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Abstract 

 

The benzene, toluene, and xylene (BTX) compounds currently utilized in many building materials and paints have 
been linked to deleterious health effects, and thus, monitoring the presence of these compounds is of increasing 
importance with respect to public health. As such, there is a critical need for next-generation low-cost, selective, 
and sensitive indoor BTX sensors. Current BTX detection systems require multicomponent, complex devices or 
require high power input to achieve BTX detection at meaningful concentrations, but this long-standing 
paradigm can be altered through the introduction of tailored nanomaterials. Specifically, we demonstrate a 
selective BTX resonant mass sensor platform that leverages the unique properties of single-walled carbon 
nanotubes (SWCNTs) treated with hydrochloric acid (HCl) and hydroxylamine hydrochloride (HHCl), as the 
resultant surface chemistry and nanostructure provides specific BTX response. That is, SWCNTs are used in this 
case because of their high surface area that provides a robust interaction with the target gas analyte. After the 
SWCNTs are treated with HCl, impurities residual from the commercial synthesis of the SWCNTs are removed, 
which includes reducing the amount of surface iron oxide (i.e., a residual component of the catalysis used to 
synthesize the SWCNTs) present into iron chlorides. There is then a following HHCl treatment that leads to the 



reduction of iron(III)chloride to iron(II). This produces nitrous oxide gas, which provides a means to generate in-
place surface functionalization of the SWCNTs; in turn, this allows for the selective adsorption of electron-dense 
aromatic analytes. Accordingly, these materials have selective interactions and unique responses toward each of 
the BTX analytes, and when these tailored nanomaterials are dropcast onto resonant devices, they provide for a 
chemically selective mass uptake response. In turn, this provides a clear pathway toward a practical, low-cost, 
efficient, and reusable sensor for BTX detection based on SWCNTs. 

KEYWORDS: 
volatile organic compounds (VOCs) sensor, functionalized carbon nanotubes,  gravimetric sensor,  indoor air 
quality monitoring 

1. Introduction 
Aromatic hydrocarbons, a subgroup of volatile organic compounds (VOCs), are frequently contained within 
consumer materials used in building interiors (e.g., paints, lacquers, adhesives, and dyes) among other 
settings.(1) While aromatic hydrocarbons, including benzene, toluene, and xylene (BTX), have been widely used 
in these various settings, these compounds have been linked to long-term deleterious health effects.(2−5) Due 
to their organic nature, BTX components are absorbed and are widely distributed throughout the body. For 
instance, acute exposure to lower concentrations of BTX compounds in air (i.e., <100 ppm) can affect the central 
nervous system.(6) High concentrations of BTX in air (i.e., >700 ppm) can even lead to human 
fatalities.(7) Additionally, BTX compounds are linked to acute myeloid leukemia and other hematological 
malignancies that can have long-term deleterious effects on the health and wellbeing of humans.(8,9) As a 
result, these chemicals are strictly regulated and monitored in many countries.(10) Given this situation, there is 
a pressing need for a low-cost, energy-efficient, and high-fidelity sensing platform that is tailored to have high 
selectivity and sensitivity for BTX compounds. 

To date, various techniques have been implemented for the detection of gas-phase BTX molecules. Metal oxide-
based resistive sensors, specifically, are effective in sensing BTX species.(11−14) Although effective in the 
detection of aromatic hydrocarbons, metal oxide resistive sensing requires high operating temperatures (i.e., 
>200 °C), making them impractical for many common applications.(1) As such, some groups have turned their 
attention to nanomaterial-based platforms. For instance, recent work focused on utilizing cobalt porphyrin-
functionalized TiO2 nanoparticles as a sensing material for BTX compounds on a suspended microheater, which 
allowed for lowered operating temperatures.(15) These sensors, although intriguing in the metal oxide area of 
BTX sensing, are limited by extensive device fabrication protocols that limit the possibility of high-throughput, 
low-cost fabrication processes. In addition to the metal oxide approach, there has also been work completed on 
BTX detection utilizing polymer and metal–organic framework materials on photonic crystal sensors, which offer 
low operating temperatures, but also suffer from arduous device fabrication techniques.(16,17) Conversely, the 
detection of aromatic hydrocarbons at low operating temperatures and using devices fabricated in methods that 
are consistent with solution-processing protocols has occurred with polymer-functionalized quartz crystal 
microbalances (QCMs).(18−21) Additionally, QCMs have shown promise with frequency counting algorithms for 
the selective detection of xylene at 2500 ppm.(22) However, these QCMs tend to be expensive or rely on 
humidity-sensitive detection methods, and these factors limit their potential to be incorporated into existing 
buildings and interior spaces. Moreover, photoionization detectors, amperometric detectors, semiconductors 
(i.e., chemiresistive sensors), flame ionization detectors, and portable gas chromatographs/mass spectrometers 
(GC/MS) have been implemented for the detection of aromatic hydrocarbons.(23−29) These sensors, although 
sensitive to BTX, lack selectivity and durability, and have high power consumption and cost.(30) Therefore, there 
exists a critical need for a sensor platform that can provide high chemical sensitivity and selectivity among BTX 
analytes without compromising reusability, cost, and power metrics. 



To satisfy these demands, sensor platforms utilizing single-walled carbon nanotubes (SWCNTs) are used 
extensively in gas sensing applications because of their ability to provide a robust interaction with the target gas 
analyte and high chemical stability.(31) This strong interaction is attributed to the high surface area of the 
SWCNTs (>1500 m2 g–1) and high surface area-to-volume ratio.(32) However, when incorporating these SWCNTs 
into a sensing platform to target specific analytes, such as BTX, these sensors must meet certain criteria. A 
practical and efficient BTX gas sensor should offer: (i) high sensitivity and selectivity; (ii) a fast response time to 
BTX exposure and recovery time when BTX is removed (i.e., ∼1 s); (iii) a low operating temperature (i.e., near-
room temperature) and temperature-independent operation; and (iv) chemical and device stability upon 
cycling.(33,34) To meet these sensor metrics, these nanomaterials are typically chemically-modified with various 
functional groups, polymers, and metal oxide nanoparticles to improve their selectivity and sensitivity to target 
analyte gases.(35−38) These chemical modifications allow certain SWCNT-based devices to meet the sensor 
criteria and provide the ability to sense target analytes selectively; however, these modifications can be costly 
because of the expensive functional chemistries utilized. Thus, creating a sensor platform that leverages the 
nanoscale advantages of SWCNTs and that satisfies the necessary sensing criteria with little to no additional cost 
of added materials has great value in the sensing field. 

Here, a resonant mass sensor is coated with SWCNTs and then chemically treated with an inexpensive and 
commonly-used hydroxylamine hydrochloride (HHCl) reagent to dope the SWCNTs in a single step (Scheme 1). 
This doping allows for the selective detection of BTX compounds. This never-before-reported chemical 
functionalization protocol, in combination with the resonant mass sensor platform, allows for low-cost and 
practical BTX detection. In comparison to other SWCNT sensing counterparts, this sensor offers high sensitivity, 
low operating temperature, small size, and long-term cyclability. Using Pierce oscillators implemented with a 
frequency counting algorithm, the simultaneous monitoring of 16 sensors, each with a temporal resolution of 1 s 
and frequency resolution of ∼1 Hz, is achieved. This Pierce oscillator system with this functional chemistry 
allows for selective detection of BTX compounds. These functional materials require low-energy input, and they 
do not require humidity to perform unlike other functional materials on QCMs. Moreover, this resonant mass 
sensor platform offers lower cost materials to manufacture and is smaller in size, requires less cumbersome 
electronics and controls to perform tests, and is more portable than a standard QCM. Additionally, the 
chemistry and nanoscale structure of the SWCNTs allows for the detection of aromatic hydrocarbon analytes 
selectively because of an electron-withdrawing character that is associated with the SWCNTs after their 
treatment with HHCl. Thus, the apparent selective adsorption of BTX analytes is related to the electron density 
in each of the aromatic structures of each target analyte. The surface treatment creates minor surface 
alterations in the SWCNTs without any additional device manipulations to achieve BTX detection. Thus, this 
nanomaterials platform offers an easily functionalized, low-cost, low-power, multichannel sensing array capable 
of quick and reliable detection. The resonant mass sensor platform with this functional chemistry offers 
advantages by creating a low-cost and selective alternative to BTX detection without the need for a high-power 
input, extensive chemical treatment, or device manipulation protocols. Therefore, this work provides a feasible 
and reliable surface treatment method that, when paired with pre-existing sensor platforms, can offer robust 
BTX selective detection. The ease of surface treatment allows for high responses to aromatic analytes and 
provides a novel chemical functionalization protocol for an important class of functional nanomaterials. 

 
Scheme 1. Schematic of the Device Chemical Functionalization Protocol 



2. Experimental Methods 
2.1. Materials 
All chemicals were purchased from Sigma-Aldrich, and they were used as received unless otherwise noted. High-
pressure carbon monoxide (HiPco) synthesized SWCNTs were purchased from ChemElectronics Inc., and they 
were treated by exposing them to air at 300 °C. Then, the SWCNTs were washed with concentrated (i.e., 38%, by 
weight) hydrochloric acid (HCl) in water to remove some of the remaining metal catalysts prior to 
use.(39,40) After acid treatment, the SWCNTs were then isolated via centrifugation. SWCNT inks were prepared 
by dispersing the SWCNTs in a tetrahydrofuran (THF) solution at a loading of 0.1 mg mL–1 using a probe tip 
sonicator (QSonica, LLC) producing a murky dark yellow solution. Hydroxylamine hydrochloride (HHCl) was 
stored under nitrogen conditions in a glove box upon receipt and all of the solutions containing HHCl were 
prepared in the glove box. 

2.2. General Methods 
Raman spectra were obtained using a Horiba/Jobin-Yvon LabRAMHR800 confocal microscope Raman 
spectrometer equipped with a 633 nm He:Ne laser. For these spectra, the SWCNT samples were fabricated by 
depositing 0.5 mL of a 0.1 mg mL–1 SWCNT suspension onto a glass microscope slide and drying the slide under 
vacuum (P ≤ 0.4 Torr) for 30 min to remove solvent. Then, the spectra were acquired before and after treatment 
with HHCl. For samples analyzed after the HHCl treatment, after the vacuum drying step, the SWCNT-coated 
substrates underwent a 1 μL treatment of either 1 or 100 mg mL–1 HHCl solution. These samples were then dried 
under vacuum again prior to testing. Optical microscopy images were acquired using a 2× telecentric lens with a 
color USB camera (Edmund Optics, EO-1312). The same sample preparation protocol that was utilized in 
obtaining the Raman spectra was utilized for this imaging as well. A Hitachi S-4800 field emission scanning 
electron microscope (SEM) was utilized to image the SWCNTs. For these images, 0.5 mL of the 0.1 mg mL–

1 SWCNT solution were printed on silicon dioxide substrates and dried under vacuum for 24 h. For samples that 
were treated with HHCl, the HHCl was pipetted on top of the dried SWCNTs, and then these films were dried 
under vacuum for another 24 h. All of the films were then coated with 20 nm of carbon prior to imaging using a 
SPI carbon sputter coater. A Kratos Axis Ultra DLD imaging X-ray photoelectron spectrometer with a 
monochromatic Al Kα (E = 1486.6 eV) was utilized for X-ray photoelectron spectroscopy (XPS) measurements, 
and these data were acquired while the sample was under high vacuum (P ∼ 10–9 Torr). CasaXPS software was 
utilized for all of the XPS data analyses. 

2.3. Device Instrumentation 
The sensor array in this work consisted of 16 Pierce oscillators (Figure 1a). Each oscillator consisted of an 
inverter, two load capacitors (C1 = 22 pF and C2 = 22 pF), one feedback resistor (R1 = 2 MΩ), one isolation resistor 
(R2 = 510 Ω), and a quartz crystal resonator (Kyocera Corp., CX3225) with the cap removed, where the 
capacitance of the resonator was CL = 12 pF. The crystal oscillator driver (Texas Instruments, SN74LVC1GX04) 
provided the circuit with the Pierce oscillator inverter, as well as three additional inverters, which converted the 
oscillator output signal to a square wave. A field programmable gate array (FPGA) was implemented as a 
frequency counter to track the oscillation frequency of each oscillator in parallel. This resulted in 16 parallel 
frequency measurements every second with a frequency resolution of 1 Hz. To improve experimental efficiency, 
the 16 resonators were isolated on a disposable resonator board. This was mechanically-coupled to an 
instrumentation board that contained the remaining elements of the oscillator circuitry. Additionally, a labeled 
picture of the testing instrumentation is shown in Figure S5. 



 
Figure 1. (a) Schematic representation of the Pierce oscillator circuit with the oscillator (outlined by red dashed 
lines) and a series of inverters (outlined by blue dashed lines). C1 and C2 are load capacitors. R1 is a feedback 
resistor, and R2 is an isolation resistor. Vcc is the supply voltage, and Vout is the output voltage that enters the 
FPGA frequency counter. (b) Experimental setup utilized to test the sensors exposed to the target gases. The 
functionalized oscillators were evaluated in a chamber filled with analyte gas from bubblers connected to mass 
flow controllers (MFCs) and diluted with a stream of nitrogen. 
 

2.4. Device Functionalization 
SWCNTs were functionalized with HHCl using an inkjet printer in a manner that has been reported 
previously.(41) In these experiments, 1 μL of the 0.1 mg mL–1 SWCNT in THF ink was drop cast on to the quartz 
crystal resonator surface. The devices were left to dry under vacuum (P ≤ 0.4 Torr) for at least 30 min. 
Subsequently, 5 nL of a solution of HHCl in methanol (1 mg mL–1) were printed on the resonator surface using a 
BioFluidix PipeJet P9 piezoelectrically-actuated pipette. After functionalization, the resonator board was stored 
under vacuum for at least 24 h to remove any residual solvent. 

2.5. Device Testing 
Testing of the devices was performed using the experimental setup shown in Figure 1b. Prior to sensor testing, 
the resonator board was attached to the instrumentation board, and the 9.5 cm diameter chamber was sealed. 
The chamber was secured with an in-line flow distribution system to achieve the desired concentrations of the 
analytes. Nitrogen was connected to a series of MFCs in parallel. Some of the MFCs (MKS 1480A, 40 cm3 min–1) 
were connected to bubblers (ChemGlass, AF-0085) with 10 mL of the desired testing analyte. An additional line 
(MKS 1179A, 500 cm3 min–1) remained as a pure nitrogen source. The three inlets were connected to a manifold, 
the output of which was connected directly to the chamber inlet. The chamber was flushed with nitrogen at a 



flow rate of 500 cm3 min–1 to create an inert environment as the baseline for experimentation. Subsequently, 
the analyte gases were injected into the chamber to achieve the reported concentrations. Simultaneously, the 
oscillation frequencies were recorded once per second with a 1 Hz resolution using the myRio FPGA and an in-
house LabVIEW program. For all of the tests, at the beginning of the test, a longer break-in period was used such 
that the resonators could acclimate to the humidity and temperature of the testing chamber. This period 
consisted of a 60 min pulse of nitrogen at a pressure of 1 atm and a temperature of 25 °C. 

3. Results and Discussion 
SWCNT-based sensor platforms typically require chemical modifications or specific deposition methods to 
adequately meet sensing metrics. This chemical treatment can be expensive and require multiple chemical steps 
to provide selectivity and sensitivity among BTX analytes.(42−44) However, when a thin film of SWCNTs was 
treated with HHCl there was an observed selective response to the BTX analytes. Figure 2a shows the oscillation 
frequency responses of the SWCNT-coated resonant mass sensors after being treated with 1 mg mL–1 HHCl 
solutions. This surface chemistry allowed for the detection of BTX compounds with unique concentration-shift 
relationships. The average sensitivity of the device to BTX was 136, 35, and 23 ppm Hz–1, respectively. 

 
Figure 2. (a) Average shift in oscillation frequency of devices functionalized with SWCNTs and 1 mg mL–1 of HHCl 
exposed to either benzene, toluene, or xylene, as a function of increasing concentration (500 ppm ≤ C ≤ 2000 
ppm). The error bars represent the maximum and minimum observed shifts across 4 trials. (b) Change in 
oscillation frequency of a device functionalized with SWCNTs and 1 mg mL–1 of HHCl exposed to 2000 ppm of 
BTX analytes as a function of time. The response of an unfunctionalized device (reference) exposed to 2000 ppm 
of benzene is shown in green for comparison. The yellow bars indicate the concentration of the analyte present 
and the white bars indicate a nitrogen-only environment. 
 



The sensor showed specific oscillation frequency responses to BTX analytes, and this response only occurred 
when the treated SWCNTs were present on the resonator (i.e., the reference channel resonators did not show a 
meaningful response to BTX). The response time and recovery time of the sensor was determined by calculating 
a time constant (τ), the time it takes the sensor to reach approximately 63.2% of its final value (i.e., either on the 
fall for the response time or the rise for the recovery time). Here, the average response time of the sensor can 
be characterized by a time constant of 31 ± 15.3 s with an average recovery time constant of 49 ± 17.2 s. In this 
work, selectivity was defined as a characteristic response in the magnitude of oscillation frequency shift for 
individual analytes at a single concentration. Therefore, it is noted that this sensor cannot be used to distinguish 
between BTX analytes when both are present under testing conditions at the same time (e.g., xylene and 
benzene both being present in the testing chamber at same time). Moreover, the responses on all of the 
SWCNT-coated oscillators were rapid and reversible, which indicated target analytes were physically adsorbing 
to the devices. Importantly, the SWCNT-based sensors showed stability over multiple cycles, as the baseline 
signal of the resonators quickly recovered after desorption of the target analyte (Figure 2b). However, there was 
an observed jump in oscillation frequency when returning to the baseline value (Figure 2b). These jumps in 
oscillation frequency are due to an unknown frequency counter glitch. Occasionally, a jump in frequency of a 
single channel is seen. This is believed to be a control electronics concern exclusively and not an artifact of the 
functional material or sensor. Additionally, the long term stability of the functionalized resonator was 
determined by testing with five 30 min pulse cycles of xylene at a concentration of 2000 ppm (Figure S4). The 
measured frequency shift from resonators functionalized with SWCNTs and HHCl varied only approximately 10% 
from the initial pulse. These initial results, although intriguing, did not provide a fundamental understanding of 
how the sensor was responding to these target analytes. 

Exposing the SWCNT thin films to the HHCl solution resulted in a decrease in the concentration of iron impurities 
present in the carbon nanotubes. Iron is a metal catalyst utilized in the HiPco SWCNT synthesis and, even after 
purification, can remain in the carbon nanotubes.(45) When chemical modifications occurred on the carbon 
nanotube surfaces there was typically an observed characteristic change in the Raman spectra,(46) and this was 
observed in the present work as well (Figure 3). In particular, the effect of a chemical interaction with the 
SWCNTs alters the doping levels of SWCNTs, and in turn, alters the carbon nanotube sensing ability.(44) These 
doping effects can be predicted based on the shifts in the G-band (λ = 1591.4 cm–1) in the Raman spectrum. The 
G-band characteristically describes the sp2 carbon bond character in these graphitic materials.(47) In the 
samples that underwent the HHCl treatment, no shifts in this G-band were observed. This indicated that no 
significant doping effects occurred on the surface of the SWCNTs. However, the D-band (λ = 1308.5 cm–1) 
showed an appreciable decrease as the amount of HHCl added to the films increased. This D-band is associated 
with the stretching of the sp3 carbon bond character.(48) This appreciable decrease in the D-band indicated that 
there was a decrease in the sp3 C–C bond character. This is likely due to a decrease in iron impurities in the 
SWCNTs upon exposure to HHCl as these types of impurities can alter the amount of sp3 C–C bond character in a 
carbon nanotube by distorting the sp2 C–C bond character.(46) Additionally, this could also be due to layering 
effects that can produce edge defects in the carbon network.(49,50) When the iron chlorides are formed, they 
can become layered within the carbon nanotubes. Upon reduction of the iron chlorides with HHCl, there is an 
observed decrease in the D-band because the layering defects are disrupted. Hence, there is a decrease in the D 
band region because more sp2 planar type character is expressed after the defects are removed. 



 
Figure 3. (a) Raman spectra comparison of SWCNTs alone (blue), after 1 mg mL–1 HHCl treatment (red), and after 
100 mg mL–1 HHCl treatment (black). (b) Zoomed overlap view of Raman spectra of the G-band (λ = 1591.4 cm–1) 
and D-band (λ = 1308.5 cm–1) after the different treatments had been performed. 
 

Moreover, when treating the SWCNTs with HHCl, there was an increase in the nitrogen signature associated 
with the SWCNTs according to the collected XPS data (Figure 4). From the C 1s XPS spectrum, five peaks 
centered at 284.5, 285.3, 285.7, 286.5, and 288.9 eV are observed, corresponding to C–C sp2, C–C sp3, C–N, C–O, 
and FeCO3 groups, respectively.(51−53) After treatment with the HHCl, the intensities of C–O peaks decrease 
slightly, which was accompanied by an increase of the nitrogen carbon peak (C–N), revealing that the oxygen-
containing groups were slightly removed or replaced with corresponding nitrogen-containing groups. This 
increasing C–N character is consistent with previous work describing the reduction of graphene oxide materials 
using HHCl.(53) 



 
Figure 4. XPS spectra of the C 1s level of SWCNTs with increasing concentration of HHCl treatments. 
 

There was a decrease in the C–C sp2 and sp3 carbon networks, which could be attributed to the incorporation of 
a higher concentration of noncarbonaceous materials being present around the carbon nanotubes (i.e., residual 
HHCl). Additionally, there was a clear loss of a FeCO3 peak at 288.9 eV. This peak reduction most likely correlates 
to iron carbonates, which are reduced upon exposure to HHCl.(54) Such a trend is consistent with the Raman 
spectroscopy (vide supra) where there was a substantial change in the D band (1308.5 cm–1), as shown 
in Figure 3b. However, this does indicate the presence of iron in the sample even after purification. In addition 
to these spectroscopic results, SEM micrograph images show an ordering of the HHCl salts when the SWCNTs 
are present. That is, SWCNTs cast without the HHCl treatment do not contain any regular nanostructure (Figure 
S1). Clear nano- and microstructures only appear when the SWCNTs are treated with the HHCl (Figures S2 and 
S3). Overall, the observation of increasing C–N bond character in the XPS and decreasing of iron impurities upon 
HHCl treatment indicates that the iron present had an impact on the sensitivity and selectivity of the device. 

The high sensitivity and selectivity among BTX analytes observed in the high-performance sensors described 
above is likely based on the ability of the HHCl to reduce the iron impurities in the SWCNTs; in turn, this allows 
for the in-place synthesis of NO2 functional groups on the surfaces of the carbon nanotubes. This reduction 
causes an increased formation of C–N type bond character, as observed in the XPS spectra. Residual iron metal 
in the HiPco SWCNTs, when heated in ambient conditions, can oxidize, and this creates a mixture of iron oxides, 
consisting of iron(II) and iron(III) oxides. These iron oxides, when exposed to the HCl in the purification process, 
can be converted into iron chlorides. Then, the SWCNTs containing iron(III) chlorides undergo a redox reaction 
when they are exposed to the HHCl treatment.(55) This redox reaction produces an NO2 gas byproduct that can 
bind to the surface of the SWCNTs and create an electron-poor character in the graphene sheets (Scheme 
2).(56−59) The change in electron density in the SWCNTs provides the selectivity among BTX analytes. As the 
electron density in the target analytes increases, there is better sp2 π-stacking due to the π accepting character 
in the SWCNTs and the π donor character in the aromatic analytes. Therefore, the treatment of SWCNTs with 
HHCl provides a reliable and cost-effective selective sensor surface treatment chemistry. 

 
Scheme 2. Proposed Mechanism for the Production of NO2 Functional Groups upon Treatment with HHCl 
 



To evaluate this mechanism further, 16 devices were functionalized using combinations of two types of 0.1 mg 
mL–1 SWCNTs in THF (pure and impure) and two types of 1.0 mg mL–1 HHCl conditions (with and without 
treatment). Pure SWCNTs were treated with HCl prior to testing. “HHCl with” or “without” indicates whether the 
SWCNTs were treated with HHCl prior to testing. A representative response of these four functionalized types of 
devices and an unfunctionalized device under exposure to 2000 ppm of xylene is shown in Figure 5. The 
oscillators functionalized with pure SWCNTs and with HHCl treatment exhibited the largest shift in oscillation 
frequency to 2000 ppm xylene of 61.6 Hz. Additionally, these devices had the most consistent device-to-device 
performance. Therefore, SWCNTs containing iron must have iron(III) chlorides present to produce an adequate 
response. As shown in Figure 5, without the HCl treatment (impure) there is no formation of iron chlorides, and 
the device had little to no response to xylene (red and black signals in Figure 5). With the HCl treatment (pure) 
there was an increase in sp2 character in the SWCNTs graphene sheets resulting in a more uniform 
sp2 hybridized surface and some noncovalent response to xylene. However, it was not until HHCl treatment 
following the HCl treatment that there was a production of the NO2 gas to chemically alter the SWCNTs and 
provide the enhanced response to xylene (magenta line in Figure 5). 

 
Figure 5. The oscillation frequency of an oscillator functionalized with different combinations of 0.1 mg mL–

1 SWCNTs and 0.2 mg mL–1 HHCl exposed to 2000 ppm xylene. Impure SWCNTs were not treated with any HCl 
prior to testing. These combinations consisted of no chemistry added on the device (reference), impure SWCNTs 
without the HHCl treatment, impure SWCNTs with the HHCl treatment, pure SWCNTs without the HHCl 
treatment, and pure SWCNTs with the HHCl treatment. The yellow bars indicate the corresponding 
concentration of xylene in the testing chamber and the white bars indicate a nitrogen-only environment. 
 

To determine if this electron-poor character existed in our SWCNTs, we evaluated other target aromatic analytes 
(Figure 6). This consisted of electron-rich aromatic compounds (i.e., trimethylbenzene, anisole, and aniline) 
being evaluated while xylene was used as a reference case analyte. During testing, the electron-rich analytes 
encountered the electron-poor SWCNTs, and the resonators showed an enhanced uptake of the electron-rich 
analytes relate to the xylene reference. That is, aromatic compounds with high electron densities showed a 
unique frequency response as they interacted with the chemically treated SWCNTs. Anisole, xylene, aniline, and 
trimethylbenzene showed average frequency shifts of 11.7, 14.7, 57.7, and 177.7 Hz, respectively, when fed at a 
concentration of 750 ppm. This supports the idea that the electron-withdrawing character created in the 
SWCNTs upon treatment with HHCl is indeed the reason for selectivity among aromatic analytes. The proper 
calibration of the device to each specific analyte allows for the chemically-selective detection of each 
compound, which demonstrates the versatility and applicability of this sensing platform. 



 
Figure 6. Shift in oscillation frequency of (a) unfunctionalized oscillator and (b) an oscillator functionalized with 1 
mg mL–1 HHCl and SWCNTs as referenced from the initial oscillation frequency of devices exposed to 750 ppm of 
xylene, anisole, aniline, and trimethylbenzene with respect to time. The yellow bars indicate the concentration 
of the analyte with a background of nitrogen. 
 

The functionalized resonators showed responses to aromatic hydrocarbons in relative humidity (RH) 
environments ranging from 0 to 80% while air was used as the carrier gas. Under these conditions, the SWCNT-
based sensors showed meaningful responses to 2000 ppm of xylene with average frequency shifts of 22.1 ± 1 Hz 
for the 0% ≤ RH ≤ 60% RH levels (Figure 7). The responses remained reliable until the 80% RH level where the 
average frequency shift dropped to 16.8 Hz. Once reaching the 80% RH level, there was an observed downward 
drift, which we speculate was due to the accumulation of moisture on the surface of the resonator. This 
moisture accumulation caused a change in the oscillation frequency as a function of time. However, these 
results do show the applicability and practical performance of the surface functionalization chemistry in 
combination with this resonant mass sensor platform under conditions that could potentially exist in many 
indoor air quality monitoring scenarios. 



 
Figure 7. Change in oscillation frequency of a device functionalized with SWCNTs and 1 mg mL–1 of HHCl exposed 
to 2000 ppm of xylene as a function of time in the presence of increasing RH levels indicated by the blue line. (a) 
0 (b) 20 (c) 40 (d) 60 (e) 80% RH. The response of an unfunctionalized device (reference) under same conditions 
at same time indicated by the black line. The yellow bars indicate the concentration of the xylene analyte 
present and the white bars indicate an air-only environment. 
 

In addition to accounting for RH, practical interior environments could contain interfering volatile organic 
analytes that could disrupt the response to aromatic analytes. For this reason, pulses of xylene at 2000 ppm 
were added to the sensor while pulses of 500 ppm and 1000 ppm of either ethanol or propane were injected 
(Figure 8). This allowed us to establish how the response to xylene was impacted in the presence of interfering 
VOC agents. Figure 8a shows the response of functionalized and unfunctionalized (i.e., uncoated resonator) 
devices without any xylene present for comparison. Figure 8b shows the response of a functionalized device 
with xylene present. 

 
Figure 8. The change in oscillation frequency of a device functionalized with SWCNTs and 1 mg mL–1 of HHCl 
exposed to (a) ethanol and propane pulses as a function of time indicated by the blue line. The response of an 



unfunctionalized device (reference) under same conditions at the same time is indicated by the black line. (b) 
Ethanol and propane with 2000 ppm of xylene pulses as a function of time indicated by the blue line. 
 

This sensor only showed responses when xylene was present and showed similar responses in the presence of 
the interfering gases relative to when the distractant gases were not present (Figure 8b). That is, this materials 
combination shows a selective responsive towards the detection of aromatic gases over other potential gas 
analyte chemistries. These results demonstrate that this sensor can be utilized in interior locations where 
interfering gases could potentially be present without disrupting BTX detection. 

To determine the limit of detection capability of this platform to a specific aromatic compound, xylene, the 
device response at 100 ppm of xylene in nitrogen was monitored (Figure 9). The SWCNT-based device was able 
to show a frequency shift response to xylene at 100 ppm that is greater than the response of the reference 
channel with a sensitivity of 4 ppm Hz–1. Additionally, this device remained reusable even at this concentration 
because of the adsorption and desorption pathways occurring when nitrogen gas is purged into the testing 
chamber. This device offers a feasible and practical surface chemistry that can selectively respond to aromatic 
compounds at quantitative levels. 

 
Figure 9. The oscillation frequency of an oscillator functionalized with 0.2 mg mL–1 of HHCl and 0.1 mg mL–

1 SWCNTs exposed to 100 ppm of xylene in nitrogen. The black lines and red lines represent the oscillation 
frequency of the functionalized and unfunctionalized device (reference) in response to xylene, respectively. The 
yellow bars indicate the concentration of the analyte present and the white bars indicate a nitrogen-only 
environment. 

4. Conclusions 
This work leveraged SWCNTs treated with HHCl for enhanced selective BTX sensing when they were 
incorporated into a resonant device. The HCl treatment followed by an HHCl treatment on the SWCNTs allowed 
for an enhanced interaction with aromatic analytes, and thus, yielded a greater response. This carbon nanotube 
treatment chemistry reduces iron(III) chloride and allows for the electron withdrawing-type character in the 
SWCNTs due to the NO2 gas released. This surface chemistry and resonant mass sensor combination provides a 
robust sensor and practical monitoring of BTX compounds, as well as other aromatic compounds. Furthermore, 
the oscillator-based approach allowed for the detection of xylene at 100 ppm. Additionally, low-cost 
components and functional materials integrated with additive manufacturing resulted in an efficient, reusable, 
economical, and feasible BTX sensing platform. This work combined a feasible chemical treatment protocol with 
the practical implementation of the resonant mass sensors to create a robust sensing platform suitable for the 
detection of aromatic analytes. Therefore, this effort allows for a processable chemistry to be applied in a new 
manner to detect aromatic hydrocarbons using advanced nanomaterials. This nanomaterials system, when 



combined with a straightforward treatment protocol, offers a unique option in the sensors community to 
improve BTX gas detection using low-cost, high-throughput processing techniques of carbon nanotubes. 
Importantly, these nanomaterials easily could be incorporated into existing sensor manufacturing efforts to 
provide efficient and effective indoor air monitoring devices on a relatively rapid timescale. 
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