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Modifying Networks to Obtain Low Cost Trees 

S. 0. Krumkel H. Noltemeierl M. V. Ma,rathe2 S. S. Ravi3 K. U. Drangmeisterl 

February 29, 1996 

Abstract 

We consider the problem of reducing the edge lengths of a given network so that the modified network has 
a spanning tree of small total length. It is assumed that each edge e of the given network has an associated 
function C, that specifies the cost of shortening the edge by a given amount and that there is a budget B 
on the total reduction cost. The goal is to develop a reduction strategy satisfying the budget constraint so 

that the total length of a minimum spanning tree in the modified network is the smallest possible over all 
reduction strategies that obey the budget constraint. 

We show that in general the problem of computing optimal reduction strategy for modifying the network 
as above is NP-hard and present the fist polynomial time approximation algorithms for the problem, where 
the cost functions Ce are allowed to be taken from a broad class of functions. We also present improved 
approximation algorithms for the class of treewidth-bounded graphs when the cost functions are linear. Our 
results can be extended to obtain approximation algorithms for more general network design problems such 
as those considered in [GW, GG+94]. 

Keywords: Location Theory, Approximation Algorithms, Parametric Search, Computational Complexity, 
NP-hardness. 

1 Introduction 

The problem of computing a minimum spanning tree for a network is a well studied problem in computer 
science. In this paper, we consider a variant of the problem where the goal is to  shorten the edge lengths of a 

given network so that the length of a minimum spanning tree in resulting network is as small as possible. The 
problem is considered in a context where there is a cost associated with shortening a link and there is a budget 

constraint on the total cost of shortening the edges. Such a problem models situations wherein an organization 
desires to take advantage of technological advances to upgrade the communications network interconnecting its 
branches and has allocated a k e d  budget to do so. The goal is to devise a strategy that upgrades the links of 
the network so that the total upgrading cost is within the chosen budget, and the length of a minimumspanning 
tree in the upgraded network is the smallest among all strategies that obey the budget constraint. A precise 

definition of the problem is given in the next section. Such problems arise in diverse areas such as design of 
high speed communication networks [KJ83], video on demand [KPP93], teleconferencing [KPP92, Komp], VLSI 
design [CK+92, CR91, ZPD941, database retrieval [Ra94], etc. 

Most of the network improvement problems considered in this paper are NP-hard. Given these hardness 
results, we aim at finding efficient approximation algorithms for these problems. Define an (CY, @)-approximation 
algorithm as a polynomial-time algorithm that produces a solution within CY times the optimal function value, 
violating the budget constraint by a factor of at most P. 

The main contribution of this paper is to develop a framework for formulating such network improvement 

problems. We provide the first polynomial time (CY, P)-approximation algorithms for several versions of the 

problem. In the 'next section we formally define the problem considered in this paper and summarize our 
results. 
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2 Definitions and Summary of Results 

Let G = (V, E )  be an undirected graph. Associated with each edge e E E,  there are two nonnegative values as 
follows: L(e) denotes the length or the weight of the edge e and Lmin(e) denotes the minimum length to which 
the edge e can be reduced. Consequently, we assume throughout the presentation that Lmi,(e) 5 L(e). The 

nonnegative cost function Ce indicates how expensive it is to reduce the length of e by a certain amount. We 
assume without loss of generality that Ce(0) = 0 for all edges e E E? 

Given a budget B,  we define a feasible reduction to be a nonnegative function r defined on E with the 

following properties: For all edges e E E,  L(e) - .(e) 2 Lmin(e) and C e E E  Ce(P(e)) 5 B. 
Let T be a spanning tree of G. The total length of T under the weight function L,  denoted by L(T), is defined 

to be the sum of the lengths of the edges that are in T. We denote the total weight of a minimum total length 
spanning tree with respect to the weight function L by MST(G, L) .  If r is a (feasible) reduction in G we can 
consider the graph G with the edge weights given by the difference function L - P, i.e. ( L  - r)(e)  := L(e) - .(e) 

for all e E E. The weight of the MST in G with respect to this function is denoted by MST(G, L - r). 
We are now ready to state the general problem studied in this paper. 

Definition 2.1 The Budget Minimum Total Cost Spanning Tree Problem (BMST) is to find a feasible reduction r 
such tha t  MST(G, L - r)  has the least possible value. 

Definition 2.2 Let a,P 2 1 be constants. We say t h a t  an  algorithm is an (a,P)-approximat;on algorithm for 

BMST, if for each instance, the algorithm returns a reduction r of cost a t  most PB such t h a t  

MST(G, L - r)  

MST(G, L - r*) - < Q, 

where r* denotes an optimal edge-reduction on G of cost a t  most B. 
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(a) The original graph G (b) Modification of G 
with cost 24 

(c) Optimal Modification 

for a budget of 22 

Figure 1: An example of a graph modification via edge reductions. 

Example: Consider the graphs given in Figure 1. Figure l(a) shows a graph G where each edge e is associated 

with the three values (L(e),  Lmin(e),Ce). The third parameter Ce represents the cost of reducing the length 
of the edge by a unit amount, i.e. the cost function on each edge in this simple example is linear and is given 
by Ce(t) = Ce - t .  The result of a modification of G is shown in Figure l(b). The edges belonging to the 
minimum spanning tree are drawn as dashed lines. The modification corresponding to Figure l(b) involves a 

cost of 24 and the weight of the resulting tree is 7. Figure l(c) shows the graph with edge lengths resulting from 
a reduction that is optimal among all reductions of cost no more than 22. There, the weight of the spanning 

tree resulting from the reduction is 4. Thus, the reduction of Figure l(b) is a (7/4,24/22)-approximation to an 

optimal solution with budget 22. 

4Any reduction will incur a mioimum cost of CeEE Ce(0) and we can subtract this sum from the budget B in advance. 
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Table 1: Approximation and Hardness Results for BMST. Similar results hold for other general network design 

problems such as those considered in [GG+94]. 

The results obtained in this paper are summarized in Table 1. The approximation algorithm for BMST can be 

extended significantly. For example, using our ideas in conjunction with the results of Goemans et. al. [GG+94], 

we can obtain similar approximation results for finding budget constrained minimum-cost generalized Steiner 
trees, minimum-cost k-edge connected subgraphs and other network design problems specified by weakly super- 

modular functions introduced in that paper. 
The remainder of the paper is organized as follows. In Section 3 we briefly discuss the structure of an optimal 

solution for linear reduction costs. Section 4 presents our approximation algorithm for general graphs, while 
in Section 5 we provide an improved version for the class of treewidth-bounded graphs. Section 6 contains the 

hardness results for the problems tackled in the paper. 
As far as we know, the problems considered in this paper have not been previously studied. Recently in 

an independent effort Fkederickson and Solis-Oba [FS96] considered the problem of increasing the weight of 
the minimum spanning tree in a graph subject to a budget constraint where the cost functions are assumed 

to be linear in the weight increase. Berman [Be921 considers the problem of shortening edges in a given tree 
to minimize its shortest path tree weight. In contrast to the work presented here, this problem is shown to 
be solvable in strongly polynomial time. Phillips [Ph93] studies the problem of finding an optimal strategy for 
reducing the capacity of the network so that the residual capacity in the modified network is minimized. The 

problems studied here and in [Ph93, Be921 can be broadly classified as types of bicriteria problems. Recently, 

there has been substantial work on finding efficient approximation algorithms for a variety of bicriteria problems 

(see [KP95, Ha92, MRS+95, RRS93, Ra94, Wa92, ZPD941 and the references therein). 
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Figure 2: Remaining weight of the trees TI and T2 as a function of the budget. 

3 Structure of an Optimal Solution 

In this section we comment on the structure of optimal solutions to the BMST-problem for linear reduction 

costs on the edges, i.e. Ce(t) = C, t for all e E E and constants C e .  We also look at special cases of the 
problem that can be solved in polynomial time. 

5The length of the spanning tree produced is at most (1 + l/7) times that of an optimal tree plus an additive constant of E that 

can be made arbitrarily close to zero. 



First, suppose that the given budget B is zero. Then BMST reduces to the well known minimumspanning 

tree problem (with length function L(e)), and is k n o w  to be optimally solvable by classical algorithms (e.g. 

Prim's algorithm [CLR]).. Similarly, if B = +oo (i.e., there is no bound on the cost of upgrading the network), 
the BMST problem again reduces to the minimumspanning tree problem but this time with edgelengths given 

Optimal solutions to BMST also exhibit some structure in the general case (Le., B 6 {O,+m}). Any 
(feasible) reduction r induces a tree in a natural way, namely a minimum spanning tree Tr in the modified 
graph r(G). Observe that the quality of the solution produced via the reduction r depends solely on the weight 

of Try so all the cost incurred in upgrading edges not in Tr is wasted. Moreover, for any fixed tree T in G, the 
Greedy-strategy that successively reduces a cheapest available edge is an optimal reduction strategy. Thus, if 
we already knew a minimum spanning tree Tr. corresponding to an optimal reduction r*, we could solve BMST 
quite easily. 

This observation also suggests a very simple exponential time algorithm for solving BMST Enumerate all 
spanning trees in G, apply the Greedy strategy to each of them and then select the best solution. Unfortunately, 
a graph G with n nodes can have nn-2 different spanning trees. 

We now discuss the sensitivity of optimal reduction strategies to changes in the given budget B. If we fix a 
spanning tree and plot the weight of that tree as a function of the money spent on it in a Greedy manner, we 

see that each piece corresponds to a budget range where one particular edge e is shortened. Thus it is easy to 
see that the piece has slope -1/Ce. 

Figure 2 on the page before shows the plots corresponding to the tree TI consisting of the edges (212,213), 

(v2,214), (211, 212) and the tree T 2  consisting of the edges (213,214), (212, 214) and (211, 214) taken from the example 
graph of Figure 1 on page 2. As can be seen from Figure 2, the plots for different trees can cross each other 
multiple times. If we plot the weights of all spanning trees on the same set of axes, the lower envelope gives the 

optimal remaining weight per budget. It is easy to see that the lower envelope can have an exponential number 
of linear pieces. 

by L l i n .  

4 Approximation Algorithms for BMST on General Graphs 

In this section, we present our approximation algorithm for the BMST problem. As mentioned earlier, the 
approximation algorithm extends easily to a broad class of network improvement problems where the objective 
to be minimized is the total cost of a connected subnetwork (e.g. budget constrained minimum Steiner tree 
problem). 

We first give an informal description of how the algorithm works. The main procedure uses a parametric 
search. In this search, the algorithm tries to find a good compromise between weighing the total length and 
the colresponding reduction cost of a tree in general. To this end, the algorithm performs a binary search 

with parameter K on the interval Z := [$(n - 1) minL,i,(e), +(n - 1) maxL(e)]. Note that if MST(G, L - r*) 

denotes the total weight of a minimum spanning tree after an optimal reduction r* then $ MST(G, L - r*) E Z. 
For each K E Z, which is probed with the help of a test procedure during the search, the algorithm first 

calculates a coarse heuristic measure that indicates how important it is to shorten an edge. Then, for each edge 
e in the graph the blend of its length and the reduction cost is refined by using the information in the cost 
function C,. After calculating such compound costs for the edges, we compute a minimum spanning tree with 
respect to these costs. The algorithm stops when a good blend has been found, meaning in this context that 
there exists a tree of total compound cost that is small compared to the current parameter I<. 

For large values of I< the reduction costs on the edges are weighted more than their lengths and the algorithm 
will tend to reduce the edge lengths only by a small amount, resulting in low overall reduction costs and more or 
less heavy trees. Also, since Ii' is large, the test on the compound cost of the minimum spanning tree computed 

will succeed. The algorithm now tries to reduce K as much as possible and find a minimum I< E Z such that 

it can successfully compute a light compound cost spanning tree. 
Our approximation algorithm for BMST is shown in Figure 3 on the next page. This algorithm uses the test 

procedure given in Figure 4. 

eEE eEE 



Procedure Heuristic-BMST(7, E) 
(n-1) min Lmin( e) (n- 1) max L(e) 

1 Perform a binary search on the interval Z E [ "': 2 7 ] with a spacing of E 

to find the minimum value K' such that Test-Blend(K') returns "Yes". 
Let T' be the tree generated by Test-Blend(K') and let t e  (e E 7") be the corresponding ('fine 

tuned" blend parameters. 
Define the reduction r by r(e) := 0 if e is not included in T and by .(e) := t e  otherwise. 

2 

4 return r and T .  

Figure 3: Main Procedure for the approximation of BMST. 

Procedure Test-Blend(K) 

1 Comment: This procedure tries to estimate whether in the current blend of lengths and 

reduction costs, the costs are weighted strongly enough (Le. K large enough) resulting in a low 

cost reduction. For this purpose, it uses the heuristic measure computed in Step 2. 

for each edge e let 
min 

hlc(e) = tEIO,L(e)-Lmin(e)l 

Also, let te  be the value o f t  which achieves the value hK(e) .  
Compute a minimum spanning tree T in G using the weight hK(e) for each e E E. 
Let ~ K ( T )  denote the cost of this spanning tree. 
if ~ K ( T )  5 (1 + 7 ) K  then return "Yes" else return ('No". 

2 

(L(e) - t + Q C e ( t ) )  

3 

4 

Figure 4: Test procedure used for the approximation of BMST. 

4.1 Correctness and Performance Guarantee. 

The performance guarantee provided by the algorithm Heuristic-BMST is summarized in the following theorem. 

Theorem 4.1 For any fixed 7, E > 0, Heuristic-BMST is an approximation algorithm for BMST t ha t  finds a solution 

whose length is a t  most (1 + -$) times that of a minimum length spanning tree plus an additive constant of a t  most 

E, and the total cost of the improvement is a t  most (1 + 7) times the budget B. 

The proof of Theorem 4.1 relies mainly on the following lemma, which ensures that the binary search in the 

main procedure works correctly. In stating this lemma, we use the notation introduced in the two procedures 

(Heuristic- B M ST and Test- Blend) described above. 

Lemma 4.2 Define F on R>o by F ( K )  := M S T ( K G ' h K ) .  Then F is monotonically nonincreasing on R>o. 

Proof: Let Id1) and I d 2 )  be two positive numbers such that 

spanning tree in G under the cost function hK(; ) .  Then 

< For i = 1,2 let T(') be a minimum 

Here tt' are the values chosen in Step 2 of Test-Blend which minimize L(e) - t + q C e ( t )  on the interval 

[0, L(e) - Lmin(e)]. By dividing the last equation by I((') we obtain that 

In the next step we find an upper bound for F(K(2) ) .  To this end, we estimate the weight of each edge in 

T(l)  under the cost function hK(a). Let e E T(l)  be an arbitrary edge. Then by the choice of ti2) in Step 2 of 

.- __I_ 



Test-Blend we have that 

Summing up the inequalities in (4) over all e E T(l ) ,  we obtain: 

K(2) 
hK(a) (T(l))  5 L(l) + -C(’). 

B 

Dividing (5) by and using the fact that hK(2)(T(2)) 5 hK(2)(T(l)) this results in 

(5) 

The strict inequality in the chain above stems from the fact that K(l )  < K(2). This completes the proof of the 

lemma. 0 

Corollary 4.3 If the procedure Test-Blend returns ‘Yes“ for some K’ > 0 then it also returns “Yes” for all K > K‘. 
Thus, the binary search in Heuristic-BMST works correctly. 

Proof: Let T’ be a minimum spanning tree with respect to hKt. Then, since Test-Blend(K’) returns ‘Yes” 
we have that hKt(T‘) - < (1 + 7)K‘; i.e. F(K’) 5 (1 + 7). Thus it follows by Lemma 4.2 on the preceding 
page that F(K) 5 (1 + 7) for all K > K‘. Since F ( K )  = MST & G , ~ K  I ,  this is equivalent to saying that 

0 MST(G, hK) 5 (1 + 7)K  for all K > K’. 

Proof of Theorem 4.1: Let r* be an optimal feasible reduction and let T* be a minimum spanning tree in G 
with respect to the weight function L - r*. For the sake of shorter notation let L* := ( L  - r*)(T*) be its total 
weight in the graph with the edge lengths resulting from the optimal reduction r*. 

We now show Test-Blend would return “Yes” if called with the value I? which is the smallest value in the 

&-spacing of Z = [$(n - l)minL,;,(e), +(n - l)maxL(e)] satisfying I? 2 L*/7. Thus, I? is some rational 

number satisfying 
eEE eEE 

k = L*/7 + E’, where 0 5 E’ < E. (7) 

For each edge e E T* we can estimate the weight h p ( e )  similar to inequality (4) in the proof of Lemma 4.2. 

This way, we see that the weight of T* under h g  is no more than L* + EB. Consequently, the minimum 
spanning tree with respect to h g  that would be found by the procedure during B the call has hg-weight at most 

Hence, the test in Step 4 of Test-Blend would be successful and the procedure would return “Yes”. Since 
we know by Corollary 4.3 that the binary search correctly locates a minimum value K‘, this now implies that 
the minimum value K‘ must satisfy K’ 5 k = L*/7 + E‘. Let T‘ be the minimum spanning tree found by 
Test-Blend(K’). Since K’, B 2 0 and C e ( t )  2 0 for all t ,  we have: 

Here again the numbers t: are the values o f t  chosen in Step 2 of the test procedure. For the reduction r which 

is calculated in Step 3 of Heuristic-BMST it now follows from (8) that 

MST(G, L - .r) 5 (L - r)(T‘) 5 h ~ l ( T ’ ) .  (9) 



Using this result in (9), we get MST(G, L - r )  5 (1 + $) MST(G, L - r*) + e, which proves the claimed 
performance of the algorithm with respect to the weight of an MST in the graph after applying the reduction T .  

We now estimate the cost of the reduction r found by our heuristic. Note that the cost of r is exactly 

C e E T ,  C(te). We have 

K' K' 
- c C(t',) 5 (L(e) - t', + -jj-C(t',)) = h ~ ' ( 2 " )  5 (1 +7)K'.  

eET' eET' 

Dividing the last chain of inequalities by 
as claimed in the theorem. 

yields that the budget B is violated by a factor of at most (1 + 7) 

0 

4.2 Running Time 

We now show that the algorithm can be implemented to run in polynomial time for a broad class of reduction 
cost functions Ce on the edges of the graph. Let Lm, = maxL(e). Then the total number of calls to Procedure 

Test-Blend is in U ( l o g ( F ) ) .  Since 7 and e are fixed, the test procedure is called only a polynomial number 
of times. Thus, to prove that the overall running time of the algorithm is polynomial, it suffices to show that 

each execution of Test-Blend can be completed in polynomial time. Here, the only fact to show is that we can 

minimize the function fe(t) := L(e) - t + $Ce(t) on the compact interval Z' := [0, L(e) - Lmin(e)] in Step 2 
of the procedure in polynomial time. The rest of the procedure consists of computing a minimum spanning 

tree which can be done in O(n + mlogP(m, n)) time using the algorithm of Gabow et. al. [GGS86], where 

~ ( m ,  n) = min{i I log(') n 5 m/n). 
Consider the execution of Test-Blend for a given value of K. Observe that in Step 2 the number L(e) is an 

additive constant and is a constant factor. Thus, the constrained minimization of f e  can be done easily for 
for the following sample classes of functions Ce: 

eEE 

1. Linear functions, Le. Ce(t) = Ce et for a constant Ce: Then f e  is a linear function in t and the minimum 
is attained at one of the endpoints of Z'. Minimizing f e  can be done in constant time. Thus, the total 

running time of the heuristic is U(log(*)(n + mlogP(m, n))). 

2. Concave functions: Let A(e) := L(e) - Lmin(e). Then, for any 0 < X < 1 we have by the concavity of Ce 
(which implies the concavity of f e ) :  

f e ( X  * 0 + (1 - X)A(e)) 1 X f e ( 0 )  + (1 - X)fe(A(e)) 2 min{fe(0), fe (A(e) ) } .  

Thus, the minimum of f e  is again either at 0 or at L(e) - L,in(e). 

3. Differentiable convex functions where we can find a root of the equation CL(t) = a explicitly. 

4. Functions that are piecewise of one of the types described above. Observe that the number of pieces is 

polynomial in the input size. 

For the first three classes of functions that are mentioned above the total effort for our algorithm consists 

minimum spanning tree computations, which does not only result in an overall essentially of U(log( 
polynomial time but also in a complexity that is feasible in practice. 

4.3 Notes on the Algorithm 

It should be noted here that our Algorithm Heuristic-BMST can be modified easily to handle the case when the 
reduction is required to be either integer valued or to satisfy r(e) E (0, L(e) - Lmin(e)) for all e E E. In this 

case, Step 2 of Test-Blend is modified in such a way that the minimization is carried out only over the integers 

in [0, L(e) - Lmin(e)] or on the two element set (0, L(e) - Lmin(e)) respectively. Due to lack of space we omit 
the details. 



Integer valued reductions are helpful to model discrete steps of improvement, e.g. the addition of a number 

of communication links parallel to already existing ones in the network. Reductions that take values only from 

(0, L(e) - Lmh(e)} can be used to model the insertion of alternative edges to. the graph G, with the reduction 
of the edge e corresponding to the construction of -a new edge e' parallel to e fl th length Lmin(e). 

So far, we have assumed that the function fe( t )  = L(e) - t + QCe(t) can be minimized ezadly. This indeed 
is not necessary to obtain an approximation algorithm with a constant factor approximation for BMST. In fact, 
one can show that if in Step 2 of procedure Test-Blend we find a value t' satisfying 

for some Q 2 1 and mod@ Step 4 to check whether the compound weight of the tree is at most a2(1 + 7 ) K ,  
this will lead to a polynomial time algorithm which produces a reduction of cost at most a2(1 + 7 ) B  and a 

corresponding MST of total length at most a(1+ l / ~ )  times that of an optimal tree plus an additive constant 

of E. 

5 Improved Approximation Ratios for Treewidth Bounded Graphs 

and Linear Reduction Costs 

In this section we will show how to obtain an improved algorithm for the class of treewidth bounded graphs 
under the additional assumption that the reduction costs on the edges are linear. The basic idea behind the 

algorithm in this section is to reduce the problem of improving the tree to some appropriately chosen bicriteria 
problem. To this end we recall the following result from [MRs+95]: 

Theorem 5.1 1. There is a polynomial-time algorithm that, given an undirected graph G on n nodes with two 

nonnegative integral costs E and F on its edges, a bound E ,  and a fixed 7 > 0, constructs a spanning tree of 
G of total E-cost a t  most (1 + 7 ) E  and of total F-cost at most (1 + l/7) times that of the minimum-F-cost 

of any spanning tree with total E-cost at most E.  

2. For the class of treewidth-bounded graphs, there is a polynomial time algorithm that returns a spanning tree 

of total E-cost a t  most E and and of total F-cost at most (1 + E )  times that of any spanning tree with total 

E-cost a t  most E. 0 

We will use the second part of the theorem to obtain an improved approximation. We note here that using 

first part of Theorem 5.1 instead, we could also construct a ((1 + $), (1 + ()(l + 7)) approximation algorithm 
for BMST on general graphs for any fixed ( > 0, if we restrict ourselves to linear reduction costs. Since our 
algorithm from the last section already gives us-a (1 + 1, 1 + 7) performance for far more general classes of 
cost functions this is not as interesting. Also, our approxlmation algorithm from Section 4 does not need any 
additional space, while the construction presented below transforms the original graph into a graph having more 
nodes and edges. 

We now describe our improved approximation algorithm for linear reduction costs on treewidth-bounded 
graphs. Due to lack of space we only sketch the details. First we transform the original graph to another graph 
that can be fed into the algorithm from Theorem 5.1. To this end, we replace each edge e = (u, v )  of the original 

graph by a certain subgraph in such a way that the treewidth does not increase. The transformation procedure 
is shorn in Figure 5 on the next page and an example of a transformation is displayed in Figure 6. 

Let G be the original graph and G' be the graph obtained as a result of the transformation. Also, let tw(G) 
and tw(G') denote the treewidths of G and G' respectively. We have the following observation. 

7. 

Observation 5.2 Whenever tw(G) 2 3, we have that tw(G) = tw(G'). 0 

5.1 Correctness and Performance Guarantee 

Let r* denote the optimal reduction involving a cost of at most B and let T* be a minimum spanning tree 

in r*(G) and let L* := MST(G, L - T * )  be its weight in the modified graph. Also, let T' be a tree in G' 
with minimum total F-cost F' := F(T') among all trees in G' that have E-cost at most w. The performance 

guarantee provided by the algorithm Heuristic-TW-BMST shown in Figure 7 on the next page is summarized in 
the following theorem: 



Procedure Transform(() 

1 

2 
3 
4 

for each edge e = (u, v )  in the graph let b e  be chosen so that (1 +ob= 5 L(e) - Lfin(e) 5 

Add be + 2 new vertices f k ,  k = - 1 , O , .  . . , be, which are joined together in a simple cycle. 

for all I C ,  -1 _< k 5 bel join r k  to both u add 0. 

For k 2 0, the edge (u, r k )  has E-cost E(u, r k )  := L(e) - (1 and F-cost (1 + OkCe, while 

the edge (u, r - 1 )  has E-cost L(e) and F-cost 0. All the edges ( T k ,  v )  and ( P k ,  P k + l )  have their 

E-cost and F-cost set to zero. 

(An example of the above transformation for be = 2 can be seen in Figure 6) .  

(1 + l y e + ?  

Figure 5: Procedure used to transform G to G' in the approximation of BMST on treewidth bounded graphs. 

U 

V U 

G G' for b, = 2 

Figure 6:  Example for the transformation on treewidth bounded graphs. 

Theorem 5.3 For the class of treewidth bounded graphs and linear reduction costs the following statement holds: 

For all fixed E,( > 0, Heuristic-TW-BMST is a polynomial time ( (1+~),  (l+())-approximation algorithm for BMST. 

Proof: Let us first understand the relationship between B' and B and that between F' and L*. Consider 
the tree T* in G. We can define a tree TI' in G' in the following way: For an edge e = (u, v )  E T* that is 
reduced by r*(e) we select an edge (u, rj )  in G' of E-cost L(e) - b(e), where b(e) is selected in such a way that 

& 5 r*(e) 5 b(e). We also select the edge (r j ,  v )  to belong to TI'. Observe that the edge (u, rj)  selected in 

the above fashion has its length reduced by at most (1 + () . r*(e) and at least by r*(e). Using this fact the 
following claim can-be proven. 
Claim: The F-cost o f  the tree TI' is a t  most (1 + ()B. The total E-cost of  the tree T" in G' is a t  most L*. 0 

Hence we have demonstrated a witness tree T" such that if the bound on the E-length is L*, then the 

F-cost of this tree is bounded from above by B' := (1 + ( )B.  Consequently, the minimum F-cost tree T' in G' 
(under the constraint that the E-cost does not exceed L*) will have cost at most B'. Thus the binary search 
will terminate with a value L' 5 L*. 

Procedure Heuristic-TW-BMST((, E) 

1 
2 Let B' := ( l+<) .B  
3 

CaII Transform(() to obtain a new graph G'. 

Use binary search to find the smallest integer L' E [(n- l)(minLmin(e)), (n- l)(maxL(e)) such 

that the algorithm referred to in Part 2 of Theorem 5.1 called with the parameters L' for the 

E-cost bound E and E > 0 returns a tree of F-cost at most B'. 
Let T' be the tree generated by the algorithm from Theorem 5.1. 
For each edge e = (u, v ) ,  define the reduction r on e by .(e) := 0 if (u, r - 1 )  is included in T' 
and otherwise by .(e) := (1 + Okl where 0 5 k 5 be is the minimum value such that (ut T k )  is 
included in TI. 

e E E  e E E  

4 
5 

6 returnr. 

Figure 7: Main Procedure for the approximation of BMST on treewidth bounded graphs. 
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Specifically, for our algorithm sketched above, the total weight MST(G, L - r),  where r is the reduction 

returned by the heuristic, is then bounded from above by (1 + e)L' 5 (1 + e)L*. Moreover, the cost of the 

reduction r which is defined in Step 5 of Heuristic-TW-BMST is no more than the F-cost of the tree T', which 

is found with the help of the algorithm from Theorem 5.1. 
Since we know that the cost of this tree is bounded above by B' = (1 + () B by the fact that the binary 

search has indeed terminated with some L', the claimed performance guarantee with respect to the budget 
follows. 0 

5.2 Running Time. 

We now show that the algorithm can be implemented to run in polynomial time. For this, observe that for a 

fixed value of ( > 0, the number of edges added (i.e., the value of be)  is polynomial in the size of the input. 
This proves that the procedure Transform runs in time O(rn1ogM) where M = CeEE L(e). Next, observe that 
the binary search in the main procedure can be done in polynomial time. Thus the algorithm can be executed 

in polynomial time. 

6 Hardness Results 

In this section we will prove the BMST problem to be hard even for very restricted class of graphs and the most 
simple reduction cost functions. 

Theorem 6.1 BMST is NP-hard, even when restricted to series-parallel graphs and even when all the reduction 

cost functions C e  are linear, i.e. Ce(t) = C e  e t  for al l  e E E. 

Proof: We use a reduction from Continuous Multiple Choice Knapsack which is known to be a NP-complete 
problem (c.f. [GJ79], MP11). An instance of CMC-Knapsack is given by a finite set U of n items, a size s(u) 

and value v(u)  for each item, a partition U1 U - - U Uk of U into disjoint sets and two integers S and IC. The 
question is, whether there is a choice of a unique element ui E Vi, for each 1 5 i < k, and an assignment of 
rational numbers ri, 0 5 ri 5 1 to these elements such that 

Given an instance of CMC-Knapsack we construct a graph G = ( Y E )  in the following way: We let V = 
VU{X,T,Tl  .... ,Tk}, E := E1 UE2UE3 with E1 := { ( X , u )  : u E U}, E2 := { ( u , q )  : u E Vi,i = 1 .... , I C }  
and E3 := ((Ti, T )  : i = 1,. ... k}. The graph constructed this way is obviously series-parallel with terminals 
X and T. 

7 
qs(ui )  5 S and ~ i v ( u i )  2 K .  

Figure 8: Graph used in the reduction from Continuous Multiple Choice Knapsack. 

Define D := max{v(u) : u E U}. For each edge (z ,u)  E El,  let L(z,u)  := D,Lmin(z,u) := D - 
w ( u ) , C ( ~ , U )  := s(u)/~(u). For all edges e E E2 we let L(e) := Lmin(e) := C(e) := 0 ,  and for all edges 
e E E3 we define L(e) := Lmin(e) := 3 0  and C(e) := 0. Set the bound B on the total cost to be S. 



The graph is shown in Figure 8 on the preceding page. The dotted edges are of weight 0 while the dashed 

ones have weight 30. Any MST in G has weight kD + 30. 
By the construction, any feasible reduction can only reduce the length of the edges in El .  Assume that r 

is a feasible reduction. Observe that the MST in G with edge lengths given by ( L  - r )  will always include all 
edges from E2 (which are of weight 0) and exactly one edge from E3, regardless of which edges from E1 are 

affected by the reduction. Observe also that for any fixed i E (1,. . . , k}, any MST in the modified graph will 

contain exactly one of the edges of the form ( X ,  u’), where u‘ E Vi. Consequently, reducing the length of more 
than one edge ( X ,  u‘) with u’ E Vi will not improve the quality of the solution, but cost money from the budget 

B .  We thus have: 
Observation: If r is a feasible reduction for the instance of BMST defined above and the weight of  an MST in 

the modified graph is Y, then there is always a feasible reduction r’, which for each i E (1,. . . , k} reduces a t  most 

0 

Let r be any reduction as defined in the above observation and for i = 1,. . . , k let ei = ( X ,  ui) be the unique 
edge from 2 to Vi affected by the reduction. The weight of an MST in with respect to ( L  - r) is then given by 

one of the edges ( X ,  u),  u E Vi and the weight of an MST with respect to (L - r‘) is also equal to Y. 

k k 

i=l 

The cost of reduction r is given by 

i=l 

We now prove the following: There is a feasible reduction r such that MST(G, L - r )  5 (3 + k)D - K ,  if 
and only if there exists a choice of a unique element ui E Vi, 1 5 i < k and an assignment of rational numbers 
ri ,  0 5: ri 5 1 to these elements such that E:=, riS(ui) 5 B and 

First, assume that there is a feasible reduction r such that MST(G, L - r )  5 (3 + k)D - K .  Without loss 
of generality, we can assume that r has the properties as stated in the above observation. Then for i = 1,. . . , k 
there is at most one edge ei = ( X ,  u) with u E Vi such that r(ei) > 0. If there is such an edge ei, we define 

k- 
Tjv(ui) 2 K.  

and let ui := u. If for all edges ( X ,  u) with u E Uj we have r(ei) = 0, we simply let ri := 0 and choose ui E U 
arbitrarily. It follows readily from the definition and the feasibility of the reduction r that ri E [0,1]. Moreover, 

using Equation (11) we see that Cy=lris(ui)  5 B 5 B1. Using equation (10) and the fact that the weight 

MST(G, L - r )  is no more than (3 + k)D - IC we obtain that 

Conversely, if we can pick unique elements Uj from the sets Uj and find rational numbers ri E [0,1] such that 

E!=’=, ris(ui) 5 B and Tiv(ui) 2 If. We can define a reduction r by r (X ,u i )  := riv(ui) = ri (L(z ,ui)  - 
Lmin(zc, U i ) )  for i = 1,. . . , k and r(e)  := 0 for all other edges. It follows that r is indeed feasible, and using 

0 equation (10) we see that the MST in the modified graph is no heavier than (3 + k)D - K.  
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