SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 617

January 1984

MODIFYING THE FORREST-TOMLIN AND
SAUNDERS UPDATES FOR LINEAR PROGRAMMING
PROBLEMS WITH VARIABLE UPPER BOUNDS

by
Michael J. Todd*

k4
Research supported in part by a fellowship from the Alfred P. Sloan Foundation
and by NSF Grant ECS82-15361.

Typist: Anne T. Kline

Abstract

The author previously described a modification of the simplex method
to handle variable upper bounds implicitly. This method can easily be used
when the representation of the basis inverse (e.g. a triangular decomposi-
tion of the basis) is maintained as a dense matrix in core, but appears to
cause difficulties for large problems where secondary storage and packed
matrices may be employed. Here we show how the Forrest-Tomlin and Saunders
updating schemes, which are designed for such large problems, can be

adapted.

1. Introduction.

We are concerned with solution of the linear programming problem:

where the constraints xj g_xk for (k,j) ¢ E are called variable upper
bounds. Such problems arise frequently in applications, particularly as
relaxations of integer programming formulations involving fixed charges.
Examples are described by Schrage [11,12], Glover [6] and Todd [13], who
also present special versions of the simplex method that exploit the
structure of the variable upper bounds. We shall be concerned with the
method proposed in [13], which circumvents the massive degeneracy caused by
the special constraints and maintains a triangular decomposition of a small
working basis.

If the basis is factored as the product of a lower and an upper
triangular matrix, the updating steps are easy to perform if the Tatter is
stored as a dense matrix in core. In this paper we address techniques to
implement the method when the upper triangular factor is held in packed
form. In particular, we show how the Forrest-Tomlin [5] and Saunders [10]
schemes, with all their advantages when secondary storage is used, can be
adapted to deal with this situation. Bastian [4] has shown how Forrest-
Tomlin updating can be employed with Schrage's method [12] for generalized

variable upper bounds; however, this method, in contrast to that in [13],

The iteration begins by solving nTB = dg

for the simplex multipliers
x. Then g 1is used to price out the columns of A. This procedure is not
completely standard, since it is designed to avoid degenerate pivots caused
by the variable upper bounds. Thus we do not test for the entry of a
nonbasic xj whose father Xy is nonbasic., Instead, we compute reduced
costs E& = cJl - ﬂTal for 2=k and each son g2 =J of k, and may

choose to enter Xy together with all its "favorite sons” Xj’ jed_(k),

if ?& + ZjeJ_(k) Ej < 0, where J (k) = {Jj ¢ J(k): E& < 0y. Full details
are given in [13].

If optimality has not been achieved, we next construct a column bq
to enter the basis -- bq is of the form i_aj, Jje d, or 3 + Zjed_(k)aj -
and solve Bz = bq for z. The vector =z allows us to make a minimum-
ratio test to determine the next basic solution (or the existence of an
unbounded solution). Again, this test is not standard, since it takes into
account the variable upper bounds as well as the nonnegativity restrictions
-- see [13].

Finally, we must update all quantities to allow the algorithm to
proceed, Here we are particularly interested in the changes to the basis
matrix B. Three cases are possible:

Case 1: The minimum ratio corresponds to a variable X hitting
zero. In this case, the corresponding column, say bp, of B is dropped
and replaced by the new column bq. Note that bp may be (plus or minus)

an original column of A or a composite column. This is a standard column

exchange,

2
does not circumvent degeneracy with simple variable upper bounds. The rest
of this section outlines the method of [13], with particular attention to
the modification of the basis matrix during an iteration.

Suppose A is mxn, and let N denote {1,2,...,n}. The simplest
kind of variable upper bounds arise as follows. Let N be partitioned
into J ("sons") and K ("fathers") and J be further partitioned into
J(k), k ¢« K. Suppose (k,j) ¢ E iff k « K and J e J(k); that is, the
"sons" of k (variables indexed by Jj e J(k)) can be no greater than
their "father", For simplicity, we shall usually consider this scenario,
but extensions are possible: Glover [6] and Schrage [12] address quite
general extensions, while Todd [13] allows the directed graph G = (N,E)
to be an out-forest, and allows "fatherless fathers" to have simple upper
bounds.

The algorithm of [13] uses a working basis matrix B that is mxm, each
L & J’

for some Js(k) c J(k), k € K; here 2, is the gth column of the matrix

A. Basis columns of the latter kind (called composite columns) arise when

of whose columns b_ has the form +ay, where Jj ¢ J, or a, + ngJS(k) a

the father x, 1is positive, and certain of its sons, Xj’ J e Js(k), are

k
equal to their upper bound X, The column takes its form from the fact

that Xy and all X s J e Js(k), move together. (This is not completely

accurate: we may have J ¢ Js(k) and 0 < Xj < Xps in which case —aj is

also a column of B, representing how far xj is below X but the reader

may ignore such complications.) Corresponding to B 1is the cost vector

dg, which is constructed from cT exactly as B is from A. We also have

1

the updated right hand side vector h = B "h, from which the values of the

variables can easily be extracted.

4

Case 2: The minimum ratio corresponds to a variable xp hitting its
father X2 where xp is not the entering variable, In this case, the
corresponding columns, say bp and bk’ of B must be added to replace

b Then bp is dropped and replaced by bq. Note that we may alter-

ke
natively add bk to bp and then drop bk; the result is identical,
Here we have a pre-processing step -- add one column of B to another --
followed by a column exchange, where the dropped column is one of the
summands.

Case 3: The minimum ratio corresponds to the entering variable Xq

hitting its father In this case we perform a standard column

Xy »
exchange, where the column of B corresponding to X s Sy bk’ is
replaced by the new column Bk = bk + bq.

(We have again slightly distorted the truth: for positive variables
Xj with Jj ¢ Js(k) for some k, so that -aj is a column of B, the
events "hitting zero" and "hitting its father" are reversed, but the
changes to B are identical.)

These rules differ from the normal modifications to the basis matrix
only in the possible pre-processing step in case 2. If B 1is factored as
the product LU of a lower triangular and an upper triangular matrix
(ignoring permutations), then this pre-processing corresponds to the
addition of one column of U to another. Further, by choosing whether to
or vice-versa, we can ensure that U remains upper tri-

k
angular. Thus a simple modification of basis-updating routines suffices to

add b to b
p

handle this variant of the simplex method, as long as U 1is maintained as
a dense matrix in core., However, it appears to be much more difficult to
implement this method if U 1is held in packed form, possibly in secondary

storage,

5

In his implementation of the Bartels-Golub basis factorization update
1,21, Reid [9] maintains U 1in packed form by rows, and also a column-
oriented representation of the nonzeroes of U, Since each addition of,
say, up to Uy is followed by dropping up, it is straightforward to
update the row-oriented represention of U for a pre-processing step. If,
in row i, u1.p were nonzero while s, were zero, then we merely update
the pointer of the entry u1.p to indicate that it pertains to column K3
otherwise, there is space to update Usee To update the column file, it
seems necessary to write a new record for column k to correspond to its
new sparsity pattern., Thus no great difficulties arise, though of course
the representation of U 1is likely to be much denser and sometimes two
new column records (instead of just one) need to be added during an
iteration, This modification of Reid's routines will be tested in the
future.

Reid's implementation is most suitable for an in-core code. For a
large problem requiring secondary storage (e.g. disks), the basis-handling
methods of Forrest and Tomlin [5] are much used. Here U 1is maintained in
packed form by columns, and is read only, except for changing nonzero entries
to zeroes., We show in the next sections how the Forrest-Tomlin updating
scheme can be modified to handle pre-processing without changing its desirable
features. Thus U is maintained in product form, with each factor modified
only by replacing non-zeroes by zeroes or changing pointers, Factors are
dropped less frequently than in the standard case, but many factors may be
dropped simultaneously. Each iteration adds just one factor to the U_l—fi1e

and one to the L'l-f11e.

6

Saunders [107] uses a basis factorization scheme combining the numerical
stability of the Bartels-Golub approach with the access advantages of
Forrest and Tomlin. In the final section we sketch how Saunders' method can
be adapted.

The extensions to variable upper bounds discussed in [13] can also be
handled. Simple upper bounds on fathers change the lTogic of the method but
the operations to be performed on the basis matrix are the same. Allowing an
out-forest of variable upper bounds sometimes requires two column exchanges
to be carried out, and also may entail adding one composite column of B to

another, but otherwise involves no extra complication.

2. The Basis Representation.

Let B be an mxm nonsingular matrix, and let

-1

L B=U

-1 -1 -1, -1

L™ =1L nL"’LZ L] (1)
U=uU ...U5U,

U

1 js an elementary row or column matrix (differing in just

where each L;
one row or column from the identity matrix) and each Uj is an elementary
column matrix. let J = {1,2,...,nU}. Suppose that we can write each Uj

in the form

U. =1+ G.fT, where
J JJ
. . T~ _ . .
fj is a unit vector, and fjui =0,1<j.

Since all cross~terms cancel, it follows that

Let e, denote the ith unit vector in Rm, so that each fj is some e;

In fact, if n, > m, each e, may be represented several times - this is

U

the essential new ingredient that allows us to handle pre-processing.

Pick Kc J with 'K‘ =m such that {f : ke K} = {e;: 1<i<m
and K consists of the "last representatives": fj = fk, jed, k e K imply
J < k. let Jy

have different meanings from J, K and J(k) in the introduction,

denote {j J: fj = fk}‘ (While the index sets J, K and

Iy

there are strong parallels: Jk always corresponds to a father with some of
its sons, for instance.)

To st : = u. if] = U, + f. i

0 store UJ, we store uJ uJ if j ¢ X and uJ uJ j if
j ¢ K, together with (a pointer representing) fj' Thus we write

J € J\K

L
i
—
+
oy
"
[N
.

<o
1]
e |
+
Cammia
-
t
-—h
S
—h
w
s,
m
~
-
=
-
D
-3
o]
—
(3]
Sz

fj is a unit vector and f} u; = 0, i <J.

Then

]
~]
<

.

since =], ff. Let

k'k®

v, denote Xjedk uys then v, is the column

Ufk of U.

Suppose K = {kl,...,km} with k1 < vse km’ and et P be a per-

mutation matrix with Pfk = e, 1 <1 <m Let W, denote ka and
i i
W = [wl,...,%n]. Then
T _«on T
pPuUP 21=1 ka. (Pfk‘)
i i
_¢n
= Zi=1 Wies = W.
. . . T T . \
Moreover, if i < j then ejwi = fk Ve = 0. Thus W is upper tri-
J i

angular.

In the standard Forrest-Tomlin representation, ng=m and
J=K={1,2,...,m}. In this case, the uj‘s are the columns of U (in
permuted order). Thus the representation (1)-(3) of the initial basis or of
an intermediate or final basis at reinversion can be determined in a
standard way, giving Ny = m In particular, the preassigned pivot pro-
cedures of Hellerman and Rarick [7,8] can be used.

For updating, the special form of (2)-(3) will be most convenient, as

we show below. Of course,

- T i
U, =1 Bj ujfj with

Thus it is trivial to obtain Uglx or yTugl in a number of operations a

few more than the number of nonzeroes in uj.

3. Pre-processing.

Assume that we have a representation as in (1)-(3) of the current basis
matrix B. Note that each column of B, corresponding to a son variable of
(P) or to a father together with some of its sons, corresponds to a column

vk = Ufk of U and hence to a set Jk of indices in J.

Suppose that we wish to add a column of B corresponding to a son to
the column corresponding to its father (and some of its brothers,

possibly). We therefore wish to add some column of U, say vp = Ufp, to

another, say v = Ufk. We may assume that p, k ¢ K and that p < k -~
otherwise we interchange p and k. In this section, we show how to obtain

an intermediate product-form representation of the resulting matrix

- T
U=1U+ ([vp v] - v)

+ (fp - v_)f

T
p™p

Thus in U, the column Vi has been replaced by vp + Vi and the column
vp by fp. We will subsequently replace the latter by a new column.

The new representation is given by quantities with overbars, U&, ?5,

etc. In one respect it is nonstandard, in that fK] =m -1 and no

fj = fp. However, this is rectified in the following column exchange.

10

Define

.= U, foo=F.,] J
uJ uJ fJ fJ J e I\ D
(5)
U, =uU., f.=f , jed.
Ui T 5T e 3 e)
Then, since p < k, we again have ?gt} =0 for i< j. lLet X =K/{p}.
We have Jx = J2 for 2 ¢ K\{k}, while Jk = Jp U Jk. let
T.=1+070, jenX
J J J
(6)
U. =1+ (@ -T.)F, jeX
J J J
Then
- — T = T
U ...U,U0, =1+ u.f. + (u, - f)f
nytr2l kI d g 3 3T

— T
=), f. + f f
Lied Y3T5 * T

T T
u.f. + Ufp(fk - f

T
Zjed Jj'J

Y

T
+ f f
) pp

=T,

as desired. Note that we only have to change pointers: ?3 becomes fk
for jed_.

J € P

As a final remark, note that, with the simplest kind of variable upper
bounds, either Jp or Jk -~ whichever corresponds to the son variable --

is a singleton, while the other, corresponding to the father, might have

several elements. With the extensions to the concept mentioned in the

11

introduction neither Jp nor Jk need be singletons. The modifications

described above make no assumptions on the forms of Jp or Jk.

4, Column Exchange.

Suppose now that we wish to replace an old column of B (and of U)
by a new one. We assume that we have either a representation (1)-(3) of U
or an intermediate representaton of the result U of a pre-processing step
as in the previous section.

The modification of the representation consists of two steps: the old
column is first replaced by a unit column, and then the new column replaces
this. The first step depends slightly on whether pre-processing was just
performed.

4,1 Dropping a column, no pre-processing.

Suppose that we wish to drop the column vp = Ufp of U and replace

it with fp, to get

~ T
U=u+ (Ff - v)f
(fp = vplfy
) T T)
= Ly L+ f f
Jed\I ugfs + FLf)

It is clear that we only need to eliminate the factors Uj for j ¢ Jp to

get a product-form representation for U. However, to allow the subsequent
insertion of the new vector, we change this representation using an

elementary row operation R.

Define wT = ng'l and h = fTv = fT Ufp. Since U is permuted

pp p

upper triangular, A = (f;U—lfp)'l = (wap)'l. Define R =1 = fp(KWT - fT)

p

3

so that

12

-1 T T
R =1+ f - f). 8
p (M o) (8)

(In the case where nU = m, R reduces to Forrest and Tomlin's R (and to

1

Bastian's [3] R 7)) and wT is similar to Forrest and Tomlin's rT and

equals Bastian's wT.)

Then set
V P e
U =R
T Ty ~
= (I - ff +fw)U
(oo My)
= T _ T T T""
= Lj€J\Jp[(I fpfp)uj]fj + xfpw U (9)
T T T T
= V. - f Jf .+ f + f -
zJeJ\Jp[(I pfpluglfy + M pfp L+ wi(Ey - vp))
v T T T
= V. I -ff f. + F
ZJeJ\Jp[(pfplusdfy * fpTp
- - \
since wTvp = ng 1Ufp =1 and wap = 1. Thus U has the product-form
representation where each transformation Uj’ J e Jp, is deleted, and uj
is replaced by ﬁj = (I - fpfg)uj (eliminating its entry fguj, if present)
Ty

for j e J\Jp. Note that fpuj = 0 for all undeleted j; this allows the

insertion of the new vector., (The extra term f?f; is caused by the fact
that no undeleted fj equals fp.)

4.2 Dropping a column after pre-processing.

Now we have a product form representation of U, and UTp is already

the unit column fp. As above, define Wl = fgﬁ 1 and A = ng¥p =

(W' p)'1 = 1.

13

With
-1 T LT
L G NI 10
NUUSEA (10
we have
v —
U= r71T
T Ty
S (- f s f W)l
(1= Fpfp + Fpu)
(11)
S (1 - f) (. T +fF)+ fF

pp’tjed il pp PP

T

. Tv— =T
= Zjed[(l - fpfp)uj]fj + fpfp .

v —
Thus U has the product-form representation where each uj is replaced by
v ——
uj = (I - fpfg)uj by eliminating its entry fguj, if present. Again we
have fgﬁj =0 for all j. In this case, no transformations Uj are

deleted.

4.3 Adding a column,

Finally we wish to insert a new column, say b, into the basis. Let

the basis matrix be é, and let u = R'lL-lb. Then

-1,-15 _ T
RTL™™B = U+ (u - f)f
(u - f)f ,
= U, (12)
T T

N y = v T .
say. Then U = Zjed ujfj +uf_ , or ZjeJ\Jp ujfj + ufp according

o -~

14
as pre-processing was, or was not, performed. Thus we obtain a represen-

tation (1)-(3) for the new basis B by defining:

1 -1 .

Lj = Lj » 1 <3 <3

A~ _ _1'

Lﬂl_+1 =R (13)
Go= UL, Fo=fl, 3 e O\ i

uy =uy, fi=fy je AN\ b (no processing)

\YS ~
= U, f.oo=f.,] f '
or uj = uy fJ fJ j e J (after processing)

5. Implementation.

Here we show how the updating method of the previous two sections can

1 1

be implemented efficiently, minimizing access to the L™ " - and U ~-files.

As in the standard Forrest-Tomlin update, we postpone the updating of L'1

1

and U™" till the beginning of the next iteration, when the simplex multi-

pliers nT are computed. Thus at the end of the iteration, we have deter-

mined the type of update required and we have available, as a byproduct of

1bq, the vector L'lbq.

We now run through the U'l—file, simultaneously computing wT,

updating, and computing dI ﬂ'l. We may also need to extract vp.
B

the computation of B~

Let us say “Ci s true" if the iteration falls into Case i of the
introduction, for i = 1,2,3. Thus Cl1 1implies a standard column

exchange, C2 requires preprocessing, and C3 forces us to extract vp.

Initialize:

do

if €2 then

else

cot w o« flal <d,ve, Fef,Pel-ff.
p 3 p p'p

j = 1,2,ooo’p - 1

it Jga, then =l «xUlL;

e]se if C2 then fj < fk

else mark j deleted

if C3 then v« v + uj;

T T,-1
w U
w o< b

mark p deleted

;
£
MeTplp

if €3 then v e v + up.

15

16

do j=p+ 1,...,nU

end.

-1
L b+ v,
u <« q v

Form R™ from W' and f(= old fp) as in (8).

Now we have updated the basis inverse representation: we continue by

completing the computation of nT by setting ﬂT “ “T L;1'°'L11‘ of

course, a few extra pointers are required, to indicate the index set K,
the status of each variable, and so on, and these must also be updated in
the obvious way.

In summary, we have shown how the files containing the basis inverse
representation can be updated in the next BTRAN operation, and that these

files essentially need be read only, as in the original Forrest-Tomlin scheme.

17

6. The modification of Saunders' basis-handling scheme.

In [10], Saunders proposes that the upper triangular matrix in a basis

decomposition be permuted to the form

where D 1is diagonal, R 1is essentially read only, and G 1is a small
matrix which can be maintained in primary storage, in packed form. Here we
sketch how the ideas of the preceding sections can be employed to adapt
Saunders' method to the requirements of preprocessing.

Write

=
1]

=

=
|

T

W i=1, II. Then U=1U We maintain

[

T .
If PUP =W, write PUiP IUII'

(or just D and a representation of G) in core, while UII is kept

-i’

Uy

in a product-form representation as in (2)-(3) in secondary storage. In

fact, it is convenient to use the Hj's of section 2 rather than the llj S

to represent each factor Uj - in other words, the identity diagonal of

U is ignored. No factors are necessary for the first block of columns

II
in wII'

We now describe how each type of update is performed. The vector b
is the new column of B. We concentrate on the product form of UII’ on D

and on G, assuming the latter is stored as a dense matrix; details of

updating permutations and storing G in packed form are omitted.

18

6.1 No pre-processing, column of (g) dropped.

Delete the corresponding factor(s) in the product form of UII‘

~

Append a new factor whose “j is D'1 times the appropriate subvector of
L_lb, padded with zeroes. Drop the corresponding column of G and add the
new column (the rest of L'lb); reduce to upper triangular form with a

Bartels-Golub update.

6.2 No pre-processing, column of (;8:) dropped.

Extract and delete the corresponding row of D"lR, say dglrz. Append

a new factor as above (with the ith entry removed). Remove di from the

G u
denotes the appropriate part of L ~b. Reduce to upper triangular form with

r¥ us us
representation of D. Form the new matrix N where .
u

a Bartels-Golub update.

6. 3 Pre-processing, adding one column of (lg:) to another.

s to f as

Update the product form of UII by first changing fp K
in section 4 and then appending a new factor with fj = fp. Add the
appropriate column, say gp, to the other, say 9 > drop gp, add the new

column and proceed with a Bartels-Golub update.

6.4 Pre-processing, adding a column of (;g:) to one of (ig‘> .

Extract and delete the corresponding row of D'lR, say dglr;. Append

a new factor as in 6.2. Form the new matrix r; + dpez up as in 6.2,

~

G u
and reduce to upper-triangular form. Remove dp from the representation

of D.

19

6.5 Pre-processing, adding one column of (:g:) to another.

-er
1T PP
d; e Append a new factor as in 6.2 (missing pth and kth components

Extract and delete both corresponding rows of D'lR, say d and

and "pivoting" in the pth row). Form the new matrix

d rT U |
P 'p p
T
de Uy
0 G u
- -

and reduce to upper triangular form with a Bartels-Golub update. Remove
dp and dk from the representation of D,

Except for 6.3, where one column of G must be added to another, and
6.5, where G increases both dimensions by two, these steps are identical
to normal updates in Saunders' method. Moreover, case 6.5 can only occur
when both "father" and "son" belong to the initial part of W; since
updating causes composite columns to belong to the second part of W, this

can only occur with columns placed in the initial part of W during a

refactorization, and hence will typically happen infrequently.

7. Conclusion.

The basis-handling schemes of Forrest-Tomlin and Saunders can be
modified to deal with the requirements of a specialized algorithm for
linear programming problems with variable upper bounds. These modifica-
tions preserve the desirable features of the original methods; in partic-
ular, most of the basis inverse representation can be held in secondary

storage and accessed sequentially.

(1]

[2]

[5]

L6l

7]

[8]

[9]

[10]

[11]

[12]

[13]

20

References

R.H. Bartels, "A stabilization of the simplex method"”, Numerische

Mathematik 16 (1971) 414-434,

R.H. Bartels and G.H. Golub, "The simplex method for linear program-
ming using LU decomposition", Communications of the ACM 12 (1969)
266-268.

M. Bastian, "Updated triangular factors of the working basis in
Winkler's decomposition approach," Mathematical Programming 17 (1979)
391-397.

M. Bastian, "Implicit representation of generalized variable upper
bounds using the elimination form of the inverse on secondary
storage," to appear in Mathematical Programming.

J.J.H. Forest and J.A. Tomlin, "Updating triangular factors of the
basis to maintain sparsity in the product form of the simplex method",
Mathematical Programming 2 (1972) 263-278.

Programming 23 (1982) 34-49,

F. Glover, "Compact LP bases for a class of IP problems", Mathematical

Programming 12 (1977) 102-109.

E. Hellerman and D. Rarick, "Reinversion with the preassigned pivot
procedure", Mathematical Programming 6 (1971) 195-246.

E. Hellerman and D. Rarick, "The partitioned preassigned pivot
procedures (P4)", in Sparse Matrices and their Applications, ed. by
D.J. Rose and R.A. WiTToughby, Plenum Press, New York (1972) 67-76.

J.K. Reid, "A sparsity-exploiting variant of the Bartels-Golub
decomposition for linear programming bases," Mathematical Programming
24 (1982) 55-69.

M.A. Saunders, "A fast stable implementation of the simplex method
using Bartels-Golub updating", in Sparse Matrix Computations, ed. by
J.R. Bunch and D.J. Rose, Academic Press, New York, (1976) 213-226.

L. Schrage, "Implicit representation of variable upper bounds in
linear programming”, Mathematical Programming Study 4 (1975) 118-132.

L. Schrage, "Implicit representation of generalized variable upper
bounds in linear programming", Mathematical Programming 14 (1978)
11-20.

M.J. Todd, "An implementation of the simplex method for linear
programming problems with variable upper bounds," Mathematical

