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Abstract

Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of
genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and
other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different polyQ-
expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly
models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molec-
ular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a
consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and post-
transcriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal
transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of
polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect
of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.

[Mallik M. and Lakhotia S. C. 2010 Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly
models. J. Genet. 89, 497-526]

Introduction of mutations which bring about expansion of unstable trinu-
cleotide repeats in the genome. Such trinucleotide repeat dis-
orders, also known as codon reiteration disorders, are caused
by expansion of the reiteration frequency of the tandem
triplet repeats in certain genes beyond the gene-specific nor-
mal and stable threshold. Such pathogenic mutations were
first described in 1991 as the causative mutations in frag-
ile X syndrome (FXS; Verkerk et al. 1991) and spinal and
bulbar muscular atrophy (SBMA; Laspada et al. 1991). Cur-
rently, about 20 such disorders are known, nine of which
are neurodegenerative and result from expansion of CAG re-
peats coding for polyglutamine (polyQ) tracts. Among these,
Huntington’s disease (HD) and Machado—Joseph disease
(MJD) or Spinocerebellar ataxia 3 (SCA3) are prominent.
Besides polyglutamine, several other amino acid repeats are
also common in the human genome (Karlin and Burge 1996)

Neurodegeneration (Greek ‘neuro’ = nerve and Latin
‘degenerare’ = to decline) literally means deterioration of
neurons resulting in slow but irretrievable loss of neu-
ronal activity. Human neurodegenerative disorders, sporadic
or hereditary, are of heterogeneous etiology and lead to
disorder-specific loss of neurons and thus to dysfunction-
ing of specific components of the central nervous system.
Based on their phenotypic effects, they can be divided into
two groups, viz., (i) conditions associated with tremors and
movement disorders or ataxias, and (ii) conditions affect-
ing cognitive functions and memory or dementias. However,
these phenotypes are not mutually exclusive.

Neurodegenerative diseases involving triplet repeat

expansion

In recent years, a growing number of neurodegenerative dis-
eases have been found to be associated with a unique class

*For correspondence. E-mail: lakhotia@bhu.ac.in; sclakhotia@yahoo.co.in.

but only a few of them have been found to undergo expan-
sions that result in disease. Expansion of polyalanine repeats
has been described in recent years as the causative agent
in some neurodegenerative diseases (Albrecht and Mundlos
2005). Diseases associated with expansion of the glutamine
codon (CAG/CTG) are primarily discussed here.
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The following defining features (Plassart and Fontaine
1994; Paulson and Fischbeck 1996) are common amongst
disorders caused by trinucleotide repeat expansions. (i) The
expanded repeats show both somatic and germ line insta-
bility due to dynamic mutations, and more frequently ex-
pand rather than contract, in successive transmissions from
one generation to the next (Pearson et al. 2005). (ii) The
larger the expansion beyond the threshold, the greater is the
severity of disease. This property results in the characteris-
tic anticipation common in trinucleotide repeat disorders so
that the age of onset decreases and severity of symptoms in-
creases through successive generations in the affected family
(Igarashi et al. 1992). (iii) Parental origin of the disease allele
can often influence anticipation. For example, the triplet re-
peat is more likely to expand when inherited from the mother
in myotonic dystrophy and with paternal transmission in the
case of polyQ repeat disorders such as HD (reviewed in Lutz
2007).

The different neurological disorders caused by expansion
of triplet (in rare cases tetra-nucleotide or penta-nucleotide)
repeat sequences can be broadly divided into two distinct
groups based on the location of expanded repeats in the af-
fected gene (see tables 1-3). The first group is characterized
by expansion of CAG repeats in the coding region of the
target gene whereas in the second group, the repeat expan-
sion occurs in the non-coding region of the affected gene (ta-
ble 1). The first group is collectively referred to as polyglu-
tamine or polyQ disorders (tables 1 and 3). The polyalanine
(polyA) repeat expansion disorders, which exhibit a low de-
gree of polymorphism with respect to the site and length of
the repeat, have also been recently included in this category
(Albrecht and Mundlos 2005). The second group includes
non-coding trinucleotide repeat diseases, which are typically
characterized by large and variable repeat expansions result-
ing in pleiotropic dysfunction in multiple tissues (table 2).

The second group of triplet expansion diseases can also
be divided into two mechanistic categories: (i) diseases
caused by expansion of non-coding repeats that interfere with
transcription of the mutated gene resulting in a loss of protein

function; and (ii) diseases caused by expansion of transcribed
but non-translated repeats resulting in altered RNA function
and metabolism (table 2).

Polyglutamine (CAG) repeat disorders

The polyglutamine diseases constitute a class of genetically
distinct, late-onset, gain-of-function neurological disorders,
that are caused by expansion of polyglutamine stretches, typ-
ically from a normal range of 4 to 36 residues to a pathogenic
range of >36 tandem residues (see table 3) in different
proteins (Gusella and MacDonald 2000; Everett and Wood
2004; Gatchel and Zoghbi 2005). In each of these diseases,
the CAG repeat expansion occurs in the translated region of
the respective disease genes (tables 1 and 3). The expansion
is found in the first exon of the given gene in SCA2, SCA3,
HD and SBMA diseases (Vonsattel et al. 1985; Laspada et
al. 1991; Kawaguchi et al. 1994; Imbert et al. 1996) while in
SCA1, SCA7 and DRPLA, the expanded CAG repeats are lo-
cated in exons 8, 3 and 5, respectively (Orr et al. 1993; Koide
et al. 1994; David et al. 1997). The main features of each
of these diseases such as the causative disease genes, their
genetic loci, functions of the protein products, etc are listed
in table 3. With the exception of SBMA, all these neurode-
generative diseases are inherited in an autosomal dominant
manner.

Studies on these pathogenic proteins reveal that the long
polyQ domain alters protein conformation causing an en-
riched beta sheet structure (Bilen and Bonini 2007). This
confers a novel toxic property on these proteins in neuronal
cells resulting in death of selective neurons, although the dis-
eased protein is expressed more widely in brain and other
tissues (table 3).

Nature of polyQ toxicity

Isolated, expanded polyQ fragments by themselves are
intrinsically and indiscriminately cytotoxic (Marsh et al.
2000), suggesting that the selective vulnerability of differ-
ent subsets of neurons in each disease is due to other factors.

Table 1. Types of trinucleotide repeat disorders based on location of the expanded

repeats.

Translated repeat disorders

Untranslated triplet repeat diseases

Disease name

Mutation/repeat unit

Disease name  Mutation/repeat unit

SCA 1,2,3,6,7,17 (CAG),
HD (CAG),
DRPLA (CAG),
SBMA (CAG),

FRDA (GAA),
FRAXA (CGC),
FRAXE (CCG),
FXTAS (CGG),
DMI (CTG),
DM2 (CCTG),
SCAS (CTG),
SCA10 (ATTCT),
SCA12 (CAG),
HDL2 (CTG),
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Since the genes causing these diseases have no homology
with each other except for the highly polymorphic CAG tract,
the distinct clinical and pathological features of the vari-
ous polyQ diseases (table 3) indicate that the protein context
around the pathogenic repeat plays a significant role in mod-
ulating the disorder (Orr 2001; Nozaki ef al. 2001; La Spada
and Taylor 2003; Masino et al. 2004; de Chiara et al. 2005;
Gatchel and Zoghbi 2005; Thakur et al. 2009). For instance,
phosphorylation of ataxin-1 at serine 776 and sumoylation
of huntingtin protein have been found to be important deter-
minants of toxicity (Chen et al. 2003; Emamian ef al. 2003;
Steffan et al. 2004). In spite of the divergent properties of
the affected proteins, the various polyQ diseases share sev-
eral features like: (i) mid-life onset; (ii) progressive neuronal
cell loss; (iii) decline in motor and cognitive functions; (iv)
anticipation; (v) a correlation between the number of CAG
repeats and the severity and age at onset of the disease; and
(vi) abnormal protein conformation(s) which result in protein
aggregations in the affected cells (DiFiglia et al. 1997; Paul-
son et al. 1997b; Skinner et al. 1997; Walters and Murphy
2009).

Inclusion bodies

The various polyQ disorders generally show intracellular ag-
gregates or inclusion bodies (IB) due to abnormal folding of
the expanded polyQ proteins in the affected neurons in hu-
mans as well as in cell culture and animal models (Davies
et al. 1997; Klement et al. 1998; Saudou et al. 1998; War-
rick et al. 1998; Bates 2003). These aggregates develop in a
polyQ length and time-dependent manner (Kim et al. 1999).
In polyQ patients, the aggregates may localize in the cyto-
plasm, perinuclear and/or nuclear regions of the cell. These
inclusion bodies sequester a variety of cellular proteins like
molecular chaperones (Cummings et al. 1998; Warrick et al.
1999), some key transcription factors (McCampbell et al.
2000; Nucifora et al. 2001; Dunah et al. 2002; Li et al. 2002;
Schaffar et al. 2004), proteasome subunits (Cummings et al.
1998; Chan et al. 2000; Bence et al. 2001) and cytoskeletal
components (Meriin et al. 2003; Ganusova et al. 2006). The
intrinsic toxicity of insoluble aggregates of proteins with ex-
panded polyQ tract is thus believed to be aggravated by the
functional depletion of the other normal cellular proteins be-
cause of their sequestration by the IBs (Stenoien ez al. 1999;
Chai et al. 2002; Iwata et al. 2005).

It is still debated if the IBs, which are hallmarks of
polyQ pathogenesis, are causal to or a consequence of dis-
ease pathogenesis or represent a cellular protective mecha-
nism (DiFiglia et al. 1997; Kim and Tanz 1998; Saudou et
al. 1998; Warrick et al. 1998; Arrasate et al. 2004). Some
studies have suggested that the IBs are merely structural
markers of neurotoxicity and are not necessary for neuronal
loss but have a protective role in case of HD, SCA1 and
SCAT7 (Watase et al. 2002; Yoo et al. 2003; Arrasate et al.
2004; Bowman et al. 2005) Further, mouse models express-
ing full length huntingtin or ataxin-1 proteins lacking the
self-association domain failed to develop the typical aggre-

gates, yet they showed specific neuronal cell loss characteris-
tic of the disease (Klement ez al. 1998; Hodgson et al. 1999).
On the other hand, several studies in Drosophila polyQ dis-
ease models showed that polypeptides that bind to mutant
huntingtin or mutant ataxin-3 and interfere with their aggre-
gation reduce the polyQ toxicity (Apostol et al. 2003; Nagai
et al. 2003). Recent studies from our laboratory have also
demonstrated that suppression of polyQ toxicity in fly mod-
els of the disease by targeted depletion of Hsp60D or the
large nuclear non-coding hsr®-n RNA is associated with in-
hibition of polyQ aggregate formation in eye disc cells (Arya
et al. 2010; Mallik and Lakhotia 2009a). It is also believed
that the potentially soluble and diffusible oligomeric struc-
tures of the expanded polyQ proteins may be the actual me-
diators of cytotoxicity (Ross and Poirier 2004; Bennett et al.
2005).

PolyQ diseases are examples of a growing group of neu-
rodegenerative disorders in which protein homeostasis seems
to be affected due to abnormal protein folding, aggregation
and impaired degradation. However, several fundamental is-
sues relating to the polyQ pathogenesis remain to be under-
stood. For instance, why are neurons selectively vulnerable
even though the mutant proteins are more widely expressed?
Even in the populations of neurons that express the mutant
protein, why do only certain subpopulations of neurons un-
dergo degeneration while others do not? Are changes in con-
formation of mutant protein the primary cause of neurode-
generation or does the expanded polyQ stretch provide a loss-
of-function or gain-of-function property to the protein or do
such proteins get mislocalized in the cell resulting in disrup-
tion of their normal function/s? Are there other independent
events, triggered by the expanded polyQ stretch, which also
contribute to the polyQ phenotypes? It also remains to be un-
derstood if the currently accepted markers of neurodegenera-
tion are the causal factors or consequences of the pathology?
Notwithstanding these uncertainties, conformational changes
in proteins with expanded polyQ stretches are believed to be
the prime cause for the pathogenesis in view of the colocal-
ization of molecular chaperones and proteasome components
with the IBs and modulation of polyQ aggregation and tox-
icity by several chaperones (Muchowski and Wacker 2005;
Rousseau et al. 2009; Nagai et al. 2010, also see table 5).

There are several possible ways through which altered
conformations of the expanded polyQ proteins may cause
degeneration of neuronal cells: (i) The mutant protein’s in-
trinsic biological activity is altered because of the conforma-
tional change in the polyQ domain. (ii) The mutant protein
shows altered interactions with its normal interacting part-
ners and/or novel associations with other proteins. In partic-
ular, the misfolded polyQ proteins interact with normal cel-
lular proteins that contain polyQ or glutamine-rich domains,
because such domains are sufficient to recruit these normal
proteins into polyQ IBs (Perez et al. 1998; Kazantsev et al.
1999). Except for the polyQ tract, the disease proteins are
dissimilar and therefore, certain changes in protein interac-
tions will be unique to the individual disease protein.
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Table 4. Fly models of glutamine repeat disorders

PolyQ
Protein Repeat
context Transgene construct length Transgene name References
48 UAS-Q48tag Kazantsev et al. (2002)
Pure Transgenes with varying length of CAG trinucleotide 63 UAS-63Q é?;)ezrgl i-Esfarjani and Benzer
. repeats generated from various sources but without
polyglutamine any disease protein context 7 GMR-Q79 Higashiyama et al. (2002)
Y P 9 GMR-Q92 gashty :
108 UAS-Q108 Marsh et al. (2000)
127 UAS-127Q Kazemi-Esfarjani and Benzer
(2000)
Ataxin-1 Human SCA1 cDNA 82 UAS-SCALI 82Q Feany and Bender (2000);
Fernandez-Funez et al. (2000);
Tsai et al. (2004)
Ataxin-3 NH;-terminal 12 aa and C-terminal 43 aa 78 UAS-MJDtr-Q78 Warrick et al. (1998)
NH;-terminal 12 aa and C-terminal 43 aa 61 UAS-SCA3tr-Q61(S) Chan et al. (2000)
N-terminally truncated ataxin-3 62 UAS-SCA3trQ62-DsRed Liet al. (2007)
N-terminally truncated ataxin-3 with NES sequence 77 UAS-MJD-77QNES Gunawardena et al. (2003)
from the Rev protein at the 3’ end
. 78 UAS-SCA3-Q78 Warrick et al. (2005)
Full length of ataxin-3 g4 UAS-SCA3-Q84
Full length of ataxin-3 with a point mutation in the 88 UAS-SCA3-Q88 C14A
ubiquitin protease domain
Full length ataxin-3 with point mutations (S236A, 80 UAS-SCA3-Q80 UIM*
S256A) in the ubiquitin interacting motif (UIM)
Full length ataxin-3 carrying a mutation in the 71 UAS-Atx3Q71HNHH Boeddrich et al. (2006)
VCP-Binding site
NH;-terminal deletion mutant of ataxin-3 79 UAS-ataxin-3AN79QC Matsumoto et al. (2004)
Ataxin-7 SCA7 cDNA (amino acids 1-232) with an added 102 UAS-SCATT-102Q Latouche et al. (2007)
nuclear localization signal
Huntingtin NHz—.terrTnnal 17Aaa and an additional 41 2.5 aa from 75 GMR-Huntingtin-Q75 Jackson et al. (1998)
Huntingtin and different carboxy termini due to
variations in the portion of the parental hsp70 vector
3’ region included prior to the stop codon
120 GMR-Huntingtin-Q120
Entire exon 1 of Huntingtin (amino acids 1-67) 93 UAS-Httex1p Q93 Steffan et al. (2001)
cDNA encoding the entire exon 1 of Huntingtin 97 UAS-Httex1p 97QP
followed by the proline rich PXXP domain; this Steffan et al. (2004)
domain is absent in the 103Q construct 103 UAS-Hitex Ip 103Q
548 amino acid NH,-terminal fragment of the human 128 UAS- Htt-Q128 Lee et al. (2004)
Huntingtin cDNA
NH,-terminal fragment encoding the first 336 amino 128 UAS-128QHtt[M64] Kaltenbach et al. (2007)
acids of the human Huntingtin cDNA
N-terminal part of human Huntingtin (amino acids 138 UAS-HA-hHtt171aa-138Q  Mugat et al. (2008)
1-171)
. N 46 UAS-Httex1-Q46-eGFP
NH;-terminal Huntingtin exon 1 7 UAS-Hitex1-Q72-eGFP Zhang et al. (2010)
103 UAS-Httex1-Q103-eGFP
N-terminal Huntingtin exon 1 fused to EGFP either 48 UAS-Nhtt(48Q)EGFPNLS  Doumanis et al. (2009)
with or without an NLS for nuclear targeting
152 UAS-Nhtt(152Q)EGFP
Full length human AR 52 UAS-hAR(Q52)
Androgen receptor Mutant hAR lacking the C-terminal E/F domain 52 UAS-hAR(Q52 AF-1) Takeyama et al. (2002)
containing the ligand binding domains.
Human AR cDNA 112 UAS-ARtrQ112 Chan et al. (2002)
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Table 5. Genetic modifiers of toxicity in fly models of polyQ disorders.

Fly models of polyQ disease pathology examined

Genetic modifiers of Nature of SCAs
polyQ toxicity (gene mutant
name) allele PolyQ model SCA1 SCA3 SCA7 HD References
Transcription factors/regulators
Heat shock factor (Hsf) LOF En Fujikake et al. (2008)
Sin3A (Sin3A) OE Su’ 1. Fernandez-Funez et al.
LOF En! En4, Sy2a (2000), 2. Steffan et al.
(2001), 3. Bilen and Bonini
(2007), 4. Branco et al.
(2008)
Taranis (tara)® OE NC? En'? NC? En3 1. Fernandez-Funez et al.
LOF En! (2000), 2. Ghosh and
Feany (2004), 3. Branco et
al. (2008)
Engrailed (en) OE Su Mugat et al. (2008)
Tramtrack (ztk) LOF Su
Armadillo (arm) LOF Su
Crooked legs (crol) LOF ]SELI Kaltenbach et al. (2007)
Myocyte enhancer factor2 ~ LOF Su
(Mef2)
Nipped-A (dTral) LOF Su' En? 1. Latouche et al.
TBP-associated Factor 10 LOF Su! (2007), 2. Zhang et al.
(Taf10) (2010)
Skuld (skd) LOF En En Branco et al. (2008)
C-terminal Binding Protein ~ LOF En'? NC? 1. Fernandez-Funez et al.
(dCtBP) (2000), 2. Branco et al.
(2008)
Debra (dbr) OE Su Bilen and Bonini (2007)
LOF En
Silencing mediator for OE Su Tsai et al. (2004)
retinoid and thyroid LOF En
hormone receptors
(SMRT)-related ecdysone
receptor-interacting factor
(SMRTER)
RNA-binding proteins
Muscleblind (mbl) OE En Li et al. (2008)
Mushroom-body expressed ~ OE Su! En? En’ 1. Fernandez-Funez et al.
(mub) LOF En’ NC3 (2000), 2. Latouche et al.
(2007), 3. Branco et al.
(2008)
Drosophila myeloid OE Su Su Kazemi-Esfarjani and
leukemia factor 1 (dmlf) Benzer (2002)
Pumilio (pum) OE NC? En' NC? En’ 1. Fernandez-Funez et al.
LOF NC!, Su? (2000), 2. Ghosh and
Su3d Feany (2004), 3. Branco et

al. (2008)
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Genetic modifiers of

Fly models of polyQ disease pathology examined

Nature of SCAs
polyQ toxicity (gene mutant
name) allele PolyQ model SCA1 SCA3 SCA7 HD SBMA  References
Couch potato (cpo) OE En! En® 1. Fernandez-Funez et al.
LOF NC' (2000), 2. Branco et al.
(2008)
Hrb87F (hrb87F) LOF En Sengupta and Lakhotia
(2006)
Hoi-polloi (hoip) OE En En Murata et al. (2008)
Histone acetyltransferases/deacetylases
CREB Binding Protein OE Su! En® En’ 1. Taylor et al. (2003),
(nejire) LOF En'? 2. Mallik and Lakhotia
(2010), 3. Latouche et al.
(2007)
Rpd3 (Rpd3) LOF En' En?¢  NC3, 1. Fernandez-Funez et al.
Su*f (2000), 2. Latouche et al.
(2007), 3. Branco et al.
(2008), 4. Pallos et al.
(2008)
Sirtuin 2 (Sir2) OE NC? En'? NC? En’ 1. Fernandez-Funez et al.
LOF NC! Su* (2000), 2. Ghosh and
Feany (2004), 3. Branco et
al. (2008), 4. Pallos et al.
(2008)
Histone deacetylase 6 OE Su Su Su Pandey et al. (2007)
(HDAC6) LOF En
Protein homeostasis pathways
Ubiquitin (Ubi63E, OE En' Su? Su? 1. Fernandez-Funez et al.
CR11700) LOF (2000), 2. Steffan et al.
(2004), 3. Bilen and Bonini
(2007)
Ubiquitin conjugases LOF En! En? 1. Fernandez-Funez et al.
(UbcD Ifeffete, dUbc-E2H) (2000), 2. Branco et al.
(2008)
Ubiquitin activating OE Su Latouche et al. (2007)
enzyme (Ubal)
Ubiquitin Ligases (CHIP, OE NC? Su? Sul3 Su? 1. Matsumoto et al. (2004),
CG8209, Faf, 2. Al-Ramahi et al. (2007),
UFD2a/CG11070) 3. Bilen and Bonini (2007)
SUMO (smt3) LOF Su Steffan et al. 2004
SUMO-1 activating LOF En'? En? 1. Arya et al. (2010),
enzyme (Uba2) 2. Chan et al. (2002)
Proteasome subunits LOF En' En® 1. Mallik and Lakhotia
(Pros26, ProsB2) (2010), 2. Chan et al.
(2002)
Full length ataxin-3 protein ~ OE Su Su Su Warrick et al. (2005)
Autophagy-specific genes LOF En! En? 1. Bilen and Bonini (2007),
(Atg5, Atg6, Atgl2) 2. Pandey et al. (2007)
Fat facets (faf) LOF En Kaltenbach et al. (2007)

Chaperones and co-chaperones
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Genetic modifiers of

Fly models of polyQ disease pathology examined

Nature of SCAs
polyQ toxicity (gene mutant
name) allele PolyQ model SCA1 SCA3 SCA7 HD SBMA  References
HdJ1 (Dnal-1) OE Su# Su?# Sul# Su’ Su! 1. Chan et al. (2000),
LOF En! 2. Fernandez-Funez et al.
(2000),
3. Kazemi-Esfarjani and
Benzer (2000), 4. Ghosh
and Feany (2004),
5. Latouche et al. (2007)
Heat shock protein 70 OE Su* Su* Sul# Su? Su? 1. Warrick et al. (1999),
(Hsp70) LOF En’ 2. Chan et al. (2000),
3. Chan et al. (2002),
4. Ghosh and Feany (2004),
5. Gong and Golic (2006)
Heat Shock Protein OE En? Su! En? 1. Latouche et al. (2007),
cognate 3 (Hsc70-3) LOF 2. Branco et al. (2008)
Heat Shock Protein LOF En’ En’ En'? En? 1. Warrick et al. (1999),
cognate 4 (Hsc70-4) 2. Chan et al. (2000),
3. Ghosh and Feany (2004)
CG6603 OE Su Zhang et al. (2010)
(Hsc70Cb/Hsp110) LOF En
Hsp60D (hsp60D) LOF Su Su Arya et al. (2010)
Hsp27 OE NCe Su Liao et al. (2008)
sHsp of crystalline OE Su Bilen and Bonini (2007)
(CG14207)
Tetratricopeptide repeat OE Su! Su? 1. Kazemi-Esfarjani and
protein 2 (Tpr2) LOF En? Benzer (2000), 2. Bilen
and Bonini (2007)
Cellular detoxification pathway
Superoxide dismutases OE NC Bahadorani and Hilliker
(Sod, Sod2) (2008)
Glutathione-S-transferase OE Su! NC? 1. Fernandez-Funez et al.
S1 (GstS1) LOF En'? (2000), 2. Branco et al.
(2008)
Aspartyl B-hydroxylase LOF En Kaltenbach et al. (2007)
(Asph)
Axonal transport
Kinesin heavy chain (Khc) ~ LOF En' En' En' Su?P 1. Gunawardena et al.
(2003), 2. Kaltenbach et al.
(2007)
Cytoplasmic dynein light LOF En En En
chain 2 (Cdlc2)
Dynein heavy chain 64C LOF En Kaltenbach et al. (2007)
(Dhc64C)
Signal transduction
14-3-3€ (14-3-3€) OE En En'? 1. Branco et al. (2008);
LOF Su Su'? 2. Kaltenbach et al. (2007)
14-3-3¢ (14-3-3¢fleonardo)  OE En Kaltenbach et al. (2007)
Aktl (Aktl) OE En' NC? Su'+? 1. Branco et al. (2008);
LOF Su! En! 2. Bilen et al. (2006),

3. Lievens et al. (2008)
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Fly models of polyQ disease pathology examined

Genetic modifiers of Nature of SCAs
polyQ toxicity (gene mutant
name) allele PolyQ model SCA1 SCA3 SCA7 HD SBMA  References
pS3 LOF Su Bae et al. (2005)
Vibrator (vib) OE Su En Branco et al. (2008)
RhoGAP (RhoGAPp190) OE En En
Pi3K92E (Pi3K92E) OE En Su
Intersectin (Dap160) OE En Scappini et al. (2007)
GTPase (Rheb) OE En Doumanis et al. (2009)
Src oncogene at 42A OE LOF Su En
(Src42A) Kaltenbach et al. (2007)
Syntaxinl A (SyxIA) LOF OE Su En
Inositol OE LOF En Su
1,4,5,-tris-phosphate
receptor (/tp-r83A)
Apoptosis
P35 OE NC!3 Su? NC* NC? 1. Kazemi-Esfarjani P. and
Benzer S., unpublished,
2. Jackson et al. (1998),
3. Ghosh and Feany (2004),
4. Bilen and Bonini (2007)
DIAPI1 (thread) OE NC! Su'  Su', Su? Su? 1. Ghosh and Feany (2004),
LOF En* En? NC? En® En? 2. Latouche et al. (2007),
En* 3. Branco et al. (2008),
4. Arya et al. (2010),
5. Bilen et al. (2006)
Drosophila LOF Su! NC? Su! 1. Sang et al. (2005),
Apaf-1-related-killer 2. Bilen et al. (2006)
(dark)
Death executioner Bcl-2 OE Su En Senoo-Matsuda et al.
homologue (debcl/Drob- LOF (2005)
1/dBorg-1/dBok)
Bufty (Buffy) OE En
VCP/p97/CDC48 (ter94) OE Su? Su! NC! 1. Boeddrich et al. (2006),
LOF 2. Higashiyama et al.
(2002)
Non-coding RNAs
Heat shock RNA omega OE En'?2i Su? Su? En? 1. Fernandez-Funez et al.
(hsrw) LOF Su? Su? (2000), 2. Sengupta and
Lakhotia (2006), 3. Mallik
and Lakhotia (2009a)
Bantam (ban) OE Su Bilen et al. (2006)
LOF En
microRNA processing
Dicer-1 (dcr-1) LOF En Bilen et al. (2006)
Dicer-2 (dcr-2) LOF NC
R3D1 (logs) LOF En
Dicer-1 (dcr-1) LOF En
PolyQ genes
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Table 5 (contd.)

Fly models of polyQ disease pathology examined

Genetic modifiers of Nature of SCAs
polyQ toxicity (gene mutant
name) allele PolyQ model SCA1 SCA3 SCA7 HD SBMA  References
Ataxin-2 (dAtx2) OE En' En'?  En! NC? 1. Ghosh and Feany
LOF Su? Su? (2004), 2. Al-Ramabhi et al.
(2007), 3. Lessing and
Bonini (2008)
Ataxin-3 (hA1x3) OE Su Su Su Warrick et al. (2005)
Huntingtin (dH%?%, OE Su Mugat et al. (2008)
hHi>48aa) LOF En
Translational regulators
Dappled (dpld) OE Su
Insulin growth factor I1 OE Su Bilen and Bonini (2007)
mRNA binding protein
(Imp)
Orb2 (orb2/CG5735) OE Su
Cytoskeletal organization and biogenesis
Chickadee (chic) OE Su Su Burnett et al. (2008)
LaminC (LamC) LOF En
Zipper (zip) LOF En Kaltenbach ef al. (2007)
Hu 1i tai shao (hts) LOF Su
Peanut (pnut) LOF Su
Transport proteins
Embargoed (emb) OE Su Bilen and Bonini (2007)
LOF En
Rab5 (Rab5) OE Su Ravikumar et al. (2008)
LOF En
Nup44A (Nup44A) OE Su! NC? 1. Fernandez-Funez et al.
(2000), 2. Branco et al.
(2008)
Nuclear pore protein 160 LOF Su Doumanis et al. (2009)
(Nup160)
Clathrin heavy chain (Chc)  LOF Su
Unc-76 (Unc-76) LOF En Kaltenbach et al. (2007)
Porin (porin) LOF Su
Sec61a (CG9539) LOF Su Su Kanuka et al. (2003)
Miscellaneous
Yeast prion domain OE Su Li et al. (2007)
Sup35N LOF En
CG7231 LOF En En En Ghosh and Feany (2004)
CG1109 LOF Su Doumanis e al. (2009)
CG5537 LOF Su
G protein 0 subunit 65A OE En
(G-ia65A) LOF Su
Short stop (shot) LOF En
CG12455 OE En Kaltenbach et al. (2007)
LOF Su
Phosphoglucose isomerase ~ LOF En
(Pgi)
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Table 5 (contd.)

Fly models of polyQ disease pathology examined

Genetic modifiers of Nature of SCAs
polyQ toxicity (gene mutant
name) allele PolyQ model SCA1 SCA3 SCA7 HD SBMA  References
Rptl (Rptl) OE En
LOF Su
M6 (M6) OE En
LOF Su
Lachesin (Lac) LOF En
Pasilla (ps) LOF Su NC
Sc2 (Sc2) LOF En NC Branco et al. (2008)
CG14438 OE Su En
LOF En Su
Polyalanines OE Su Berger et al. (2006)

En, enhancing effect; LOF, loss-of-function; NC, no discernable change; OE, overexpression; Su, suppressing effect.

Numbers in superscripts in columns for fly models refer to the serial number of references listed in the last column of the given row in cases
where more than one citations are listed.

*The opposing results seen in case of the HD model maybe due to use of different loss-of-function alleles. The EP insertion in the EP(2)866
allele of Sin3A, used in references 1 and 4, is in opposite orientation with respect to the ATG at +1; in reference 2 another loss-of-function
allele, S in3A%2% was used and the overexpressing EP allele used in reference 3 was Sin3A%E,

EP element in the EP(3)3463 allele of the taranis gene used in all the three studies is inserted in sense orientation in an intron ~16.3 kb
downstream of the first ATG, but —553 bp with respect of the second ATG. Thus while the taranis isoform 1A is disrupted, isoform 1B is
overexpressed.

°The opposing results seen in case of the HD model may be due to the fact that different loss-of-function alleles of crol (P(EPgy2 )croltY08%53
and P(PZ)crol™*'8, respectively) were used by Kaltenbach et al. (2007).

dThe differing results seen in case of the SCA1 model maybe due to the fact that different loss-of-function alleles were used in each case;
while Fernandez-Funez et al. (2000) used the pum'? allele, Branco et al. (2008) used the pum’*™ allele.

¢ The EP-transposon insertion, EP(3)3672, was reported as a gain-of-function allele of Rpd3 by Latouche et al. (2007); however, Fernandez-
Funez et al. (2000) reported that although the EP(3)3672 tranposon is inserted in sense orientation to Rpd3, this allele does not over-
express Rpd3. It is to be further noted that the site of EP-transposon insertion in EP(3)3672 is actually in the neighbouring Src64B gene
(http://www.flybase.org), > 1 kb upstream of the Rpd3 gene. Therefore, it remains possible that the enhancing effect of EP(3)3672 on
polyQ pathogenesis may actually be due to loss-of-function of the Src64B gene. This needs further examination.

fThe differing results with Rpd3 mutant alleles in case of the HD model may be due to different loss-of-function alleles used in the two
studies; Branco et al. (2008) used Rpd3°#%%, while Pallos et al. (2008) did not specify the loss-of-function allele used in their study.
£Though over-expression of hsp27 attenuates mild toxicity caused by a short polyQ (UAS-41Q), it fails to alleviate the severe toxicity
caused by a long polyQ (UAS-127Q) tract.

"The opposing results obtained with the same Khc mutant allele (Khc®) in case of the HD model by Gunawardena et al. (2003) and
Kaltenbach et al. (2007) may be because different polyQ expanded Huntingtin transgenes were used in each case.

iThe hsrw®?* allele was described by Fernandez-Funez et al. (2000) as a loss-of-function allele but as described by Sengupta and Lakhotia
(2006), this is actually an overexpression allele of the gene.
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All these may result in wider alterations in expression
of genes, including those that are critical for functioning of
specific neurons, so that the grossly disrupted protein home-
ostasis triggers the affected neuron’s death. However, since a
variety of cellular pathways (see section on Molecular mech-
anisms) are affected, the pathogenic mechanisms are indeed
likely to be more complex.

Modelling human polyglutamine diseases in
Drosophila

With a view to understand the molecular and cellular patho-
physiology of polyQ-induced neurodegeneration and to dis-
cover potential and novel drug targets for therapeutics,
several neurodegenerative diseases, including Alzeihmer’s,
Parkinson’s, HD, SCA3, SCA1, SBMA and others, have
been modelled in different animal systems. Human neurode-
generative diseases were initially modelled in mice (Ikeda
et al. 1996; Lin et al. 1999). However, expensive main-
tenance and the longer time required for genetic manip-
ulations remain the major limitations of mouse models
(Reiter and Bier 2002). Therefore, these diseases have also
been modelled in simpler organisms like yeast, Caenorhab-
ditis, Drosophila etc. (Krobitsch and Lindquist 2000; Satyal
et al. 2000; Coughlan and Brodsky 2003; Voisine and Hart
2004; Celotto and Palladino 2005; Marsh et al. 2009). In this
context, Drosophila has proved to be an excellent model or-
ganism for gene function studies in relation to human dis-
eases due to the relative ease of genetic manipulation and
large-scale genetic screening (Bier 2005; Bilen and Bonini
2005; Brumby and Richardson 2005; Restifo 2005). The rel-
ative simplicity of the fly genome compared to the complex
and intricate human genomic organization, the lack of many
redundant genes in flies and the availability of a number of
versatile genetic manipulation techniques that are impossi-
ble or impractical in mammalian models, have encouraged
genetic analysis of many human diseases in fly models (Bier
2005; Bilen and Bonini 2005; Brumby and Richardson 2005;
Restifo 2005). Notwithstanding the genome simplicity, many
genes and pathways that were originally studied in flies have
subsequently been identified in mammals. Over 50% of fly
genes exhibit apparent homology to human genes, with con-
servation of molecular mechanisms and fundamental aspects
of cell biology including regulation of gene expression, neu-
ronal connectivity, cell signalling and cell death (Adams et
al. 2000; Rubin et al. 2000). Not only basic cell biology, but
also higher-order events such as organ structure and func-
tion are conserved. For instance, the fly brain is estimated
to have more than 300,000 neurons and, as in mammals, the
brain is organized into areas with specialized functions such
as learning, olfaction, memory and vision (Hartenstein et al.
2008). Approximately 75% of known human disease genes
have at least one homolog in Drosophila (Reiter et al. 2001;
Chien et al. 2002). Both the normal and aberrant functions of
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these genes can be conveniently studied by generating muta-
tions in the Drosophila homolog or by introduring the hu-
man disease gene in the fly genome and analysing the result-
ing cellular phenotypes. Keeping these unique advantages in
view, several Drosophila transgenic lines (see table 4 for a
list of fly models of polyQ diseases) expressing either pure
polyQ tracts with some protein context (Kazemi-Esfarjani
and Benzer 2000, 2002; Marsh et al. 2000) or full-length
or truncated disease causing proteins with expanded polyQ
(Jackson et al. 1998; Warrick et al. 1998, 2005; Fernandez-
Funez et al. 2000; Steffan et al. 2001, 2004) have been es-
tablished during the past decade (reviewed in Mugqit and
Feany 2002; Bilen and Bonini 2005; Sang and Jackson 2005;
Marsh and Thompson 2006). The GAL4/UAS system (Brand
and Perrimon 1993) provides a simple but very efficient
means of spatially and temporally targeted gene expression
in Drosophila (figure 1) and has been most commonly used
to express the polyQ transgenes in the target tissue. In ad-
dition to the GMR-GALA driver (Hay et al. 1994), which
restricts expression of the polyQ transgenes to the develop-
ing eye (figure 1), a pan-neuronal elav-GAL4 driver (Lin and
Goodman 1994) has also been used. The GAL4/UAS system
has been successfully used to demonstrate that, as in mam-
mals, the neuronal cells are more sensitive to the toxic effects
of the expanded polyQ proteins than the epithelial cells in
flies (Warrick et al. 1998). Most screens for identification of
modulators of the neurodegenerative phenotypes in flies ex-
pressing the polyQ transgenes have used loss-of-function or
gain-of-function mutant alleles of fly homologs of the mam-
malian/human genes although in some studies other trans-
genes or chemical modifiers have also been used.

The fly model offers two relatively simple tests for neu-
rodegeneration, viz., (i) assay of structural and functional or-
ganization of photoreceptor neurons in the eye and (ii) mo-
tor function assay though climbing ability (Jackson et al.
1998; Marsh and Thompson 2004). The fly’s eye is com-
pletely dispensable for survival and fertility of the labora-
tory strains, and is tolerant of genetic disruption of basic bi-
ological processes, thus facilitating genetic studies of neu-
rodegenerative disorders (figure 2). Besides the overall mor-
phology of the adult eye (figure 2, A&D), the organiza-
tion of ommatidial arrays in eyes of flies (figure 2, B&E)
can also be easily examined by a novel and efficient nail-
polish imprint technique (Arya and Lakhotia 2006). De-
generation of the photoreceptor neurons (figure 2, C&F)
can be directly visualized in adult fly’s eyes by the corneal
neutralization or pseudopupil technique (Franceschini and
Kirschfeld 1971). Functionality of the visual system can
also be assessed by simple phototaxis assay (Quinn et al.
1974). In addition, since the signalling cascades that turn
the undifferentiated eye imaginal cells of mid-stage larvae
into the highly stereotypic pattern of ommatidial arrays in
adult flies is fairly well understood (Dickson et al. 1992;
Wolff and Ready 1993; Morante et al. 2007; Kumar 2009),
the changes that accompany induced neurodegeneration
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Figure 1. The binary UAS-GAL4 system (Brand and Perrimon 1993) is used for targeted ex-
pression of the polyQ protein in developing eyes of Drosophila. In this system, the polyQ re-
sponder gene is placed downstream of the yeast upstream activating sequence (UAS) element.
In absence of the yeast GAL4 transcription factor, the UAS-polyQ transgene remains silent in
the parental UAS-polyQ responder line. The GMR-GAL4 driver is widely used to direct expres-
sion of the UAS-carrying transgene in developing eyes since the GMR promoter is active in eye
disc cells behind the morphogenetic furrow (lower part of the figure). To activate transcription
of the UAS-polyQ transgene, the responder flies (UAS-polyQ) are mated with flies carrying the
GMR-GALA driver. The resulting F; progeny larvae express the polyQ responder gene, non-
pathogenic (20Q) or pathogenic (expanded polyQ) depending upon the transgene construct,
in all eye disc cells behind the morphogenetic furrow. The resulting phenotype of adult eyes

provides a convenient end point for assaying the neurodegeneration (see figure 2).

in the developing eyes can be followed stepwise with impres-
sive specificity.

Global unbiased in vivo genetic interaction screens us-
ing a variety of gene mutations and conditional expression
systems (Brand and Perrimon 1993; Chou and Perrimon
1996; Rorth 1996; Morin et al. 2001; Adams and Sekelsky
2002; Johnston 2002; Kuttenkeuler and Boutros 2004; Evans
et al. 2009; http://www.flybase.org), have helped in identi-
fying the diverse range of molecules and mechanisms in-
volved in the neurotoxicity in these debilitating disorders.
The various modifiers of polyQ toxicity identified through
fly models are listed in table 5. Analyses of the modula-
tory action of the genetic modifiers identified in fly and other
models have revealed that the proteins with expanded polyQ
stretches impinge upon several different pathways like tran-
scriptional regulation, protein quality control, axonal trans-
port, signal transduction, apoptosis etc. (table 5; figure 3).
However, since several of the identified modifiers (see table

5) do not appear to be directly linked to a defined pathway,
it is obvious that other network effects also exist. The major
pathways (figure 3) are discussed in the following in light of
the information gained from the fly and other models.

Molecular mechanisms leading to cellular
dysfunction following expression of abnormal
polyQ proteins

Transcriptional dysfunction in polyQ diseases

Accumulating evidence from genetic screens and other ex-
perimental studies show that transcriptional dysregulation
(see table 5) plays a key role in polyglutamine disease pathol-
ogy (Helmlinger er al. 2006). Many transcription factors
(TFs) contain polyQ or glutamine-rich domains, and the
polyQ tracts themselves serve as transcriptional activators
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w; GMR-GAL4/
UAS-1270Q; +/+

w; GMR-GAL4/UAS-200;

Figure 2. The retinal degeneration caused by GMR-GAL4 driven
targeted expression of the expanded polyQ protein can be easily
monitored by external morphology of adult eyes (A, D), or nail-
polish imprints of the eye surface (Arya and Lakhotia 2006) (B,
E) or the pseudopupil (corneal neutralization, Franceschini and
Kirschfeld 1971) image of the rhabdomeres in each ommatidium
(C, F). The pseudopupil image reveals the precisely ordered ar-
rangement of seven of the eight neuronal rhabdomeres in each om-
matidial unit (C) Eye-specific expression of a transgene with 20Q
(nonpathogenic) construct has no effect on eye morphology (A-C)
while GMR-GAL4 directed expression of the expanded pathogenic
polyQ transgene results in characteristic damage as assayed by any
of the three methods (D-F). Scale bars for A, D in D; B, E in E and
for C, Fin F = 20 um.

(Gerber et al. 1994). CAG repeat expansions within two tran-
scription factors, TATA binding protein (TBP) and andro-
gen receptor (AR) are the causative pathogenic mutations in
SCA17 and SBMA, respectively (table 3). In addition, hunt-
ingtin may function as a transcriptional corepressor by in-
teracting with complexes that contain nuclear co-repressor
proteins; likewise ataxin-1, ataxin-3 and atrophin-1 have also
been implicated as transcriptional regulators (reviewed in
Margolis and Ross 2001; Everett and Wood 2004; Tsai et
al. 2004; Orr and Zoghbi 2007). The SCA7 disease protein,
ataxin-7, was shown to be a component of the STAGA/TFTC
histone acetyltransferase complex (Helmlinger et al. 2004;
McMahon et al. 2005; Palhan et al. 2005). Alterations in
gene expression also occur through effects on RNA pro-
cessing and stability. In a genetic screen using a Drosophila
model of SCA1 (Fernandez-Funez et al. 2000), several of
the identified modifiers were actually found to be RNA bind-
ing and processing proteins (table 5). Deficiency of the RNA

binding hnRNP Hrb87F has been shown to aggravate polyQ
toxicity in a Drosophila model of the disease (Sengupta and
Lakhotia 2006; Mallik and Lakhotia 2010). Overexpression
of the non-coding hsr® RNA which forms dynamic struc-
tures called omega speckles that sequester various unengaged
hnRNPs and related RNA processing proteins (Lakhotia et
al. 1999; Prasanth et al. 2000), has been shown to aggravate
polyQ-induced neurodegeneration while RNAi-mediated de-
pletion of these transcripts nearly completely suppressed the
polyQ toxicity in fly models expressing mutant SCA1 or
SCA3 or huntingtin or a quasipure polyQ tract (Sengupta
and Lakhotia 2006; Mallik and Lakhotia 2009a, also see ta-
ble 5). Even in the absence of a direct interaction between
the polyQ IBs and the hsro transcripts or the hnRNPs as-
sociated with it, overabundance of the hsr® transcripts en-
hanced the degeneration by limiting the available pool of
hnRNPs which thus compromises normal cellular functions
of several other downstream proteins (see figure 3). On the
other hand release of hnRNPs from omega speckles follow-
ing depletion of the hsrm transcripts suppressed polyQ patho-
genesis by making more of the hnRNPs available in the ac-
tive pool (Mallik and Lakhotia 2009a, 2010). Likewise, CGG
repeat-induced neurodegeneration in a Drosophila model of
FXTAS was suppressed by overexpression of the hnRNPs,
Hrb87F and Hrb98DE (Sofola et al. 2007). It remains to be
seen if the suppressive effect observed upon direct overex-
pression of these hnRNPs extends to the polyQ diseases also.
Levels of the mRNAs for proteins involved in neuronal sig-
nal transduction and calcium homeostasis are preferentially
decreased in both SCA1 and HD mouse models (Lin et al.
2000; Vig et al. 2001; Panov et al. 2002; Strand et al. 2007,
Lim et al. 2008; Runne et al. 2008). In a HD model, tran-
scripts encoding neurotransmitters, neurotrophic factors like
brain-derived neurotrophic factor (BDNF) and cell-adhesion
proteins were also decreased, whereas mRNAs encoding heat
shock proteins, proteasome and other stress-related proteins
were increased (Hughes and Olson 2001; Sawa 2001).
Proteins with expanded polyQ stretches accumulate in
nucleus and interact with a number of nuclear proteins in-
cluding transcription factors, transcription cofactors (coac-
tivators and corepressors) and splicing factors (reviewed in
Okazawa 2003; Sugars and Rubinsztein 2003). For instance,
ataxin-2 interacts with ataxin-2 binding protein 1 (A2BP1),
which has been implicated in splicing (Shibata et al. 2000).
Mutant ataxin-1 aggregates sequester the transcriptional co-
repressor, SMRTER (silencing mediator for retinoid and thy-
roid hormone receptors (SMRT)-related ecdysone receptor
interacting factor), and accordingly, the SCA1-mediated eye
degeneration was enhanced by a P-insertion mutation in
the gene encoding the corepressor (Tsai et al. 2004; Ta-
ble 5). Some of these interactions are sensitive to amino
acid residues flanking the polyQ-tract. In several polyQ-
containing proteins, the polyglutamine region is adjacent to
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Figure 3. Mutant expanded polyQ proteins affect cell homeostasis in multiple ways. The mutant polypeptides with ex-
panded polyQ stretches assume non-native conformation, some of which can be degraded through the lysosomal or ubiquitin-
proteasome clearance paths (Box 1). However, majority of the expanded non-ubiquitinated polyQ proteins get cleaved by
caspases and become toxic. Their cytoplasmic and/or nuclear aggregates sequester and thus compromise transcriptional and
RNA processing machinery, chaperoning system, proteasomal components, soluble motor proteins or hyperactivate JNK (Box
2). The mutant polyQ proteins may also directly interact with other normal regulatory proteins in cells and, together with the
perturbations shown in Box 2, have global consequences on transcription, protein folding, quality control mechanisms and ax-
onal transport in the sensitive neuronal cells (Box 3), resulting in neuronal dysfunction and cell death, and thus culminating in
neurodegeneration. Based on recent studies in our laboratory (Arya and Lakhotia 2008; Arya et al. 2010; Mallik and Lakhotia
2009a, 2009b, 2010) the multiple steps at which reduced cellular levels of the Hsp60D protein or the non-coding hsro tran-
scripts inhibit polyQ toxicity are also shown. A downwardly pointed arrow indicates RNAi-mediated reduction in levels of the
Hsp60D protein (red) or hsre transcripts (blue); green horizontal arrow indicates a facilitatory function while a horizontal line
with a vertical bar at the end indicates an inhibitory action. It is significant that although RNAi for the Hsp60D protein or the
non-coding hsro transcripts seem to act at several steps in common, the actual mechanism is different in each case (see text for

details).

a polyproline tract; in huntingtin, the polyproline region in-
teracts with SH3-domain and WW-domain containing pro-
teins (Faber er al. 1998; Sittler et al. 1998). It is still not
definitely understood whether the functional disturbances of
nuclear factors are because of their interactions with solu-
ble polyglutamine proteins or sequestration in insoluble com-
plexes (Schaffar er al. 2004). Either route may result in inap-
propriate or reduced activity at specific promoters or in chro-
matin modification by histone acetyltransferases and other
enzymes.

Nuclear entry of the expanded mutant polyQ proteins ap-
pears to be critical for pathogenesis (Yang et al. 2002) in sev-
eral diseases. For instance, SCA1 mice carrying a mutation
in the nuclear localization sequence do not develop the dis-
ease (Klement et al. 1998). N-terminal fragments of mutant
ataxin-7 have been shown to accumulate in the nucleus in
an age-dependent manner (Yvert et al. 2001). In some cases,
TFs are mislocalized or sequestered in the inclusions. TBP
localizes to the IBs in human SCA3 disease brain, TAFI1130
to inclusions in DRPLA and HD, and CBP to inclusions in
SCA1, SCA3, HD and SBMA (Perez et al. 1998; McCamp-
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bell et al. 2000; Shimohata et al. 2000b; Nucifora et al. 2001,
Stenoien et al. 2002). In HD patient brains, N-CoR is mislo-
calized and mSin3A is present in nuclear inclusions (Boutell
et al. 1999; Steffan et al. 2000). Interactions with polyQ pro-
teins are known to inhibit functions of some TFs. Mutant
huntingtin represses TAFII130 promoters while expanded
polyQ repeats in ataxin-3, huntingtin and atrophin-1 repress
CBP-dependent gene transcription in cell models (Shimohata
et al. 2000a; Nucifora et al. 2001; Jiang et al. 2003). Re-
duction of soluble CBP by sequestration (McCampbell et al.
2000; Nucifora et al. 2001) or increased turnover (Jiang et al.
2003) is coincident with a state of general hypoacetylation
of histones, a condition that is restored by increased expres-
sion of CBP (Nucifora et al. 2001; Taylor et al. 2003; also
see table 5) or treatment with HDAC inhibitors in transgenic
mouse models of SBMA (Minamiyama et al. 2004) and HD
(Ferrante et al. 2003; Hockly et al. 2003) and in fly models of
polyQ diseases (Steffan et al. 2000, 2001; Taylor ef al. 2003).
Further, treatment with VEGF, a neurotrophic factor that is
transcriptionally regulated by CBP, was found to reduce cell
death in motor neuron culture model of SBMA (Sopher et al.
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2004). Studies in our laboratory (Mallik and Lakhotia 2010)
also have shown that altered hsro transcript levels modulate
polyQ toxicity (see table 5) by reciprocally affecting cellu-
lar levels of CBP via its interaction with the hnRNPs like
Hrb87F and Hrb57A. Alterations in CBP expression and its
metabolism, which in turn disrupt normal transcriptional reg-
ulation, thus appear to represent an important common factor
for pathogenesis following expanded polyQ protein expres-
sion (Rouaux et al. 2004).

Failure of protein quality control mechanisms

Cells must ensure that nascent polypeptides fold correctly
and must also deal with refolding of proteins damaged by
physiological stress or mutations. HSPs and other molecular
chaperones facilitate proper folding of polypeptides and thus
maintain proteins in appropriate soluble conformation (Hen-
drick and Hartl 1993). If the native conformation of a pro-
tein is not achieved, either the refolding efforts by molecular
chaperones continue or the protein is targeted for degradation
(Hartl and Hayer-Hartl 2002). Abnormally folded proteins
tend to aggregate. When the concentration of misfolded pro-
teins exceeds cellular folding and degradative capacity, such
proteins can form insoluble, intracellular aggregates, remi-
niscent of those seen in the polyQ disorders. For many dam-
aged or misfolded proteins, the principal route for protein de-
struction is the ubiquitin-proteasome pathway (UPP) which
together with the molecular chaperones carry out the major
protein quality control functions in cells (Hartl and Hayer-
Hartl 2002; Berke and Paulson 2003).

As evident from table 5, a variety of molecular chaper-
nones and other protein quality control mechnisms have been
found to modify the polyQ toxicity in fly models. Molec-
ular chaperones localize to polyQ aggregates in patient tis-
sues and in cellular and animal models (Paulson ef al. 1997b;
Cummings et al. 1998), suggesting that protein aggregates
result from protein misfolding. Overexpression of chaper-
ones like Hsp70, Hsc70 family members or Hsp40 has been
demonstrated to suppress polyQ-mediated neuronal degener-
ation and cell death in Drosophila models (table 5), although
in some studies this was not found to be accompanied by
suppression of aggregation (Cummings et al. 1998; Warrick
et al. 1999; Kazemi-Esfarjani and Benzer 2000; Muchowski
et al. 2000). The sequestration of chaperones into aggregates
most likely decreases the soluble pool of functioning chap-
erones, thereby lowering the overall protein folding capacity
of the cell. This in turn may result in an environment that
favours further misfolding and aggregation rather than re-
folding and degradation. Overexpression of chaperone pro-
teins in fly models alters the biochemical nature of aggre-
gates, rendering them detergent soluble, though visible in-
clusions may still remain (Chan et al. 2000). These findings
support the hypothesis that polyQ proteins do in fact com-
promise the folding capacity of cells, resulting in accumula-
tion of toxic oligomeric species (Satyal et al. 2000; Sherman
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and Goldberg 2001; Wyttenbach 2004; Matilla-Duenas et al.
2007). Genetic screens in C. elegans and yeast also point to
a role for chaperones in buffering the toxicity of expanded
polyQ proteins (Willingham et al. 2003; Nollen et al. 2004).
Transgenic overexpression of Hsp70 chaperones yields only
marginal benefit in polyQ mouse models, suggesting that re-
duced chaperone activity may not fully explain the pathology
seen in polyQ disorders (Hay et al. 2004).

Using fly models expressing either a quasi pure polyQ
tract (127Q) or the pathogenic SCA3 protein, Arya et al.
(2010) identified Hsp60D, a member of the Drosophila
Hsp60 family of chaperones, as a novel modifier of polyQ
pathogenesis. Unlike several other chaperone proteins that
reduce the polyQ toxicity when overexpressed, reduction in
the cellular levels of Hsp60D in the polyQ expressing devel-
oping eye cells was found to improve the eye morphology
along with concomitant reduction in the number of IBs and
the associated expression of Hsp70. Further, Hsp60D-RNAi
was also found to suppress the organismal lethality caused by
pan-neuronal expression of the pathogenic polyQ proteins.
Hsp60D thus appears to be essential for folding of the mu-
tant polyQ polypeptides into pathological aggregates such
that this protein’s depletion following Hsp60D-RNAi does
not allow formation of the toxic aggregates. Suppression of
the polyQ phenotypes following depletion of Hsp60D was
largely independent of functional proteasomal and SUMO
activities but appeared to require the Drosophila inhibitor of
apoptosis protein 1 (DIAP1).

Amongst the low molecular weight Hsps, neuronal over-
expression of hsp27 but not hsp26 in fly models was found
to attenuate cellular polyglutamine toxicity and suppress in-
creased levels of reactive oxygen species caused by hunt-
ingtin (Hsieh ef al. 2005; Liao et al. 2008). During the early
disease stage of the MJD neuroblastoma cellular model, re-
duction of Hsp27 synthesis mitigated the ability of neu-
ronal cells to cope with cytotoxicity induced by mutant
ataxin-3, triggering the cell death process during the dis-
ease progress (Chang et al. 2005). However, the subsequent
increase in Hsp27 levels associated with the disease pro-
gression does not provide any protection against the mu-
tant ataxin-3-induced cytotoxic effects (Chang et al. 2005).
Liao et al. (2008) further demonstrated that overexpression
of hsp27 exerts its neuroprotective effects on mutant pro-
teins with short polyQ stretches not through its chaperone
function, but instead by preventing the hid-induced apop-
totic pathway. Overexpression of the small heat shock protein
crystalline, a weak/moderate suppressor of truncated ataxin-
3-induced cytotoxicity, robustly suppressed anatomical and
functional defects following expression of full length ataxin-
3 (Bilen and Bonini 2007).

The Hsp90 protein family is one of the most versatile
molecular chaperones with a very diverse clientele includ-
ing other chaperones, steroid hormone receptors, cytoskele-
tal components and signal transducers (Pearl and Prodro-
mou 2006), because of which it also plays important roles in

513



Moushami Mallik and Subhash C. Lakhotia

evolvability and canalization (McManus et al. 2006). How-
ever, despite the wide-range actions of the Hsp90 family pro-
teins, relatively few studies have examined interactions of
Hsp90 and the mutant polyQ proteins. Most of such studies
have not used direct alteration of quantitative or qualitative
expression of Hsp90 gene/protein; instead they have exam-
ined effects of chemical inhibitors of Hsp90 on the polyQ
phenotypes (reviewed in Waza et al. 2006). In a mouse model
of SBMA, inhibition of Hsp90 through 17-allylamino-17-
demethoxygeldanamycin (17-AAG) resulted in degradation
of the mutated androgen receptor and thus ameliorated the
neurodegenerative phenotype (see Waza et al. 2006). It will
indeed be interesting to examine effects of targetted misex-
pression of wild type or mutant Hsp90 in the different fly
models of polyQ disorders.

There is evidence that UPP function declines with age,
paralleling the typically late onset of polyQ disease symp-
toms (Goto et al. 2001). The IBs in polyQ disorders are
ubiquitinated and they sequester proteasome components,
e.g., the 20S proteasome relocates to aggregates in SCA1
(Cummings et al. 1998), SCA3 (Chai et al. 1999) and SCA7
(Yvert et al. 2001; Zander et al. 2001) disease tissue. Eukary-
otic proteasomes cannot digest polyQ chains which must be
released for digestion by cellular peptidases (Venkatraman
et al. 2004). The presence of long undegradable expanded
polyQ sequences in the cell’s proteasomal machinery has
been shown to promote early disease onset (Venkatraman et
al. 2004). In cell-based proteasome reporter assays, expres-
sion of pathogenic polyQ proteins caused impairment of the
UPP (Bence et al. 2001; Jana et al. 2001). A specific 19S
proteasome subunit was depleted in brain regions affected by
neurodegeneration in SCA7 (Matilla et al. 2001). Using a fly
model of SBMA, Chan er al. (2002) demonstrated that the
endogenous proteasome activity was involved in clearance
of the pathogenic polyQ aggregates (table 5). Conversely, in
case of SCA3, overexpression of wild-type ataxin-3 which
has ubiquitin-protease activity, suppressed polyQ-mediated
neurodegeneration (Warrick et al. 2005; table 5). In vivo im-
pairment of the cellular proteasomal degradation machinery
using reporter transgenes has also been demonstrated in fly
models expressing a quasi pure polyQ tract or the mutant
SCA3 protein (Mallik and Lakhotia 2010). Further, one of
the multiple mechanisms responsible for the aggravation of
polyQ pathogenesis following increased expression of the
hsrow gene in fly models could be the fact that overabundance
of these transcripts itself causes proteasomal dysfunction in
the cell; interestingly, reduction in hsr transcripts improved
proteasomal activity and this was associated with alleviation
of polyQ toxicity (Mallik and Lakhotia 2010). The protea-
some inhibitor lactacystin increased accumulation of toxic
undegraded proteins, indicating that proteasomal processing
of ubiquitinated substrates is a clearance mechanism which
counterbalances the aggregate formation (Chai et al. 1999;
Wyttenbach et al. 2000). In a mutant huntingtin expressing
cell culture system, inhibition of the UPP increased hunt-
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ingtin induced apoptotic cell death (Saudou et al. 1998). Ex-
pression of the expanded SCA1 allele in a transgenic mouse
model lacking the E6-AP ubiquitin ligase accelerated disease
progression while diminishing formation of IBs (Cummings
et al. 1999; Park et al. 2005). However, some other studies
have suggested that the UPP may not have a significant role
in polyQ toxicity. For example, Bowman et al. (2005) did not
find any adverse effect of inhibition of proteasome activity in
the degenerating retina of SCA7 mice. Likewise, Bilen and
Bonini (2005) also reported that limiting proteasome activ-
ity by expressing a dominant temperature-sensitive mutant
proteasome subunit had no enhancing effect on SCA3 tox-
icity (table 5). However, Arya et al. (2010) found that ex-
pression of the dominant temperature-sensitive mutant pro-
teasome did aggravate the SCA3 phenotype.

It is likely that the above noted divergent findings (Bilen
and Bonini 2005; Bowman et al. 2005) about the relation be-
tween the protein quality control mechanisms and the polyQ
toxicity may be due to different model systems or to other
factors that need further examination.

Overexpression of the C-terminal Hsp70-interacting pro-
tein (CHIP), both a co-chaperone and a ubiquitin ligase
which serves as the molecular link between chaperones and
the UPP, rescued mutant polyQ-induced phenotypes in sev-
eral in vitro and non-mammalian animal models (Miller et
al. 2005; Williams et al. 2009). In a SCA3 mouse model, de-
pletion of CHIP accelerated the disease phenotype in a dose-
dependent manner (Miller er al. 2005). However CHIP was
found to increase ubiquitinylation of ataxin-1, which reduced
its solubility and promoted its aggregation (Choi et al. 2007).

Autophagy is another major degradation pathway for
various intracytosolic, aggregate-prone, disease-causing pro-
teins associated with the neurodegenerative disorders. Inclu-
sions of N-terminal truncated huntingtin have been shown
to directly enhance autophagy (Ravikumar et al. 2004). In
HD flies, rapamycin, in addition to inducing autophagy, has
been demonstrated to protect cells against neurodegenera-
tion by decreasing synthesis of aggregation prone polyQ ex-
panded huntingtin (Ravikumar et al. 2004). Expression of
pathogenic ataxin-3 was found to induce autophagy (Bilen
and Bonini 2007). Further, limiting the activity of autophagy
genes in the presence of the pathogenic SCA3 or the polyQ
expanded AR protein was found to enhance retinal degener-
ation (Bilen and Bonini 2007; Pandey et al. 2007; also see
table 5).

Taken together, it appears that choking of the protein
quality control mechanisms in the sensitive neurons by the
expanded polyQ proteins is a major insult that the neurons
face when chronically exposed to expanded polyQ.

Axonal transport defects in polyQ diseases

Several genes that affect axonal transport have been found
to modulate polyQ phenotypes in the fly (table 5) and other
polyQ models indicating that this is also an important target
for the toxicity. Histopathological analysis of polyQ disease
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brains show widespread neuritic inclusions suggesting that
perturbation of transport processes may indeed contribute
to pathogenesis (DiFiglia et al. 1997). Dystrophic neurites,
which are consistently observed in the striatum of HD mouse
models and human patient brains, exhibit characteristic fea-
tures of blocked axons such as prominent swellings with
accumulated vesicles and organelles together with polyQ
aggregates (DiFiglia et al. 1997). The polyQ aggregates
physically block transport in narrow axons. Truncated ver-
sions of huntingtin, ataxin-3 or the androgen receptor in-
hibit anterograde and retrograde transport in giant squid ax-
ons, mammalian tissue culture cells and fly models of HD
(Gunawardena et al. 2003; Szebenyi et al. 2003; Lee et al.
2004; Kaltenbach et al. 2007; Sinadinos et al. 2009). Mutant
polyQ proteins interact aberrantly with transport pathway
proteins and thus titrate them away from their normal trans-
port functions (Gunawardena et al. 2003; Lee et al. 2004).
The huntingtin-associated protein-1 (HAP1) has been shown
to interact with the prodomain of BDNF. However, this inter-
action was reduced in the presence of polyQ expanded hunt-
ingtin resulting in reduced release and transport of BDNF
in HD mice (Wu et al. 2010). Expression of the expanded
SCAT7 allele in a transgenic mouse model has been shown
to downregulate mRNA expressions of the vesicular trans-
port proteins synaptobrevin 1 and vesicular glutamate trans-
porter subtype 2 (VGLUT2), and upregulate mRNA levels
of proteins that regulate neurotransmitter release and synap-
tic plasticity such as GluR2 and Rab3-interacting molecule
2 (RIM2ao causing dysregulated glutamatergic transmission
and consequent cerebellar malfunction (Chou et al. 2010).
Chou et al. (2008) had previously demonstrated that mRNA
expression of several proteins involved in glutamatergic sig-
nalling, including VGLUT?2, GluR®6, phospholipase C b4 and
inositol trisphosphate receptor-1 (IP3R-1) were downregu-
lated in the cerebellum of SCA3 transgenic mice. Abnormal
distributions of the motor protein dynein and of mitochondria
have been observed in dystrophic neurites containing aggre-
gated expanded AR in a testosterone-treated motor neuron
cell model of SBMA (Piccioni et al. 2002). Further, while
the mRNA level of dynactin 1, an axon motor for retrograde
transport, was significantly reduced in the SBMA mice, over-
expression of dynactin 1 mitigated the polyQ expanded AR
protein-induced neuronal toxicity in a cell culture model of
SBMA (Katsuno et al. 2006). In addition, some of the dis-
ease proteins may have functions in axonal transport and
these functions may be directly impaired by polyQ expansion
as seen in the fly model of HD (Gunawardena et al. 2003;
Szebenyi et al. 2003).

Signal transduction pathways

Several recent studies (see table 5) have implicated compo-
nents of various signalling pathways in the pathophysiology
of the polyQ disorders. For instance, upregulation of the anti-
apoptotic kinase Akt in a fly model of HD was beneficial in
a cell-type-specific manner (Lievens et al. 2008; Branco et
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al. 2008); however, it failed to ellicit a similar response in
case of mutant ataxin-3 mediated neurotoxicity (Bilen et al.
2006). On the other hand, overexpression of Akt enhanced
and its downregulation was found to ameliorate the ataxin-1-
induced degeneration in a fly model of SCA1 (Branco et al.
2008). Such divergent effects of Akz! reflect disease-specific
perturbations in the affected neurons.

Posttranslational modification/s of the polyQ expanded
protein substrates by signalling pathways appear to be im-
portant determinants in the development and progression
of polyglutamine diseases. For instance, insulin-like growth
factor-1 (IGF-1) completely inhibits mutant huntingtin in-
duced neurotoxicity through activation of the prosurvival
serine—threonine kinase Akt which phosphorylates mutant
huntingtin at Ser*?! and thus abrogates its proapoptotic activ-
ity (Humbert et al. 2002; Schilling et al. 2006). Furthermore,
phosphorylation of the ADP-ribosylation factor-interacting
protein arfaptin 2 at Ser?®” by Akt decreased inclusion for-
mation in a neuronal model of HD and thus promoted neu-
ronal survival. Phosphorylated arfaptin 2 was also found to
inhibit the mutant huntingtin-induced blockade of the pro-
teasome, thereby facilitating protein degradation (Rangone
et al. 2005). Akt also controls p53 levels via phosphorylation
of Mdm?2, the E3 ubiquitin ligase that triggers degradation
of p53 (Zhou et al. 2001). Consistently, in a Drosophila HD
model, deletion of p53 robustly suppressed the neurotoxicity
associated with the expression of mutant huntingtin (Bae et
al. 2005).

Binding partners of a large number of phosphoproteins,
14-3-3 proteins, participate in a variety of signal transduction
pathways and regulate a number of cellular processes. While
overexpression of 14-3-3¢ enhanced SCA1 and mutant hunt-
ingtin induced degeneration in Drosophila models, reduction
in its cellular levels abolished aggregate formation and sup-
pressed the neurotoxicity (Kaltenbach et al. 2007; Branco
et al. 2008). Overexpression of 14-3-3{ also enhanced mu-
tant huntingtin induced degeneration in the fly model. 14-3-3
binds with the Akt phosphorylated mutant ataxin-1 resulting
in stabilization of the mutated ataxin-1 and the consequent
neurotoxic effects (Chen er al. 2003). In HD, on the other
hand, phosphorylation of the C-terminus of HAP1A pro-
motes its interaction with the 14-3-3 proteins which in turn
decrease the association of HAP1 with kinesin light chain.
This diminishes HAP1A in neurites, suppresses neurite out-
growth and also blocks axonal transport (Rong et al. 2007).

Expression of expanded polyQ proteins has been re-
ported to hyperphosphorylate JNK and c-Jun (Merienne et
al. 2003; Morfini et al. 2006; Scappini et al. 2007), which
also contribute to neuronal dysfunction and cell death in
neurodegenerative disorders. Using fly models of HD and
SBMA, Scappini et al. (2007) demonstrated that overex-
pression of the multi-domain scaffolding protein intersec-
tion (ITSN), which regulates endocytosis and signal trans-
duction, increased polyQ aggregation through activation of
the c-Jun-NH,-terminal kinase (JNK)-MAPK pathway. Con-
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versely, downregulation of ITSN or JNK inhibition attenu-
ated the aggregation (Scappini et al. 2007). In a hippocampal
neuronal cell line, mutant huntingtin was found to activate
JNK (Liu 1998). Further, JNK and the transcription factor c-
Jun were also activated in striatal neurons transfected with
exon 1 of huntingtin (Garcia et al. 2004). Reduction in cellu-
lar levels of the Drosophila hsro transcripts prevents activa-
tion of JNK (Mallik and Lakhotia 2009b) which may also
contribute to suppression of the polyQ damage following
hsrw-RNAi (Mallik and Lakhotia 2010). Using a Drosophila
model of HD, Lievens et al. (2008) reported that expression
of active ERK did not improve the neurodegenerative pheno-
types in any cell type.

It is posible that several of these signal transduction path-
ways also work through their modulatory actions on apop-
tosis, which as is the final pathological consequence in the
affected neurons.

Neuronal dysfunction and cell death

Neuronal cell loss is a characteristic defining feature of the
polyQ diseases. Neuronal cell death can be apoptotic or
necrotic. Apoptosis, a highly regulated cellular death path-
way, is crucial to neurodegeneration in polyQ repeat diseases
(reviewed in Dragunow et al. 1995; Friedlander 2003). Ev-
idence for caspase activation has been observed in mutant
huntingtin expressing brain and lymphoblasts (Sanchez et al.
1999). Expression of expanded polyQ in animal cell culture
promotes apoptosis (Kouroku ez al. 2002; Huynh et al. 2003).
In addition to causing stress that activates the apoptotic
programme, some polyQ-containing proteins themselves are
caspase substrates (Wellington et al. 1998). Accordingly, a
number of studies have shown modifiers of apoptosis to also
modulate polyQ pathogenesis (see table 5). Proteolytic cleav-
age of huntingtin, a necessary step in the initiation of HD,
increases its cellular toxicity while mutation of caspase-3
cleavage sites in huntingtin reduces toxicity, indicating that
proteolysis of the disease protein by caspase-3 may con-
tribute to HD progression and hence generate more toxic N-
terminal fragments (Gafni er al. 2004). In the R6/2 mouse
HD model, toxicity of the expanded huntingtin transgene
was reduced in a caspase-1 dominant-negative background,
and administration of caspase inhibitors like zZVAD-fmk or
minocycline also slowed the disease progression (Ona ef al.
1999; Chen et al. 2000). Similar proteolytic processing of
the polyQ expanded AR by caspase-3 (LaFevre-Bernt and
Ellerby 2003) and of mutant ataxin-3 by caspase-1 (Berke
et al. 2004) has been implicated in causing neurotoxicity.
Inhibition of caspase activity has been shown to abrogate
IB formation and prolong cell survival (Kim et al. 1999;
Wang et al. 1999; Wellington and Hayden 2000). Sang et
al. (2005) demonstrated that a loss-of-function mutation of
dark, the fly homolog of human Apaf-1, suppressed neurode-
generation, cell death and effector caspase activity in Q108,
HD and SCA1 expressing flies. Higashiyama et al. (2002)
identified ter94, which encodes the Drosophila homolog of
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vasolin-containing protein (VCP)/p97 and is a member of
the AAA+ class of ATPases, as a novel effector of polyQ-
induced cell death. Loss-of-function fer94 mutants were
found to dominantly suppress cell death and neurodegenera-
tion in Drosophila polyQ models (Higashiyama et al. 2002).
Recently Boeddrich er al. (2006) found that VCP overex-
pression suppressed expanded polyQ-induced ataxin-3 ag-
gregation and neurodegeneration. They further demonstrated
that VCP directly binds to/associates with both the solu-
ble as well as aggregated forms of mutant ataxin-3 through
an arginine/lysine-rich VCP-binding motif (VBM). Consis-
tently, overexpression of VCP had little effect on neurode-
generation induced by expression of either full length ataxin-
3 carrying a mutated VCP-binding site or a truncated form
of the polyQ expanded ataxin-3 lacking the VBM (Boed-
drich et al. 2006). Kariya et al. (2005) showed that the en-
dogenous peptide humanin, a neuroprotective factor, sup-
pressed apoptotic cell death induced by mutant polyQs by
inhibiting activation of apoptosis signal-regulating kinase 1
(ASK1). Expression of ataxin-2 with expanded repeats in
PC12 and COSI1 cells increased cell death compared with
normal ataxin-2 and elevated the levels of activated caspase-
3 (Huynh et al. 2003). These studies suggest that caspases
play a role in the neuronal loss observed in polyQ disorders.
However, results of experiments testing suppression of polyQ
phenotypes following expression of anti-apoptotic proteins
in the fly eye have been inconsistent. Both P35 and DIAP1
suppressed ataxin-1 and ataxin-3 phenotypes (Warrick et al.
1998; Ghosh and Feany 2004). Ghosh and Feany (2004) also
reported that unlike overexpression of DIAP1 which has no
effect on 127Q toxicity, P35 overexpression aggravated the
phenotype. Both these proteins, however, have been reported
to have no effect on either Q108 and htt-Q120 induced neu-
rodegeneration in fly models (Ghosh and Feany 2004; Sang
and Jackson 2005; Sang et al. 2005). On the other hand,
two novel modifiers of polyQ toxicity, the Hsp60D protein
and the non-coding hsr® transcripts, identified in our labo-
ratory (Mallik and Lakhotia 2009a; Arya et al. 2010) have
been shown to also modulate the caspase-mediated canoni-
cal death pathways in Drosophila (Arya and Lakhotia 2008;
Mallik and Lakhotia 2009b). While depletion of Hsp60D
may contribute to recovery from the polyQ damage by pre-
venting caspase activation by inhibiting disassociation of
DIAPI1 from the DIAPI-effector caspase complexes (Arya
and Lakhotia 2008), reduction in hsre transcript levels ame-
liorate cell death phenotypes by augmenting cellular levels
of DIAP1 via its interaction with the hnRNP Hrb57A (Mallik
and Lakhotia 2009b).

Some studies also indicate that, in conjunction with apop-
tosis, caspase-independent neuronal death pathways may
also contribute to the neurodegeneration observed in polyQ
and other neurodegenerative diseases (Wyttenbach et al.
2002; Li et al. 2007).

Since various stress proteins/molecular chaperones have
significant roles in regulation of apoptosis and cell survival
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(Arya et al. 2007), their protective effects noted earlier may
also be brought about through modulation of the cell death
pathways.

Other diverse modifiers

In addition to the above specified pathways, a variety of
other genetic modifiers have also been identified in fly mod-
els (table 5). These include mutations affecting cytoskele-
tal biogenesis, organization and trafficking, cell cycle regu-
lation, vesicular transport, nuclear pore proteins, ion chan-
nels and pumps, cell adhesion molecules, and miRNA and
nucleotide processing proteins. Many of these efficacious
modifiers with widely divergent molecular functions miti-
gate polyQ-induced neurodegeneration by modulating events
that finally impinge on basic processes like cellular transcrip-
tion, protein homeostasis, axonal transport and cell death
etc., which have, as discussed above, been implicated in the
pathophysiology of these diseases. Several of these diverse
interactors, however, are likely to modulate neurotoxicity
through as yet unknown mechanisms. Data presented in table
5 suggest that the endogeneous activity of majority of these
genes may normally help to protect against neurodegenera-
tion and thus provide potential new therapeutic targets.

Epilogue

Drosophila has proved to be an excellent model system to
study fundamental aspects of disease pathogenesis and mod-
ifier mechanisms, an approach that is difficult in human or
other mammalian models owing to both logistical and ethi-
cal considerations. Genome-wide forward genetic analysis,
candidate gene approaches, and microarray analysis using
Drosophila polyQ disease models have been successfully
exploited to uncover a variety of novel genetic modifiers
of neurodegenerative phenotypes. While disease-associated
pathological inclusions are intimately connected with protein
processing, protein folding, transcriptional regulation and
apoptosis in general, many clinical and pathological differ-
ences suggest that there are also other disease-specific mech-
anisms.

Identification of a large variety of genetic factors (see ta-
ble 5), other than those involved in transcriptional regula-
tion, protein quality control, axonal transport or apoptosis, is
a clear indication that multiple steps are parallely and serially
affected by the expanded polyQ proteins. In the context of
complex intra-cellular and inter-cellular networking required
for maintenance of homeostasis, existence of such apparently
diverse modulators of polyQ toxicity is not surprising. The
disease-specific varied phenotypes caused due to expression
of proteins with expanded polyQ stretches in the sensitive
neurons also reflect the complexity of networking in neu-
ronal cells. The pleiotropic actions of reduced levels of the
non-coding hsr® transcripts in suppressing polyQ pathology
through multiple paths (Mallik and Lakhotia 2009a, 2010;
figure 3) also exemplify the networking effects. In this con-
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text, it will be interesting to examine if the non-coding hu-
man sat III transcripts can also modulate polyQ pathogenesis
since the hsr® and sat III transcripts seem to be functional
analogues (Jolly and Lakhotia 2006).

Fly models have also been adapted for high-throughput
testing of potential therapeutic compounds. Initial evidence
for the efficacy of this approach came from findings that
HDAC inhibitors protect against polyQ-mediated degenera-
tion (Steffan ef al. 2001). The use of an appropriate fly model
to prescreen large numbers of compounds prior to testing in
mammalian models appears a good strategy since that would
not only significantly reduce the time and expense needed to
check compounds for toxic side effects but would also help
identify the most promising candidates to move into clini-
cal trials. An understanding of the multi-system pathology
manifest in different polyQ disorders indeed remains a ma-
jor challenge for therapeutic exploitation of the information
gleaned from the different model systems.
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