the
decision variables are assumed to be either setpoint values or known
manipulated variables), the flow rates and reactor temperature are
not considered as measurements. Also, the mass fraction of C is not
included in the measurements since the presence of C is not assumed
to be known, and it is not predicted by the model. Therefore, the
measurement vector is chosen as yp = (X̄A X̄B X̄E X̄G X̄P )T.

Nominal model parameters

The four adjustable parameters θ = (η1 ν1 η2 ν2)
T are not identifiable

from the process measurements yp. Two possible adjustable parame-
ter sets where considered in [34]: in the first case, only the frequency
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factors are updated (θ1 = (η1 η2)
T), while in the second case, only the

activation energies are updated (θ2 = (ν1 ν2)
T). Both sets are identifi-

able from the process measurements. Here, the first set θ1 = (η1 η2)
T

is chosen. Typically, the fixed parameter values will be determined
from detailed plant studies and/or engineering principles. In [34], the
fixed parameters ν1 and ν2 were chosen such that the closed-loop RTO
system converged to the same manipulated variable values for each
adjustable set. In this work, the nominal values for the activation en-
ergies are the same as in [34], i.e., ν1 = 8077.6 K, and ν2 = 12438.5
K.

2.2.2 Optimization Problem

The objective is to maximize the operating profit, which is expressed
as the cost difference between the product and reactant flowrates:

J(u,yp) = 1143.38X̄PF + 25.92X̄EF − 76.23FA − 114.34FB, (2.20)

which is equivalent to minimizing φ(u,yp) = −J(u,yp). The flowrate
of reactant A (FA) is fixed at 1.8275 kg/s. The flowrate of reactant
B (FB) and the reactor temperature (TR) are the decision variables,
thus u = (FB , TR)T.

Plant optimum

The optimal solution for the plant (simulated reality) is presented in
Table 2.1. The mass fractions obtained at the optimal solution are
given in Table 2.2. The profit surface is strictly convex for the operating
range considered, and is presented in Figure 2.2. The profit contours
are given in Figure 2.3.

Table 2.1. Plant optimum

F ⋆
B [kg/s] T ⋆

R [◦C] φ⋆
real [$/s]

4.787 89.70 190.98
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Table 2.2. Plant mass fractions at the optimum

X̄⋆
A X̄⋆

B X̄⋆
C X̄⋆

E X̄⋆
G X̄⋆

P

0.08746 0.38962 0.015306 0.10945 0.10754 0.29061

2.3 Classical Two-Step Approach to RTO

2.3.1 Principles

The classical two-step approach implies an iteration between parame-
ter estimation and optimization [20, 46, 63]. The idea is to estimate re-
peatedly the model parameters θ of the nonlinear steady-state model,
and to use the updated model in the model optimization to generate
new inputs. This way, the model is expected to represent the plant at
its current operating point more accurately. The parameter estimation
and optimization problems at the RTO iteration k are given next:

Parameter Estimation Step

θ⋆
k ∈ argmin

θ
J id (2.21)

with J id := [yp(uk)− y(uk,θ)]TR[yp(uk)− y(uk,θ)],
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Optimization Step

u⋆
k+1 ∈ argmin

u
Φ(u,θ⋆

k) := φ
(

u,y(u,θ⋆
k)
)

(2.22)

s.t. G(u,θ⋆
k) := g

(

u,y(u,θ⋆
k)
)

≤ 0

uL ≤ u ≤ uU,

Input Update

uk+1 := (I− K)uk + Ku⋆
k+1 (2.23)

k := k + 1

In the parameter estimation problem (2.21), uk are the inputs ap-
plied to the plant at the RTO iteration k and yp(uk) are the plant
measurements obtained at steady state. The solution to the parame-
ter estimation problem are the parameters θ⋆

k that are used to update
the model in the next optimization problem. Given the solution to the
optimization problem, u⋆

k, the first-order exponential filter (2.23) is
typically employed, for which K ∈ IRnu×nu is a diagonal gain matrix
with diagonal elements in the interval (0, 1].

The local stability of the two-step RTO system at the plant opti-
mum is discussed in [34]. The RTO system of Figure 2.4 is stable at
the plant optimum u⋆

p for small perturbations in the inputs u if:

∥

∥

∥

∥

du⋆

dθ

∣

∣

∣

∣

θ̄

dθ

dyp

∣

∣

∣

∣

yp(u⋆
p)

dyp

du

∣

∣

∣

∣

u⋆
p

∥

∥

∥

∥

< 1 (2.24)

The first term in the product on the left-hand side of the inequality in
condition (2.24) is the parametric sensitivity of the model-based opti-
mization problem. The second term is the sensitivity of the adjustable
parameters to changes in the measurements. The third term is the sen-
sitivity of the process measurements (output variables) with respect to
the inputs [34].

2.3.2 Model-Adequacy Criterion

The problem of model selection for closed-loop, real-time, model-based
optimization is discussed in [34, 35]. A process model is said to be
adequate for use in an RTO scheme if it is capable of producing a fixed
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Model Parameter
Update (2.21)

✲

✛

θ̄

yp(u
⋆
p)

Static
Plant

Model-based
Optimizer (2.22)

✲u⋆
p

Fig. 2.4. The solution of Problem (2.1) u⋆
p seen as a fixed point of the two-

step iterative RTO problem with the model update (2.21) and the model-
based optimizer (2.22).

point for that RTO scheme at the plant optimum u⋆
p corresponding to

the solution of Problem (2.1).
In other words, for the combined update/optimization system to

be capable of predicting the optimal plant input variables from the
process measurements, there must exist adjustable parameter values θ̄

for which the real-time optimizer generates the plant optimum values
u⋆

p, while being the result of the model updating algorithm [34]. If such
parameter values exist, the plant optimum u⋆

p is a fixed point (station-
ary point) for the two-step model-based RTO scheme (see Figure 2.4).
Note that the parameter values θ̄ may not represent the true values
of model parameters, especially in the case of structural plant-model
mismatch for which the concept of ‘true values’ is not relevant. For
the case where model update is performed by solving the parameter
estimation problem (2.21), the following model adequacy criterion has
been proposed [34].

Criterion 2.1 (Model Adequacy for the Classical Two-Step
RTO Scheme) Let u⋆

p be the unique plant optimum and assume that

there exists (at least) one set of values θ̄ for the model parameters such
that:
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Gi(u
⋆
p, θ̄) = 0, i ∈ A(u⋆

p) (2.25)

Gi(u
⋆
p, θ̄) < 0, i /∈ A(u⋆

p) (2.26)

∇rΦ(u⋆
p, θ̄) = 0 (2.27)

∇2
rΦ(u⋆

p, θ̄) ≻ 0 (positive definite) (2.28)

∂J id

∂θ

(

yp(u
⋆
p),y(u⋆

p, θ̄)
)

= 0 (2.29)

∂2J id

∂θ2

(

yp(u
⋆
p),y(u⋆

p, θ̄)
)

≻ 0 (positive definite), (2.30)

where ∇rΦ and ∇2
rΦ are the reduced gradient and reduced Hessian

of the cost function, respectively (see Subsection 2.1.4); and J id stands
for the performance index in the (unconstrained) parameter estimation
problem. Then, the process model is adequate for use in the two-step
RTO scheme given by (2.21) and (2.22).

Notice that both the active inequality constraints and the active
input bounds are taken into account in the definition of the reduced
gradient and the reduced Hessian of the cost function, given by equa-
tions (2.13) and (2.14), respectively.

Conditions (2.25)–(2.28) represent sufficient conditions for u⋆
p to

be a strict local minimum of (2.22) with the parameters chosen as θ̄,
whereas Conditions (2.29)–(2.30) are sufficient for θ̄ to be a strict local
minimum of the estimation problem at u⋆

p. Hence, if all these condi-
tions hold, the plant optimum u⋆

p corresponds to a (local) model opti-

mum for θ = θ̄, and Conditions (2.25)–(2.30) are sufficient for model
adequacy. However, these conditions are not necessary for model ad-
equacy. It may indeed be that u⋆

p corresponds to the model optimum

(for θ = θ̄) – i.e., the model is adequate –, but Conditions (2.25)–
(2.30) are not met. One such situation is when the reduced Hessian is
only semi-definite positive, for which (2.28) does not hold.

Noting that the equalities (2.29) alone yield nθ conditions, it becomes
clear that the full set of adequacy conditions (2.25)–(2.30) is over-
specified. In other words, these model adequacy conditions are often
not satisfied in the presence of plant-model mismatch.

Also, since u⋆
p is not known, the criterion cannot be used to select

between candidate models and to select among all the model parame-
ters which ones to adjust.
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Example 2.1 Consider the plant yp = Φp = (u − 1)2. It is easy to
verify that the model y = Φ = 2(u−θ)2 satisfies the adequacy conditions
although it is structurally incorrect (see Definition 2.1). However, the
model y = Φ = θ + u2, which is also structurally incorrect, does not
satisfy the adequacy conditions.

2.3.3 Numerical Illustration

Classical Two-Step Approach to RTO

The classical two-step approach is applied (without measurement
noise) to the Williams-Otto reactor example described in Section 2.2.
The trajectory of the RTO iterates obtained without filtering (K =
I) when starting from three different initial operating points are
shown in Figure 2.5. In all cases, the algorithm converges to the
point u∞ = (4.805, 84.0)T which is different from the true opti-
mum u⋆

p = (4.787, 89.7)T. For the initial points corresponding to

u0 = (3.000, 70.0)T and u0 = u⋆
p, the evolution of the input variables

with the RTO period is given in Figure 2.6. The evolution of the esti-
mated model parameters is given in Figure 2.7 and that of the plant
profit in Figure 2.8. At the stationary point reached upon convergence,
the sum of squared error is J id = 9× 10−5 with R = I5.

This example serves to illustrate the well-known fact that, in the
presence of structural plant-model mismatch, the classical two-step
approach of repeated parameter estimation and optimization, if con-
vergent, may not improve plant operation. The correct plant optimum
will not be achieved unless, in addition to matching model outputs
with corresponding real process outputs, the derivatives of the con-
straints and the cost function with respect to the inputs also match at
the final converged point [8, 27, 28, 74].

Model Adequacy

Since there are no active constraints at the plant optimum, the re-
duced gradient of the cost function corresponds to the full gradient. In
order to search for adequate parameter values for θ = [η1 η2]

T, i.e. pa-
rameter values capable of computing the plant optimum, the following
parameter estimation problem is studied at the plant optimum:
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min
θ

Jadeq :=
∂Φ

∂u
(u⋆

p,θ)
∂Φ

∂u

T

(u⋆
p,θ) (2.31)

s.t. Model equations

Two local minima are found for Problem (2.31), which are indicated by
the letters a and b in Figure 2.11. These two local minima satisfy the
optimality conditions (2.27) and (2.28), since Jadeq in Problem (2.31)
vanishes at both points.

Table 2.3 presents the parameter values a and b as well as the solu-
tion [F ⋆

B T ⋆
R] to the model-based optimization problem. For both a and

b, the solution corresponds to the true plant optimum. Table 2.4 gives
the mass fractions for the plant and the two-reaction model evaluated
at the plant optimum for the parameter values a and b.

Table 2.3. Adequate parameters and corresponding optimal solution.

η1 η2 Jadeq F ⋆
B T ⋆

R φ̄⋆

a 1.0728×108 1.4155×1013 2.78×10−13 4.787 89.70 190.98
b 1.1965×1010 3.5752×1013 5.66×10−11 4.787 89.70 190.98
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Table 2.4. Mass fractions for the plant and the model evaluated at the
plant optimum for the parameter values a and b.

X⋆
A X⋆

B X⋆
E X⋆

G X⋆
P J id

Plant 0.08746 0.38962 0.10945 0.10754 0.29061
a 0.10857 0.41735 0.10967 0.27736 0.08702 0.06257
b 0.00847 0.19433 0.25541 0.52321 0.01859 0.22472

The sum of squared error of the mass fractions J id = (yp−y)T(yp−
y) is also given in Table 2.4. Notice that the parameter values corre-
sponding to both a and b yield the true plant optimum by numerical
optimization based on the model. However, at the plant optimum, the
adjustable parameter values corresponding to a predict more closely
the plant outputs (mass fractions) than those corresponding to b.
Therefore, it appears that solution a is physically more meaningful
than solution b. However, neither a nor b is generated by the param-
eter estimation problem, that is, Condition (2.29) is not satisfied for
these points, and therefore the two-reaction model is not adequate for
use in the two-step RTO scheme given by (2.21) and (2.22).

2.4 ISOPE and Extensions

In response to the deficiencies of the classical two-step approach, a
modified two-step approach known as Integrated System Optimiza-
tion and Parameter Estimation (ISOPE) was proposed by Roberts
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and co-workers in the late 70’s [72, 74]. Since then, several extensions
and variants of ISOPE have been proposed [13, 48, 73]. ISOPE algo-
rithms include a parameter estimation problem and a modified opti-
mization problem, which incorporates plant gradient information into
a gradient-modification term that is added to the cost function. This
modification term is derived from the first-order NCO (see Subsec-
tion 2.1.2) in such a way that, upon convergence, the iterates reach a
KKT point for the plant.

2.4.1 ISOPE

In the ISOPE literature, an important distinction is made between
optimization problems with and without inequality constraints that
depend on the output y, i.e., process-dependent constraints of the form
g(u,y) ≤ 0 [13, 73]. For instance, the original ISOPE formulation,
which does not consider the constraints, modifies only the gradient of
the cost function [72, 74]. Optimality and convergence analysis for the
original ISOPE algorithm have been studied [11]. ISOPE has later been
extended to include process-dependent constraints [10, 94]. However,
instead of including additional modifiers for the constraint functions as
recently proposed by Gao and Engell [37], a Lagrangian modifier was
introduced in the cost function. Also, to the author’s best knowledge,
no convergence analysis has been provided for the extended algorithm
to date.

The original ISOPE algorithm, which does not consider process-
dependent constraints in the optimization problem, reads:

u⋆
k+1 ∈ arg min

u
φ(u,y(u,θk)) + λT

ku (2.32)

s.t. uL ≤ u ≤ uU.

At the kth RTO iteration with the input uk, a parameter estima-
tion problem is solved yielding the updated parameter values θk. This
problem is solved under the additional constraint

y(uk,θk) = yp(uk). (2.33)

Then, assuming that the plant gradient
∂yp

∂u
(uk) is available, the

ISOPE modifier λk is calculated as:

λT

k :=
∂φ

∂y

(

uk,y(uk,θk)
)

[

∂yp

∂u
(uk)− ∂y

∂u
(uk,θk)

]

. (2.34)
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The output-matching requirement (2.33) represents a model-qualifi-
cation condition that is found throughout the ISOPE literature [11,
13, 74, 94]. The new operating point is determined by filtering the
inputs using a first-order exponential filter, similar to (2.23).

2.4.2 ISOPE with Model Shift

More recently, it has been found that the condition (2.33) can be sat-
isfied without updating the model parameters θ [82]. This variant in-
troduces the model shift term ak := yp(uk)−y(uk,θ) in the modified
optimization problem, so that (2.32) becomes:

u⋆
k+1 ∈ argmin

u
φ(u,y(u,θ) + ak) + λT

ku (2.35)

s.t. uL ≤ u ≤ uU,

with

λT

k :=
∂φ

∂y
(uk,yk + ak)

[

∂yp

∂u
(uk)− ∂y

∂u
(uk,θk)

]

. (2.36)

Note that the name ISOPE becomes inappropriate for this variant,
since it eliminates the need for estimating the model parameters.

2.4.3 ISOPE with FFD Approach

Perhaps the major difficulty with the ISOPE approach lies in the fact
that the gradients of the plant outputs with respect to the input vari-

ables, also called experimental gradients
∂yp

∂u
, must be available. A brief

discussion on the methods for estimating the experimental gradients
from plant measurements was given in Subsection 1.2.6.

A straightforward approach consists in perturbing each input indi-
vidually around the current operating point to get an estimate of the
corresponding gradient element. This is the case, e.g., when forward
finite differencing (FFD) is applied at each RTO iteration. In the FFD

approach, an estimator of the partial derivative
∂yp

∂uj
(uk), j = 1, . . . , nu,

at the RTO iteration k, is obtained as

β̂j(h) = [yp(uk + hej)− yp(uk)] /h, h > 0, (2.37)

where h is the step size and ej is the jth unit vector.
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This approach requires nu perturbations to be carried out at each
RTO iteration, and for each perturbation a new steady-state must be
attained. If during the gradient evaluation, an important exogenous
perturbation or a change in operating conditions takes place, the gra-
dients estimated by this approach may become meaningless.

2.4.4 Dual ISOPE

The idea behind dual ISOPE is to estimate the gradients based on the
current and past operating points instead of perturbing each input in-
dividually at each iteration [12, 13]. This way, the total number of input
changes required by the algorithm is expected to be less. The key issue
is the ability to estimate experimental gradients reliably while updat-
ing the operating point. The input perturbations required in order to
estimate the gradients might be suboptimal, and even infeasible in the
presence of constraints. Indeed, there are two conflicting objectives:
the “primal objective” consists in solving the optimization problem,
while the “dual objective” aims at estimating accurate experimental
gradients. These conflicting tasks can be accommodated by adding a
constraint in the optimization problem so as to ensure sufficient in-
formation in the measurements and guarantee gradient accuracy. In
[12, 13], a constraint that prevents ill-conditioning in gradient compu-
tation has been proposed.

Given the current operating point, uk, the nu past operating points,
uk−1, . . . , uk−nu

, and the corresponding measured plant output values,

yp(uk),yp(uk−1), . . . ,yp(uk−nu
), an estimate of the gradient

∂yp

∂u
(uk)

can be obtained as follows [13]:

β̂k := Y(uk) U−1(uk) (2.38)

with

U(uk) := [uk − uk−1 . . . uk − uk−nu ] ∈ IRnu×nu (2.39)

Y(uk) := [yp(uk)− yp(uk−1) . . . yp(uk)− yp(uk−nu
) ] ∈ IRny×nu

(2.40)

Estimating the gradient from (2.38) requires the matrix U(uk) to be
non-singular. Furthermore, since the measurements yp are corrupted
by measurement noise, it has been proposed in [12] to ensure that
matrix U(uk) is well-conditioned. In dual ISOPE algorithms, good
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conditioning is achieved by introducing a lower bound on the inverse
condition number of U(uk):

κ−1(uk,uk−1, . . . ,uk−nu
) :=

σmin(U(uk))

σmax(U(uk))
≥ ϕ, (2.41)

where κ(uk,uk−1, . . . ,uk−nu
) is the condition number of U(uk).

The dual ISOPE algorithm can be summarized as follows [13]:

1. Select an initial point u0 and nu additional points u−nu
,u−nu+2,

. . . ,u−1 such that the matrix U(u0) is sufficiently well conditioned.
Initialize the parameters of the algorithm, i.e. K, ϕ and the param-
eter ǫ corresponding to the termination criterion ‖uk+1−uk‖ ≤ ǫ.
Apply the points u−nu

,u−nu+2, . . . ,u−1 to the plant and mea-
sure the plant outputs yp(uj),yp(u−nu+2), . . . , yp(u−1) at steady-
state. Set k = 0.

2. Apply uk to the plant and measure yp(uk) at steady-state oper-

ation. Obtain an estimate of the plant gradient β̂k according to
(2.38).

3. Update the model parameters θk by solving a parameter estima-
tion problem with the constraint of matching the plant and model
outputs at uk (see output-matching requirement (2.33)).

4. Compute the ISOPE modifier λk as:

λT

k :=
∂φ

∂y

(

uk,y(uk,θk)
)

[

β̂k −
∂y

∂u
(uk,θk)

]

, (2.42)

and solve the following modified optimization problem including
the conditioning constraint:

u⋆
k+1 ∈ argmin

u
φ(u,y(u,θk)) + λT

ku (2.43)

s.t. κ−1(ū,uk, . . . ,uk−nu+1) ≥ ϕ,
ū = (I− K)uk + Ku,

uL ≤ u ≤ uU,

5. Set uk+1 := (I − K)uk + Ku⋆
k+1. If ‖uk+1 − uk‖ ≤ ǫ, terminate.

Else, set k := k + 1 and return to Step 2.

Notice that in (2.43) ū corresponds to the filtered value of the
input.
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Example 2.2 Consider a two-dimensional optimization problem (nu

= 2). The left-side plot of Figure 2.12 uses the past operating points
uk = [0 − 0.5]T and uk−1 = [0 0.5]T, while the right-side plot uses
the past operating points uk = [0 − 0.1]T and uk−1 = [0 0.1]T. The
conditioning constraint κ−1(u,uk,uk−1) can be evaluated in terms of
the location of the new operating point u = [u1 u2]

T. The contour levels
corresponding to values of κ−1 of 0.1, 0.2, 0.3 and 0.4 are represented.
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Fig. 2.12. Contour maps for the conditioning constraint (2.41) for two cases
of previous points (more distant on the left and closer on the right).

The conditioning set D(u,uk,uk−1) is defined as:

D(u,uk,uk−1) :=
{

u ∈ IRnu :
σmin(U(u))

σmax(U(u))
≥ ϕ

}

,

The geometric characterisation of the set D has been analyzed in [13,
81] for the two-dimensional case. It consists of two discs of the same
radius r, located symmetrically with respect to the line defined by the
points uk and uk−1. The discs are centered at a distance hd from the
centroid of the points uk and uk−1, in a direction orthogonal to the
line defined by uk and uk−1, with

r =
1− ϕ2

4ϕ
‖uk − uk−1‖

hd =
1 + ϕ2

4ϕ
‖uk − uk−1‖

Finally, not mentioned in [13, 81] but of the greatest importance is
the scaling of the input variables, since the conditioning set D will
completely depend on this scaling.
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Real-Time Optimization via Constraint

Adaptation

In the presence of uncertainty, the constraints predicted by the model
do not quite match the actual constraints of the plant. This chapter in-
vestigates a so-called constraint-adaptation algorithm, which uses mea-
surements for adapting the process constraints while relying on a fixed
process model for satisfying the remaining parts of the NCO. The idea
behind constraint adaptation is to use measurements of the constraints
for modifying the constraints in the optimization problem between suc-
cessive RTO periods so as to track the actual constraint values. This
way, constraint adaptation guarantees that a feasible, yet suboptimal,
operating point is attained upon convergence. Suboptimality will de-
pend on how well the process model predicts the gradient of the cost
function and of the active constraints. In addition to the constraint
modifiers used in constraint adaptation, the full modifier-adaptation
scheme studied in Chapter 4 also makes use of modifiers for the cost
and constraint gradients in order to enforce optimality. Despite being a
subproblem of modifier-adaptation, constraint adaptation deserves to
be studied on its own because of its simplicity, as it does not require
that the gradient of the cost and constraint functions be estimated
experimentally, and also because it can provide a satisfactory solution
for a large number of optimization problems for which most of the
optimization potential lies in keeping the correct set of constraints ac-
tive. Although constraint adaptation converges to a feasible operating
point, the constraints can be violated during steady-state operation at
the operating points produced by the algorithm prior to convergence,
or during the dynamic response between successive steady-state oper-
ating points. A convenient way to avoid these infeasibilities is by means
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of model predictive control (MPC) tailored to control the constraints.
Section 3.3 presents an approach for integrating constraint adaptation
with MPC. The applicability and suitability of constraint adaptation is
demonstrated through the case study of a solid-oxide fuel cell (SOFC)
system in Subsection 3.3.3.

3.1 Variational Analysis of NCO in the Presence of

Parametric Uncertainty

Satisfying the NCO is necessary for process operation to be feasible and
achieve optimal performance. More precisely, failure to meet any of the
primal feasibility conditions (2.5) leads to infeasible operation, whereas
violating the complementarity and dual feasibility conditions (2.6-2.8)
results in suboptimal operation. That is, a very desirable property for a
RTO scheme is that the iterates converge to a point at which the NCO
of the real process are satisfied. Regarding fixed-model RTO methods,
the algorithm described in [37], provided it converges, can be shown to
attain such points. However, for RTO schemes to satisfy certain NCO,
it is necessary that the gradients of the cost and constraint functions
be available, which in turn requires that these gradients be estimated
experimentally from the available measurements.

In this section, we conduct a variational analysis of the NCO in the
presence of uncertainty. The underlying idea is to quantify how devia-
tions of the parameters θ from their nominal values θ◦ affect the NCO
and, through them, the performance of the process. Said differently,
the objective is to determine which parts of the NCO influence the pro-
cess performance the most, and which parts can be dropped without
much impact in terms of performance. For simplicity, and without loss
of generality, the bound constraints uL ≤ u ≤ uU shall be dropped, and
only the general inequality constraints G(u,θ) ≤ 0 shall be considered
for this analysis.1

In this section, a minimizing solution of Problem (2.3) will be de-
noted by u⋆

θ when we need to emphasize the dependency on θ. Also,
we shall assume, without loss of generality, that all the constraints
G(·,θ◦) are active at u⋆

θ◦

, since an inactive constraint at u⋆
θ◦

can al-
ways be removed from Problem (2.3). The number of active constraints

1 Alternatively, just replace G(u, θ) ≤ 0 by the general constraints
z(u, θ) ≤ 0 defined in (2.10).
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at an optimal solution point being less than the number of input vari-
ables, there exist directions in the input space along which taking an
infinitesimal step from an optimal solution point does not modify the
active constraints. A characterization of these directions is given in the
next definition.

Definition 3.1 (Constraint-Seeking and Sensitivity-Seeking
Directions) If the assumptions of Theorem 2.3 are met, the Jacobian
matrix ∂G

∂u
is full rank at (u⋆

θ◦

,θ◦). Singular value decomposition of
∂G
∂u

gives
∂G
∂u

(u⋆
θ◦

,θ◦) := U Σ VT,

where Σ is a (ng × nu) matrix of the form

Σ =







σ1 0 · · · 0
. . .

...
. . .

...
σng

0 · · · 0






:=

[

Σc 0
]

;

U is an (ng × ng) orthonormal matrix; and V := [Vc Vs ] is an
(nu × nu) orthonormal matrix. The ng columns of Vc define the
constraint-seeking directions, while the (nu − ng) columns of Vs de-
fine the sensitivity-seeking directions.

Clearly, infinitesimal moves along a constraint-seeking direction
away from an optimal solution point modify the active constraint val-
ues, whereas infinitesimal moves along a sensitivity-seeking direction
leave the active constraints unchanged. The subsequent theorem quan-
tifies the variation of the optimal inputs, in both the constraint- and
sensitivity-seeking directions, which is induced by a deviation of the
model parameters from their nominal values.

Theorem 3.1 (Input Variations in the Constraint-Seeking and
Sensitivity-Seeking Directions) Let the assumptions in
Theorem 2.3 be met and η be chosen such that Theorem 2.3 applies.
Let δu⋆ := u⋆

θ−u⋆
θ◦

denote the variation of the optimal inputs induced
by the variation δθ := θ− θ◦, with θ ∈ Bη(θ◦), and consider the vari-
ations δuc and δus of the optimal inputs in the constraint-seeking and
sensitivity-seeking directions, respectively,

[

δuc

δus

]

:=
[

Vc Vs
]T
δu⋆.
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Then, the first-order approximations of δuc and δus are given by:

δuc =−
(

∂G
∂u

Vc
)−1 ∂G

∂θ
δθ + o(‖δθ‖) (3.1)

δus =−
(

VsT ∂2L
∂u2 Vs

)−1

VsT

[

∂2L
∂θ∂u

− ∂2L
∂u2 Vc

(

∂G
∂u

Vc
)−1 ∂G

∂θ

]

δθ

+ o(‖δθ‖), (3.2)

where ∂2L
∂u2 , ∂2L

∂θ∂u
, ∂G

∂u
and ∂G

∂θ
are calculated at the nominal solution

point θ = θ◦.

Proof. By Theorem 2.3, there exist continuously differentiable vec-
tor functions u⋆

θ and µ⋆
θ satisfying the second-order sufficient condi-

tions for a local minimum of Problem (2.3) for each θ ∈ Bη(θ◦). The
active constraints being linearly independent, and all the inequality
constraints being assumed active with strictly positive Lagrange mul-
tipliers, we have

G(u⋆
θ,θ) = 0 (3.3)

∂L
∂u

(u⋆
θ,µ

⋆
θ,θ) = ∂Φ

∂u
(u⋆

θ,θ) + µ⋆
θ

T ∂G
∂u

(u⋆
θ,θ) = 0, (3.4)

for each θ ∈ Bη(θ◦).
The primal feasibility condition (3.3) gives

0 = G(u⋆
θ,θ)−G(u⋆

θ◦

,θ◦)

= ∂G
∂θ

(u⋆
θ◦

,θ◦) δθ + ∂G
∂u

(u⋆
θ◦

,θ◦) δu⋆ + o(‖δθ‖)
= ∂G

∂θ
(u⋆

θ◦

,θ◦) δθ + ∂G
∂u

(u⋆
θ◦

,θ◦) Vc δuc + ∂G
∂u

(u⋆
θ◦

,θ◦) Vs δus

+ o(‖δθ‖).

Then, (3.1) follows by noting that ∂G
∂u

Vs = 0 and ∂G
∂u

Vc = UΣc is
nonsingular at θ = θ◦, provided that u⋆

θ◦

is a regular point for the
active constraints.

On the other hand, the dual feasibility condition (3.4), taken along
the sensitivity-seeking directions, gives

0 = VsT
[

∂L
∂u

(u⋆
θ,µ

⋆
θ,θ)− ∂L

∂u
(u⋆

θ◦

,µ⋆
θ◦

,θ◦)
]T

= VsT

[

∂2L
∂θ∂u

(u⋆
θ◦

,µ⋆
θ◦

,θ◦) δθ + ∂2L
∂u2 (u⋆

θ◦

,µ⋆
θ◦

,θ◦) δu⋆

+ ∂2L
∂µ∂u

(u⋆
θ◦

,µ⋆
θ◦

,θ◦) δµ⋆
]

+ o(‖δθ‖),
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where δµ⋆ := µ⋆
θ − µ⋆

θ◦

. Since VsT ∂2L
∂µ∂u

= [∂G
∂u

Vs]T = 0, at θ = θ◦,

we obtain2

0 = VsT

[

∂2L
∂θ∂u

δθ + ∂2L
∂u2 Vc δuc + ∂2L

∂u2 Vs δus
]

+ o(‖δθ‖), (3.5)

and from (3.1),

0 = VsT

[

∂2L
∂θ∂u

− ∂2L
∂u2 Vc

(

∂G
∂u

Vc
)−1 ∂G

∂θ

]

δθ +
(

VsT ∂2L
∂u2 Vs

)

δus

+ o(‖δθ‖).

Finally, (3.2) follows by noting that V sT ∂2L
∂u2 Vs is nonsingular at

θ = θ◦, provided that the second-order sufficient conditions for a local
minimum of Problem (2.3) for θ◦ hold at u⋆

θ◦

. ✷

In the presence of uncertainty, i.e., when the model parameters
θ deviate from their nominal values θ◦, failure to adapt the pro-
cess inputs results in the cost value Φ(u⋆

θ◦

,θ). To combat uncertainty,
adaptation of the process inputs can be made both in the constraint-
and the sensitivity-seeking directions. The cost value corresponding
to perfect input adaptation in the constraint-seeking directions is
Φ(u⋆

θ◦

+Vcδuc,θ), whereas perfect input adaptation in the sensitivity-
seeking directions gives Φ(u⋆

θ◦

+Vsδus,θ). The cost variations δΦc and
δΦs obtained upon adaptation of the process inputs in the constraint-
and sensitivity-seeking directions, respectively, are thus given by

δΦc
θ := Φ(u⋆

θ◦

+ Vcδuc,θ)− Φ(u⋆
θ◦

,θ),

δΦs
θ := Φ(u⋆

θ◦

+ Vsδus,θ)− Φ(u⋆
θ◦

,θ).

Approximations of these variations are derived in the following theo-
rem, based on the first-order approximations of the directional input
variations established in Theorem 3.1.

Theorem 3.2 (Cost Variations in the Constraint-Seeking and
Sensitivity-Seeking Directions) Let the assumptions in
Theorem 2.3 hold and η be chosen such that Theorem 2.3 applies. Then,
the first- and second-order approximations of the cost variations δΦc

θ

and δΦs
θ, for θ ∈ Bη(θ◦), are given by

2 For the sake of conciseness, the arguments u⋆
θ◦

, µ⋆
θ◦

, θ◦ are dropped in
the remainder of the proof.
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δΦc
θ = µ⋆

θ◦

T ∂G
∂θ

δθ + o(‖δθ‖) (3.6)

δΦs
θ =

δθT

[

1
2

∂2L
∂u∂θ

Vs(VsT ∂2L
∂u2 Vs)−1(VsT ∂2Φ

∂u2 Vs)(VsT ∂2L
∂u2 Vs)−1VsT ∂2L

∂θ∂u

]

δθ

− δθT

[

∂2Φ
∂u∂θ

Vs(VsT ∂2L
∂u2 Vs)−1VsT ∂2L

∂θ∂u

]

δθ + o(‖δθ‖2), (3.7)

where ∂G
∂θ

, ∂2Φ
∂u2 , ∂2L

∂u2 , ∂2Φ
∂u∂θ

, and ∂2L
∂u∂θ

are calculated at the nominal
solution point θ = θ◦.

Proof. Consider the variation in cost function δΦθ := Φ(u⋆
θ,θ) −

Φ(u⋆
θ◦

,θ). Its approximation up to second-order reads

δΦθ = ∂Φ
∂u

(u⋆
θ◦

,θ◦) δu⋆ + δθT ∂2Φ
∂u∂θ

(u⋆
θ◦

,θ◦) δu⋆

+ 1
2δu

⋆T ∂2Φ
∂u2 (u⋆

θ◦

,θ◦) δu⋆ + o(‖δθ‖2),

where δθ := θ−θ◦ and δu⋆ := u⋆
θ−u⋆

θ◦

.3 Splitting the input variations
δu⋆ into constraint- and sensitivity-seeking directions, and noting that
∂Φ
∂u

Vs = 0 at θ = θ◦, we obtain

δΦθ = ∂Φ
∂u

Vcδuc + δθT ∂2Φ
∂u∂θ

Vcδuc + δθT ∂2Φ
∂u∂θ

Vsδus (3.8)

+ 1
2 δu

cTVcT ∂2Φ
∂u2 Vcδuc + 1

2δu
sTVsT ∂2Φ

∂u2 Vsδus

+ δucTVcT ∂2Φ
∂u2 Vsδus + o(‖δθ‖2).

On the one hand, the cost variation δΦc
θ is obtained by letting

δus = 0 in (3.8), and dropping the second-order terms,

δΦc
θ = ∂Φ

∂u
Vcδuc + o(‖δθ‖)

From (3.1), we then get

δΦc
θ = −

(

∂Φ
∂u

Vc
) (

∂G
∂u

Vc
)−1 ∂G

∂θ
δθ + o(‖δθ‖).

and (3.6) follows by noting that µ⋆
θ◦

T = −(∂Φ
∂u

Vc)(∂G
∂u

Vc)−1 (dual fea-
sibility condition along constraint-seeking directions).

On the other hand, the cost variation δΦs
θ is obtained by letting

δuc = 0 in (3.8),

3 For sake of conciseness, the arguments u⋆
θ◦

, θ◦ are dropped in the remain-
der of the proof.
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δΦs
θ = δθT ∂2Φ

∂u∂θ
Vsδus + 1

2δu
sTVsT ∂2Φ

∂u2 Vsδus + o(‖δθ‖2),

and (3.7) follows upon substitution of δus =

−(VsT ∂2L
∂u2 Vs)−1VsT ∂2L

∂θ∂u
δθ + o(‖δθ‖), as obtained from (3.5)

with δuc = 0. ✷

Overall, the variational analysis shows that failure to adapt the
process inputs in the constraint-seeking directions results in cost vari-
ations in the order of the error δθ; moreover, constraint violation can
occur if the constraint-seeking directions are not adapted. On the other
hand, failure to adapt the process inputs in the sensitivity-seeking di-
rections gives cost variations proportional to the squared error δθ2

only. From a practical perspective, and provided that model mismatch
remains moderate, more effort should therefore be placed on satisfying
the process constraints rather than the sensitivity part of the NCO.
Based on these considerations, an algorithm implementing constraints
adaptation is presented in the following section.

3.2 Constraint Adaptation

3.2.1 Principles of Constraint Adaptation

The adaptation of additive constraint modifiers corresponds to the
“classical” constraint-adaptation scheme [17, 33]. The constraints are
corrected by simply offsetting the constraint predictions as

G(u,θ) + ε ≤ 0, (3.9)

where ε ∈ IR
ng denotes the vector of the constraint correction factors

or modifiers.
The decision variables are updated in each RTO iteration by solving

an NLP problem similar to (2.3), which takes the constraint corrections
into account:

u⋆
k+1 ∈ argmin

u
Φ(u,θ) (3.10)

s.t. G(u,θ) + εk ≤ 0

uL ≤ u ≤ uU.

Next, the optimal solution point u⋆
k+1 is applied directly to the plant:
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min Φ(u, θ)
u

s.t. G(u, θ) + εk ≤ 0

uL ≤ u ≤ uU

uk+1

✛

✛

Nominal
model

Real
process

G(uk+1, θ)

❄✛
Gp(uk+1)❥

-
✛adapt.

✻εk+1

k ← k + 1

✻
εk

Fig. 3.1. Recursive adaptation of additive constraint modifiers.

uk+1 = u⋆
k+1

Then, assuming that measurements are available for every constrained
quantity at each RTO iteration, the constraint modifiers can be up-
dated recursively as

εk+1 = εk − B [G(uk+1,θ) + εk −Gp(uk+1)] , (3.11)

where B ∈ IRng×ng is a gain matrix. On the other hand, the model
parameters θ are kept constant at their nominal values.

Note that (3.11) can also be written as

εk+1 = (I− B)εk + B (Gp(uk+1)−G(uk+1,θ)) , (3.12)

which makes explicit the exponential filtering effect of B. In the special
case where B is a diagonal matrix with entries bi, i = 1, . . . , ng, the up-
date law can be seen as the filtered difference Gp,i(uk+1)−Gi(uk+1,θ)
between the predicted and measured values of each constraint. No
adaptation is performed for the ith constraint by setting bi = 0,
whereas no filtering is used for this constraint when bi = 1, i.e., the
full correction Gp,i(uk+1)−Gi(uk+1,θ) is applied.

The proposed constraint-adaptation algorithm is illustrated in Fig-
ure 3.1. Note that, unlike many other existing RTO schemes, the
present approach relies on constraint measurements only, and it does
not require that the gradient of the cost and constraint functions be
estimated. In return, of course, the constraint-adaptation algorithm
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may terminate at a suboptimal, yet feasible, point upon convergence.
The extent of this loss of optimality is determined by the quality of
the process model.

It may happen that some of the constraints are not measured during
process operation, especially in those applications having very many
constraints. In this case, observers that estimate the values of the un-
measured constrained quantities based on the available measurements
(e.g., measured outputs yp) can be used. To avoid potential conflicts
between the control and estimation tasks, however, great care must be
taken to ensure that the rate of convergence of these observers is ac-
tually much faster than the RTO execution period itself. Furthermore,
if the unmeasured constrained quantities cannot be estimated from
plant measurements, one should opt for a more conservative approach,
e.g., a robust optimization approach [96]. It is also possible to impose
permanent (conservative) constraint backoffs to the unmeasured con-
straints [54].

The computational complexity of the NLP problems in constraint
adaptation is similar to that of the classical two-step approach. Con-
straint adaptation is in fact less computationally demanding since it
does not require the solution of a parameter estimation problem at
each iteration.

3.2.2 Constraint-Adaptation Algorithm

We start the analysis with a number of definitions relative to the para-
metric programming problem (3.10) [6, 31]. The feasible solution map,
U(·), is defined as

U(ε) := {u ∈ [uL,uU] : G(u,θ) + ε ≤ 0},

such that, for each ε ∈ IRng , U(ε) is a subset of IRnu . A straightforward
property of feasible solution sets is

U(ε1) ⊂ U(ε2), if ε1 ≥ ε2.

Observe also that U(ε) may be empty for some values of ε, which
motivates the definition of the domain of U(·) as

domU := {ε ∈ IR
ng : U(ε) 6= ∅}.
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Clearly, ε2 ∈ domU for every ε2 ≤ ε1 provided that ε1 ∈ domU .

In turn, the optimal value function, Φ⋆(·), and the optimal solution
map, U⋆(·), are defined as

Φ⋆(ε) :=

{

inf{Φ(u,θ) : u ∈ U(ε)}, if ε ∈ domU
+∞, otherwise

U⋆(ε) :={u ∈ U(ε) : Φ(u,θ) = Φ⋆(ε)}.

The cost function Φ(·,θ) being continuous and the feasible region U(ε)
being bounded, it follows that the infimum Φ⋆(ε) is assumed some-
where on [uL,uU] for each ε ∈ domU , thus being a minimum (Weier-
strass’ theorem – see, e.g., [7], Theorem 2.3.1). Besides the existence
of a minimum point, we make the following uniqueness assumption
throughout.

Assumption 3.1 Let θ be given. For each ε ∈ domU , Problem (3.10)
has a unique (global) solution point.

This assumption implies that U⋆(ε) is a singleton, for each ε ∈
domU . That is, at any RTO iteration k, we have u⋆

k+1 = U⋆(εk),
if εk ∈ domU . Also, the map Γ : domU → IRng representing the
difference between the process constraints and the corrected values of
the predicted constraints for a given correction ε,

Γ(ε) := G(u,θ) + ε−Gp(u), u = U⋆(ε), (3.13)

is a point-to-point map.

Remark 3.1 In the more general case where Assumption 3.1 does
not hold, U⋆(ε) may not be a singleton for ε ∈ domU . That is, (4.15)
defines a point-to-set map [45], Γ : domU → 2IR

ng
.

Based on the foregoing definitions and Assumption 3.1, the (addi-
tive) constraint-adaptation algorithmM can be stated as

εk+1 =M(εk), (3.14)

where

M(ε) := ε− B Γ(ε), (3.15)

for any ε ∈ domU .
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3.2.3 Feasibility

An important property of the constraint-adaptation algorithm M is
that the iterates, upon convergence (in the absence of measurement
noise and process disturbances), are guaranteed to terminate at a fea-
sible point, under mild conditions. This is formalized in the following
theorem:

Theorem 3.3 (Feasibility upon Convergence) Let the gain ma-
trix B be nonsingular, and assume that the constraint-adaptation algo-
rithm M converges, with limk→∞ εk = ε∞. Then, u∞ = U⋆(ε∞) is a
feasible operating point.

Proof. Since B is nonsingular, every fixed point ε◦ of the algorith-
mic mapM(·) must satisfy

Γ(ε◦) = G(u◦,θ) + ε◦ −Gp(u◦) = 0,

where u◦ = U⋆(ε◦). In particular, ε∞ being a fixed point ofM(·), we
have

Gp(u∞) = G(u∞,θ) + ε∞ ≤ 0,

with u∞ = U⋆(ε∞). ✷

For certain problems, the iterates may converge by following an
infeasible path (i.e., with violation of the constraints), even though
the constraint-adaptation algorithm starts at a feasible point. A way
of reducing the maximum violation of a given constraint, sayGp,i, is by
decreasing the corresponding filter parameter bi (in the case where B is
a diagonal matrix). Yet, this is at the expense of a slower convergence
rate.

Even though the iterates may follow an infeasible path, a straight-
forward corrolary of Theorem 3.3 is that the constraint-adaptation
algorithm, provided it converges, can yield feasible operation after a
finite number of RTO periods upon backing-off the constraints of the
original RTO problem.

3.2.4 Active Set

Owing to the importance of constraints in optimization problems, a
very desirable property of any RTO scheme is the capability of de-
tecting the optimal set of active constraints. Since the constraint-
adaptation algorithm approximates the actual gradients of the cost
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Table 3.1. Values of the uncertain parameters θ in Problem (3.16) corre-
sponding to the model and two simulated realities for the plant.

Model Plant A Plant B
θ1 0.75 0.75 0.75
θ2 1.40 2.00 2.00
θ3 1.00 1.00 1.80

and constraint functions by using a fixed process model, it cannot be
guaranteed that a point satisfying the complementarity slackness and
dual feasibility conditions (2.6–2.8) is attained. Observe, however, that
the active set determined by the process model is known to be the same
as the actual optimal active set, provided that the model mismatch re-
mains moderate (see Theorem 2.3). There is therefore much hope that
the constraint-adaptation algorithm can provide a good approximation
of the correct active set, even in the case of large model mismatch.
These important considerations are illustrated next through a numeri-
cal example; they are further illustrated by the case study application
presented in Subsection 3.2.8.

Example 3.1 Consider the following quadratic program (QP):

min Φ(u,θ) := (u1 − θ1)2 + (u2 − θ1)2 (3.16)

s.t. G1 := u1 − θ2(1− u2) ≤ 0

G2 := u2θ3 − 2(1− u1) ≤ 0,

with two decision variables u = [u1 u2]
T, three model parameters θ =

[θ1 θ2 θ3]
T, and two inequality constraints. The parameter values θ for

the model and the simulated realities A and B for the plant are reported
in Table 3.1.

We start by considering the plant A. Since the parameters θ1 and
θ3 are identical in the model and the plant, no adaptation is needed
for G2 (i.e., ε2 = 0); however, this information is not known by
the constraint-adaptation algorithm. Furthermore, the cost functions
of the model and the plant are identical, i.e., Φ(u,θ) ≡ Φp(u). Hence,
the only uncertainty is in the constraint G1. Upon application of the
constraint-adaptation algorithm M with B = I2×2 and ε0 = [0 0]T,
the iterates converge to the fixed point ε∞ = [− 1

5 0]T. The correspond-
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Fig. 3.2. Illustration of the constraint-adaptation algorithm for Prob-
lem (3.16). Left plots: no constraint adaptation; Right plots: converged
constraint adaptation; Thin solid lines: constraint bounds for the plant;
Colored area: feasible region; Thick dash-dotted lines: constraint bounds
predicted by the model without adaptation; Thick solid lines: constraint
bounds predicted by the model upon convergence of the constraint-
adaptation algorithm; Dotted lines: contours of the cost function; Point P:
optimum for the plant; Point M: optimum for the model without adaptation;
Point C: optimum for model upon convergence of the constraint-adaptation
algorithm; Arrows: direction of constraint adaptation.

ing operating point u∞ lies at the intersection of the constraints Gp,1

and Gp,2 (see Figure 3.2, Plant A). Note that the correct optimal point
would also be found in the case where θ1 6= θ1, as long as both inequality
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constraints remain active at this point. In the plant B, both the con-
straints G1 and G2 are uncertain. Observe that adaptation is absolutely
warranted in this scenario, since the solution of the model-based opti-
mization problem (3.16) leads to infeasible operation. The constraint-
adaptation algorithm converges to the fixed point ε∞ = [− 69

290
14
29 ]T,

with the same initial guess and gain matrix as previously. The cor-
responding operating point lies on the constraint G2 at the point of
tangency with the cost contours, while the constraint G1 is inactive.
Here again, the correct active set is detected upon convergence of the
constraint-adaptation algorithm, yet the iterates converge to a subopti-
mal point (see Figure 3.2, Plant B). The loss of performance, around
7%, is due to the error made in evaluating the gradient of the active
constraint G2. This loss is rather limited in view of the substantial
variation in the model parameters θ2 and θ3.

3.2.5 Convergence

A particularly important aspect of any RTO scheme relates to its con-
vergence properties. It has been shown earlier that, upon convergence,
the constraint-adaptation algorithmM terminates at a feasible oper-
ating point, under mild conditions. Yet, this algorithm may not sys-
tematically converge. For example, it may happen that the NLP prob-
lem (3.10) becomes infeasible because a coefficient of the constraint
modifiers ε has grown too big. It can also happen that a coefficient
of the constraint modifiers oscillates between two values because the
corresponding filter parameter is too large.

In the absence of measurement noise and process disturbances, the
following theorem provides a necessary condition for the convergence
ofM to a fixed point, and it establishes the convergence rate.

Theorem 3.4 (Necessary Condition and Convergence Rate)
Let ε∞ be a fixed point of the constraint-adaptation algorithm M, and
assume that:

1. the second-order sufficient conditions for a local minimum of Prob-
lem (3.10) with ε = ε∞ hold at u∞ = U⋆(ε∞), with the associated
Lagrange multipliers µ∞, ζU

∞, and ζL

∞;
2. u∞ is a regular point for the active constraints, i.e. LICQ holds;
3. µi,∞ > 0, ζUi,∞ > 0, and ζLi,∞ > 0 for each active constraint, i.e.

strict complementary slackness holds.
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Then, a necessary condition for the local convergence of M to the
fixed-point ε∞ is that the gain matrix B be chosen such that

̺
{

I− B
[

I +
(

∂Gp

∂u
(u∞)− ∂G

∂u
(u∞,θ)

)

Pu M−1
∞ N∞

]}

< 1, (3.17)

where the matrices M∞ ∈ IR
(ng+3nu)×(ng+3nu), N∞ ∈ IR

(ng+3nu)×ng ,
and Pu ∈ IRnu×(ng+3nu) are defined as

M∞ :=




















∂2L
∂u∂u

∂Gp,1

∂u

T · · · ∂Gp,ng

∂u

T

Inu×nu −Inu×nu

µ1,∞
∂Gp,1

∂u
Gp,1

...
. . .

µng,∞
∂Gp,ng

∂u
Gp,ng

diag(ζU

∞
) diag(u− uU)

− diag(ζL

∞
) diag(uL − u)





















(u∞)

N∞ :=
(

0ng×nu
− diag(µ∞) 0ng×2nu

)T
,

Pu :=
(

Inu×nu
0nu×(ng+2nu)

)

,

and ̺{·} stands for the spectral radius. Moreover, if the constraint
adaptation converges, then the rate of convergence is linear.

Proof. It follows from the assumptions and Theorem 2.3 that there
is some η > 0 such that, for each ε ∈ Bη(ε∞), there exists a unique
continuously differentiable vector function u⋆ = U⋆(ε) satisfying the
second-order sufficient conditions for a local minimum of Problem
(3.10), with u∞ = U⋆(ε∞). Moreover, we have (see Theorem 2.3):

∂U⋆

∂ε
(ε∞) = −Pu M−1

∞ N∞.

The constraint functions Gi(·,θ) and Gp,i(·), i = 1, . . . , ng, being dif-
ferentiable with respect to u, it follows that Γ(·) given by (3.13) is
itself differentiable with respect to ε in a neighborhood of ε∞, and we
have

∂Γ
∂ε

(ε∞) = I−
(

∂Gp

∂u
(u∞)− ∂G

∂u
(u∞,θ)

)

∂U⋆

∂ε
(ε∞)

= I +
(

∂Gp

∂u
(u∞)− ∂G

∂u
(u∞,θ)

)

Pu M−1
∞ N∞.
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That is, a first-order approximation of Γ in a neighborhood of ε∞ is

Γ(ε) =
[

I +
(

∂Gp

∂u
(u∞)− ∂G

∂u
(u∞,θ)

)

Pu M−1
∞ N∞

]

δε + o(‖δε‖),

where δε := ε− ε∞.
Next, suppose that the algorithm (3.14), with ε0 given, converges

to ε∞. Then,

∃k0 > 0 such that εk ∈ Bη(ε∞), ∀k > k0,

and we have

δεk+1 = ΥG
∞ δεk + o(‖δεk‖), (3.18)

for each k > k0, with

ΥG
∞ := I− B

[

I +
(

∂Gp

∂u
(u∞)− ∂G

∂u
(u∞,θ)

)

Pu M−1
∞ N∞

]

. (3.19)

ForM to converge to ε∞, the spectral radius of ΥG
∞ must therefore be

less than 1. Finally, it follows from (3.18) that, if M converges, then
it has a linear rate of convergence. ✷

Remark 3.2 It follows from the local analysis performed in the proof
of Theorem 3.4 that a necessary condition for the iterates εk to con-
verge to the fixed point ε∞ monotonically, i.e. without oscillations
around ε∞, is that all the eigenvalues of matrix ΥG

∞ be nonnegative.

We illustrate these results in the following example.

Example 3.2 Consider the QP problem (3.16) of Example 3.1, with
the parameters specified in Table 3.1. For the plant A, the converged
constraint modifiers as well as the corresponding inputs and multipliers
are:

ε∞ =

(

− 1
5

0

)

, u⋆(ε∞) =

(

2
3
2
3

)

, µ⋆(ε∞) =

(

5
54
1
27

)

.

In particular, it can be verified that the second-order sufficient condi-
tions hold at u⋆(ε∞). The derivatives ∂u⋆

∂ε
and ∂Γ

∂ε
at ε∞ are obtained

as

∂u⋆

∂ε
(ε∞) =

1

9

(

− 5
9

7
9

10
9 − 5

9

)

,
∂Γ

∂ε
(ε∞) =

(

5
3 − 1

3
0 1

)

.
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Upon choosing the diagonal gain matrix as B := bI, the matrix ΥG
∞

reads

ΥG
∞ =

(

1− 5
3b

1
3b

0 1− b

)

.

Clearly, the necessary condition (4.55) is satisfied for every 0 < b < 6
5 .

Note also that monotonic convergence is ensured as long as 0 < b ≤ 3
5

(see Remark 3.2).

The foregoing analysis provides conditions that are necessary for
the constraint-adaptation algorithm to converge. Yet, these conditions
are inherently local and, in general, are not sufficient for convergence.
This is the case, e.g., when the algorithm starts far away from a fixed
point. Another source of divergence for the constraint-adaptation al-
gorithm is when the constraint map Γ(ε) is always nonzero, i.e., the
algorithm does not have a fixed point. One such example is discussed
subsequently.

Table 3.2. Values of the uncertain parameters θ in Problem (3.20) corre-
sponding to the model and the plant.

Model Plant
θ1 0.5 0.5
θ2 1.1 0.2
θ3 1.0 -1.0

Example 3.3 Consider the convex QP:

min
u≥0

Φ(u,θ) = (u1 − θ1)2 + (u2 − θ1)2 (3.20)

s.t. G := θ2 − u1 − u2θ3 ≤ 0

with two decision variables u = [u1, u2], three uncertain parameters
θ = [θ1, θ2, θ3] whose values corresponding to the model and the plant
are given in Table 3.2, and a single constraint to be adapted using the
constraint modifier ε.

Upon application of the constraint-adaptation algorithm with a
scalar gain b > 0, the iterates are found to diverge, εk → +∞ as
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k → +∞. The situation is illustrated in the left plot of Figure 3.3.
Here, divergence results from the fact that the optimal solution set
U⋆(ε) does not intersect the plant feasible region, irrespective of the
constraint modifier ε. That is, the constraint map Γ (ε) shown in the
right plot of Figure 3.3 is always nonzero. Clearly, the necessary con-
ditions given in Theorem 3.4 do not hold for this problem.
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Fig. 3.3. Divergence of the constraint-adaptation algorithm for Prob-
lem (3.20). Left plot: iterates in the u1-u2 space; Thin solid lines:
constraint bounds for the plant; Colored Area: feasible region;
Thick dash-dotted lines: constraint bounds predicted by the model
without adaptation; Thin dash-dotted lines: constraint bounds upon
application of the constraint-adaptation algorithm; Dotted lines: contours
of the cost function; Point P: optimum for the plant; Point M: optimum for
the model without adaptation; Arrow: direction of constraint adaptation;
Right plots: optimal solution point u⋆(ε) and constraint map Γ (ε) versus
ε.

3.2.6 Effect of Measurement Noise

To analyze the effect of measurement errors on the convergence of the
constraint-adaptation algorithm, suppose that the constrained quanti-
ties during the kth RTO period are measured as Gp(u

⋆
k) + νk instead

of Gp(u
⋆
k). From (3.11), the measurement errors νk give rise to the

following errors in the constraint modifiers:

∆εk+1 = −Bνk.
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In turn, provided that the constraint modifiers εk+1 are in a neighbor-
hood of the fixed point ε∞, a first-order approximation of the input
deviations is obtained as

∆u⋆
k+1 = −∂U

⋆

∂ε
(ε∞)Bνk = Pu M−1

∞ N∞Bνk + o(‖Bνk‖).

Accordingly, variations in both the constraint modifiers and the process
inputs induced by measurement noise can be reduced by tuning the
gain matrix B. In the case of a diagonal gain matrix, this is done most
easily by decreasing the gain coefficients b1, . . . , bng

. Yet, this is at
the expense of a slower convergence, and a tradeoff must therefore be
found between the level of filtering and the speed of convergence of the
algorithm. In particular, observe that ∆u⋆

k+1 may still be very large
although ∆εk+1 is small, e.g., when some of the sensitivity coefficients
∂U⋆

∂ε
(ε∞) of the optimal inputs to the constraint modifiers are large.

3.2.7 Alternative Constraint-Adaptation Algorithm

In this subsection, an alternative way of adapting the constraints is
introduced where the constraint bounds are directly updated based
on the measured values of the constrained variables. The resulting
filtering of the constraint modifiers ε is no longer recursive as in (3.12).
If at each RTO iteration k the optimal inputs evaluated by the RTO
optimizer are applied directly to the plant, the alternative constraint
adaptation presented in this subsection does not present any particular
advantage with respect to the adaptation given by (3.9, 3.12). However,
the alternative adaptation is introduced here, as it is preferred when
the optimal inputs given by the RTO level are implemented through
a constraint controller, as in Section 3.3.

In the homogeneous form, the process constraints are expressed as
G(u,θ) ≤ 0, with zeros at the right side of the inequality. In this
subsection, since the constraint bounds are directly adapted, it is pre-

ferred to work with the process constraints expressed as Ḡ(u,θ) ≤ Ḡ
U
,

where Ḡ ∈ IRng are the constrained quantities, and Ḡ
U ∈ IRng are

the constraint bounds. With this notation, G(u,θ) = Ḡ(u,θ) − Ḡ
U
.

Constraint adaptation (3.9, 3.12) represents the classical constraint-
adaptation scheme, which is rewriten below in terms of the constrained
quantities Ḡ:
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u⋆
k+1 ∈ argmin

u
Φ(u,θ) (3.21)

s.t. Ḡ(u,θ) + εk ≤ Ḡ
U

uL ≤ u ≤ uU

The optimal solution point u⋆
k+1 is applied directly to the plant, i.e.,

uk+1 = u⋆
k+1. Subsequently, the constraint modifiers are updated re-

cursively as in (3.12).
Next, a different way of adapting the constraints in the optimization

problem is introduced:

Ḡ(u,θ) + γG
k ≤ Ḡ

U
k , (3.22)

where the correction term

γG
k := Ḡp(uk)− Ḡ(uk,θ), (3.23)

stands for the difference between the measured and predicted values of
the constraints. At the current RTO iteration, the constraint bounds

Ḡ
U
k are updated directly from the measured values of the constraints

as:

Ḡ
U
k = Ḡp(uk) + B

(

Ḡ
U − Ḡp(uk)

)

, (3.24)

where B ∈ IRng×ng is a diagonal gain matrix with entries bi ∈ (0, 1],
i = 1, . . . , ng. In this approach, the modified optimization problem
reads:

u⋆
k+1 ∈ arg min

u
Φ(u,θ) (3.25)

s.t. Ḡ(u,θ) + γG
k ≤ Ḡ

U
k

uL ≤ u ≤ uU

The optimal solution point u⋆
k+1 is applied directly to the plant, i.e.,

uk+1 = u⋆
k+1. Note that, in this alternative constraint-adaptation

scheme, the constraint modifiers ε are not updated recursively as in
(3.12). Instead, they are obtained as follows:

εk = Ḡ
U − Ḡ

U
k + γG

k , (3.26)

with γG
k given by (3.23) and Ḡ

U
k given by (3.24). For the combination

with constraint control, constraint adaptation (3.22-3.24) is preferred
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min Φ(u, θ)
u

s.t. Ḡ(u, θ) + γG

k ≤ Ḡ
U
k
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Fig. 3.4. Alternative constraint-adaptation scheme.

because it gives the ability to vary the setpoints Ḡ
U
k passed to the

constraint controller. The proposed alternative constraint-adaptation
scheme is illustrated in Figure 3.4.

With the constraint modifiers defined as in (3.26), the feasible so-
lution map U(·) and its domain, as well as the optimal value function
Φ⋆(·), and the optimal solution map U⋆(·) can be defined in a simi-
lar way as in Subsection 3.2.2. Furthermore, by Assumption 3.1, for
each ε ∈ domU , Problem (3.25) has a unique (global) solution point,
u⋆ = U⋆(ε).

Feasibility

If the iterates of the alternative constraint-adaptation algorithm rep-
resented in Figure 3.4 converge (in the absence of measurement noise
and process disturbances), they are guaranteed, under mild conditions,
to terminate at a feasible point. This is formalized in the following the-
orem:

Theorem 3.5 (Feasibility upon Convergence) Let the gain ma-
trix B be nonsingular and the alternative constraint-adaptation algo-
rithm given by (3.23), (3.24) and (3.25) (see the algorithm scheme in
Figure 3.4) converge, with limk→∞ εk = ε∞. Then, u∞ = U⋆(ε∞) is
a feasible operating point.

Proof. Taking the limit when k →∞ of (3.26) we have:
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ε∞ = Ḡ
U − Ḡ

U
∞ + γG

∞

= Ḡ
U − B

(

Ḡ
U − Ḡp(u∞)

)

− Ḡ(u∞,θ). (3.27)

But Ḡ(u∞,θ) + ε∞ ≤ Ḡ
U

since u∞ = U⋆(ε∞), and therefore

B
(

Ḡ
U − Ḡp(u∞)

)

≥ 0

Finally, B being nonsingular, we obtain

Ḡp(u∞) ≤ Ḡ
U
,

thereby showing that u∞ is a feasible operating point. ✷

However, the constraints can be violated during the iterations, even
when the alternative constraint-adaptation algorithm starts at a fea-
sible point. Infeasibility during the iterations will be addressed is Sub-
sections 3.3.1 and 3.3.2 upon combination of the alternative constraint-
adaptation scheme with a constraint controller.

3.2.8 Case Study: Isothermal CSTR

The example presented in [79] is considered to illustrate the constraint-
adaptation algorithm. It consists of an isothermal continuous stirred-
tank reactor with two reactions:

A+B −→ C, 2B −→ D. (3.28)

The desired product is C, while D is undesired. The reactor is fed
by two streams with the flow rates FA and FB and the corresponding
inlet concentrations cAin

and cBin
.

Model Equations and Parameters

The steady-state model results from material balance equations:

FAcAin
− (FA + FB)cA − r1V =0 (3.29)

FBcBin
− (FA + FB)cB − r1V − 2r2V =0 (3.30)

−(FA + FB)cC + r1V =0, (3.31)

with
r1 = k1cAcB, r2 = k2c

2
B. (3.32)
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The heat produced by the chemical reactions is:

qr = (−∆H1)r1V + (−∆H2)r2V. (3.33)

Variables and parameters: cX : concentration of species X , V : vol-
ume, ri: rate of reaction i, ki: kinetic coefficient of reaction i, ∆Hi:
enthalpy of reaction i.

Table 3.3. Nominal model parameters and parameter bounds

k1 1.5 l
mol·h k2 0.014 l

mol·h
cAin

2 mol
l cBin

1.5 mol
l

∆H1 −7× 104 J
mol ∆H2 −105 J

mol

V 500 l qr,max 106 J
h

Fmax 22 l
h

The numerical values of the parameters are given in Table 3.3. In
the sequel, k1 denotes the value of the kinetic parameter used in the
process model,4 whereas k̄1 is the plant (simulated reality) value.

Optimization Problem

The cost function is chosen as the amount of product C, (FA +FB)cC ,
multiplied by the yield factor (FA + FB)cC/FAcAin

. Upper bounds
are defined for the amount of heat produced by the reactions and
the total flow (see Table 3.3). The optimization can be formulated
mathematically as:

max
FA,FB

φ :=
(FA + FB)2c2C

FAcAin

(3.34)

s.t. model equations (3.29)-(3.33)

G1 := qr − qr,max ≤ 0

G2 := FA + FB − Fmax ≤ 0.

The optimal feed rates, the values of the constrained quantities, and
the cost function for k̄1 = 0.3, 0.75 and 1.5 l

mol·h are given in Table

4 Note that this value is different from the one used in [79].
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3.4. Notice that the set of active constraints in the optimal solution
changes with the value of k̄1.

Table 3.4. Optimal solutions for various values of the plant parameter k̄1

k̄1 F ⋆
A F ⋆

B
qr

qr,max

FA+FB

Fmax
φ

0.30 8.21 13.79 0.887 1.000 8.05
0.75 8.17 13.83 1.000 1.000 11.16
1.50 7.61 13.05 1.000 0.940 12.30

Accuracy of the Constraint-Adaptation Algorithm.

Since the constraint G2 is not affected by the uncertainty, only the
constraint G1 requires adaptation. This subsection investigates the ac-
curacy of the constraint-adaptation algorithm upon convergence and
in the absence of measurement noise and process disturbances (ideal
case).

The scaled constrained quantities qr/qr,max and (FA+FB)/Fmax are
represented in Figure 3.5 for values of k̄1 (plant) varying in the range
0.3 to 1.5 l

mol·h . Note that the constrained quantities obtained with
the constraint-adaptation algorithm (thick lines) follow closely those
of the true optimal solution (thin lines). But, although the proposed
algorithm guarantees feasible operation upon convergence irrespective
of the value of k̄1, it fails to detect the correct active set in the vicinity
of those operating points where the active set changes (i.e., k̄1 ≈ 0.65
and k̄1 ≈ 0.8). This deficiency results from the error introduced by
the process model in the evaluation of the sensitivities with respect
to FA and FB of both the cost function and the process-dependent
constraint.

Figure 3.6 shows the performance loss

∆φ :=
φ(u⋆

p)− φ(u⋆
∞(k1))

φ(u⋆
p)

,

where φ(u⋆
p) denotes the true optimal cost, and φ(u⋆

∞(k1)) the opti-
mal cost obtained upon convergence of the constraint-adaptation algo-
rithm. For example, using the model parameter k1 = 1.5, ∆φ is equal
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to zero for k̄1 = 1.5, for there is no model mismatch in this case. Inter-
estingly enough, ∆φ is also equal to zero when the two constraints are
active and the adaptation scheme provides the correct active set; this
situation occurs for k̄1 in the range 0.68 < k̄1 < 0.79 (see Figure 3.5).
Overall, the performance loss remains lower than 0.6% for any value
of k̄1 in the range 0.3 to 1.5 l

mol·h , and is even lower (less than 0.2%)

when the model parameter k1 is chosen as 0.3 or 0.75 l
mol·h . These

results demonstrate that the performance loss remains limited, despite
the error made in the detection of the active set for some scenarios.

Constraint-Adaptation Results.

In this subsection, we take a closer look at the iterations produced by
the constraint-adaptation algorithm. Two scenarios that correspond to
different sets of active constraints at the optimum are considered. In
either scenario, the process model with k1 = 1.5 l

mol·h is chosen. Note
also that the adaptation is started with a large (conservative) initial
constraint modifier ε0 = 1.5× 105 J

h , and the filter parameter for ε is
taken as b := 1 (no filtering).

To depart from the ideal case of the previous subsection, Gaussian
noise with standard deviation of 1800 J

h is added to the estimate of
qr. In response to this, a back-off is introduced to ensure that the
heat production constraint is satisfied, i.e., qr,max = 9.9× 105 J

h . Two
scenarios, corresponding to a plant (simulated reality) with k̄1 = 0.75

l
mol h and k̄1 = 0.3 l

mol h are considered.

Scenario A: Plant with k̄1 = 0.75 l

mol h
.

The evolution of the constraint modifier ε with the RTO period is
shown in Figure 3.7 (thick line). A negative value of ε indicates that
the heat production is overestimated by the model, which is consistent
with the larger value of k̄1 chosen for the plant. Note also that the
convergence is very fast in this case, as the region where the adaptation
is within the noise level is reached after two RTO periods only. The
corresponding constrained quantities (FA +FB) and qr are represented
in Figure 3.8. Observe that only the heat production constraint is
active in this scenario, and that the chosen back-off ensures that the
maximum value of 106 J

h does not get exceeded despite measurement
noise. On the other hand, the feed rate constraint remains inactive,
although its value gets close to the maximum feed rate. Finally, the
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evolution of the cost function φ is shown in Figure 3.9 (thick line).
The converged cost value is close to 11, i.e., within a few percent of
the ideal cost given in Table 3.4, despite the performance loss induced
by backing-off the heat production constraint.
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Fig. 3.7. Evolution of the constraint modifier ε. Thick line: Scenario A;
Thin line: Scenario B.

Scenario B: Plant with k̄1 = 0.3 l

mol h
.

The evolution of the constraint modifier ε, the constrained quantities
(FA+FB) and qr, and the objective function φ, with the RTO iteration
is shown as thin lines in Figures 3.7, 3.8 and 3.9, respectively. It is seen
from Figure 3.7 that the constraint modifier is larger in this scenario
than in the previous one, as the process model is even farther from the
plant. Moreover, Figure 3.8 shows that only the feed rate constraints
gets active, while the heat production remains inactive. Hence, the
optimal inputs are unaffected by the measurement noise. It takes a
single RTO period for the constraint-adaptation algorithm to detect
the correct active set in this case. Finally, it is seen from Figure 3.9
that the converged cost value of about 8 is very close to the ideal cost
reported in Table 3.4, in spite of the large model mismatch.
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3.3 Combination of Constraint Adaptation with

Constraint Control

Two types of transient behaviors can be distinguished in RTO systems:
(i) the dynamic regime of the controlled plant between two successive
steady-state operations, and (ii) the transient produced by the itera-
tions of the RTO algorithm before convergence. Most RTO algorithms
do not ensure feasibility during these transient periods, thus calling for
a conservative implementation with significant constraint backoffs and
reduced movements of the operating point between successive RTO
periods [83]. Constraint violations during both types of transients can
be dealt with by controlling the constraints that are active at the op-
timum [40, 56, 83]. The set of active constraints might change due to
plant-model mismatch, process disturbances and changing operating
conditions, thus resulting in different constraint controllers.

Constraint adaptation guarantees that a feasible operating point
for the plant will be reached upon convergence. However, the iterates
may follow an infeasible path, even if the adaptation is started at
a feasible point. Process disturbances and changes in the operating
conditions may also result in violations of the constraints. The process
control system should then be designed to implement the RTO results
while taking care not to violate the constraints. MPC is a natural
choice for this task because of its ability to handle large multivariable
control problems and to anticipate the effect of the constraints. The
approach described in this section for integrating constraint adaptation
at the RTO level with MPC at the process control level (see Figure 1.1)
places high emphasis on how constraints are handled. A term is added
to the cost function of the MPC problem in order to assign the optimal
values provided by the RTO level to the residual degrees of freedom of
the control problem.

In this section, equality constraints are explicitly included in the
optimization problem, since we want to emphasize the fact that these
constraints are controlled in the MPC constraint controller. The inclu-
sion of these constraints poses no conceptual difficulty, as they behave
in a constraint adaptation scheme similar to inequality constraints that
are always active.
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3.3.1 Constraint-Adaptation Scheme for Combination with
MPC

Problem Formulation

Including equality constraints, the steady-state optimization problem
for the plant can be formulated as follows:

min
u

Φp(u) = φ(u,yp(u)) (3.35)

s.t. Hp(u) := h̄(u,yp(u)) = HS

Ḡp(u) = ḡ(u,yp(u)) ≤ Ḡ
U

uL ≤ u ≤ uU,

where h̄ ∈ IRnh are the equality constrained functions for which HS

are the setpoint values; and ḡ ∈ IRng are the inequality constrained

functions for which Ḡ
U

are the upper bounds. It is assumed that φ,
h̄ and ḡ are known functions of u and y, i.e., they can be evaluated
directly from the measurements.

The model-based optimization problem, on the other hand, is given
by:

min
u

Φ(u,θ) = φ(u,y(u,θ)) (3.36)

s.t. H(u,θ) := h̄(u,y(u,θ)) = HS

Ḡ(u,θ) = ḡ(u,y(u,θ)) ≤ Ḡ
U

uL ≤ u ≤ uU.

Constraint-Adaptation Scheme

For implementation with MPC, the constraints are corrected at the
iteration k as follows:

H(u,θ) + γH
k = HS, (3.37)

Ḡ(u,θ) + γG
k ≤ Ḡ

U
k , (3.38)

with
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γH
k := Hp(uk)−H(uk,θ), (3.39)

γG
k = Ḡp(uk)− Ḡ(uk,θ), (3.40)

ḠU
i,k =

{

Ḡp,i(uk) + bi
(

ḠU
i − Ḡp,i(uk)

)

, if Ḡp,i(uk) ≤ ḠU
i

ḠU
i , otherwise.

(3.41)

i = 1, . . . , ng

Here, direct adaptation of constraint bounds is used to modify the
inequality constraints Ḡ only when the adaptation takes place inside
the feasible region, as expressed by (3.41). As will be discussed in

Subsection 3.3.2, the values of Ḡ
U
k may be selected as setpoints of the

constraint controller. Hence, (3.41) prevents a setpoint value greater

than Ḡ
U

from being selected. This approach permits to gradually move

the setpoints Ḡ
U
k that will be passed to the MPC constraint controller.

The setpoints Ḡ
U
k for the active constraints reach the actual constraint

bounds Ḡ
U

upon convergence. In order to account for measurement

noise, a back-off can be applied to Ḡ
U
. Notice that it is also possible

to move in a similar way the input bounds.
At the kth iteration, the next optimal input values are computed:

u⋆
k+1 ∈ arg min

u
Φ(u,θ) (3.42)

s.t. H(u,θ) + γH
k = HS

Ḡ(u,θ) + γG
k ≤ Ḡ

U
k

uL ≤ u ≤ uU.

When constraint adaptation is applied alone, the new operating point
is obtained by applying the optimal inputs u⋆

k+1 directly to the plant.
However, in combining constraint adaptation with MPC, the inputs
are determined by the MPC controller, and the values uk+1 to be used
in the next RTO iteration correspond to the input values reached by
the controlled plant at steady state.

Illustrative Example

The approach for integrating constraint adaptation with MPC assumes
that all the constrained variables can be measured or estimated on-line
with a sampling period much smaller than the natural response time
of the controlled plant.
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Table 3.5. Values of the parameters θ in Problem (3.4) for the model and
the plant (simulated reality).

θ1 θ2 θ3 θ4
Plant 0.4 0.8 -1.8 1.9
Model 0.9 0.4 -2.0 1.4

Direct adaptation of the constraint bounds is especially useful when
RTO is started from a conservative (feasible) operating point and one
wants to approach the constraints gradually from within the feasible
region. This is illustrated in the next example.

Example 3.4 Consider the following QP problem:

min Φ(u,θ) := (u1 − 1)2 + (u2 − 1)2 (3.43)

s.t. G1 := θ1 + θ2u1 − u2 ≤ 0

G2 := θ3 + θ4u1 + u2 ≤ 0,

with two decision variables u = [u1 u2]
T, four model parameters θ =

[θ1 . . . θ4]
T, and two uncertain constraints G1 and G2. The parameter

values for the model and the plant (simulated reality) are reported in
Table 3.5. Note that the operating point determined from the model,
without constraint adaptation, leads to constraint violation.

In this simple QP problem, an ideal constraint controller is as-
sumed. The objective here is to illustrate the effect of constraint control
on the feasibility of the successive steady-state operating points. Both
constraints are active at the optimum for both the plant and the model.
The constraint-adaptation algorithm is applied with and without con-
straint control, starting from u0 = [0 1.4]T and with a diagonal gain
matrix B = b I2 with b ∈ (0, 1]. The results obtained with b = 0.7 are
shown in Figure 3.10. It can be seen that, without constraint control,
the iterates converge by following an infeasible path (left plot). In fact,
the iterates can be shown to follow an infeasible path for any value of
b ∈ (0, 1]; the constraint violation is reduced by decreasing the value of
b, but this is at the expense of a slower convergence. With constraint
control, on the other hand, the iterates converge without violating the
constraints (right plot), irrespectively of the value of b. Both constraints
are found to be active at the solution point of the optimization problem
(3.42) for all iterations.
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Fig. 3.10. Illustration of the proposed algorithm for Problem (3.43).
Top plot: Without constraint control; Bottom plot: With constraint
control; Colored area: feasible region; Thick solid lines: constraint bounds
for the plant; Thick dash-dotted lines: constraint bounds predicted by
the model without adaptation; Dotted lines: contours of the cost funtion;
Light solid lines: iterates; Point P: optimum for the plant; Point M: opti-
mum for the model without adaptation.
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The design of the MPC constraint controller is described in the
following subsection.

3.3.2 Enforcing Constraints via MPC

Constraint adaptation guarantees reaching a feasible operating point
upon convergence, but it does not ensure feasibility neither at the
successive steady-state operating points produced by the algorithm
nor during the transient between two successive steady-state operating
points. Constraint violations can be prevented by controlling the con-
straints. It is generally recognized that equality constraints as well as
active inequality constraints should be controlled. An additional com-
plication results from the fact that, in the presence of process distur-
bances and changing operating conditions, the set of active inequality
constraints may change, thus requiring a change in the plant’s control
structure [40, 56].

The equality constraints H are controlled at their setpoint val-
ues HS. Between the RTO iterations k and k+1, the subset (Ḡ)r,k ∈
IR(ng)r,k of the inequality constraints Ḡ are controlled at the setpoints

(Ḡ
S
)r,k := (Ḡ)r,k(u⋆

k+1,θ) + (γG
k )r,k.5 The controlled constraints

(Ḡ)r,k can be selected as the active inequality constraints at the kth

RTO iteration, thus leading to (Ḡ
S
)r,k = (Ḡ

U
k )r,k.

Let us assume that at the kth RTO iteration, at the solution of
Problem (3.42), there are nL

k inputs at their lower bound, and nU
k in-

puts at their upper bound. We define the matrix PL
k ∈ IR

nL
k×nu such

that each row of PL
k has a 1 at the index number corresponding to an

active lower input bound and zeros elsewhere. This way, PL
k (PL

k )T = InL
k

and (PL
k )TPL

k ∈ IRnu×nu is a diagonal matrix whose diagonal elements
corresponding to an active lower input bound are 1, and those corre-
sponding to an inactive lower input bound are 0. Similar to PL

k , matrix

PU
k ∈ IRnU

k ×nu is defined for the inputs that are at their upper bound.
This way, the controlled inequality constraints and input variables

between the RTO iterations k and k + 1 can be denoted collectively
as:

5 The notation is involved and requires some explanation. Here, γG

k are
the correction terms given by (3.40), and (γG

k )r,k is the subset of γG

k

corresponding to the controlled inequality constraints between the RTO
iterations k and k + 1. Notice that the controlled inequality constraints
might change from one iteration to the other.



77

zr,k :=





(Ḡ)r,k

−PL
k u

PU
k u



 ,

and the corresponding setpoints are:

zS
r,k :=





(Ḡ
S
)r,k

−PL
k uL

PU
k uU



 ,

where zr,k, zS
r,k ∈ IR(nz)k , with (nz)k = (ng)r,k + nL

k + nU
k .

Typically, the active constraints are selected as controlled variables;
however, inactive constraints can also be selected as controlled vari-
ables as long as (nz)k ≤ (nu − nh) to avoid over-specification. In
practice, input-output selection criteria should also guide the selec-
tion of the inequality constraints to be included in zr,k. For example,
near steady-state collinearity between controlled constraints should be
avoided, since this would make the controlled plant become sensitive
to process disturbances.

The methodology for combining the constraint-adaptation scheme
with MPC is presented using a step response model of truncation order
n. This prediction model is used in dynamic matrix control (DMC),
which is one of the original MPC formulations, and still one of the most
popular MPC algorithms in industry [57]. However, other prediction
models could be used as well. Using MPC, constraint control can be
implemented between the RTO iterations k and k+1 by minimizing
the quadratic objective function

Jk(u(t)) =

p
∑

l=1

{

∥

∥Pl

[

H(t+ l|t)−HS
]

∥

∥

2
(3.44)

+
∥

∥Ql,k

[

zr,k(t+ l|t)− zS
r,k

]∥

∥

2
+
∥

∥Rl∆u(t+ l − 1)
∥

∥

2
}

where Pl is the weighting matrix on the equality constraints, HS the
setpoint values for the equality constraints, Ql,k the weighting matrix
on the controlled inequality constraints, zS

r,k the setpoint values for
the inequality constraints, and Rl the weighting matrix on the rate of
change of the inputs.

At current time t, the behavior of the process over p future time
steps is considered. MPC determines the next m input moves ∆u(t+
l|t) := u(t+l|t)−u(t+l−1|t), l = 0, . . . ,m−1, with m < p and ∆u(t+
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l|t) = 0, ∀ l ≥ m. Only the first computed change in the manipulated
variables is implemented, and at time t+1 the computation is repeated
with the horizon moved by one time interval:

min
∆u(t|t)T,...,∆u(t+m−1|t)T

Jk(u(t)) (3.45)

s.t.
[

H(t+ l|t)
Ḡ(t+ l|t)

]

=

l
∑

i=1

Si∆u(t+ l − i) +

n−1
∑

i=l+1

Si∆u(t+ l − i) (3.46)

+ Snu(t+ l − n) + d(t+ l|t), l = 1, . . . , p,

d(t+ l|t) = d(t|t)

=

[

Hp(t)
Ḡp(t)

]

−
n−1
∑

i=1

Si∆u(t− i)− Snu(t− n), l = 1, . . . , p, (3.47)

(Ḡ)s,k(t+ l|t) ≤ (Ḡ
U
)s,k, l = 1, . . . , p, (3.48)

u(t+ l|t) =

l
∑

i=0

∆u(t+ i|t) + u(t− 1), l = 0, . . . ,m− 1, (3.49)

uL ≤ u(t+ l|t) ≤ uU, l = 0, . . . ,m− 1, (3.50)

∆u(t+ l|t) ≤ ∆uU, −∆u(t+ l|t) ≤ ∆uU, (3.51)

l = 0, . . . ,m− 1,

where H(t+ l|t) and Ḡ(t+ l|t) are the model prediction of the equality
and inequality constraints H and Ḡ at time t+ l based on information
available at time t, respectively. This prediction involves on the right-
hand side of (3.46) a first term including the effect of the present and
future input moves, a second and third terms including the effect of
the past input moves, and a fourth term d(t + l|t) ∈ IRnh+ng that
corresponds to the predicted constraint biases at time t+ l obtained at
time t. These constraint biases are computed in (3.47) as the difference
between the measured value of the constraints Hp(t) and Ḡp(t) and
their model predictions. Note that d(t + l|t) is assumed to be equal

to d(t|t) for all future times (l ≥ 0). The matrices Si ∈ IR(nh+ng)×nu ,
i = 1, . . . , n, contain the step responses of H and Ḡ (see e.g. [57]).

(Ḡ)s,k ∈ IR(ng)s,k are all the inequality constraints Ḡ that are not
included in (Ḡ)r,k. That is, in order not to violate the uncontrolled
constraints (Ḡ)s,k, these are included in the formulation of the MPC
problem in equation (3.48), as has been proposed in [40]. Note that
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(ng)r,k + (ng)s,k = ng. Equation (3.50) are the input bounds, and
(3.51) provides bounds on the input moves.

In order to avoid possible infeasibility problems due to the presence
of output-dependent constraints in (3.48), it is recommended to use
a soft-constraint approach [76]. This approach consists in adding an
additional penalty term to the objective function of the MPC problem,
that penalizes a measure of constraint violation. With (τ )s,k(t + l|t)
denoting the predicted constraint violations, the term

∥

∥Wl,k (τ )s,k(t+

l|t)
∥

∥

2
+ wT

l,k(τ )s,k(t+ l|t) is added to the summation of the objective
function of the MPC problem in (3.44). The constraints in (3.48) are

softened as (Ḡ)s,k(t + l|t) ≤ (Ḡ
U
)s,k + (τ )s,k(t + l|t), with (τ )s,k(t +

l|t) ≥ 0 and the constraint violations (τ )s,k(t + l|t) are included as
decision variables in the MPC problem (3.45).

For the case of a non-square control problem with more inputs than
controlled variables, i.e., nu > (nz)k + nh, an additional quadratic
term is added to the MPC objective function to exploit the additional
degrees of freedom towards optimality:

Jk(u(t)) =

p
∑

l=1

{

∥

∥Pl

[

H(t+ l|t)−HS
]

∥

∥

2
(3.52)

+
∥

∥Ql,k

[

zr,k(t+ l|t)− zS
r,k

]∥

∥

2
+
∥

∥Rl ∆u(t+ l − 1)
∥

∥

2

+
∥

∥Cl ξk(t+ l − 1)
∥

∥

2
}

with

ξk(t+ l) = AT

k+1u(t+ l|t)− AT

k+1u
⋆
k+1, l = 0, . . . ,m− 1. (3.53)

The columns of the matrix Ak+1 ∈ IRnu×(nu−(nz)k−nh) correspond to

directions in the input space. The vector ξk ∈ IRnu−(nz)k−nh is the
difference between the inputs along these directions and their optimal
values. The additional term ‖Cl ξk(t+ l−1)‖2 in (3.52) allows control-
ling the inputs to their optimal values along the directions given by
Ak+1, thus addressing the (nu − (nz)k − nh) residual degrees of free-
dom in the control problem. Cl is the weighting matrix for ξk. Ak+1

can be selected from information given by the steady-state model used
in the RTO optimization [61]. A good choice is to select directions
that are tangential to the constraints H and zr,k at u⋆

k+1. Assum-
ing that the gradients of the controlled constraints H and zr,k are
linearly independent at u⋆

k+1, the input space can be split into the
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((nz)k +nh)-dimensional subspace of constraint-seeking directions and
the (nu−(nz)k−nh)-dimensional subspace of sensitivity-seeking direc-
tions. These subspaces are spanned by the columns of the orthogonal
matrices Vc

k+1 and Vs
k+1, respectively, as obtained by singular-value

decomposition (SVD):

[ ∂H
∂u

∂zr,k

∂u

]

(u⋆
k+1

)

:= G(u⋆
k+1)

=
[

Uc
k+1 Us

k+1

] [

Σc
k+1 0

] [

Vc
k+1 Vs

k+1

]T

The (nu − (nz)k − nh) columns of Vs
k+1 form an orthonormal basis of

the null space of G(u⋆
k+1), and are therefore tangent to the controlled

equality and inequality constraint contours. The matrix Ak+1 in (3.53)
can then be selected as Ak+1 = Vs

k+1. Much insight on why this choice
seems attractive can be gained by visualizing the situation for the
simplified example given below.

Example 3.5 Consider the following constraint adaptation problem:

u⋆
k+1 = arg min

u
Φ(u,θ) (3.54)

s.t. Ḡ(u,θ) + γG
k ≤ ḠU

k

where the input u has two components u1 and u2, and there is a single
constrained quantity Ḡ to be adapted using the adaptation given by
(3.38), (3.40) and (3.41). This constraint is assumed to be active at the
optimal solution. Figure 3.11 illustrates the case where, at the current
operating point uk, Problem (3.54) is solved for u⋆

k+1. Since at the
solution the constraint is active, the cost function of the MPC problem
is chosen as follows:

Jk(u(t)) =

p
∑

l=1

{

∥

∥ql
[

Ḡ(t+ l|t)− ḠU
k

]∥

∥

2
+
∥

∥Rl∆u(t+ l− 1)
∥

∥

2

+
∥

∥clξk(t+ l − 1)
∥

∥

2
}

Prior to convergence of constraint adaptation, the actual value of the
constraint for the plant Ḡp(u

⋆
k+1) is different from its setpoint value

ḠU
k = Ḡ(u⋆

k+1,θ)+ γG
k . The MPC controller will therefore try to track

the setpoint value ḠU
k by taking the operation somewhere on the con-

straint contour for the plant given by Ḡp(u) = ḠU
k . In order to pro-

vide an optimal value to the extra degree of freedom, one possibility
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is to control one of the input components to its optimal value. The
case where u2 is controlled to its optimal value is obtained by selecting
ξk(t+ l) = u2(t+ l|t)−u⋆

2,k+1, l = 0, . . . ,m−1. Consider the situation

represented in the top plot of Figure 3.11. If Ḡ and u2 are controlled,
the MPC controller would drive the operation to the point ua

k+1, e.g.,
by following the trajectory a. A better option for this example would
be to control u1 at its optimal value instead of u2. Alternatively, it is
possible to select a convenient linear combination of the inputs by con-
trolling the inputs at their optimal value along the sensitivity-seeking
direction Vs

k+1. This is the case when ξk is selected as in (3.53) with
Ak+1 = Vs

k+1. In this case, the MPC controller would bring the opera-

tion to the point ub
k+1, e.g., by following the trajectory b. Notice that

the cost at ub
k+1 is lower than that at ua

k+1.
A different situation is represented in the bottom plot of Fig-

ure 3.11. In this case, if Ḡ and u2 are controlled, the MPC controller
would find some compromise between meeting the setpoint value for the
constraint Ḡp(u) = ḠU

k and meeting the desired value of u2 = u⋆
2,k+1.

This is so because Ḡp(u) = ḠU
k does not intersect u2 = u⋆

2,k+1. At this

compromise point, the constraint on Ḡ could become violated for the
plant. On the other hand, if the inputs are controlled to their optimal
value along Vs

k+1, the MPC controller would take the system to the
point uk+1, e.g., by following the trajectory c.

Notice that the selection of Ak+1 as an orthonormal basis of the
null space of G(u⋆

k+1) is a convenient choice, but not the unique choice.
Other choices can be found that are appropriate for a particular ap-
plication, as will be the case in the forthcoming application in Subsec-
tion 3.3.3.

3.3.3 Case Study: Planar Solid Oxide Fuel Cell System

Given the prohibitive cost of non-renewable energy sources in today’s
scenario, fuel cells are intensively investigated as alternative power
sources for a broad scope of applications. Solid oxide fuel cells (SOFCs)
are energy conversion devices that produce electrical energy by the
reaction of a fuel with an oxidant. Since SOFCs typically run continu-
ously for long hours, and are subject to changes in the power demand,
it is desirable to keep the performance optimal throughout, while en-
suring that the operation remains within safety and operability con-
straints [44, 95]. Due to changes in the power demand during operation,
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k

ua
k+1

ub
k+1

u1

u
2

uk

uk+1

u⋆
k+1

Vs
k+1

V
c k
+

1

u⋆
2,k+1
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Fig. 3.11. Sketch of the integration between constraint adaptation and
MPC using the sensitivity-seeking directions V

s. Dotted lines: contours of
the cost function.
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but also due to external perturbations affecting the SOFC system, the
set of optimal operating conditions will vary with time continuously.
Hence, there is a need for real-time optimization, i.e., repeated ad-
justment of the operating variables (e.g., flow rates, temperature) to
maximize the performance (e.g., power output, efficiency) of the fuel
cell.

Different approaches have been proposed in the literature for con-
trolling fuel cells. Aguiar et al. [1] discussed the use of PID feedback
control in the presence of power load changes. For the case of a proton
exchange membrane (PEM) fuel cell, Golbert and Lewin [43, 44] used a
nonlinear MPC scheme with a target function that attempts to simul-
taneously track changes in the power setpoint and maximize efficiency.
Recently, Zhang et al. [95] applied nonlinear MPC to a planar SOFC.
However, these latter authors consider a square control problem, i.e.,
without residual degrees of freedom available for optimization. Several
other control strategies for fuel cells have also been reported in the
literature [47, 66, 86].

This subsection considers the RTO of a SOFC stack. An optimiza-
tion problem maximizing the efficiency subject to operating constraints
is defined. Due to inevitable model inaccuracies, the open-loop imple-
mentation of optimal inputs evaluated off-line may be suboptimal, or
worse, infeasible. Infeasibility can be avoided by controlling the con-
strained quantities. However, the constraints that determine optimal
operation might switch with varying power demand, thus requiring a
change in the regulator structure.

Constraint adaptation guarantees reaching a feasible operating
point upon convergence, that is, a point that satisfies all the con-
straints. However, the iterates may follow an infeasible path, even
when adaptation is started from within the feasible region. Process
disturbances and changes in the power demand may also result in con-
straint violation. Hence, MPC should implement the RTO results while
avoiding constraint violations.

Description of the SOFC System

The system simulated is schematically represented in Figure 3.12. It
comprises a 5-cell S-design planar SOFC stack operating in an electri-
cally heated furnace [26]. The stack is fueled with 3% humidified H2.
The only reaction taking place is the electrochemical oxidation of H2,
for which the overall reaction is:
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H2 +
1

2
O2 −→ H2O

The furnace temperature is constant at 780 ◦C. The gas temperatures
at the entrance of the stack are also considered constant at 750 ◦C.
A blower outside the furnace delivers air for the cathode, whereas the
fuel is provided directly at the desired pressure and flow rate.

SOFC stack

✲ ✲

✲✲ ✲
✘✘

❳❳

❄

✻

PPblower

∆p

Fuel in (Tinlet) Fuel out (Tstack)

Air out (Tstack)Air in

(Tinlet)

Furnace

Fig. 3.12. Schematic of SOFC stack and furnace

A lumped model is used in this simulation study, as it captures the
fundamental behavior of the SOFC while providing a good trade-off
between accuracy and fast computation. The model has been validated
from more detailed models developed at the Laboratoire d’Énergétique
Industrielle (LENI) at EPFL, and it corresponds to SOFC stacks typ-
ically running at LENI’s facilities [68, 87]. This lumped model consid-
ers a homogeneous temperature throughout the whole stack. The main
equations of the model, which comprises energy equations, mass bal-
ances and electrochemical balances at the anode and cathode, are given
in Appendix A. The specific nomenclature related with the model is
given in Table A.3, and the parameter values are given in Table A.2.
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I-V Curve.

A plot of cell voltage and power density as a function of the current
density (I-V curve) is shown in Figure 3.13 for fuel inlet flow rates of
10−3 mol

sec (or mass flow density of 6 ml
min cm2 ) and 1.2 × 10−3 mol

sec (7.2
ml

min cm2 ), and an excess air ratio λair = 3.
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Fig. 3.13. Cell voltage and power density as a function of current density.
Solid lines: ṅfuel,in = 10−3 mol

sec
; Dot-dashed lines: ṅfuel,in = 1.2× 10−3 mol

sec
.

At ṅfuel,in = 10−3 mol
sec , the limiting current density is 0.64 A

cm2 .

The maximum power density at which the cell can operate is 0.35 W
cm2 .

Increasing the current further, would result in a sharp dip in power due
to increase in the overpotential losses. To deliver a higher power, it is
necessary to increase the fuel inlet flow rate. At ṅfuel,in = 1.2 × 10−4

mol
sec , it is possible to reach power densities of up to 0.4 W

cm2 .

Formulation of the Optimization Problem

Input and Output Variables.

In the case of the SOFC system considered here, there are three degrees
of freedom which can be specified as input variables: the molar fuel
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flow rate at the anode, the molar air flow rate at the cathode, and the
current:

u = [ ṅfuel,in, ṅair,in, I ]T (3.55)

A similar choice of manipulated variables has been selected in [95]
in the context of nonlinear MPC. The output variables are the stack
temperature, cell potential, and power produced.

y = [Tstack, Ucell, P ]T (3.56)

Objective Function and Constraints.

The objective function to maximize is the electrical efficiency of the
fuel cell for a given power demand, subject to operational constraints.
Electrical efficiency is defined as the fraction of chemical power con-
verted into useful power. Not all the power generated by the fuel cell
is available for use. Due to pressure loss along the air channel, some
power is used up internally by the blower to pump air. This power is the
product of the pressure loss along the air channel and the volumetric
flow rate of air. The electrical efficiency to maximize is thus,

η =
P − Pblower

ṅH2,an,in LHV
=
Ucell I Ncells −∆p Q̇air/ηblower

ṅH2,an,in LHV
(3.57)

where the efficiency of the blower is ηblower = 0.4, and the pressure
loss along the air channel, ∆p, is proportional to the flow rate of air.
LHV is the lower heating value of the fuel, which is the amount of
heat released by combusting a mole of H2.

The fuel cell is operated under a number of inequality constraints
including bounds on input and output variables (flow rates, cell po-
tential, fuel utilization, stack temperature and current density). Con-
straints on the potential and fuel utilization are set due to risks of
oxidation of the cell’s anode, which may degrade or even cause the fail-
ure of the cell [19, 87]. Operating at high current densities will cause
material damage to the cell through excessive heating [51]. The low air-
ratio limit is set to avoid high thermal gradients, while the high limit
is due to system constraints. Current density is constrained to avoid
degradation [51, 87]. The constraint bounds are given in Table 3.6.
The setpoint value P S

el for the produced power density is specified as
an equality constraint.

The optimization problem can be formulated mathematically as:
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Table 3.6. Values of constraint bounds (L: lower, U: upper)

T L
stack 730 ◦C TU

stack 800 ◦C

UL
cell 0.7 V FUU 70 %

λL
air 3 λU

air 7

ṅL
fuel,in 5× 10−4 mol

s iU 0.6 A
cm2

max
u

η (3.58)

s.t. Pel = P S
el

Tstack ≤ TU
stack, −Tstack ≤ −T L

stack,
−Ucell ≤ −UL

cell, FU ≤ FUU,
λair ≤ λU

air, −λair ≤ −λL
air,

−ṅfuel,in ≤ −ṅL
fuel,in, i ≤ iU.

Because the current density i and the power density Pel are not
actually measured, they are considered to be proportional to the cur-
rent I and the power P . Hence, the last constraint represents an input
bound on the current.

Effect of Plant-Model Mismatch

In this simulation work, plant-model mismatch is considered by modi-
fying certain model parameters. The modified parameters are given in
Table 3.7, together with the corresponding values for the plant (simu-
lated reality) and the nominal model.

Contour maps showing the objective function and the constraints
at steady state as functions of the input variables for different power
setpoints are presented in Figure 3.14 for the plant (simulated reality).
These plots show the location of the plant optimum (point P) and the
constraint bounds.

The objective function is directly proportional to the power out-
put, and inversely dependant on the fuel flow rate. It also decreases
with the air flow rate, as more power will be consumed by the blower.
Notice that the set of active constraints at the optimum may change
with the requested power densities. At the power density of 0.2 W

cm2 ,
the optimum lies on the upper bound on fuel utilization (FU). The
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Table 3.7. Values of the modified parameters for the plant and the nominal
model

Parameter Plant Nominal model

Eact,cath ( J
mol ) 153260.5 150000

k0,cath ( 1
Ω m2 ) 4.103× 1011 4.5× 1011

Ediss,cath ( J
mol) 2.473× 10−19 2.467× 10−19

R0,cath (Ωm2) 9.2252× 10−14 10−13

efficiency is about 40%. As the power setpoint is increased, the active
constraint switches to the constraint on the cell potential, and it is not
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Fig. 3.14. Contour maps and operational constraints for the plant at steady
state corresponding to different power setpoints. Colored area: feasible re-
gion; Dotted lines: contours of the cost function; Point P: optimum for the
plant.
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possible to reach the maximum FU . The optimum efficiency therefore
drops. At a higher power density (0.45 W

cm2 ), the active constraint is the
one on current density, and the optimal operating point gives around
21% efficiency.
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Fig. 3.15. Contour maps and operational constraints for the nominal model
at steady-state corresponding to different power setpoints. Colored area: fea-
sible region; Dotted lines: contours of the cost function; Point M: optimum
for the model.

Similar contour maps can be drawn for the nominal model (Fig-
ure 3.15). Point M indicates the location of the model optimum. The
constraints predicted by the model are different from those of the plant,
and it is also possible that, for the same power setpoint, the set of ac-
tive constraints at the optimum are different for the nominal model
and the plant. For example, at the power density of 0.3 W

cm2 , the active
constraint for the plant is on the cell potential, whereas both the cell
potential and the fuel utilization constraints are active for the model.
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Even more different, at the power density of 0.45 W
cm2 , the plant opti-

mum is at the intersection of the lower bound on λair and the upper
bound on the current density, whereas the lower bound on λair is not
active for the nominal model.

Application of Constraint Adaptation Alone

The time constant of the fuel cell is around 40 s. A RTO period of
10 min is chosen, which leaves sufficient time for the system to reach
steady-state after an input change. The constraint-adaptation scheme
is applied using the parameter values of Table 3.7 for the plant and
the nominal model. The nominal model corresponds to a steady-state
model, i.e., with ∂Tstack

∂t = 0 in (A.1). Figure 3.16 shows the response
of some of the key variables. Initially, the plant is at steady-state
with the power setpoint P S

el = 0.4 W
cm2 and the corresponding input

u0 = [19× 10−4, 14× 10−3, 26.00 ]T. Constraint adaptation is started
at t = 10 min with B = I2. Since the system is not optimized up to
t = 10 min, the efficiency is low in this period. Although we start at a
conservative operating point, the algorithm overestimates the adapta-
tion of Ucell in the first RTO iteration. This results in a slight violation
of the constraint between 10 and 20 min. Convergence is reached at
the second iteration. At the end of the third RTO period, at time
t = 40 min, the setpoint is changed to P S

el = 0.2 W
cm2 . As a result, the

fuel and air flow rates and the current are reduced, and efficiency goes
up. The active constraint is now FU . This constraint is not violated
since it depends only on the input variables that are not subject to
plant-model mismatch. At t = 70 min, the setpoint is changed back to
P S

el = 0.4 W
cm2 and, again, there is violation of the Ucell constraint.

Accuracy of Constraint Adaptation.

The accuracy of the constraint-adaptation scheme upon convergence
is illustrated in Table 3.8. The performance loss, ηloss, is computed as,

ηloss =
η⋆

p − η⋆
∞

η⋆
p

(3.59)

where η⋆
p is the true optimum of the (simulated) plant, and η⋆

∞ is
the objective function value obtained upon convergence of constraint
adapation. The resulting optimality loss is negligible in spite of the
presence of model mismatch.
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Table 3.8. Accuracy of the constraint-adaptation scheme.

P S
el = 0.2 W

cm2 P S
el = 0.4 W

cm2

True
optimum

Constraint
adaptation

True
optimum

Constraint
adaptation

u1 (mol
s ) 5.186× 10−4 5.187× 10−4 1.338× 10−3 1.337× 10−3

u2 (mol
s ) 1.142× 10−3 1.138× 10−3 2.575× 10−3 2.627× 10−3

u3 (A) 14.012 14.013 28.571 28.571

η 0.3946 0.3946 0.3016 0.3015

ηloss 4.37× 10−7 3.69× 10−5

Combination of Constraint Adaptation with MPC

The same initial input and power setpoint changes as for constraint
adaptation alone are applied. Constraint adaptation and control is
started at t = 10 min with B = I2.
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Since there are three input variables and one equality constraint,
no more than two (independent) inequality constraints can be active
simultaneously. For this SOFC system, the bounds on Tstack do not
become active with varying power demand. Furthermore, since there
is near collinearity between Ucell, FU and i, these constraints are not
controlled simultaneously. Hence, the quadratic objective function to
be minimized by MPC can be chosen as:

Jk(u(t)) =

p
∑

l=1

{

p2
(

Pel(t+ l|t)− P S
el

)2
+ q2

a,k

(

Ḡa,k(t+ l|t)− ḠU
a,k

)2

+∆u(t+ l − 1)TRTR∆u(t+ l − 1) + c2ξk(t+ l − 1)2
}

(3.60)

where Ḡa,k = (Ḡ)r,k is a constraint that is active during the kth RTO
iteration, chosen from among the constraints UL

cell ≤ Ucell, FU ≤ FUU

and i ≤ iU in Problem (3.58). The remaining degree of freedom is fixed
by selecting Ak+1 = [u⋆

2,k+1, −u⋆
1,k+1, 0 ]T (see (3.53)). This choice of

Ak+1 is equivalent to fixing the excess air ratio λair to its optimal value
given by constraint adaptation at iteration k. An equivalent option is
to directly include λair as a second controlled inequality constraint,
whether it is active or not at the optimum.

Combination of MPC with the constraint-adaptation scheme is il-
lustrated schematically in Figure 3.17. At the kth RTO iteration, the
optimal solution generated by the constraint-adaptation level is passed
to the MPC level in the form of information regarding (i) the active set
Ak+1, which indicates the inequality constraint Ḡa,k to be controlled,
and (ii) an optimal target for the additional degree of freedom, given
by Ak+1 and u⋆

k+1.
A time step of 2 s is chosen for MPC. The step response model is

obtained for u = [8.75× 10−4, 71.5× 10−4, 20.00 ]T and its truncation
order is n = 50. The length of the control and prediction horizons are
m = 6 and p = 9, respectively.

The performance of MPC is highly dependent on the weights chosen
for the different terms in the objective function and the bounds on the
input moves. These bounds for the flow rates are chosen as ∆uU

1 =
5 × 10−3 and ∆uU

2 = 8.33 × 10−2. No such bound is used for the
current as this would hinder quick tracking of the power setpoint.
The weighting matrix for the rate of change of the inputs is R =
diag(10−4, 10−2, 10−1).

For the other weights, two different cases are presented in Table 3.9.
In Case 1, tracking of the power setpoint is favored over that of the
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Fig. 3.17. Combination of MPC with constraint adaptation.

Table 3.9. MPC Weights

p qa,k c

Case 1 5 0.005 0.01

Case 2 0.001 0.05 1

active inequality constraint and the optimal value of the additional
degree of freedom. The response is shown in Figure 3.18. The power
tracking is virtually instantaneous, the power reaches its setpoint in
about 20 s. However, this aggressive policy leads to small damped
oscillations when the setpoint is changed at t = 40 min and t = 70
min. For instance, at t = 70 min, an abrupt increase of the air flow
rate is observed, which results in a decrease of the efficiency.

A less aggressive set of weights is used in Case 2, for which the
smoother response is shown in Figure 3.19. The peaks and damped
oscillations are eliminated at the expense of a slower tracking of the
power setpoint, which is now reached within 2-3 min of the change.
Note that the constraints are respected in both cases .
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Fig. 3.18. Solid lines: Constraint adaptation with MPC for Case 1.
Dashed lines: Power setpoint and constraint bounds. The three inputs are
the flow rates ṅfuel,in and ṅair,in, and the current I , which is considered
proportional to the current density i.
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ṅfuel,in
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P-i Curve.

The power density vs. current density curves are shown in Figure 3.20.
The location of the optimal operating points obtained upon conver-
gence of the RTO-MPC scheme for the two different power setpoints
are clearly indicated. In both cases, optimal operation is on the left
side of the maximum power density. The constraints on current density,
cell potential and fuel utilization have prevented the operating point
from crossing to the right of the maximum power density. Note that
the step response model used by MPC was obtained on the left side
of the maximum power density and thus would become inadequate if
the plant operation crosses to the right side. Golbert and Lewin (2007)
[44] have reported oscillatory behavior when the MPC model and the
plant are on different sides of the maximum power density.
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Fig. 3.20. Location of the optimum operating point upon convergence of
the RTO-MPC scheme for the two different power-density setpoints of 0.2
and 0.4 W

cm2 .

3.4 Summary

In this chapter, constraint-adaptation algorithms have been considered
in the context of real-time optimization. The underlying idea is to use
measurements to adapt the process constraints at each RTO iteration,
while relying on a fixed process model for satisfying the remaining part
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of the NCO. Constraint-adaptation algorithms are based on the obser-
vation that, for many problems, most of the optimization potential
arises from activating the correct set of constraints. In Section 3.1, a
theoretical justification of these methods, which is based on a varia-
tional analysis of the cost function, has been provided in the case of
moderate parametric uncertainty. Then, in Section 3.2, various aspects
of the constraint-adaptation algorithm have been discussed and illus-
trated through numerical examples, including the detection of active
constraints and convergence issues. The case study of an isothermal
stirred-tank reactor has been presented in Subsection 3.2.8, which il-
lustrates the applicability and suitability of this approach.

When the optimal solution lies on the constraints of the RTO prob-
lem, constraint adaptation provides fast improvement within a small
number of RTO iterations. Moreover, this approach does not require
that the gradient of the cost and constraint functions be estimated
experimentally, which makes it less sensitive to measurement noise
than many other RTO methods. However, the constraint-adaptation
algorithm may terminate at a suboptimal, yet feasible, point upon
convergence. Moreover, this loss of optimality directly depends on the
quality of the (fixed) process model.

It should also be noted that, unlike many model-free RTO meth-
ods, constraint adaptation allows the handling of constraints without
having to make any assumption regarding the active constraints at
the optimal point. A major advantage with respect to two-step RTO
methods is that the nominal model that is used does not require re-
finement, thereby avoiding the conflict between the identification and
optimization objectives. These features, together with constraint sat-
isfaction upon convergence and fast convergence, make the constraint-
adaptation approach much appealing for RTO applications.

If the constrained variables can be measured (or estimated) on-
line at a sampling period much smaller than the time constant of the
controlled plant, it is possible to deal with constraint violations prior
to convergence of constraint adaptation by controlling the constraints
that define optimal operation. An optimization scheme combining con-
straint adaptation with an MPC constraint controller has been pro-
posed in Section 3.3. This scheme presents two important features: (i)
An alternative constraint-adaptation scheme has been proposed that
permits to update the setpoints for the constraints in the constraint
controller at each iteration. The setpoints for the active constraints
reach their actual constraint bound upon convergence. And (ii), the
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remaining degrees of freedom are controlled to their optimal values
along sensitivity-seeking directions.

Finally, the real-time optimization of a simple SOFC system has
been considered in Subsection 3.3.3 to respond to the present techno-
logical need to efficiently operate fuel cell systems while ensuring that
the operation remains within a safe region. A lumped dynamic model
was used for simulation purposes, which considers the electrochemical,
energy and mass balances taking place inside the cell. An optimiza-
tion problem has been formulated to maximize electrical efficiency at
a given power density, while respecting a number of operational con-
straints. It is shown that the constraints that determine optimal op-
eration vary with the power density. Furthermore, in the presence of
model mismatch, the optimum given by the model may not provide a
feasible operating point, and not even the correct set of active con-
straints. The optimization scheme combining constraint adaptation
at the RTO level with MPC constraint control at the process con-
trol level has been illustrated through simulation. The approach can
be applied to more elaborate fuel cell systems, where ensuring safety
and operational constraints and maximizing efficiency is important.
Experimental validation of the results presented in Subsection 3.3.3 is
foreseen for an experimental SOFC system available at LENI in EPFL.





4

Real-Time Optimization via Modifier

Adaptation

The constraint-adaptation scheme studied in the previous chapter
guarantees feasibility upon convergence. It uses measurements of the
constraints in order to modify the constraint values in the optimiza-
tion problem. However, since the gradients of the constraint and cost
functions are obtained from an inaccurate process model, constraint
adaptation per se does not enforce optimality. In this chapter, ex-
perimental gradient information is incorporated into the optimization
problem in order to enforce optimality. This approach, named mod-
ifier adaptation, is presented and analyzed in Section 4.1, including
discussions on KKT matching, local convergence and model adequacy.
Alternative modifier-adaptation schemes are also considered, and links
to previous work are highlighted.

Approaches that have been proposed for estimating experimental
gradients in the context of RTO were reviewed in Subsection 1.2.6. The
dual ISOPE approach described in Subsection 2.4.4 uses the current
and past operating points to estimate the gradients. In that approach,
a constraint that prevents ill-conditioning in gradient computation was
proposed in order to ensure sufficient information in the measurements.
Following similar ideas, a constraint that enforces an upper bound on
the gradient error is proposed in Section 4.2 of this thesis. This upper
bound includes the effect of both truncation errors and measurement
noise. This constraint is included in a dual modifier-adaptation ap-
proach.
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4.1 Modifier Adaptation

4.1.1 Principles of Modifier Adaptation

The idea behind modifier adaptation is to use measurements for cor-
recting the cost and constraint predictions between successive RTO
iterations in such a way that a KKT point for the model coincides
with the plant optimum [37]. In contrast to two-step RTO schemes,
the model parameters θ are not updated. Instead, a linear modifica-
tion of the cost and constraint functions is implemented, which relies
on so-called modifiers representing the difference between the actual
plant values and the predicted values of some KKT-related quantities.

At a given operating point u, the modified constraint functions
read:

Gm(u,θ) := G(u,θ) + ε + λGT

(u− u) (4.1)

with the modifiers ε ∈ IRng and λG ∈ IRnu×ng given by:

ε := Gp(u)−G(u,θ) (4.2)

λGT

:=
∂Gp

∂u
(u)− ∂G

∂u
(u,θ). (4.3)

A graphical interpretation of the modifiers in the jth input direction for
the constraintGi is depicted in Figure 4.1. The modifier εi corresponds
to the gap between the plant and predicted constraint values at u,
whereas λGi represents the difference between the slopes of Gp,i and
Gi at u.

Likewise, the cost function is corrected as:

Φm(u,θ) := Φ(u,θ) + λΦT

u (4.4)

where the modifier λΦ ∈ IRnu is given by:

λΦT

:=
∂Φp

∂u
(u)− ∂Φ

∂u
(u,θ). (4.5)

Observe that the cost modification comprises only a linear term in u,

as the addition of the constant term
(

Φp(u)− Φ(u,θ)− λΦT

u
)

to the

cost function does not affect the solution point.
The modifiers and KKT-related quantities in (4.2), (4.3) and (4.5)

can be denoted collectively as nK-dimensional vectors,
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Fig. 4.1. Linear modification of the constraint function Gi so that the value
and gradient of the modified function Gm,i match those of Gp,i at u.

ΛT :=
(

ε1, . . . , εng
,λG1

T

, . . . ,λGng
T

,λΦT
)

C
T :=

(

G1, . . . , Gng
,
∂G1

∂u
, . . . ,

∂Gng

∂u
,
∂Φ

∂u

)

,

with nK = ng + nu(ng + 1). This way, (4.2), (4.3) and (4.5) can be
rewritten as:

Λ(u) = Cp(u)− C(u,θ). (4.6)

Implementation of these modifications requires the cost and con-
straint gradients of the plant,

∂Φp

∂u
(u) and

∂Gp

∂u
(u), to be available at

u. These gradients can be inferred from the measured plant outputs

yp(u) and the estimated output gradients
∂yp

∂u
(u):

∂Φp

∂u
(u) =

∂φ

∂u
(u,yp(u)) +

∂φ

∂y
(u,yp(u))

∂yp

∂u
(u)

∂Gp

∂u
(u) =

∂g

∂u
(u,yp(u)) +

∂g

∂y
(u,yp(u))

∂yp

∂u
(u).

A discussion of how to estimate the gradients for the plant is differed
to Subsection 4.2.1.

The proposed modifier-adaptation scheme is depicted in Figure 4.2.
It consists in applying the foregoing modification procedure to deter-
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mine the new operating point. In the kth iteration, the next point uk+1

is obtained as:

uk+1 := u⋆
k+1, (4.7)

where

u⋆
k+1 ∈ arg min

u
Φm(u,θ) = Φ(u,θ) + λΦ

k

T

u (4.8)

s.t. Gm(u,θ) = G(u,θ) + εk + λG
k

T

(u− uk) ≤ 0

uL ≤ u ≤ uU.

Here, uk is the current operating point; εk and λG
k are the constraint-

value and constraint-gradient modifiers at the current iteration; and λΦ
k

is the cost-gradient modifier at the current iteration. These modifiers
are adapted repeatedly by using (estimates of) the constraint values
and cost and constraint gradients of the plant at uk.

The simplest adaptation strategy is to implement the full modifi-
cation given by (4.6) at each iteration:

Λk+1 = Cp(uk+1)− C(uk+1,θ). (4.9)

However, this simple strategy may lead to excessive correction when
operating far away from the optimum, and it may also make modi-
fier adaptation very sensitive to measurement noise. A better strategy
consists in filtering the modifiers, e.g., with a first-order exponential
filter:

Λk+1 = (I− K)Λk + K [Cp(uk+1)− C(uk+1,θ)] (4.10)

Run Delay

k ← k + 1
Modifier

Filter (4.10)

✲

✛

Λk

Λk+1

Static Plant
Modified

Optimization (4.8)
✲

uk+1

❥

✲

❄✲

✛

Cp(uk+1)

C(uk+1,θ)
−

Fig. 4.2. Modifier-adaptation approach for real-time optimization.
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where K ∈ IR
nK×nK is a gain matrix. A possible choice for K is the

block-diagonal matrix

K := diag
(

b1, . . . , bng
, q1Inu

, . . . , qng
Inu

, dInu

)

,

where the gain entries b1, . . . , bng
, q1, . . . , qng

, d are taken in (0, 1]. A
block-diagonal gain matrix has the advantage that it naturally decou-
ples the modifier adaptation laws as:

εi,k+1 = (1 − bi)εi,k + bi [Gp,i(uk+1)−Gi(uk+1,θ)] , (4.11)

i = 1, . . . , ng

λGi

k+1

T

= (1 − qi)λGi

k

T

+ qi

[

∂Gp,i

∂u
(uk+1)−

∂Gi

∂u
(uk+1,θ)

]

, (4.12)

i = 1, . . . , ng

λΦ
k+1

T

= (1 − d)λΦ
k

T

+ d

[

∂Φp

∂u
(uk+1)−

∂Φ

∂u
(uk+1,θ)

]

. (4.13)

More general choices of the gain matrix are of course possible but are
typically more difficult to make. The condition for local convergence
that will be introduced in Subsection 4.1.4 can be used as a basis for
providing guidelines for choosing the elements of the gain matrix.

It may happen that the constraint and cost gradients cannot be
reliably estimated due to the particular process characteristics or high
noise level (see Subsection 4.2.1). In this case, one may decide not to
adapt the gradient modifiers, e.g., by setting q1 = · · · = qng

= d = 0;
that is, the modifier-adaptation algorithm reduces to the constraint-
adaptation scheme of Chapter 3.

The computational complexity of the modifier-adaptation algo-
rithm is dictated by the solution of the NLP subproblems. The com-
plexity of the NLP subproblems is similar to that of the optimization
step in the classical two-step approach. Modifier adaptation is actually
less computationally demanding than the classical two-step approach
in that the solution of a parameter estimation problem is no longer
needed at each iteration.

4.1.2 Modifier-Adaptation Algorithm

Formal statement and analysis of the modifier-adaptation algorithm
requires a number of definitions. An auxiliary constraint modifier ε̂
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is introduced first, which includes the constant terms in the modified
constraints (4.1),

ε̂ := ε− λGT

u.

The modified optimization problem (4.8) expressed in terms of the
auxiliary modifiers ε̂ reads:

u⋆
k+1 ∈ arg min

u
Φm(u,θ) = Φ(u,θ) + λΦ

k

T

u (4.14)

s.t. Gm(u,θ) = G(u,θ) + ε̂k + λG
k

T

u ≤ 0

uL ≤ u ≤ uU.

The corresponding nK-dimensional vector of modifiers is denoted by

Λ̂
T

:=
(

ε̂1, . . . , ε̂ng
,λG1

T

, . . . ,λGng
T

,λΦT
)

,

and is related to Λ as:

Λk = T(uk)Λ̂k,

with the matrix T(u) ∈ IRnK×nK given by

T(u) :=

























1 uT

. . .
. . .

1 uT

Inu

. . .

Inu

Inu

























.

The feasible solution map, U , is defined as

U(Λ̂) := {u ∈ [uL,uU] : G(u,θ) + ε̂ + λG
k

T

u ≤ 0},

such that U(Λ̂) is a subset of IRnu for each Λ̂ ∈ IRnK . Observe that

U(Λ̂) may be empty for certain values of Λ̂, which motivates the def-
inition of the domain of U as

domU := {Λ̂ ∈ IRnK : U(Λ̂) 6= ∅}.
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The optimal value function, Φ⋆
m, and the optimal solution map, U⋆,

are defined as

Φ⋆
m(Λ̂) :=

{

inf{Φ(u,θ) + λΦ
k

T

u : u ∈ U(Λ̂)}, if Λ̂ ∈ domU
+∞, otherwise

U⋆(Λ̂) :={u ∈ U(Λ̂) : Φ(u,θ) + λΦ
k

T

u = Φ⋆
m(Λ̂)}.

The cost function of the modified problem being continuous and its
feasible region being bounded for Λ̂ and θ given, it follows that the
infimum Φ⋆

m(Λ̂) is assumed somewhere on [uL,uU] for each Λ̂ ∈ domU

by Weierstrass’ theorem (see, e.g., [7], Theorem 2.3.1); Φ⋆
m(Λ̂) is thus

a minimum. Besides the existence of a minimum point, we make the
following uniqueness assumption throughout:

Assumption 4.1 For each Λ̂ ∈ domU , the modified optimization
problem (4.8) has a unique (global) solution point.

This assumption implies that U⋆(Λ̂) is a singleton, for each Λ̂ ∈
domU . That is, at any RTO iteration k we have u⋆

k+1 := U⋆(Λ̂k), if

Λ̂k ∈ domU . This uniqueness assumption precludes multiple global
solution points, but it assumes nothing regarding the existence of lo-
cal optima. Uniqueness of the global optimum is required in order to
establish convergence. If the model-based optimization problem exhib-
ited several global solutions, the optimizer would randomly pick either
one of these global solution points at any iteration, thereby making
convergence hopeless.

Consider the map Γ(Λ̂) that represents the difference between the
plant and predicted KKT quantities C for a given set of auxiliary
modifiers Λ̂:

Γ(Λ̂) := Cp(u)− C(u,θ), u = U⋆(Λ̂). (4.15)

With this, the modifier-update law (4.10) can be rewritten as:

T(uk+1) Λ̂k+1 = (I− K) T(uk) Λ̂k + K Γ(Λ̂k).

Noting that T is invertible, with (T(u))−1 = T(−u), this latter law
can then be written in the generic form:

Λ̂k+1 =M(Λ̂k, Λ̂k−1), (4.16)
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with

M(Λ̂k, Λ̂k−1) := T(−U⋆(Λ̂k)) (I− K) T(U⋆(Λ̂k−1)) Λ̂k (4.17)

+ T(−U⋆(Λ̂k)) K Γ(Λ̂k).

4.1.3 KKT Matching

Perhaps the most attractive property of modifier-adaptation schemes
is that, upon convergence (under noise-free conditions), the resulting
KKT point u∞ for the modified model-based optimization problem
(4.8) is also a KKT point for the plant optimization problem (2.2).
This is formalized in the following theorem.

Theorem 4.1 (KKT matching) Let the gain matrix K be nonsin-

gular and assume that the modifier-adaptation algorithmM(Λ̂k, Λ̂k−1)
converges, with u∞ := limk→∞ uk being a KKT point for the modified
problem (4.8). Then, u∞ is also a KKT point for the plant.

Proof. Since K is nonsingular, letting k→∞ in (4.10) gives:

Λ∞ = Cp(u∞)− C(u∞,θ), (4.18)

that is,

εi,∞ = Gp,i(u∞)−Gi(u∞,θ), i = 1, . . . , ng (4.19)

λGi

∞
T

=
∂Gp,i

∂u
(u∞)− ∂Gi

∂u
(u∞,θ), i = 1, . . . , ng (4.20)

λΦ
∞

T

=
∂Φp

∂u
(u∞)− ∂Φ

∂u
(u∞,θ). (4.21)

It is then readily seen that, upon convergence, the KKT-elements Cm

for the modified problem (4.8) match the corresponding elements Cp

for the plant:

Cm(u∞,θ) = C(u∞,θ) + Λ∞ = Cp(u∞), (4.22)

or, considering the individual terms:

Gm(u∞,θ) = G(u∞,θ) + ε∞ = Gp(u∞) (4.23)

∂Gm

∂u
(u∞,θ) =

∂G

∂u
(u∞,θ) + λG

∞
T

=
∂Gp

∂u
(u∞) (4.24)

∂Φm

∂u
(u∞,θ) =

∂Φ

∂u
(u∞,θ) + λΦ

∞
T

=
∂Φp

∂u
(u∞). (4.25)
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Since, by assumption, u∞ is a KKT point for the modified problem
(4.8), it satisfies equations (2.5)-(2.8) with the associated Lagrange
multipliers µ∞, ζU

∞ and ζL
∞. Hence, from (4.23)-(4.25), u∞ is also a

KKT point for the original problem (2.2), with the same set of La-
grange multipliers. ✷

A direct consequence of Theorem 4.1 is that, at u∞, the active con-
straints and the corresponding Lagrange multipliers are the same for
the modified problem (4.8) and the plant problem (2.2). Furthermore,
note that the equalities (4.23)-(4.25) represent more than is strictly
needed for KKT matching: indeed, since the Lagrange multipliers µ∞
corresponding to inactive constraints are zero, one simply needs to
match the values and gradients of the active constraints. However,
adaptation of the inactive constraints and their gradients is required
to detect the active set, which is not known a priori.

Note also that no guarantee can be given that a global optimizer
for the plant has been determined, even if the successive operating
points uk+1 correspond to global solutions of the modified problem
(4.8). Indeed, the converged operating point u∞ may correspond to
any stationary point for the plant, e.g., also to a local minimum. A
special case in which modifier-adaptation guarantees a global optimum
for the plant is that of the optimization problem (2.2) being convex,
although this condition can never be verified in practice.

The following numerical example illustrates the convergence of
modifier adaptation to a KKT point in the convex case.

Example 4.1 Consider the following convex optimization problem:

min
u≥0

Φ(u,θ) := (u1 − θ1)2 + 4(u2 − 2.5)2 (4.26)

s.t. G := (u1 − θ2)2 − 4θ3(u2 − θ4)− 2 ≤ 0,

comprising two decision variables u = [u1 u2]
T, four model parameters

θ = [θ1 θ2 θ3 θ4]
T, and a single inequality constraint G. The parameter

values θ for the plant (simulated reality) and the model are reported in
Table 4.1.

Figure 4.3 illustrates the convergence of several implementations
of the modifier-adaptation scheme. Note that, due to parametric er-
rors, the plant optimum (point P) and model optimum (point M) are
quite different. Starting from the model optimum, constraint adaptation
alone is first applied, i.e., with d = 0, and Q = q = 0; the iterations
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Table 4.1. Values of the uncertain parameters θ in Problem (4.26) corre-
sponding to the plant and the model.

θ1 θ2 θ3 θ4
Plant 3.5 2.5 -0.4 1.0
Model 2.0 1.5 -0.5 0.5

a with B = b = 0.8 converge to the feasible, yet suboptimal operating
point C. By enabling the correction of the gradient of the cost function
(b = d = 0.8; q = 0), one obtains iterations b, while enabling the cor-
rection of the gradient of the constraint (b = q = 0.8; d = 0) yields
the iterations c. These two intermediate cases show how the plant opti-
mum can be approached with respect to case a by correcting the different
gradients involved in the KKT conditions. Finally, the full modifier-
adaptation algorithm applied with b = d = q = 0.8 produces iterations
d, which converge to the plant optimum.

For some problems, the iterations may converge by following an
infeasible path (i.e., with violation of the constraints), even if the
modifier-adaptation algorithm starts at a feasible point. A way of re-
ducing the magnitude of a constraint violation is by reducing the gain
coefficients in the matrix K; however, this is at the expense of a slower
convergence rate. Constraint violation can also be prevented by devis-
ing a way to combine modifier-adaptation with a constraint controller,
as is done in Subsection 3.3 for the case of constraint adaptation alone.
Even though the iterations may follow an infeasible path, a straight-
forward consequence of Theorem 4.1 is that a convergent modifier-
adaptation scheme yields feasible operation after a finite number of
RTO iterations upon backing-off the constraints in the original prob-
lem.

Theorem 4.1 establishes that, under mild conditions, a convergent
implementation of the scheme (4.7), (4.8) and (4.10) finds a KKT
point for the plant optimization problem (2.2). Yet, convergence is
not guaranteed. It may happen, for instance, that the modified NLP
problem (4.8) becomes infeasible because a modifier is too large, or
that the modifier sequence exhibits undamped oscillations when some
gain coefficients in the matrix K are too large. Some guidance regarding
the choice of the gain matrix K is given subsequently, based on a local
convergence analysis.
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Fig. 4.3. Modifier adaptation applied to Problem (4.26). Thick solid line:
constraint for the plant; Thick dash-dotted line: constraint predicted by the
model; Dotted lines: contours of the cost function; Point P: plant optimum;
Point M: model optimum; Point C: optimum found using only constraint
adaptation.

4.1.4 Convergence Analysis

This subsection derives necessary conditions for the modifier-adaptation
algorithm (4.7), (4.8) and (4.10) to converge (under noise-free condi-
tions). To conduct the analysis, the auxiliary constraint modifier ε̂

introduced in Subsection 4.1.2, which corresponds to the sum of the
constant terms in the constraint modification (4.1), is employed.

Theorem 4.2 (Asymptotic Stability - Filters on the Modi-

fiers) Let Λ̂∞ be a fixed point of the modifier-adaptation algorithm
M, and assume that:

1. the second-order sufficient conditions for a local minimum of the
modified problem (4.8) hold at u∞ = U⋆(Λ̂∞), with the associated
Lagrange multipliers µ∞, ζU

∞ and ζL
∞;
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2. the regularity condition (2.4) holds at u∞;
3. µi,∞ > 0, ζUi,∞ > 0, and ζLi,∞ > 0 for each active constraint.

Then, a necessary condition for the local asymptotic convergence of
M with filter on the modifiers to the fixed point Λ̂∞ is that the gain
matrix K be chosen such that

̺

{(

A∞ B∞
InK

0nK×nK

)}

< 1, (4.27)

with

A∞ = T−1
∞

([(

λG
∞

T

0

)

− K Ξ∞

]

Pu M−1
∞ N∞ + (I− K)T∞

)

,

(4.28)

B∞ = −T−1
∞ (I− K)

(

λG
∞

T

0

)

Pu M−1
∞ N∞, (4.29)

where T∞ = T(u∞). The matrices M∞ ∈ IR
(ng+3nu)×(ng+3nu) and

Pu ∈ IRnu×(ng+3nu) are the same as in Theorem 3.4, and the matrices
N∞ ∈ IR(ng+3nu)×nK and Ξ∞ ∈ IRnK×nu are defined as

N∞ :=





0nu×ng
µ1,∞Inu

. . . µng,∞Inu
Inu

diag(µ∞)
02nu×ng



 ,

Ξ∞ :=
∂Cp

∂u
(u∞)− ∂C

∂u
(u∞,θ) =



















λG
∞

T

∂2Gp,1

∂u2 − ∂2G1

∂u2

...
∂2Gp,ng

∂u2 − ∂2Gng

∂u2

∂2Φp

∂u2 − ∂2Φ
∂u2



















(u∞)

,

and ̺{·} stands for the spectral radius. Moreover, if the modifier-
adaptation algorithm converges, then the rate of convergence is linear.

Proof. It follows from the assumptions and Theorem 2.3 that there
is some η > 0 such that, for each Λ̂ ∈ Bη(Λ̂∞), there exists a continu-

ously differentiable vector function u⋆ = U⋆(Λ̂) satisfying the second-
order sufficient conditions for a local minimum of the modified problem
(4.8). Moreover, from Theorem 2.3, we have:
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∂U⋆

∂Λ̂
(Λ̂∞) = −Pu M−1

∞ N∞

The constraint functions Gi andGp,i, i = 1, . . . , ng, being differentiable
with respect to u, it follows that a first order approximation of (4.10)
in the neighborhood of u∞ is given by

δΛk+1 = (I− K)δΛk + K Ξ∞δu
⋆
k+1 (4.30)

where δΛk = Λk −Λ∞ and δu⋆
k+1 = u⋆

k+1 − u∞.

Replacing δu⋆
k+1 = −Pu M−1

∞ N∞ δΛ̂k in (4.30) we obtain

δΛk+1 = (I− K)δΛk − K Ξ∞Pu M−1
∞ N∞ δΛ̂k. (4.31)

Also, a first order approximation of Λk = T(u⋆
k)Λ̂k in the neigh-

borhood of u∞ gives

δΛk = T∞δΛ̂k +

(

λ
G
∞

T

0

)

δu⋆
k

= T∞δΛ̂k −
(

λG
∞

T

0

)

Pu M−1
∞ N∞ δΛ̂k−1 (4.32)

Replacing (4.32) in (4.31) we have

T∞δΛ̂k+1 −
(

λG
∞

T

0

)

Pu M−1
∞ N∞ δΛ̂k = (I− K)T∞δΛ̂k

− (I− K)

(

λG
∞

T

0

)

Pu M−1
∞ N∞ δΛ̂k−1 − K Ξ∞Pu M−1

∞ N∞ δΛ̂k

and rearranging we have

T∞δΛ̂k+1 =

([(

λG
∞

T

0

)

− K Ξ∞

]

Pu M−1
∞ N∞ + (I− K)T∞

)

δΛ̂k

− (I− K)

(

λG
∞

T

0

)

Pu M−1
∞ N∞ δΛ̂k−1

which gives the linearization form of (4.16):

δΛ̂k+1 = A∞ δΛ̂k + B∞ δΛ̂k−1 (4.33)
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which can be written in the following way

(

δΛ̂k+1

δΛ̂k

)

= Υ∞

(

δΛ̂k

δΛ̂k−1

)

,

with

Υ∞ :=

(

A∞ B∞
InK

0nK×nK

)

. (4.34)

Clearly, a necessary condition for the modifier-adaptation algorithm
to converge to Λ̂∞ is that the gain matrix K be chosen such that the
(2nK × 2nK) matrix Υ∞ has spectral radius less than 1 (or any norm
of Υ∞ less than 1). Moreover, the relation (4.33) establishes the linear
rate of convergence of the modifier-adaptation scheme. ✷

Remark 4.1 In the special case that K = I, condition (4.27) reduces
to:

̺

{

T−1
∞

[(

λG
∞

T

0

)

−Ξ∞

]

Pu M−1
∞ N∞

}

< 1. (4.35)

The necessary condition for convergence given in Theorem 4.2 is
illustrated next.

Example 4.2 Consider the case d of Example 4.1, where modifier-
adaptation algorithm is applied to Problem (4.26) with b = d = q = 0.8.
The converged inputs and modifiers are given by:

u∞ = [2.8726 2.1632 ]T, Λ̂∞ = [3.4 −2 −0.4 −3 0 ]T.

At that particular point, the matrix Υ∞ is calculated and its eigenval-
ues are found to be 0.427, −0.395, 0.2 (multiplicity 4) and 0 (multi-
plicity 4). The spectral radius of Υ∞ is therefore less than 1, thereby
supporting the convergence shown earlier in Figure 4.3.

The next example shows how the necessary condition for conver-
gence can be used to guide the choice of the gain matrix K.

Example 4.3 Consider the optimization problem

min
−5≤u≤5

Φp(u) := (u− 1)2, (4.36)
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the unique solution of which is u⋆
p = 1. Let the model of the cost func-

tion be Φ(u) := θu2, where θ = 1
4 is a model parameter, and consider

the modified optimization problem:

min
−5≤u≤5

θu2 + λΦ
ku, (4.37)

where the cost gradient modifier λΦ is adapted according to (4.13):

λΦ
k+1 = (1− d)λΦ

k + d
[

2(u⋆
k+1 − 1)− 2θu⋆

k+1

]

. (4.38)

An unconstrained solution to Problem (4.37) is u⋆
k+1 = −λΦ

k

2θ , provided

that −5 ≤ −λΦ
k

2θ ≤ 5. Using this solution in (4.38) gives:

λΦ
k+1 =

(

1− d

θ

)

λΦ
k − 2d, (4.39)

a fixed point of which is λΦ
∞ = −2θ = − 1

2 . Since −λΦ
k

2θ ∈ [−5, 5], the
assumption of an unconstrained solution is verified in the neighborhood
of λΦ

∞.
Noting that Λ = Λ̂ = λΦ and ∂M

∂Λ̂k−1

(Λ̂∞) = 0, the matrix Υ∞ defined

in (4.34) reads:

Υ∞ =

(

1− d
θ 0

1 0

)

.

A necessary condition for the modifier adaptation algorithm to con-
verge is therefore −1 < (1− d

θ ) < 1, i.e., 0 < d < 1
2 .

4.1.5 Model Adequacy for Modifier-Adaptation Schemes

The model-adequacy requirements for two-step RTO approaches have
been reviewed in Subsection 2.3.2, where they were shown to be very
restrictive. In this subsection, model adequacy is investigated in the
context of modifier adaptation.

A process model is called adequate if modifier values, say Λ̄, can
be found such that a fixed point of the modifier-adaptation scheme
coincides with the plant optimum u⋆

p. The situation is much simpler
than for two-step approaches for two main reasons. Firstly, by choosing
Λ̄ = Λ∞ given by (4.22), the analogues of Conditions (2.25)-(2.27) in
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Criterion 2.1 are automatically satisfied. Secondly, because the adap-
tation step (4.10) does not require the solution of an optimization
problem, no such conditions as (2.29) and (2.30) are needed. The only
remaining (sufficient) condition for model adequacy in modifier adap-
tation is therefore the analogue of (2.28). In other words, modifier
values such that u⋆

p is a solution of the modified optimization prob-
lem (4.8) are guaranteed to exist provided that the reduced Hessian
of the cost function Φ is positive definite at u⋆

p. Interestingly, this
positive-definiteness requirement is independent of the modifier val-
ues themselves. Note that model adequacy is dictated by the second-
order derivatives only, since any mismatch in the cost and constraint
functions is corrected up to the first-order derivatives by the modifier-
adaptation scheme. The criterion for model adequacy can be formalized
as follows.

Criterion 4.1 (Model Adequacy for Modifier Adaptation) Let
u⋆

p be the unique plant optimum, which is assumed to be a regular point
for the constraints. If the process model is such that the reduced Hessian
of the cost function Φ is positive definite at u⋆

p,

∇2
rΦ(u⋆

p,θ) ≻ 0 (positive definite), (4.40)

then the process model is adequate for use in the modifier-adaptation
RTO scheme (4.7),(4.8), (4.10).

The fact that Criterion 4.1 is much easier to meet than Criterion 2.1
represents a clear advantage of modifier-adaptation schemes over two-
step approaches. In modifier adaptation, the key issue is not model
adequacy, but the availability of the KKT-related quantities Cp, which
include plant-gradient information.

4.1.6 Alternative Schemes

This thesis argues in favor of the formulation presented in Subsec-
tion 4.1.1, where the filters are placed on the modifiers Λ. This ap-
proach gives the ability to filter each constraint individually, i.e., it
allows direct control of the constraints and helps prevent constraint
violation. It also permits combination of modifier adaptation with a
constraint controller as in Section 3.3.

However, a number of alternative schemes are possible and are
briefly described in this subsection. These variants differ from the
modifier-adaptation algorithm (4.7), (4.8) and (4.10) either in their im-
plementation of filtering or in the way the modification itself is made.
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Alternative Filtering

Instead of putting the filters on the modifiers Λ as in (4.10), one can
filter the inputs u. In this variant, the modifiers Λk are updated ac-
cording to (4.6) as:

Λk = Cp(uk)− C(uk,θ), (4.41)

while the next operating point is calculated by a first-order exponential
filter:

uk+1 = (I− K)uk + Ku⋆
k+1, (4.42)

where K is a (nu×nu) gain matrix. Overall, this algorithm is given by
(4.8),(4.41),(4.42).

Using the same notation and uniqueness assumption as in Sub-
section 4.1.2, a possible way of formulating the modifier-adaptation
algorithm with filters on the inputs,Mf , is as follows:

uk+1 =Mf (uk) := uk + K[u⋆
k+1 − uk], (4.43)

with: u⋆
k+1 = U⋆(Λ̂k), if Λ̂k ∈ domU,

Λ̂k = T(−uk) (Cp(uk)− C(uk,θ)) .

Conditions under which this variant scheme reaches a KKT point
for the plant upon convergence are the same as those stated in Theo-
rem 4.1. This is easily seen by noting that (4.42) imposes u∞ = u⋆

∞,
and (4.18) imposes Cm(u∞,θ) = Cp(u∞).

A local convergence analysis (under noise-free conditions) can also
be performed in the neighborhood of a converged operating point u∞.

Theorem 4.3 (Asymptotic Stability - Filters on the Inputs)
Let u∞ be a fixed point of the modifier-adaptation algorithmMf given
in (4.43), and assume that:

1. the second-order sufficient conditions for a local minimum of the
modified problem (4.8) hold at u∞ = U⋆(Λ̂∞), with the associated
Lagrange multipliers µ∞, ζ

U

∞ and ζ
L

∞;
2. the regularity condition (2.4) holds at u∞;
3. µi,∞ > 0, ζUi,∞ > 0, and ζLi,∞ > 0 for each active constraint.

Then, a necessary condition for the local asymptotic convergence of
Mf to the fixed point u∞ is that the gain matrix K be chosen such
that
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̺

{

I− K

(

I + Pu M−1
∞ N∞T−1

∞

[

Ξ∞ −
(

λG
∞

T

0

)])}

< 1, (4.44)

where the matrices M∞ ∈ IR(ng+3nu)×(ng+3nu) and Pu ∈ IRnu×(ng+3nu)

are the same as in Theorem 3.4, the matrices N∞ ∈ IR(ng+3nu)×nK ,
Ξ∞ ∈ IRnK×nu and T∞ ∈ IRnK×nK are the same as in Theorem 4.2,
and ̺{·} stands for the spectral radius. Moreover, if the modifier-
adaptation algorithm converges, then the rate of convergence is linear.

Proof. The optimality conditions (2.8) and (2.6) for the modified
optimization problem (4.8) are

∂Lm

∂u
(u,θ) =

∂Φm

∂u
(u,θ) +

ng
∑

i=1

µi
∂Gm,i

∂u
(u,θ) + ζUT

+ ζLT

(4.45)

µTGm(u,θ) = 0, ζUT

(u− uU) = 0, ζLT

(uL − u) = 0 (4.46)

It follows from the assumptions and Theorem 2.3 that there is some
η > 0 such that, for each Λ̂ ∈ Bη(Λ̂∞), there exists a continuously

differentiable vector function u⋆ = U⋆(Λ̂) satisfying the second-order
sufficient conditions for a local minimum of the modified problem (4.8).
Moreover, from Theorem 2.3, we have:

∂U⋆

∂Λ̂
(Λ̂∞) = −Pu M−1

∞ N∞

where matrix M∞ ∈ IR(ng+3nu)×(ng+3nu) stands for the Jacobian of
(4.45) and (4.46) with respect to (u,µ, ζU, ζL) at Λ̂∞, and matrix

N∞ ∈ IR(ng+3nu)×nθ stands for the Jacobian of (4.45) and (4.46) with

respect to Λ̂ at Λ̂∞.
Equation (4.42) can be rewritten as

δuk+1 = (I− K) δuk + K δu⋆
k+1 (4.47)

where δuk+1 = uk+1 − u∞ and δu⋆
k+1 = u⋆

k+1 − u∞. A first-order

approximation of (4.47) in the neighborhood of Λ̂∞ is

δuk+1 = (I− K) δuk − K Pu M−1
∞ N∞δΛ̂k + o(‖δΛ̂k‖) (4.48)

Noting that the linearization form of Λk = T(uk)Λ̂k in the neighbor-
hood of u∞ is
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δΛk = T∞δΛ̂k +

(

λG
∞

T

0

)

δuk, (4.49)

we have the first-order approximation

δΛ̂k = −T−1
∞

(

λG
∞

T

0

)

δuk + T−1
∞ Ξ∞δuk + o(‖δuk‖). (4.50)

After replacement of (4.50) in (4.48) and rearrangement, we have

δuk+1 = Υf
∞δuk + o(‖δuk‖) (4.51)

with

Υf
∞ := I− K

(

I + Pu M−1
∞ N∞T−1

∞

[

Ξ∞ −
(

λG
∞

T

0

)])

(4.52)

It follows that a necessary condition for the modifier-adaptation al-
gorithm Mf to converge to u∞ is that the gain matrix K be chosen

such that the (nu × nu) matrix Υf
∞ has spectral radius less than 1.

Moreover, the relation (4.51) establishes the linear rate of convergence
of the modifier-adaptation scheme. ✷

Notice that the (ng + 3nu)× nu matrix

Nf
∞ := N∞T−1

∞

[

(

λG
∞ 0

)T

−Ξ∞

]

is the Jacobian of (4.45) and (4.46) with respect to u at u∞. Nf
∞ has

the following form:

Nf
∞ =

























∂2Φp

∂u2 − ∂2Φ
∂u2 +

ng
∑

i=1

µi,∞
(

∂2Gp,i

∂u2 − ∂2Gi

∂u2

)

−µ1,∞uT
∞

(

∂2Gp,1

∂u2 − ∂2G1

∂u2

)

...

−µng,∞uT
∞

(

∂2Gp,ng

∂u2 − ∂2Gng

∂u2

)

02nu×nu

























(u∞)

Remark 4.2 In the special case where K = I, the matrix Υf
∞ reduces

to:
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Υf
∞ = Pu M−1

∞ N∞T−1
∞

[(

λG
∞

T

0

)

−Ξ∞

]

(4.53)

Notice that the (nK × nK) matrix

T−1
∞

[

(

λG
∞ 0

)T

−Ξ∞

]

Pu M−1
∞ N∞

in Remark 4.1 has nu eigenvalues equal to those of Υf
∞ in (4.53),

and (nK − nu) eigenvalues equal to zero. This is consistent with the
fact that, in the absence of filtering, the necessary conditions of Theo-
rems 4.2 and 4.3 are equivalent.

Remark 4.3 (Unconstrained Problem) For an unconstrained op-
timization problem, the Jacobian matrices M∞ and Nf

∞ in Theorem 4.3
reduce to

M∞ =
∂2Φ

∂u2
(u∞,θ), Nf

∞ =
∂2Φp

∂u2
(u∞)− ∂2Φ

∂u2
(u∞,θ) (4.54)

and condition (4.44) reduces to

̺

{

I− K
(

∂2Φ
∂u2

)−1

(u∞)

(

∂2Φp

∂u2

)

(u∞)

}

< 1, (4.55)

Criterion 4.1 for model adequacy still holds for modifier-adaptation
with filter on the inputs.

Alternative Modification

This second variant of the modifier-adaptation algorithm considers a
linear modification of the process model rather than of the cost and
constraint functions in the optimization problem. At a given operating
point u, the process output is modified as:

ym(u,θ) := y(u,θ) + εy + λyT
(u− u), (4.56)

where εy ∈ IRny and λy ∈ IRnu×ny stand for the model modifiers.
In this modifier-adaptation variant, the operating point is updated

from the repeated solution of the following optimization problem:



119

u⋆
k+1 ∈ arg min

u
Φ̃m(u,θ) := φ

(

u,y(u,θ) + ε
y
k + λ

y
k

T
(u− uk)

)

s.t. G̃m(u,θ) := g
(

u,y(u,θ) + ε
y
k + λ

y
k

T
(u− uk)

)

≤ 0

uL ≤ u ≤ uU

where uk stands for the current operating point. Again, one can choose
between two filtering strategies:

1) Filter the ny(nu +1) model modifiers εy and λy, in which case the
adaptation proceeds as:

εyi

k+1 := (1− bi)εyi

k + bi [yp,i(uk+1)− yi(uk+1,θ)] , i = 1, . . . , ny

λ
yi

k+1
T

:= (1− qi)λyi

k
T

+ qi

[

∂yp,i

∂u
(uk+1)−

∂yi

∂u
(uk+1,θ)

]

,

i = 1, . . . , ny,

with the gain coefficients b1, . . . , bny
, q1, . . . , qny

∈ (0, 1], while the
new operating point is simply given by uk+1 := u⋆

k+1.
2) Filter the nu inputs u, which results in the same adaptation law

as (4.42) for the determination of the new operating point uk+1,
while the model modifiers are calculated as:

ε
y
k := yp(uk)− y(uk,θ) (4.57)

λ
y
k

T
:=

∂yp

∂u
(uk)− ∂y

∂u
(uk,θ). (4.58)

Interestingly, the model modifiers (4.57) correspond to the model shift
term ak introduced in Subsection 2.4.2.

If both φ(u,y) and g(u,y) are linear in u and y, the latter scheme
is identical to the modifier-adaptation variant (4.43) with filter on
the inputs. The difference between the two schemes is the definition
of the modifiers and the way the approach is viewed, either as an
approach where the modifiers are used to adapt the model that is
subsequently used in the optimization step, or as an approach where
the modifiers are used to adapt the constraints and the cost function in
the optimization problem. It follows from these considerations that the
local convergence condition for the modifier-adaptation variant with
modifiers on the model outputs and filters on the inputs is identical
to that given in Theorem 4.3 when the modifiers are on the cost and
constraint functions.
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4.1.7 Link to Previous Work

This subsection intends to highlight the distinction between the gra-
dient modifiers described in this thesis, and the gradient modifiers
proposed in the ISOPE literature.

Note that, if the gradient of the cost function is modified using
the ISOPE modifier (2.34), condition (2.33) is required for the gradi-
ent of the modified cost function to match the plant gradient upon
convergence. This is a bit awkward since, in principle, output value
matching should not be a prerequisite for output gradient matching.
This inconsistency can be removed by defining the gradient modifier
λΦ as in Subsection 4.1.1,

λΦ
k

T

:=
∂Φp

∂u
(uk)− ∂Φ

∂u
(uk,θ) (4.59)

=
∂φ

∂u
(uk,yp(uk)) +

∂φ

∂y
(uk,yp(uk))

∂yp

∂u
(uk)

− ∂φ

∂u
(uk,y(uk,θ))− ∂φ

∂y
(uk,y(uk,θ))

∂y

∂u
(uk,θ).

Interestingly, if condition (2.33) is satisfied, the gradient modifier λΦ

as defined in (4.59) reduces to the ISOPE modifier λ in (2.34).
For handling process-dependent constraints, the methodology pre-

sented in this thesis uses the approach of modifying the constraint
functions introduced by Gao and Engell [37]. This approach differs
significantly from that used in the ISOPE literature, which introduces
a Lagrangian modifier in the cost function [10, 28, 94]. However, ma-
jor differences also exist with the present work in that Gao and Engell
[37] used some of the ISOPE features in their algorithm, such as the
cost gradient modifier (including the model shift discussed in Subsec-
tion 2.4.2).

4.1.8 Case Study: Experimental Three-Tank System

The objective of this case study is to illustrate the applicability of the
constraint adaptation and modifier adaptation approaches on a real
experimental setup.

Experimental Setup

The three-tank system is depicted in Figure 4.4. It consists of the
three plexiglass cylinders T1, T2 and T3, whose cross-section area and
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height are A = 154 cm2 and H = 60 cm, respectively. Each cylinder
is equipped with a manual bottom valve V1, V2 and V3. Moreover,
the cylinder are serially connected through the manual valves V12
and V32. Liquid (water) is fed to the cylinders T1 and T3 by the
pumps P1 and P2, respectively, at a maximum flow rate of 6 L/min.
Level measurements in the cylinders are carried out by piezo-resistive
differential pressure sensors.

Fig. 4.4. Three-Tank System.

Subsequently, q1, q2 and q3 denote the outlet flow rates; q12 and
q32, the serial connection flow rates; qp1 and qp2, the inlet flow rates
delivered by the pumps; and h1, h2 and h3, the levels in the cylinders.

The liquid level hi in each tank is obtained as an affine function of
the voltage signal yi provided by the level sensor in that tank,

hi = zi1 + zi2 yi, i = 1, . . . , 3.

The flow rate qpi delivered by each pump is proportional to the voltage
ui ∈ [0, 8] applied to that pump,

qpi = wi ui, i = 1, 2

The voltages u1 and u2, rather than the flow rates qp1 and qp2 are
considered as input variables. The numerical values for the coefficients
zi1, zi2 and wi are reported in Table 4.2.
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Table 4.2. Calibration coefficients for the levels in the tanks and the flow
rates through the pumps.

zi1 zi2 wi

T1 37.69 -10.79 P1 13.22
T2 35.50 -7.224 P2 14.96
T3 40.94 -7.177

Table 4.3. Calibration coefficients for the flow rates from the tanks.

ai aj2

T1 0.1203 T1-T2 0.0381
T2 0.0613 T2-T3 0.0285
T3 0.1141

Optimization Problem Formulation

At steady-state, the mass conservation equations read:

A
dh1

dt
= qp1 − q1 − q12 = 0 (4.60)

A
dh2

dt
= q12 + q32 − q2 = 0 (4.61)

A
dh3

dt
= qp2 − q3 − q32 = 0. (4.62)

For simplicity, the flow rates are modeled as functions of the tank levels
using Torricelli’s rule:

qi = A ai

√

hi, i = 1, . . . , 3 (4.63)

qj2 = sign(dj2)A aj2

√

|dj2|, j = 1, 3, (4.64)

with dj2 := hj − h2. The model parameters ai, i = 1, . . . , 3, and aj2,
j = 1, 3, have been estimated from steady-state measurements using a
least-square approach. The estimated values are reported in Table 4.3.
This model is selected as the nominal model subsequently. The time
constant of the system, with all the valves in fully open position, is
about 3 minutes.

The optimization problem consists in minimizing the overall pump-
ing effort, while maintaining the liquid level between given limits:
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min
u1,u2

u2
1 + u2

2 (4.65)

s.t. model (4.60)-(4.64)

hL ≤ h1, h2, h3 ≤ hU,

uL ≤ u1, u2 ≤ uU.

Upper and lower bounds on the pump voltages and liquid levels are
taken as hL = 5 cm, hU = 30 cm, uL = 0 V and uU = 8 V.

In the forthcoming implementations of modifier adaptation, the
pump voltages do not become lower than 4 V, and the three-tank sys-
tem operates always with d12 > 0 and d32 > 0. Hence, within the re-
gion of operation, the sign of d12 and d32 does not change, and (4.64)
gives smooth equations. Therefore, the assumption made in Subsec-
tion 2.1.1 that the constraints G are twice continuously differentiable
with respect to u holds.

Real-time Optimization using Modifier Adaptation

Modifier adaptation is implemented based on the update laws (3.11)
and (4.12). Note that the cost gradient does not need adaptation since
the cost function, which depends only on the input variables u1 and u2,
is perfectly known. A RTO period of 30 min is chosen, which leaves suf-
ficient time for the system to reach steady-state after an input change.
Measurements of the tank levels are taken every 1 sec, and the av-
erage value over the last 10 min of measurements is considered when
adapting the modifiers.

Constraint Adaptation Alone.

The results shown in Figure 4.5 correspond to the modifier adaptation
iterates with no correction of the constraint gradients. The algorithm
starts from the conservative operating point u1 = 6.0, u2 = 6.2 and
uses the constraint filter parameter b = 0.5.
In the first part of the experiment, all the manual valves are in fully
open position. The iterates converge to an operating point where h2

is at its lower bound of 5 cm. At time t = 25.6 h, a perturbation is
introduced in the system by partially closing the valve V32 so as to
reduce the flow rate q32; this time is indicated by a vertical dash-dotted
line in Figure 4.5. It can be seen that it takes only a few iterations for
constraint adaptation to reject this perturbation, and converge to a
different operating point with again h2 at its lower bound.



124 Chapter 4: Modifier Adaptation

0 5 10 15 20 25 30 35 40 45 50
5

5.5

6

6.5

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Time, [h]

In
p
u
t,

u
,
[V

]
T
a
n
k

le
v
el

,
[c

m
]

u1

u2

h1

h2

h3

Fig. 4.5. Constraint adaptation alone applied to Problem (4.65).

Full Modifier Adapation.

The results obtained by applying the modifier adaptation algorithm
with correction of the constraint gradients are depicted in Figure 4.6.
The iterates start from the same conservative operating point as before,
and the update laws (3.11) and (4.12) are applied with b = q = 0.5.
In order to estimate the experimental gradients, finite-difference per-
turbations are imposed on both inputs at each RTO iteration, with a
perturbation amplitude of −0.5 V. These perturbations, which can be
seen in the upper plot of Figure 4.6, call for an increase of the RTO
period from 30 min to 90 min. At time t = 26.24 h, the same pertur-
bation on the position of valve V32 is introduced.

In either part of the experiment, the iterates converge to an oper-
ating point for which the lower bound of h2 is active. A slight violation
of the constraint on h2 is observed at each iteration due to the finite-
difference scheme for gradient estimation. Note also that, similar to
the case without gradient correction, the constraint on h2 is violated
during the transient after the valve perturbation.
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Fig. 4.6. Full modifier adaptation applied to Problem (4.65).

Comparison.

A comparison in terms of the cost value at the RTO iterations with-
out and with constraint gradient correction is given in Figure 4.7. For
easier comparison, the time coordinates are shifted so that, in both
experiments, the origin corresponds to the times at which the pertur-
bation in valve V32 is applied. As expected, modifier adaptation with
gradient correction yields a lower cost value upon convergence. In Fig-
ure 4.7 only the cost obtained at the RTO iterations is represented in
the case of full modifier adaptation since, at the finite-difference per-
turbations, the constraint on h2 is violated. This violation could be
avoided if the perturbation amplitude was selected as 0.5 V, instead
of −0.5 V. However, in this case the cost corresponding to the finite
difference perturbations would be higher than that obtained with con-
straint adaptation alone, making the overall cost for the full modifier
adaptation worse than that for constraint adaptation alone. This is a
typical situation where there is little to gain by correcting the gradi-
ents. In such a situation, it is not recommended to update the gradient
modifiers at each RTO iteration, but at a slower rate.
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Fig. 4.7. Cost comparison. -*-: constraint adaptation; -o-: full modifier
adaptation.

4.2 Dual Modifier Adaptation

The FFD approach for estimating experimental gradients was pre-
sented in Subsection 2.4.3. It consists in perturbing each input indi-
vidually around the current operating point to get an estimate of the
corresponding gradient element. This is done at each RTO iteration.
An alternative approach proposed in [12, 13] in the context of the dual
ISOPE algorithm is to estimate the gradients based on the current
and past operating points rather than perturbating each input indi-
vidually around the current operating point (see Subsection 2.4.4). In
dual ISOPE, a constraint that is representative of the ill-conditioning
that might occur due to the relative location of the successive operating
points generated by RTO is added to the RTO optimization problem.
However, this constraint is not directly related to the errors in the
estimated gradients. Subsection 4.2.1 presents an analysis of the error
in the estimated gradient of a general noisy function, and a new con-
straint is defined that enforces an upper bound on the gradient error.
In the case of unconstrained optimization problems, this constraint is
applied to the cost function and is introduced into a dual modifier-
adaptation algorithm in Subsection 4.2.2. Strategies on how to apply
this constraint in the case of constrained optimization problems are
discussed in Subsection 4.2.3.



127

4.2.1 Estimation of Experimental Gradient from Past
Operating Points

Gradient values depend on the order of magnitude of the decision
variables u. It is assumed throughout this section that all the decision
variables u are of the same order of magnitude, which can be achieved
via scaling. For example, if the decision variable ui remains within the
interval [ui,a, ui,b], it can be scaled as uscaled

i = (ui−ui,a)/(ui,b−ui,a).
For notational simplicity, the superscript indicating a scaled variable
will be omitted in the sequel.

The analysis in this section is carried out for a general noisy func-
tion of the form

ψ(u) = Ψ(u) + v, (4.66)

where v represents the measurement noise. The forthcoming analysis
is conducted assuming that the noisy function ψ(u) remains within
an interval δ at steady-state operation, as illustrated in Figure 4.8.
Based on a statistical description of v, δ could be selected by consider-
ing a desired confidence interval. Values that fall outside the selected
confidence interval could simply be discarded.

Time

ψ

δ

Fig. 4.8. Noise at steady state operation.

Using a first-order approximation of Ψ in the neighborhood of u,
the value of ψ at the current and past operating points uk−j , j =
0, . . . , nu − 1, is given by

ψ(uk−j) = ψ(u) +
∂Ψ

∂u
(u)[uk−j − u] +O

(

‖uk−j − u‖2
)

(4.67)

+ vk−j − v, j = 0, . . . , nu − 1.
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An estimate β̂ of the experimental gradient ∂Ψ
∂u

(u) at the operating
point u satisfies

ψ(uk−j) = ψ(u) + β̂[uk−j − u], j = 0, . . . , nu − 1 (4.68)

That is, given the nu operating points, uk,uk−1, . . . , uk−nu+1, and
the corresponding measured function values ψ(uk), ψ(uk−1), . . . ,

ψ(uk−nu+1), β̂ can be obtained by writing (4.68) in the following ma-
trix form [13]:

β̂(u) = Y(u) U−1(u) (4.69)

with

U(u) := [u− uk . . . u− uk−nu+1 ] ∈ IRnu×nu (4.70)

Y(u) := [ψ(u)− ψ(uk) . . . ψ(u)− ψ(uk−nu+1) ] ∈ IR1×nu . (4.71)

In turn, the gradient error, ǫ(u) := β̂(u) − ∂Ψ
∂u

(u), can be written
as ǫ(u) = ǫt(u) + ǫn(u), with:

ǫt(u) = [ Ψ(u)− Ψ(uk) . . . Ψ(u)− Ψ(uk−nu+1) ] U−1(u) (4.72)

− ∂Ψ

∂u
(u)

ǫn(u) = [ v − vk . . . v − vk−nu+1 ] U−1(u), (4.73)

where ǫt and ǫn represent errors due to truncation and measurement
noise, respectively. The truncation error is due to the approximation
incurred by using finite differences and is related to the curvature of
Ψ(u). The measurement noise error is due to the presence of measure-
ment noise in ψ(u).

It is assumed in this analysis that the nu + 1 operating points in
U(u) are such that U(u) is invertible.

Gradient Error due to Truncation

An upper bound on the norm of the gradient error due to truncation
is given in the next proposition.

Proposition 4.1 (Upper Bound on Gradient Error due to
Truncation) Assume that Ψ(u) is twice continuously differentiable
with respect to u. Given the current and past operating points, uk,uk−1,
. . . , uk−nu+1, then, at the new operating point u, an upper bound on
‖ǫt(u)‖ is given by



129

‖ǫt(u)‖ ≤ Et(u), (4.74)

where

Et(u) :=
d2

2

∥

∥

∥

[

(u− uk)T(u− uk) . . . (4.75)

. . . (u− uk−nu+1)
T(u− uk−nu+1)

]

U−1(u)
∥

∥

∥

with d2 the largest absolute eigenvalue of the Hessian of Ψ(·).
Proof. Applying Taylor’s theorem in the neighborhood of u gives:

Ψ(u)− Ψ(uk−j) =
∂Ψ

∂u
(u)(u− uk−j) (4.76)

− 1

2
(u− uk−j)

T
∂2Ψ

∂u2
(ūj)(u− uk−j),

with ūj = u + ϑj(uk−j − u), j = 0, . . . , nu − 1, for some ϑj ∈ [0, 1].
Substituting (4.76) into (4.72) then gives:

ǫt(u) =

(

∂Ψ

∂u
(u) U(u)− 1

2

[

(u− uk)T
∂2Ψ

∂u2
(ū0)(u− uk) · · ·

· · · (u− uk−nu+1)
T
∂2Ψ

∂u2
(ūnu−1)(u− uk−nu+1)

])

U−1(u)− ∂Ψ

∂u
(u)

= −1

2

[

(u− uk)T
∂2Ψ

∂u2
(ū0)(u− uk) · · · (4.77)

· · · (u− uk−nu+1)
T
∂2Ψ

∂u2
(ūnu−1)(u − uk−nu+1)

]

U−1(u).

The Hessian matrix Hj := ∂2Ψ
∂u2 (ūj) being symmetric, there exists an

orthogonal matrix Pj such that PT
j HjPj = Dj = diag(λ1,j , . . . , λnu,j),

where λi,j ∈ σ
(

Hj

)

, and σ(.) stands for the spectrum of a matrix.
Letting wj = PT

j (u− uk−j) gives:

∣

∣(u− uk−j)
THj(u− uk−j)

∣

∣ =
∣

∣wT

j PT

j HjPjwj

∣

∣ (4.78)

=
∣

∣wT

j Djwj

∣

∣ =
∣

∣

∣

nu
∑

i=1

λi,jw
2
i,j

∣

∣

∣ ≤ d2

nu
∑

i=1

w2
i,j = d2w

T

j wj

= d2(u− uk−j)
T(u− uk−j), j = 0, . . . , nu − 1.

Let us introduce the positive-definite matrix R := U−1(u)
[

U−1(u)
]T

and the vectors
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pT

1 :=
[

wT

0 D0w0 . . . wT

nu−1Dnu−1wnu−1

]

,

pT

2 :=
[

d2w
T

0w0 . . . d2w
T

nu−1wnu−1

]

.

It follows from (4.78) that the absolute value of each element of p1

is less than or equal to the corresponding element of p2, and thus
pT

1 R p1 ≤ pT
2 R p2, from where (4.74) follows. ✷

Note that d2 represents an upper bound on the curvature of Ψ(·).

Claim 4.1 If in Proposition 4.1 the points are taken as uk−j = u +
hej+1, j = 0, . . . , nu−1, there results the FFD arrangement with h > 0
being the step size and ej+1 the (j+1)st unit vector. In this particular
case, it can be shown that (4.74) reduces to

‖ǫt‖ ≤ d2

2

√
nu h, (4.79)

which is no longer a function of u.

Proof. It follows from uk−j = u + hej+1 that (u − uk−j)
T(u −

uk−j) = h2, j = 0, . . . , nu − 1, and U(u) = diag(−h,−h, . . . ,−h).
Therefore

Et(u) =
d2

2

∥

∥

∥

[

h2 h2 . . . h2
]

diag
(

− 1

h
,− 1

h
, . . . ,− 1

h

)∥

∥

∥ =
d2

2

√
nu h.

and (4.79) follows from Proposition 4.1. ✷

Notice that (4.79) is the same expression as that reported in [14] for
the FFD approach.

Gradient Error due to Measurement Noise

A geometrical characterization of the vector ǫn(u) is given first. Let the
vector nx ∈ IR

nu+1 be normal to the nu-dimensional surface generated
by the points [uT v]T, [uT

k vk]T, . . . , [uT

k−nu+1 vk−nu+1]
T:











u1 − u1,k . . . unu
− unu,k v − vk

u1 − u1,k−1 . . . unu
− unu,k−1 v − vk−1

...
...

...
u1 − u1,k−nu+1 . . . unu

− unu,k−nu+1 v − vk−nu+1











nx = 0 (4.80)
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The normal vector nx ∈ IR
nu+1 can be obtained, e.g., by singular value

decomposition of the nu × (nu + 1) matrix on the left side of (4.80),
which is assumed to be of rank nu. Next, we define nv as the unit
vector that is normal to the points [uT 0]T, . . . , [uT

k−nu+1 0]T, i.e.,

nv = [0 . . . 0 1]T. The angle α between nx and nv is given by

α = acos

(

nT
vnx

‖nv‖‖nx‖

)

(4.81)

In particular, by dividing each element of the vector nx by the last
one, nx can be chosen as nx = [n̄T 1]T, n̄ ∈ IRnu . With this

α = acos

(

1√
n̄Tn̄ + 1

)

(4.82)

and from (4.80)

U(u)Tn̄ = −[ v − vk v − vk−1 . . . v − vk−nu+1 ]T.

From (4.73), n̄T = −ǫn, and (4.82) gives

α = acos

(

1
√

‖ǫn‖2 + 1

)

(4.83)

The vectors nv, nx and ǫn are represented in Figure 4.9 for the two-
dimensional case (nu = 2). Independently of the number of inputs, a
plane P can be defined, which contains the three vectors nv, nx and
ǫn. Notice that ǫn belongs to the input space, so its component in the
direction of v is always zero. The relation (4.83), which is represented
in Figure 4.10, takes place on the plane P .

For relating the error norm ‖ǫn(u)‖ to the location of the new
operating point as expressed in the matrix U(u), two definitions are
required.

Definition 4.1 (Distance Between Complement Affine Sub-
spaces) Given a set of (nu + 1) points in a nu-dimensional space,
S := {u,uk, . . . ,uk−nu+1}, a proper subset of S, SA ( S of nA

u ∈
{1, . . . , nu} points, and its complement SC := S \ SA of (nu + 1−nA

u )
points, the distance between complement affine subspaces is defined
as the (orthogonal) distance between the affine subspace of dimension
(nA

u − 1) generated by all the points in SA, and the affine subspace of
dimension (nu − nA

u ) generated by all the points in SC .
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1

v

u1

u2

nv
nx

ǫn

P

Fig. 4.9. Geometrical representation of ǫn in the two-dimensional case.

1

0

0

nv nx
α

ǫn

‖ǫn‖

P

Fig. 4.10. Geometrical representation of ǫn on the plane P .

The total number of possible pairs of complement affine subspaces
that can be generated from S is nb = 1+

∑nu−1
s=1 2s. The way these dis-

tances can be calculated is described in Appendix B, where a definition
of affine subspaces is also provided.

Definition 4.2 (Nearest Complement Affine Subspaces) The
shortest distance between complement affine subspaces is given by
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lmin := min{l1, l2, . . . , lnb
}, where l1, l2, . . . , lnb

are the distances be-
tween all possible pairs of complement affine subspaces that can be
generated from S.

Notice that, if any pair of complement affine subspaces intersect,
then all pairs of subspaces intersect and l1 = l2 =, . . . ,= lnb

= 0.
In the 2-dimensional case (nu = 2), the number of distances to

evaluate is nb = 3, which corresponds to the 3 point-to-line distances.
In the 3-dimensional case, there are nb = 7 distances to evaluate, which
correspond to 4 point-to-plane distances, and 3 line-to-line distances.

The largest possible value of ‖ǫn(u)‖, noted ‖ǫn(u)‖max, is com-
puted in the next proposition.

Proposition 4.2 (Upper Bound on Gradient Error due to
Measurement Noise) Given a set S of (nu + 1) points in a nu-
dimensional space, S := {u,uk, . . . ,uk−nu+1}, and the interval δ for
the noisy function ψ, the maximal value of ‖ǫn(u)‖ occurs when, for
the subsets SA and SC corresponding to the nearest complement affine
subspaces, the measurement error is δ/2 for all the points in SA and
−δ/2 for all the points in SC (or −δ/2 and δ/2, respectively). Fur-
thermore, ‖ǫn(u)‖max = δ/lmin(u).

Proof. The proof includes two steps.
1. For noise in the range [−δ/2, δ/2], the worst case corresponds to

a global optimum of the following optimization problem:

max
v

‖ǫn(u)‖2 (4.84)

s.t. − δ/2 ≤ v ≤ δ/2, −δ/2 ≤ vk−j ≤ δ/2, j = 0, . . . , nu − 1

with the decision variables v = [v vk · · · vk−nu+1]
T.

Using the matrix R = U−1(u)
[

U−1(u)
]T

, the squared error norm
can be expressed as

‖ǫn(u)‖2 = [ v . . . v ]R[ v . . . v ]T (4.85)

− 2 [ v . . . v ]R[ vk . . . vk−nu+1 ]T

+ [ vk . . . vk−nu+1 ]R[ vk . . . vk−nu+1 ]T,

or, equivalently,

‖ǫn(u)‖2 = ηs v
2 − 2 v[ η1 . . . ηnu

][ vk . . . vk−nu+1 ]T (4.86)

+ [ vk . . . vk−nu+1 ]R[ vk . . . vk−nu+1 ]T,
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where

ηs =

nu
∑

i=1

nu
∑

j=1

rij , and ηj =

nu
∑

i=1

rij , j = 1, . . . , nu

Equation (4.86) can be written as:

‖ǫn(u)‖2 = vT

[

ηs 01×nu

0nu×1 R

]

v − 2 vT

[

0 η1 . . . ηnu

0nu×1 0nu×1 . . . 0nu×1

]

v

= vTA v, with A :=

[

ηs −2 η1 . . . − 2 ηnu

0nu×1 R

]

The non-symmetric matrix A is the sum of the symmetric matrix M =
1
2 (A + AT) and the skew symmetric matrix C = 1

2 (A−AT). For a skew
symmetric matrix, vTC v = 0, and therefore vTA v = vTM v. Hence,
the optimization problem (4.84) can be reformulated as:

max
v

vTM v (4.87)

s.t. − δ/2 ≤ v ≤ δ/2, −δ/2 ≤ vk−j ≤ δ/2, j = 0, . . . , nu − 1

with M a symmetric matrix. It is well known that a global optimum
of problem (4.87) must be attained at the intersection of the input
bounds (see e.g. Theorem 32.1 in [75]). That is, all components in v
must be at their upper or lower bounds.

2. Next, we show that, if for any pair of complement affine sub-
spaces, all the points in SA have error vA = δ/2 and all the points in
SC have error vC = −δ/2 (or −δ/2 and δ/2 respectively), then the
error vector ǫn(u) is normal to both affine subspaces. Considering the

sets SA = {u1, . . . ,unA
u } and SC = {unA

u +1, . . . ,unu+1} (SA ( S and
SC := S \ SA), ǫn(u) in (4.73) can also be written as:

ǫn(u) = [ 0 . . . 0 vA − vC ] U−1
AC(u) (4.88)

with

UAC(u) := [ u1 − u2 . . . u1 − unA
u unA

u +1 − unA
u +2 · · ·

unA
u +1 − unu+1 unA

u − unA
u +1 ] ∈ IRnu×nu

Using the matrix U defined in (B.4) in UAC(u), (4.88) becomes:

ǫn(u)

[

U

(unA
u )T − (unA

u +1)T

]T

=

[

0nu−1

vA − vC

]T

(4.89)
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from where it is clear that ǫn(u) is normal to both complement affine
subspaces.

From (4.89) and (B.5), one has

|ǫn(u)(unA
u − unA

u +1)| = lAC‖ǫn(u)‖ = |vA − vC | = δ, (4.90)

where lAC is the distance between the two complement affine sub-
spaces. From all possible complement subsets SA and SC , ‖ǫn(u)‖max

occurs for the complement subsets that correspond to the nearest
complement affine subspaces, i.e. for lAC = lmin(u). It follows that
‖ǫn(u)‖max = δ

lmin(u) . ✷

1

v

u1

u2

nv

nx

u

uk−1

uk

a

c

b

δ
2

− δ
2

lmin

ǫn

Fig. 4.11. Geometrical representation of worst-case scenario for measure-
ment noise in the two-dimensional case.

The limiting situation given by Proposition 4.2 is represented in
Figure 4.11 for the two-dimensional case (nu = 2). There are three
distances between complement affine subspaces that can be evaluated;
say l1: the distance between uk and the line generated by u and uk−1;
l2: the distance between uk−1 and the line generated by uk and u;
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1

nv nx

α

α

ǫn

‖ǫn‖max

δ
2

δ
2

lmin

P

Fig. 4.12. Geometrical representation of worst-case scenario for measure-
ment noise on the plane P .

and l3: the distance between u and the line generated by uk and uk−1.
Consider the case where the current and past operating points uk

and uk−1 belong to the subset SA, while the new operating point u
belongs to SC . The operating points in these subsets generate the
nearest complement affine subspaces, thus lmin = l3 = min{l1, l2, l3}.

When the measurement error is δ/2 for all the points in SA and
−δ/2 for all the points in SC , ǫn is normal to both complement affine
subspaces. According to Proposition 4.2, this situation leads to the
norm of ǫn taking its largest possible value ‖ǫn‖max. Recall that the
norm of nv is 1 by definition and vector nx is normal to the plane
generated by the points a, b and c (see (4.80)).

Independently of the number of inputs, a plane P can be defined,
which contains the three vectors nv, nx and ǫn. The representation of
the worst-case scenario of Proposition 4.2 on the plane P is represented
in Figure 4.12. Notice that δ = lmintan(α), and ‖ǫn‖max = tan(α).
Hence, it is verified that ‖ǫn‖max = δ

lmin
.

Remark 4.4 Recall that in order to evaluate lmin(u) it is necessary
to evaluate all the distances between complement affine subspaces. Let
us consider the distance between the new operating point u and the
hyperplane generated by the current and past operating points. In this
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case, we have SA := {uk,uk−1, . . . ,uk−nu+1} and SC := {u}. The

matrix U ∈ IR(nu−1)×nu defined in (B.4) is given by:

Uk := [ uk − uk−1 uk − uk−2 . . . uk − uk−nu+1 ]T

Denoting by nk the vector normal to the hyperplane generated by the
current and past operating points, we have that Uknk = 0 and, from
(B.1) and (B.5), the hyperplane is given by nT

ku = bk, with bk = nkuk

‖nk‖ .

Notice that, since Uk does not depend on u, the direction of nk is
independent of u. This is not the case for the normal directions between
all the other complement affine subspaces, which depend on the position
of u.

Upper Bound on Gradient Error

A bound on the condition number of the matrix U(u) given in (2.41)
was proposed in [12, 13] in the context of a dual ISOPE approach.
This bound is representative of the ill-conditioning that might occur
due to the relative location of the successive operating points. How-
ever, it is not directly related to the errors resulting from truncation
and measurement noise. This section introduces a coherent, although
conservative, upper bound on the gradient error.

Consider the desired upper bound EU on the gradient error norm:

‖ǫ(u)‖ =
∥

∥

∥β̂(u)− ∂Ψ

∂u
(u)
∥

∥

∥ ≤ ‖ǫt(u)‖+ ‖ǫn(u)‖ ≤ EU (4.91)

The following theorem proposes a sufficient condition for the loca-
tion of the new operating point u, given the nu operating points
uk,uk−1, . . . ,uk−nu+1 and the upper bound EU.

Theorem 4.4 (Sufficient Condition for Gradient Accuracy)
Condition (4.91) can be satisfied by choosing u such that

E(u) ≤ EU, (4.92)

where

E(u) := Et(u) + ‖ǫn(u)‖max =
d2

2

∥

∥

∥

[

(u− uk)T(u− uk) · · · (4.93)

· · · (u− uk−nu+1)
T(u− uk−nu+1)

]

U−1(u)
∥

∥

∥+
δ

lmin(u)
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Proof. The proof follows from (4.91), inequalities (4.74) and
‖ǫn‖ ≤ δ/lmin(u) (which follows from Proposition 4.2). ✷

Remark 4.5 For given values of δ and d2, there is a minimal value
that E(u) can take. Therefore, the upper bound EU should not be se-
lected smaller than this minimal value, otherwise the constraint (4.92)
will be infeasible.

The following example analyzes the feasible regions generated by
the measurement-noise component in (4.93).

Example 4.4 If Ψ(u) is linear, d2 = 0 (there is no truncation error),
and (4.92) and (4.93) reduce to δ/lmin(u) ≤ EU, or equivalently:

lLmin :=
δ

EU
≤ lmin(u) (4.94)

The constraint (4.94) can be seen as the combination of the following
nb constraints:

lLmin =
δ

EU
≤ li(u), i = 1, . . . , nb (4.95)

were nb is the total number of complement affine subspaces. Let us
consider the distance between u and the hyperplane nT

ku = bk. If in
(4.90) we have ǫn(u− uk) > 0, the constraint (4.95) corresponding to
this pair of complement affine subspaces gives

lLmin ≤
ǫn

‖ǫn‖ (u− uk) =
nT

k

‖nk‖
(u− uk),

which can be written as

nT

ku ≥ bk + lLmin‖nk‖. (4.96)

On the other hand, if ǫn(u− uk) < 0, we obtain

nT

ku ≤ bk − lLmin‖nk‖. (4.97)

Hence, this point-to-hyperplane constraint generates to feasible regions,
one at each side of the hyperplane nT

ku = bk. For all other complement
affine subspaces, the direction of a vector that is normal to both affine
subspaces will vary with the position of u.
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For the purpose of illustration, consider the two-dimensional case
(nu = 2) with δ = 0.2 and EU = 0.5. Figure 4.13 uses the past oper-
ating points uk = [0 − 0.5]T and uk−1 = [0 0.5]T. The constraints
(4.95), which can be evaluated in terms of the location of the new op-
erating point u = [u1 u2]

T, consist of three point-to-line distances.
For the case of the distance between u and the line generated by uk

and uk−1, denoted l1 in this example, the feasible regions generated
by (4.96) and (4.97) are given in Figure 4.13a. The feasible regions
corresponding to the two remaining point-to-line distances are shown
in Figures 4.13b and 4.13c. The combination of these constraints is
given in Figure 4.13d. It can be seen that (4.94) generates two convex
feasible regions, one on each side of the hyperplane nT

ku = bk.

Example 4.5 Consider the two-dimensional case (nu = 2) with δ =
0.2 and d2 = 2. Figures 4.14a, 4.14c and 4.14e on the left use the past
operating points uk = [0 − 0.5]T and uk−1 = [0 0.5]T, while the fig-
ures on the right, 4.14b, 4.14d and 4.14f use the past operating points
uk = [0 − 0.1]T and uk−1 = [0 0.1]T. The upper bounds Et(u) and
‖ǫn(u)‖max can be evaluated in terms of the location of the new operat-
ing point u = [u1 u2]

T. Figures 4.14a and 4.14b show the contours of
Et(u). The contours corresponding to ‖ǫn(u)‖max = δ

lmin(u) are shown

in Figures 4.14c and 4.14d, and the contours corresponding to E(u)
are shown in Figures 4.14e and 4.14f.

From the contours in Figure 4.14 it is seen that (i) both Et(u)
and ‖ǫn(u)‖max increase when U(u) becomes ill-conditioned (u aligned
with uk and uk−1), and (ii) the two regions generated by the constraint
(4.92) are nonconvex.

Convex Regions for Total Gradient Error Norm.

As in the ISOPE dual approach, we would like to define two optimiza-
tion problems, one for each of the regions generated by the constraint
(4.92). However, the fact that these regions might be non-convex cre-
ates the possibility of multiple local solutions and makes the problem
more difficult to solve. In order to define convex regions, though slightly
more conservative, we shall study first the geometrical properties of the
upper bound on the norm of the gradient error due to truncation.

Claim 4.2 (n-Spheres) In Proposition 4.1, Et(u), which is defined
in (4.75), gives an upper bound on the norm of the truncation error.
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Fig. 4.13. Evaluation of the feasible regions given by constraint (4.94) in
Example 4.4, as the combination of constraints (4.95). Colored area: feasible
regions; Plot a: feasible regions given by the lower bound on the distance
between u = [u1 u2]

T and the line generated by uk and uk−1 (lLmin ≤ l1(u));
Plot b: feasible regions given by the lower bound on the distance between
uk−1 and the line generated by u and uk (lLmin ≤ l2(u)); Plot c: feasible
regions given by the lower bound on the distance between uk and the line
generated by u and uk−1 (lLmin ≤ l3(u)); Plot d: feasible regions given by
constraint (4.94) (lLmin ≤ lmin(u)).
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Fig. 4.14. Contour maps for an upper bound on gradient error due to
truncation (a,b), measurement noise (c,d), and both (e,f) for two cases of
previous points (more distant on the left and closer on the right).
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For a given level c, the expression Et(u) = c generates two (nu − 1)-
spheres of radius r = c

d2
. The centers of these (nu − 1)-spheres are

symmetrically located on each side of the hyperplane generated by the
nu past operating points.

Proof. Let uc be the center of a (nu − 1)-sphere of radius r. We
have:

r2 = (u− uc)
T(u− uc) (4.98)

r2 = (uk−j − uc)
T(uk−j − uc), j = 0, . . . , nu − 1. (4.99)

After expanding the right-hand sides of equations (4.98) and (4.99),
extracting (4.99) from (4.98) and rearranging, we obtain:

uTu− uT

k−juk−j = 2 uT

c (u− uk−j), j = 0, . . . , nu − 1. (4.100)

Equations (4.100) can be written in matrix form as follows:

[

uTu− uT

kuk . . . uTu− uT

k−nu+1uk−nu+1

]

= 2uT

c U(u) (4.101)

From (4.101) and the following expansions:

(u− uk−j)
T(u− uk−j) = uTu− uT

k−juk−j − 2 uTuk−j + 2uT

k−juk−j ,

j = 0, . . . , nu − 1,

we can write

[

(u− uk)T(u− uk) . . . (u− uk−nu+1)
T(uk − uk−nu+1)

]

U−1(u) =

= 2uT

c − 2
[

uT

k (u− uk) . . . uT

k−nu+1(u− uk−nu+1)
]

U−1(u) (4.102)

Noticing that

[

(u− uk)T(u− uk) . . . (u− uk−nu+1)
T(u− uk−nu+1)

]

U−1(u)

+
[

uT

k (u− uk) . . . uT

k−nu+1(u− uk−nu+1)
]

U−1(u) = uT,

(4.102) reduces to:

[

(u− uk)T(u− uk) . . . (u− uk−nu+1)
T(u− uk−nu+1)

]

U−1(u)

= 2(uT − uT

c )

Therefore we can write,
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c =
d2

2

∥

∥

∥

[

(u− uk)T(u− uk) . . . (4.103)

. . . (u− uk−nu+1)
T(u− uk−nu+1)

]

U−1(u)
∥

∥

∥ = d2

∥

∥u− uc

∥

∥

which corresponds to the equation of a (nu−1)-sphere of radius r = c
d2

.
The equations (4.99) being quadratic, for a given value of r, they

provide two possible solutions uc1 and uc2 for the center point. It is
obvious from Euclidean geometry that these center points are located
symmetrically with respect to the hyperplane nT

ku = bk. ✷

The situation in the two-dimensional case is represented in Fig-
ure 4.15. The current and past operating points are uk and uk−1. The
center points uc1(u) and uc2(u) as well as the radius r(u) vary with
the position of the new operating point u. The corresponding upper
bound on the deterministic error norm is Et(u) = d2r(u).

u1

u2

u

um,kuc1(u) uc2(u)

uk

uk−1

r(u
)

Et(u) = d2r(u)

Fig. 4.15. Representation of the geometrical properties of E t(u) in the two-
dimensional case.

From (4.101) it follows that for a given operating point u, the center
point is given by
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uT

c (u) =
1

2

[

uTu− uT

kuk · · · uTu− uT

k−nu+1uk−nu+1

]

U−1(u)

(4.104)

The worst-case measurement error δ/lmin(u) being convex on each side
of the hyperplane nT

ku = bk (see Example 4.4), it can be concluded
that the non-convexity of the regions generated by the constraint (4.92)
is due to the part of the (nu − 1)-spheres that crosses the hyperplane
nT

ku = bk. The distance (positive or negative) from the center point
uc(u) to the hyperplane nT

ku = bk is given by:

lC(u) =
bk − nT

kuc(u)

‖nk‖
. (4.105)

Given the nu operating points uk,uk−1, . . . ,uk−nu+1, the point um,k

can be obtained by projecting the center point uc(u) on the hyperplane
nT

ku = bk:

um,k = uc(u) +
lC(u)

‖nk‖
nk (4.106)

It can be verified that um,k is independent of u (see the location of
um,k in Figure 4.15 for the two-dimensional case). For a given up-
per bound EU, it is possible to define convex feasibility regions by
adding constraints expressing the distance between the new point and
the hyperplane, which eliminates the non-convex part of the regions
generated by (4.92), as illustrated in Figure 4.16. The minimal point-
to-hyperplane distance ρk can be determined numerically by finding
the smallest absolute value solution to the following equation:

E
(

um,k +
ρk

‖nk‖
nk

)

= EU

4.2.2 Dual Modifier Adaptation for Unconstrained
Optimization

In the unconstrained optimization case, the modifier-adaptation ap-
proach requires an estimate of the plant cost gradient to be available
at each iteration. The function Ψ(u) introduced in (4.66) is taken as the
cost function, i.e. Ψ(u) = Φp(u). In particular, it is assumed that the
cost function can be evaluated from the noisy output measurements
as follows:
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Fig. 4.16. Convex regions (in bold) for locating the operating point u in
Example 4.5 with E(u) ≤ 2.

ψ(u) = φ(u,yp(u) + ν) = Φp(u) + v (4.107)

where ν is the output measurement noise vector and v represents the
resulting noise in the cost function. Notice that, even if ν has zero
mean, v might have a nonzero mean if the function φ(u,y) is nonlinear
in y.

Error in Cost Function Gradient

This subsection analyzes how the error in the estimated gradient of the
cost function affects the ability to ensure that the estimated gradient
provides a correct descent direction. The following lemma provides a
sufficient condition for having a true descent direction.

Lemma 4.1 (Sufficient Condition for a Local Descent Direc-
tion) If at a given operating point u the gradient error norm ‖ǫ(u)‖
is smaller than the true gradient norm

∥

∥

∂Φp

∂u
(u)
∥

∥, then the direction

−β̂(u) provided by the gradient estimator is a descent direction for the
cost Φp at u.

Proof. For the gradient estimator β̂(u) =
∂Φp

∂u
(u) + ǫ(u), one can

write:

−∂Φp

∂u
(u)β̂(u)T = −

∥

∥

∥

∂Φp

∂u
(u)
∥

∥

∥

2

− ∂Φp

∂u
(u)ǫ(u)T = (4.108)

= −
∥

∥

∥

∂Φp

∂u
(u)
∥

∥

∥

2

−
∥

∥

∥

∂Φp

∂u
(u)
∥

∥

∥
‖ǫ(u)‖ cos θ,
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where θ is the angle between
∂Φp

∂u
(u) and ǫ(u). From (4.108), if

‖ǫ(u)‖ <
∥

∥

∂Φp

∂u
(u)
∥

∥, then −∂Φp

∂u
(u)β̂(u)T < 0 for any θ, and −β̂(u) is

a descent direction for Φp at u. ✷

The following theorem gives sufficient conditions for a descent di-
rection to be found at any operating point u located outside a ball of
a certain radius centered at the plant optimum.

Theorem 4.5 (Sufficient Condition for Correct Descent Di-
rection outside a Ball) Assume Φp(u) is a convex function twice
continuously differentiable with respect to u, for which u⋆

p is a strict

local minimum. Let dL
2 be the smallest absolute eigenvalue of the Hes-

sian of Φp(u), which is assumed to be different from zero. If the gra-
dient error norm ‖ǫ(u)‖ satisfies ‖ǫ(u)‖ ≤ EU, then, for each u with

‖u− u⋆
p‖ > EU

dL
2

, the vector −β̂(u) is a descent direction for Φp at u.

Proof. Using Taylor’s formula around u⋆
p, and noticing that

∂Φp

∂u
(u⋆

p) = 0, we can write:

∂Φp

∂u
(u) = (u− u⋆

p)
T
∂2Φp

∂u2
(u⋆

p + ϑ(u− u⋆
p)), (4.109)

where, according to the mean value theorem, ∃ ϑ ∈ [0, 1] such that
(4.109) holds. Since Φp(u) is a twice continuously differentiable convex

function, the Hessian
∂2Φp

∂u2 (u⋆
p + ϑ(u − u⋆

p)) must be positive semi-

definite. Since we also assume that dL
2 6= 0, then

∂2Φp

∂u2 (u⋆
p + ϑ(u −

u⋆
p)) must be positive definite. Let us define the auxiliary gradient

∂ΦL
p

∂u
(u) := dL

2 (u − u⋆
p)

T. Since the Hessian matrix
∂2Φp

∂u2 (u) is positive

definite for any u, and dL
2 is the smallest absolute value of the second-

order derivatives of Φp(u), we can write:

dL
2 ‖u− u⋆

p‖ ≤
∥

∥

∥

∂Φp

∂u
(u)
∥

∥

∥ (4.110)

Then, for ‖u− u⋆
p‖ > EU

dL
2

, we have:

‖ǫ(u)‖ ≤ EU < dL
2 ‖u− u⋆

p‖ ≤
∥

∥

∥

∂Φp

∂u
(u)
∥

∥

∥ (4.111)

From (4.111), ‖ǫ(u)‖ <
∥

∥

∂Φp

∂u
(u)
∥

∥, and therefore −β̂(u) is a descent
direction for Φp from Lemma 4.1. ✷
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The result of Theorem 4.5 is illustrated in Figure 4.17. If ‖ǫ(u)‖ ≤
EU, then for any r such that r > EU

dL
2

, we will have ‖ǫ(u)‖ <
∥

∥

∂Φp

∂u
(u)
∥

∥.

Theorem 4.5 provides a sufficient condition for −β̂(u) to be a de-

scent direction for Φp at u. However, the descent direction −β̂(u) may
point outside the ball of radius ‖u − u⋆

p‖ centered at u⋆
p. In practice,

the value of dL
2 can be zero or close to zero, in which case the sufficient

conditions of Theorem 4.5 are very conservative and, therefore, of little
practical value since it is only proven that −β̂(u) is a descent direction
for u chosen outside a ball of very large radius.

u1

u2

−ǫ

u⋆
p

u

r

∂Φp

∂u
(u)

dL
2 (u− u⋆

p)

−β̂

Fig. 4.17. Illustration of the result of Theorem 4.5. Dotted curves:
contours of Φp(u); Big dashed circle: Ball of radius r centered at u⋆

p;

Small dashed circle: Ball or radius d
L
2 r centered at u.

Dual Modifier-Adaptation Algorithm

The dual modifier-adaptation scheme proposed in this section uses the
upper bound on the gradient error defined in Subsection 4.2.1 as a con-
straint in the optimization problem. On each side of the hyperplane
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generated by the current and past operating points, nT

ku = bk, a mod-
ified model-based optimization problem is solved. The optimization
problem corresponding to the half space nT

ku ≥ bk reads:

u+
k+1 = arg min

u
Φm(u,θ) = Φ(u,θ) + λΦ

k

T

u (4.112)

s.t. E(u) ≤ EU

nT

ku ≥ bk + ρk‖nk‖

while, for the half space nT

ku ≤ bk, one has:

u−
k+1 = arg min

u
Φm(u,θ) = Φ(u,θ) + λΦ

k

T

u (4.113)

s.t. E(u) ≤ EU

nT

ku ≤ bk − ρk‖nk‖

The modifiers λΦ
k

T

are adapted as in (4.13). The next operating point
is chosen as the value of {u+

k+1,u
−
k+1} that minimizes the augmented

cost function Φm(u,θ).

Initialization.

In order to initialize the dual modifier-adaptation scheme, it is nec-
essary to count initially with (nu + 1) operating points satisfying the
constraint E(u) ≤ EU in order to obtain a first estimate of the gra-
dient and to evaluate the gradient modifiers for the first time. One
possibility is to obtain the initial (nu + 1) operating points by making
deviations from the initial point along the Cartesian axes, as in the
FFD scheme (2.37). This technique was proposed for the dual ISOPE
algorithm [12, 13], and is retained here. Notice that an optimized initial
phase has also been proposed for the dual ISOPE algorithm [13]. How
a similar approach could be implemented when considering an upper
bound on the gradient error is a possible subject of future research.

4.2.3 Dual Modifier Adaptation for Constrained
Optimization

In the case of a constrained optimization problem, the modifier-
adaptation approach requires an estimate of the cost and constraint
gradients for the plant to be available at each iteration. In order to im-
plement dual modifier adaptation with a bound on the gradient error,
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an extra question that arises is which gradient error should be con-
sidered. The cost and constraint functions will be evaluated from the
noisy measurements with different resulting noise levels, and the curva-
ture of these functions will be different as well. The implementation of
the upper bound on the gradient error introduced in Subsection 4.2.1
requires the selection of the parameters δ and d2 corresponding to the
function of interest Ψ(u), presented in (4.66). In the case of an un-
constrained optimization problem, this function was selected as the
cost function. In the case of constrained optimization problems, two
possible strategies are:

Strategy 1.

Determine values of δ and d2 for the cost function and each of the con-
straints individually, and select the highest value of δ and the highest
value of d2. This guarantees that the upper bound on the gradient er-
ror given by E(u) is valid for the cost function and for each constraint
individually. However, this strategy will introduce additional conser-
vatism, leading to an implementation with smaller regions for placing
the new operating point.

Strategy 2.

Select the function Ψ(u) as a linear combination of the cost and con-
straint functions. That is:

ψ(u) = φ(u,yp(u) + ν) + cTg(u,yp(u) + ν)

= Φp(u) + cTGp(u) + v (4.114)

where ν is the output measurement noise and v represents the
resulting noise in Ψ(u). Notice that, even if ν is zero mean, v might
have a nonzero mean if any of the functions φ(u,y) and gi(u,y), i =
1, . . . , ng, is nonlinear in y.

In dual modifier adaptation, we are interested in keeping track of
the infimum value of the plant cost function. To limit the error of the
individual constraint gradients is not an objective per se; the effect
that these errors will have on the offset with respect to the infimum
of the plant is of prime importance. Hence, one natural choice is to
select the weights on the constraint functions as the Lagrange mul-
tipliers, that is, c = µ. In this case, the function Ψ(u) corresponds
to the Lagrangian function. Since the Lagrange multipliers associated
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with inactive constraints are equal to zero, this choice eliminates from
Ψ(u) the inactive constraints. It is clear that, if a constraint does not
become active in modifier adaptation, the error with which its gradient
is estimated will not influence the behavior of the algorithm. However,
the difficulty with this choice is that the active constraints are not as-
sumed to be known a priori. One possibility is to update the values of
c as ck = µk. Notice that this will modify the level of noise v at each
RTO iteration. Therefore, the values of δ and d2 could also be updated
in the upper bound E(u) at each RTO iteration. The difficulty in doing
so is that, if δk and d2,k are varied, there is no guarantee that the con-
straint (4.92) will remain feasible since the past operating points were
placed using different values of δk and d2,k. In general, infeasibilities
can occur if the value of δk or d2,k decreases from one RTO period
to the other. The way to deal with these infeasibilities constitutes a
subject of future research. If the problem becomes infeasible, it is pos-
sible to (i) reinitialize the algorithm with a FFD gradient estimation,
which requires generating nu new operating points, or (ii) increase the
value of the upper bound EU. A methodology for implementing these
approaches is not part of this thesis.

Dual Modifier-Adaptation Algorithm

Once the parameters δ and d2 are selected, the following modified
model-based optimization problems including constraints are solved
on each side of the hyperplane generated by the nu past operating
points, nT

ku = bk. The optimization problem corresponding to the half
space nT

ku ≥ bk reads:

u+
k+1 = arg min

u
Φm(u,θ) = Φ(u,θ) + λΦ

k

T

u (4.115)

s.t. Gm(u,θ) = G(u,θ) + εk + λG
k

T

(u− uk) ≤ 0

E(u) ≤ EU

nT

ku ≥ bk + ρk‖nk‖
uL ≤ u ≤ uU.

while, the for the half space nT

ku ≤ bk, one has:
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u−
k+1 = argmin

u
Φm(u,θ) = Φ(u,θ) + λΦ

k

T

u (4.116)

s.t. Gm(u,θ) = G(u,θ) + εk + λG
k

T

(u− uk) ≤ 0

E(u) ≤ EU

nT

ku ≤ bk − ρk‖nk‖
uL ≤ u ≤ uU.

The modifiers εk, λ
G
k and λ

Φ
k are adapted as in (4.10). The next oper-

ating point is chosen as the value of {u+
k+1,u

−
k+1} that minimizes the

augmented cost function Φm(u,θ).
It might happen that one of the optimization problems (4.115)

or (4.116) is infeasible. However, if the plant yp(u) is assumed to be
unchanged during the implementation, it will not happen that both
problems (4.115) and (4.116) become infeasible at the same time,
since when facing constraints the adaptation can always return from
the same way it came. That is, given the current and past operating
points uk,uk−1, . . . ,uk−nu+1, a new operating point uk+1 satisfying
E(uk+1) ≤ EU can always be found as uk+1 = uk−nu

.
Also, since most numerical optimization solvers require a feasible

initial guess, in order to apply the approach automatically, a procedure
is required in order to find a feasible initial guess prior to each opti-
mization and to deal with infeasibilities of problems (4.115) or (4.116).
This infeasibility issue, which is also present in the dual ISOPE ap-
proach, has not been addressed in the ISOPE literature.

In summary, when constraints are included in the optimization
problem, two main issues arise in the implementation of dual mod-
ifier adaptation with a bound on the gradient error. The first issue
is the strategy used in order to select the parameters δ and d2. The
second issue is how to deal with possible infeasibilities in optimization
problems (4.115) and (4.116).

4.2.4 Case Study: Williams-Otto Reactor

The dual modifier-adaptation approach is applied to the Williams-Otto
reactor example described in Subsection 2.2.

The inputs are scaled using the intervals [3, 6] for FB , and [70, 100]
for TR. In this range, the maximal value of d2 obtained with the scaled
inputs is d2 = 1030 for the model (the unknown actual plant value is
d2 = 1221). The simulations are carried out assuming that the cost
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function noise v has a Gaussian zero-mean distribution with standard
deviation σφ = 0.5. The noise interval δ = 3 is chosen.

Modifier Adaptation with FFD Approach.

First, the FFD approach is applied, which consists in perturbing each
input individually around the current operating point with a step size
h. In the two-dimensional case, the shortest distance between comple-
ment affine subspaces for the FFD arrangement is lmin = 1√

2
h. Hence,

from (4.79) and (4.93) we have

E(h) =

√
2

2
h d2 +

√
2
δ

h
(4.117)

The step size that minimizes E(h) is h⋆ =
√

2 δ
d2

= 0.0763 (scaled

value), for which E(h⋆) = 111.2. The approach is applied without
including noise (Figure 4.18). In Figures 4.18a, 4.18b, 4.18c and 4.18d,
the modifier-adaptation scheme is applied estimating the cost function
gradient using the FFD approach with h = h⋆. The exponential filter
(4.13) is used with gain parameter d = 0.5 in Figure 4.18a and d = 1
in Figure 4.18b. The observed offset with respect to the true optimum
is due to the gradient error due to truncation. The direction of the
finite-difference perturbations has an influence on the gradient error
due to truncation, which is made evident by the observed difference
in the converged solutions in Figures 4.18c and 4.18d. If the step size
h is decreased, the iterations converge closer to the plant optimum as
observed in Figures 4.18e and 4.18f.

Next, the approach is applied by adding measurement noise. For 10
noise realizations, the input trajectories corresponding to 15 RTO iter-
ations are presented in Figure 4.19. Since, at each RTO iteration, two
perturbations are required to estimate the gradient, the total number
of operating points is 45. The figures in the left, 4.19a, 4.19c and 4.19e
show the input trajectories, and the figures in the right, 4.19b, 4.19d
and 4.19f, show the corresponding evolution of the cost. The true value
of the plant profit is plotted, and not the noisy one. The step size is
h = 0.12 in Figures 4.19a and 4.19b, h = 0.0763 in Figures 4.19c and
4.19d, and h = 0.02 in Figures 4.19e and 4.19f. Notice that the optimal
step size evaluated from (4.117) gives a good compromise between loss
of profit due to truncation error and measurement error.



154 Chapter 4: Modifier Adaptation

3 3.5 4 4.5 5 5.5 6
70

75

80

85

90

95

100

FB (kg/s)

T
R

(◦
C

)

d = 0.5
h = 0.0763

a

3 3.5 4 4.5 5 5.5 6
70

75

80

85

90

95

100

FB (kg/s)
T

R
(◦

C
)

d = 1
h = 0.0763

b

3 3.5 4 4.5 5 5.5 6
70

75

80

85

90

95

100

FB (kg/s)

T
R

(◦
C

)

d = 0.5
h = 0.0763

c

 

 

3 3.5 4 4.5 5 5.5 6
70

75

80

85

90

95

100

FB (kg/s)

T
R

(◦
C

)

d = 0.5
h = 0.0763

d

3 3.5 4 4.5 5 5.5 6
70

75

80

85

90

95

100

FB (kg/s)

T
R

(◦
C

)

d = 0.5

e

3 3.5 4 4.5 5 5.5 6
70

75

80

85

90

95

100

FB (kg/s)

T
R

(◦
C

)

d = 0.5

f

Fig. 4.18. Input trajectory for modifier adaptation with FFD. Simulations
without noise.
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Fig. 4.19. Input and cost trajectories for modifier adaptation with FFD.
Simulations with noise.
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Dual Modifier Adaptation with Bound on Gradient Error.

Dual modifier adaptation is applied with EU = 111.2. The algorithm
is initialized using FFD with h = 0.0763. The resulting input trajec-
tory without noise is shown in Figure 4.20a with the exponential filter
(4.13) implemented with d = 0.5, and in Figure 4.20b with d = 1.
These figures can be compared with Figures 4.18a and 4.18b. Next,
the approach is applied by adding measurement noise. For 10 noise
realizations, the input trajectories corresponding to 45 RTO iterations
are presented in Figure 4.21. It can be seen that, for this particular
case study, dual modifier adaptation shows a faster convergence to the
neighborhood of the plant optimum than modifier adaptation with the
FFD approach (compare Figures 4.21b and 4.19d). The offset in the
converged solution experienced with FFD is not observed with dual
modifier adaptation.
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Fig. 4.20. Input trajectory with dual modifier adaptation. Simulations
without noise.

Figure 4.22a shows the evolution of the plant profit and the gradient
error norm for 20 noise realizations. At the operating point 20, the
flow rate FA is increased from 1.8275 kg/s to 2.2 kg/s. In the present
implementation, this flow rate change is assumed to be known, and
the model is updated with the new value. Modifier adaptation tracks
the change in the plant optimum. It can be seen in the upper plot of
Figure 4.22a that, within 6 iterations, the neighborhood of the new
optimum profit is reached for all 20 realizations. Also, the lower plot
of Figure 4.22a shows that the gradient error norm is kept lower than
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Fig. 4.21. Input and cost trajectories with dual modifier adaptation. Sim-
ulations with noise.

EU. The observed peak in gradient error occurring at the operating
points 21 and 22 is due to the fact that, at these points, the gradient
is estimated using operating points with different values of FA.

Dual Modifier Adaptation with Bound on Condition
Number.

Next, dual modifier adaptation is applied with the lower bound on the
inverse condition number of U(u), given in (2.41), as proposed for the
dual ISOPE approach [12, 13]. The results are shown in Figure 4.22b.
A lower bound of ϕ = 0.4 gives an adaptation almost identical to that
of the gradient error bound in the first operating points. However, as
soon as the neighborhood of the plant optimum is reached, the distance
between the operating points decreases, and the gradient estimates
become much less accurate. Furthermore, the feasible regions given
by the condition number constraint decrease proportionally with the
distance between points. This prevents the approach from taking large
steps in the wrong direction, but it also makes it less suitable for
tracking a changing optimum.

4.3 Summary

This chapter has developed a modifier-adaptation methodology in the
context of real-time optimization. Unlike two-step approaches that rely
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Fig. 4.22. (a) Dual modifier adaptation with upper bound on the gradient
error norm. (b) Dual modifier adaptation with bound on the condition num-
ber. Dashed line: Optimal profit for the plant. Dash-dotted line: EU = 111.2.
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on parameter estimation to adapt the parameters of a process model,
modifier adaptation adjusts the optimization problem by adapting lin-
ear modifier terms in the cost and constraint functions. These modifiers
are based on the differences between the measured and predicted val-
ues of (i) the constraints, and (ii) the constraint and cost gradients, i.e.,
quantities that are involved in the NCO. The adaptation of these mod-
ifiers in the model-based optimization is such that a point satisfying
the plant NCO is reached upon convergence.

Various aspects of modifier adaptation have been discussed and
illustrated through numerical examples, including local convergence
conditions and model adequacy. The rather restrictive model-adequacy
conditions of two-step approaches can be relaxed considerably, which
represents a clear advantage of modifier adaptation. Variants of the
modifier-adaptation scheme have also been presented, including an al-
ternative filtering and an alternative modification of the process model.
The differences and similarities with ISOPE and other approaches ex-
isting in the literature have been discussed.

The experimental application to a three-tank system in Subsec-
tion 4.1.8 shows the applicability of the approach. The major difficulty
lies in the estimation of the experimental gradients. In this applica-
tion, the constraint gradient was estimated using a finite-difference
approach. However, other approaches available in the literature, such
as those mentioned in Subsection 1.2.6, can be used as well. In this
experimental application, improvement in optimality is observed upon
correcting the constraint gradient predicted by the model. However,
the perturbations used to estimate the gradients result in constraint
violation within the RTO iterations. As discussed in Subsection 4.1.8,
this feasibility loss could be avoided but at the expense of a loss in
overall optimality with respect to constraint adaptation alone. In such
a situation, it is advisable not to update the gradient modifiers at each
iteration, but at a slower rate.

In Subsection 4.2.1 a rigorous upper bound on the gradient error
norm was developed, which is used for positioning the new operating
point with respect to past ones. This constraint takes into account
the effect of truncation errors and measurement noise. For both error
components, a rather conservative approach is adopted. The evaluation
of the constraint requires the selection of two parameters corresponding
to the function Ψ(u) for which the gradient is being estimated: δ, which
is representative of the level of measurement noise, and d2, which is an
upper bound on the curvature of Ψ(u). The evaluation of the worst-case
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scenario for the measurement noise component requires the evaluation
of a number of distances between complement affine subspaces. The
number of distances to evaluate quickly increases with the number of
inputs. Also, the resulting upper bound on the gradient error norm
becomes more conservative with increasing number of inputs, as the
worst-case scenario for the measurement noise component will become
less likely to happen.

Based on the upper bound on the gradient error, a dual modifier-
adaptation algorithm was presented in Section 4.2. The Williams-Otto
reactor case study has demonstrated the potential of the dual approach
that uses several previous points for estimating the experimental gra-
dient. In this application, dual modifier adaptation performed better
than modifier adaptation using the FFD approach. Similar observa-
tions were made in [12, 13] when comparing dual ISOPE with stan-
dard ISOPE using different examples. However, it cannot be affirmed
that, in every application, dual modifier adaptation will overperform
the FFD approach. The performance will depend on the plant-model
mismatch, the noise level and the value of d2, as well as on the gains
used to filter the modifiers. Also, in the Williams-Otto reactor case
study, the proposed dual modifier adaptation with a bound on the
gradient error produced more accurate gradient estimates than dual
modifier adaptation with a bound on the condition number, and thus
it appears to be more suitable for tracking a changing optimum.

Future research could consider the combination of dual modifier
adaptation with MPC constraint control, as was done in Section 3.3 for
constraint adaptation alone. The combination of dual modifier adap-
tation with MPC is complicated by the fact that the optimal inputs
evaluated at the RTO level are no longer applied directly to the plant,
but are determined by the MPC controller, which might result in vio-
lation of the constraint on the gradient error norm.
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Conclusions

5.1 Summary

In order for a model-based RTO approach to track the plant optimum,
the process model should be able to predict accurately the constraint
values as well as the constraint and cost gradients for the whole range of
operating conditions and process disturbances. The classical two-step
approach of RTO typically relies on a parameter estimation problem
to update the parameters θ of a (typically nonlinear) first-principles
model of the plant. Parameter estimation is complicated by plant-
model mismatch and the lack of input excitation. Even if additional
excitation may increase the number of identifiable parameters, the pa-
rameterization θ is itself not aimed at matching the KKT-related quan-
tities Cp, and the performance of the two-step approach heavily relies
on the accuracy of the model. Hence, in the presence of plant-model
mismatch and unmeasured disturbances, the modifier-adaptation ap-
proach is appealing since it does not require update of the process
model via parameter estimation. In modifier-adaptation, the handles
for adaptation are the modifiers Λ, which are updated based on the
difference Cp − C between the measured and predicted KKT-related
quantities Cp and C. This way, there is a one-to-one correspondence
between the modifiers Λ and the KKT-related quantities Cp, thus re-
sulting in a square decoupled adaptation problem designed to enforce
KKT matching upon convergence. Modifer-adaptation permits to sig-
nificantly relax model requirements. The price to pay is the need to
estimate experimental gradients on-line.
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In this thesis, the gradients are estimated by numerical approx-
imation using (nu + 1) operating points. Hence, significant gradient
estimates can be obtained by this approach provided the frequency of
meaningful disturbances affecting the plant is sufficiently low with re-
spect to the time required for the plant to reach a steady state (nu +1)
times. This clearly limits the applicability of this approach, in particu-
lar for systems with a large number of inputs. Modifier adaptation was
applied to an experimental three-tank system in Subsection 4.1.8. The
application was successful in that the correction of the constraint gra-
dient permitted to attain an operating point with improved cost with
respect to constraint adaptation alone. However, the finite-difference
perturbations applied at each RTO iteration in order to estimate the
gradient resulted in constraint violation and where detrimental to the
overall optimality. Modifier adaptation might not scale to large-scale
problems as easily as the two-step approach or constraint adaptation
alone, since the difficulty in estimating experimental gradients from
past operating points increases with the number of inputs. This re-
emphasizes the need to investigate alternative ways of estimating ex-
perimental gradients.

For systems with sufficiently low variability, where the gradient es-
timates are meaningful, the dual modifier-adaptation approach studied
in this thesis estimates the gradients using the past operating points
generated by the RTO optimizer, rather than applying FFD perturba-
tions at each RTO iteration. The proposed dual modifier adaptation
pays attention to the accuracy with which the gradients are estimated.
The results of the Williams-Otto reactor case study indicate that this
approach, wherein the gradient error norm is upper bounded, produces
more accurate gradient estimates than with simply bounding the con-
dition number of U(u), i.e. a measure of the relative position of the
successive inputs. In addition, the proposed scheme seems more ca-
pable of tracking a changing optimum. Although, in this work, the
gradients are estimated at each RTO iteration, it is also possible to
adapt the gradient modifiers less frequently than the constraint offsets,
in particular for problems where the solution is largely determined by
active constraints.

Without updating the gradients, constraint adaptation enforces
feasibility but not optimality. Nevertheless, for a large number of opti-
mization problems, for which the solution is mostly determined by the
constraints, constraint adaptation can provide fast improvement, and
handle changes in the active set. Furthermore, constraint adaptation
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scales easily to large-scale problems, and can be combined in a con-
venient way with a constraint controller at the process control level,
if the required online measurements are available. The applicability of
constraint adaptation, with and without the constraint controller, was
illustrated through the RTO of a SOFC system in Subsection 3.3.3.

Overall, this thesis has formalized the idea of using measurements
to adapt the optimization problem in response to plant-model mis-
match, following the paradigm of modifier adaptation, and has linked
different work in the field of RTO.

5.2 Perspectives

Several theoretical and practical issues concerning the constraint-
adaptation and modifier-adaptation schemes require further investi-
gation, as well as possible extensions:

• It has been assumed throughout this thesis that the cost and con-
straint values of the plant can be directly evaluated from plant
measurements at each RTO iteration. If some of these variables are
not measured, a possible strategy is to use observers to estimate
them based on the available measurements. For unmeasured con-
straints, it is possible to apply conservative constraint backoffs in
order to prevent them from becoming violated.

• Necessary conditions of convergence have been formulated for the
constraint-adaptation and modifier-adaptation algorithms. How-
ever, these conditions are inherently local and are not sufficient
for convergence. Future research will consider sufficient conditions
of convergence for both algorithms, applied to systems that exhibit
sectorial nonlinearity.

• An approach for integrating constraint adaptation at the RTO level
with MPC tailored to control the constraints at the process control
level has been proposed in Subsection 3.3, and discussed from a
methodological point of view. Future research is required to pro-
vide a deeper analysis of the integrated scheme. In order to imple-
ment RTO results, a two-stage MPC structure is frequently used
in industry. The outer controller, which can be a linear program
(LP-MPC) or a quadratic program (QP-MPC), uses a steady-state
version of the prediction model used by the MPC to correct the
setpoints passed from the RTO level to the MPC. The comparison
of the advantages and disadvantages of the proposed integrated
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scheme with LP-MPC and QP-MPC (see [88]) is an interesting
subject of future research. While both approaches appear to pro-
vide offset-free control performance, the two-stage MPC requires
an additional LP (or QP) level.

• Several aspects of the dual modifier-adaptation approach with a
bound on the gradient error norm require further investigation.
The application of the approach to constrained optimization prob-
lems was discussed in Subsection 4.2.3, where two strategies where
proposed. There are still open questions regarding the selection of
the parameters required to implement the approach, and on how
to handle possible infeasibilities in the optimization problems. In
addition, attention should be given to the way the gradient errors
affect the loss in cost with respect to the plant infimum. As dis-
cussed in the conclusions of Chapter 4, the combination of dual
modifier adaptation with constraint control needs also to be inves-
tigated.

• In this thesis, only steady-state perturbation methods have been
considered for estimating the experimental gradients. Future re-
search could consider the implementation of dynamic perturbation
methods as well. In this context, the studies advanced in the ISOPE
literature may serve as a point of depature [93].

• The constraint-adaptation approach has been extended to batch
and semi-batch processes in [59]. Since batches are typically re-
peated, it is possible to devise run-to-run (also called batch-to-
batch) optimization schemes by exploiting the knowledge from pre-
vious batches. The optimization of these processes typically in-
volves solving a dynamic optimization problem for which the solu-
tion consists of time-varying input profiles. Dynamic optimization
problems have two types of constraints: the path constraints limit
the inputs and states during the batch, while the terminal con-
straints limit the outcome of the batch at final time. Hence, the
path constraints are modified using time-varying modifiers, while
the terminal constraints are modified using terminal modifiers. The
analysis of the approach could be the subject of future work.

Finally, the implementation of constraint adaptation combined with
constraint control to a SOFC system (see Subsection 3.3.3) has led to
a collaboration project between the Laboratoire d’Automatique (LA)
and the Laboratoire d’Energétique Industrielle (LENI) of EPFL. The
project contemplates the experimental implementation of the approach
to a SOFC system available at LENI’s facilities.
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Solid Oxide Fuel Cell Model

Energy Balance

The fuel and the oxidant (air) that enter the stack react electrochem-
ically, releasing heat and electrical power. The energy balance for the
stack is:

mstack cpstack

∂Tstack

∂t
= −∆Ḣgases − P − Q̇loss (A.1)

where the electrical power is given by:

P = Ucell Ncells I.

Only radiative heat loss from the stack is taken into account:

Q̇loss = Astack F σSB

(

T 4
stack − T 4

furnace

)

where F is the transfer factor for the radiative heat exchange between
the stack and the furnace calculated for the case of a body enclosed
into another [53].

Mass Balance

For the mass balance, the species considered are H2O and H2 at the
anode and O2 and N2 at the cathode. The only reaction taking place
is the electrochemical oxidation of H2, for which the overall reaction
is:
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H2 +
1

2
O2 −→ H2O

From Faraday’s law, the amount of H2 participating in the reaction is
related to the current produced in the reaction as,

ṅH2,reac =
I Ncells

2F

The mass balances are formulated as,
Anode:

ṅi,an,out = ṅi,an,in + νi ṅH2,reac, i = H2,H2O

Cathode:

ṅj,cath,out = ṅj,cath,in + νj ṅH2,reac, j = O2,N2

where νi is the stoichiometric coefficient of component i in the reaction.

Eletrochemical Model

The electrochemical model computes the cell potential and average
current density as a function of the operating conditions, i.e., tem-
perature, flow rates and gas compositions. The reversible cell voltage
UNernst is computed from the change in Gibbs free enthalpy for the H2

oxidation reaction as,

UNernst =
−∆Greaction

neF

This is the maximum amount of potential that can be delivered by the
cell. The actual voltage is subject to overpotentials due to losses ap-
pearing during operation. The losses considered here are: ohmic losses
due to the ionic resistance of the electrolyte and current collectors;
activation losses due to charge transfer kinetics; diffusion losses due
to concentration gradients between the electrode surface and the bulk
flow; and losses due to the dissociation of the oxygen molecules into
ions on the cathode surface. The effective cell potential Ucell is given
by,

Ucell = UNernst − ηact,cath − ηionic,elect − ηdiss,cath − ηdiff,an − ηdiff,cath
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The cathode activation overpotential is expressed by the Butler-Volmer
equation [19]:

ηact,cath =
R Tstack

F
sinh−1

(

i

2 i0,cath

)

i0,cath =
2R Tstack

F
k0,cath exp

(−Eact,cath

R Tstack

)

The anode overpotential is relatively small and is neglected.
The Ohmic overpotential is expressed as [69],

ηionic,elect = i

(

helect

σionic,elect

)

σionic,elect = σ0,elect exp

( −Eelect

R Tstack

)

The concentration overpotential in the anode is calculated as:

ηdiff,an = −RTstack

2F
ln(1− (FU + FUadj))

FU =
ṅH2,reac

ṅH2,an,in

where FU is the Fuel Utilization factor, defined as the ratio of amount
of H2 consumed to the amount of H2 at the inlet. FUadj is an adjust-
ment factor. The concentration overpotential in the cathode is calcu-
lated as:

ηdiff,cath = −R Tstack

2F
ln

(

1− FU

λair

)

λair =
2 ṅO2,cath,in

ṅH2,an,in

where λair is the excess air ratio, defined as the amount of oxygen to
hydrogen in the feed over the stoichiometric ratio.
The overpotential loss due to the dissociation of oxygen at the cathode
is expressed as:

ηdiss,cath = R0,cath

(

pO2,in

p0

)−0.5

exp

(

Ediss,cath

R Tstack

)

i

The operating conditions are listed in Table A.1.
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Table A.1. Fixed operating conditions

Fuel feed composition 3% H2O, 97% H2 Tin (fuel and air) 750 ◦C

Air feed composition 21% O2, 79% N2 Tfurnace 780 ◦C

Table A.2. Parameter values

Kinetic parameters

Eact,cath 1.5326× 105 J
mol k0,cath 4.103× 1011 1

Ω m2

Eelect 7.622× 104 J
mol σ0,elect 1.63× 104 1

Ω m

R0,cath 9.2252× 10−14 Ω m2 Ediss,cath 1.489× 105 J
mol

Cell properties

Aactive 50× 10−4 m2 Astack 4.69× 10−2 m2

mstack 2.647 kg (m cp)stack 2.33× 102 J
kg K

Ncells 5 FUadj 0.15

F 0.667
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Table A.3. SOFC Model Nomenclature

Aactive Active cell area (m2)

Astack Area of stack exposed to the furnace (m2)

cp,stack Heat capacity of stack ( J
kg K)

Eact Energy for reaction activation ( J
mol)

Ediss Activation energy for oxygen dissociation ( J
mol )

Eelect Activation energy for electrolyte conductivity ( J
mol)

F Faraday’s constant

F Radiative heat exchange transfer factor

FU Fuel utilization

FUadj FU adjustment factor

∆Greaction Free energy change for reaction ( J
mol)

h Thickness (m)

∆Ḣgases Enthalpy change for gases ( J
sec )

I Current (A)

i Current density ( A
m2 )

i0 Exchange current density ( A
m2 )

k0 Pre-exponential factor for activation overpotential

kB Boltzmann constant

LHV Lower heating value for H2 ( J
mol)

mstack Mass of materials of stack (kg)

ne Charge number of reaction

Ncells Number of cells comprising the stack

P Power produced by the stack (W)

Pel Power density ( W
m2 )

Pblower Power consumed by blower (W)

p Partial pressure ( N
m2 )
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p0 Reference ambient pressure ( N
m2 )

Q̇air Volumetric flow rate of air (m3

s )

Q̇loss Heat loss from stack to furnace (J
s )

R Universal gas constant

R0 Pre-exponential factor for O2 dissociation (Ω m2)

T Temperature (K)

Ucell Cell potential (V)

UNernst Nernst potential (V)

Greek letters

ηact Activation overpotential (V)

ηdiff Diffusion overpotential (V)

ηdiss O2 dissociation overpotential (V)

ηionic Ionic overpotential (V)

η SOFC efficiency

λair Excess air ratio

σSB Stefan-Boltzmann constant

σ0,elect Ionic conductivity of electrolyte ( 1
Ω m )

ν Stoichiometric coefficient

Subscripts

an Anode

cath Cathode

in Inlet

out Outlet

elect Electrolyte
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Affine Subspaces

In a nu-dimensional space, a point is an affine subspace of dimension
0, a line is an affine subspace of dimension 1, and a plane is an affine
subspace of dimension 2. An affine subspace of dimension (nu − 1) is
called an hyperplane.

Hyperplane. An hyperplane in nu-dimensional space is given by

n1u1 + n2u2 + · · ·+ nnu
unu

= b, or: nTu = b (B.1)

and divides the space into two half-spaces: nTu ≥ b, and nTu ≤ b.
Complement affine subspaces. Given a set of (nu + 1) points in a

nu-dimensional space, S := {u1, . . . ,unu+1}, a proper subset SA, i.e.
SA ( S, of nA

u ∈ {1, . . . , n} points generates an affine subspace of
dimension (nA

u − 1):

u = u1 + λ1,2
u1 − u2

‖u1 − u2‖ + · · ·+ λ1,nA
u

u1 − unA
u

‖u1 − unA
u ‖ (B.2)

where the parameters λ1,2, . . . , λ1,nA
u

represent distances from the point

u1 in the directions u1 − u2, . . . ,u1 − unA
u , respectively. The comple-

ment subset SC := S \ SA of (nu + 1 − nA
u ) points, generates the

complement affine subspace of dimension (nu − nA
u ):

u = unA
u +1 + λnA

u +1,nA
u +2

unA
u +1 − unA

u +2

‖unA
u +1 − unA

u +2‖ + . . . (B.3)

· · ·+ λnA
u +1,n+1

unA
u +1 − unu+1

‖unA
u +1 − unu+1‖
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Distance between complement affine subspaces. In order to compute
the distance between the complement affine subspaces (B.2) and (B.3),
a vector n that is normal to both subspaces is required:

[ u1 − u2 . . . u1 − unA
u unA

u +1 − unA
u +2 · · · (B.4)

unA
u +1 − unu+1 ]Tn = 0, or, Un = 0.

The matrix U ∈ IR(nu−1)×nu is of rank (nu − 1). Vector n can be
obtained by singular-value decomposition of U.

Given a point ua that belongs to the affine subspace (B.2), a point
ub that belongs to the complement affine subspace (B.3), and a vector
n that is normal to both complement affine subspaces, the distance
lAC between the complement affine subspaces is:

lAC =
|nT(ub − ua)|

‖n‖ (B.5)
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