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Abstract—Secchi disk depth is a commonly measured 

parameter representing the optical properties of water bodies. 

Assessment of water transparency in seas is highly significant to 

marine-environment monitoring. In this study, an improved 

Secchi disk depth (ZSD) inversion algorithm was proposed based 

on the Poole-Atkins model by determining the parameter A in the 

original model. The Forel-Ule Index (FUI) is a water color 

parameter that can be obtained from remote sensing data. 

Through the analysis of the International Ocean Color 

Coordinating Group (IOCCG) data set, it was found that there are 

strong logarithmic and quadratic correlations between the FUI 

and parameter A, whose R2 values are 0.929 and 0.925, 

respectively. Comparing the results derived from MODIS product 

data with the in situ measured data in the Yellow Sea showed that 

the RMSE and MRE of the quadratic formula are 1.83 m and 

43.74%, respectively, which reflect better performance than the 

other empirical formulas. Thus, parameter A can be expressed in 

quadratic form with FUI as a variable. Finally, we mapped the 𝒁𝑺𝑫 

inversion results for the Yellow Sea and analyzed the spatial 

changes. This study provides new insight for inverting ZSD 

transparency algorithms and highlights the value of marine 

transparency monitoring. 

Index Terms—Secchi disk depth; MODIS; FUI (Forel-Ule 

Index); Yellow Sea 

 

I. INTRODUCTION 

ecchi disk depth is a first-order indicator of marine water 

quality. It is related to the content of chlorophyll, suspended 

particles and gelbstoff in seawater, solar radiation on the sea 

surface and meteorological conditions. Monitoring the 

temporal and spatial variation in seawater transparency is of 

great significance to the study of seawater’s physical and 

chemical properties, fishery production and naval military 

activities. The traditional method to measure the transparency 

of seawater is to use a Secchi disk on the ship for field 

measurements [1], [2]. However, this method can only yield 

Secchi disk depth values at the measurement points, which 

makes it impossible to obtain a larger spatial-temporal 
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distribution of seawater transparency characteristics and cannot 

meet the needs of real-time monitoring of seawater 

transparency. With the development of ocean color remote 

sensing technology, and especially with the improvement of 

remote sensor performance, atmospheric correction technology 

and accuracy of water color information extraction modeling, 

real-time and large-scale satellite remote sensing monitoring of 

seawater transparency has become possible [3]-[5]. 

Seawater can be divided into Case Ⅰ water and Case Ⅱ water 

according to different optical properties. Case Ⅱ water is mainly 

distributed in coastal and estuarine areas, which are most 

closely related to human beings and severely affected by human 

activities. The Yellow Sea is typical Case II water, and the 

optical properties of this sea area are very different and vary 

greatly with season. D. Yu et al [6] used a three-band algorithm 

to retireve ZSD of the Yellow Sea based on remote sensing 

reflectance bands of 488, 555 and 678nm with a determination 

coefficient of 0.72 and a mean relative error of 19%.   And Y. 

Mao et al [7] derived ZSD from Geostationary Ocean Color 

Imager (GOCI) using a regional tuned model with a 

determination coefficient of 0.9 and mean absolute percent 

error of 24.56%. Overall, the previous inversion results did not 

reach desired accuracy. Therefore, it is necessary to develop a 

specific water transparency retrieval algorithm for the Yellow 

Sea, and the study of regional models will contribute to the 

further development of global Case Ⅱ water transparency 

remote sensing. 

The research on the water transparency inversion began in 

the 1970s. The CZCS (Costal Zone Color Scanner) carried by 

the Nimbus-7 satellite launched in 1978 was applied to remote 

sensing detection of the water transparency. Binding [8] 

established a linear estimation model for the water transparency 

of  the Erie Lake in the United States by using CZCS’s 550nm 

and SeaWiFS (Sea ViewingWideField of ViewSensor)’s 

555nm reflectivity. With the deepening of the  related research, 

more and more water transparency inversion algorithms had 

appeared. These algorithms can be classified into empirical 
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algorithms, semianalytical algorithms, analytical algorithms 

and machine learning algorithms [9]-[11]. Among them, the 

semianalytical algorithm is based on the theories of underwater 

light radiative transmission. It calculates the absorption 

coefficient and scattering coefficient of water components 

through remote sensing reflectance and constructs the 

relationship between measured transparency data and inherent 

optical properties to estimate seawater transparency. This 

method has good physical interpretation and applicability. 

However, some uncertain parameters in the model are usually 

obtained using empirical or semianalytical methods, which 

affects the accuracy of the model. 

Based on the semianalytical algorithm, Tyler [12]-[15] and 

Preisendorfor [16]-[18] studied the relationship between water 

transparency and water optical parameters. They concluded that 

the transparency mainly depends on the inherent optical 

properties of the water without considering the effect of the 

measurement environment and the observers. On this basis, 

Doron et al. [19] established a quasi-analytical estimation 

model of water transparency based on the diffuse attenuation 

coefficient and beam attenuation coefficient at 490 nm. They 

also used 709 nm as the reference wavelength and the quasi-

analytical algorithm (QAA) proposed by Lee et al. [20],[21] to 

calculate the diffuse attenuation coefficient and beam 

attenuation coefficient at 490 nm. Lee et al. [22] proposed an 

underwater visibility theory in 2015, which abandoned the 

traditional semianalytical algorithm by establishing the 

relationship between the sum of the diffuse attenuation 

coefficient and both the beam attenuation coefficient and water 

transparency. The new theory is reestablished, and the accuracy 

of the model is verified by 338 measured seawater transparency 

point data. The correction coefficient reaches 0.96, which 

greatly improves the accuracy of the semianalytical algorithm. 

Although seawater transparency inversion algorithms have 

made great progress, there are still some problems to be solved. 

In the current inversion models, there are some undetermined 

parameters. Previous studies are used to determine the 

undetermined parameters based on the measured transparency 

data of Case Ⅱ water in Europe and regard it as a constant. In 

fact, for different water qualities, we need to use different 

parameters to participate in the calculation. The Forel-Ule 

Index (FUI) and angle (𝛼) have been shown to be useful water 

color parameters in indicating changes in water quality and can 

be derived from remote sensing data with high accuracies [23]-

[25]. In this study, to improve the accuracy of transparency 

inversion models, the FUI index is introduced to determine the 

uncertain parameters in different water bodies. In the process of 

determining the parameters, it is necessary to calculate the 

value of FUI corresponding to the angle ( 𝛼 ) through 

chromaticity coordinate calculations. Then, according to the 

formula for calculating the transparency, the FUI value is fitted 

with the measured transparency, and the final empirical formula 

of parameters is obtained. In this way, both the physical 

meaning of the semianalytical algorithm and the inversion 

accuracy can be ensured. 

Section 2 introduces the Poole-Atkins Model and the Forel-

Ule Index, and the study area and data are described in Section 

3. Section 4 describes the model-building process, accuracy 

evaluation, and spatial analysis of the water transparency in the 

Yellow Sea and offers discussion. The conclusions are 

presented in Section 5. 

II. METHOD 

A. Poole-Atkins Model 

The Poole-Atkins model compares water transparency with 

the change of underwater light field for the first time, and points 

out that water transparency is inversely proportional to the 

attenuation coefficient of water diffusion [26],[27]. This 

relationship can be obtained from the Lambert-Beer law. 

𝐸𝑑(𝑆𝐷) = 𝐸𝑑(0
−)exp[−𝑘𝑑 ∙ 𝑆𝐷]                 (1) 

𝑆𝐷 = −
𝑙𝑛[

𝐸𝑑(𝑆𝐷)

𝐸𝑑(0
−)
]

𝑘𝑑
                               (2) 

Lambert-Beer law only applied to narrow bands. Otherwise, 

the Lambert-Beer Law cannot be established due to the 

different attenuation coefficients of water diffusion for different 

wavebands. 

Therefore, 𝑘𝑑  in the formula (2) refer to the attenuation 

coefficient of the narrow waveband with the strongest 

penetrating ability in the water body. In the same way, 𝐸𝑑(0
−) 

and 𝐸𝑑(𝑆𝐷) also refer to the downward irradiance of the water 

subsurface and the depth of the Secchi disk of the narrow bands. 

Let 𝐴 = 𝑙𝑛 [
𝐸𝑑(𝑆𝐷)

𝐸𝑑(0
−)
], then 

𝑆𝐷 = −
𝐴

𝑘𝑑
                                   (3) 

That is, the transparency is inversely proportional to the 

diffuse attenuation coefficient of the narrow bands with the 

strongest penetrating ability in the water body. Robert. O. 

Megard & Tom Berman calculated A≈1.54±0.13 based on the 

transparency and underwater light field distribution data 

measured in the Southeast Mediterranean [28]. 

 

B. Forel-Ule Index 

The Forel-Ule index (FUI) is one of the oldest and easiest 

measurements of water optical properties based on visual 

determinations, and it divides natural water color into 21 classes 

from dark blue to yellow-brown based on the Forel-Ule water 

color scale. Through remote sensing inversion algorithms, the 

Forel-Ule index can be obtained from remote sensing 

reflectance 𝑅𝑟𝑠(𝜆). Extracting water color parameters based on 

remote-sensing reflectance, the specific calculation process is 

as follows [24]:  

(1) Use integrals to calculate X, Y, Z. Set the relative spectral 

energy distribution of the illuminating light source S(𝜆) to 1. 

Then, substitute the remote sensing reflectance 𝑅𝑟𝑠(𝜆)  into 

formula (4) as the spectral reflectance of the object 𝜌(𝜆) and 

the product of the color matching function �̅�(𝜆), �̅�(𝜆) and 𝑧̅(𝜆) 
targeted in the visible light range (380 nm~700 nm) to obtain 

the CIE color tristimulus value. Among them, K is the 

adjustment factor. 

X = K∫ S(𝜆) ∙ 𝜌(𝜆) ∙
700

380

�̅�(𝜆) 𝑑 𝜆 
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Y = K∫ S(𝜆) ∙ 𝜌(𝜆) ∙
700

380
�̅�(𝜆) 𝑑 𝜆                 (4)  

Z = K∫ S(𝜆) ∙ 𝜌(𝜆) ∙
700

380

𝑧̅(𝜆) 𝑑 𝜆 

K = 100/∫ S(𝜆) ∙
700

380

�̅�(𝜆) 𝑑 𝜆 

(2) Calculate chromaticity coordinates (x, y). Substitute X, Y, 

Z into the formula (5) for normalization calculation to get x, y. 

x =
𝑋

𝑋+𝑌+𝑍
                

 y =
𝑌

𝑋+𝑌+𝑍
                                  (5) 

(3) Calculate chromaticity angle α . Substitute the 

chromaticity coordinates (x, y) into the formula (6) to calculate 

the chromaticity angle α. 

α = 𝐴𝑅𝐶𝑇𝐴𝑁2(𝑦′, 𝑥′) 
            = 𝐴𝑅𝐶𝑇𝐴𝑁2(𝑥 − 0.3333, 𝑦 − 0.3333)              (6) 

(4) Calculate the Forel-Ule index. Based on chromaticity 

angle α and the Forel-Ule index chromaticity lookup table, find 

the chromaticity value closest to α in the lookup table, and the 

Forel-Ule index corresponding to the chromaticity value is the 

water body’s Forel-Ule water color index.  The chromaticity 

coordinates,  hue angle α of the Forel-Ule Scales are shown in 

table Ⅰ.

 

TABLE Ⅰ 

THE CHROMATICITY COORDINATES, HUE ANGLE Α OF THE FOREL-ULE SCALES 

FUI x y α FUI x y α 

1 0.191363 0.166919 40.467 12 0.402416 0.4811 205.0622 
2 0.198954 0.199871 45.19626 13 0.416243 0.47368 210.5766 

3 0.210015 0.2399 52.85273 14 0.431336 0.465513 216.5569 

4 0.226522 0.288347 67.16945 15 0.445679 0.457605 222.1153 
5 0.245871 0.335281 91.29804 16 0.460605 0.449426 227.6293 

6 0.266229 0.37617 122.5852 17 0.475326 0.440985 232.8302 

7 0.290789 0.411528 151.4792 18 0.488676 0.43285 237.3523 
8 0.315369 0.440027 170.4629 19 0.503316 0.424618 241.7592 

9 0.336658 0.461684 181.4983 20 0.515498 0.416136 245.5513 

10 0.363277 0.476353 191.8352 21 0.528252 0.408319 248.9529 
11 0.386188 0.486566 199.0383     

C. Accuracy indexes 

The root mean square error (RMSE), mean relative error 

(MRE) and 𝑅2  are selected as the accuracy evaluation 

indicators for the water transparency inversion results. The 

RMSE is also called the standard error. It is the square root of 

the deviation between the observed value and the true value for 

n observations. The average relative error is the average value 

of the relative error, which is generally expressed by the 

absolute value of the average relative error [29]. 𝑍𝑆𝐷𝑖
𝐷  in 

Equations (7) and (8) is the Secchi disk depth obtained by the 

inversion, and 𝑍𝑆𝐷𝑖
𝑀  is the measured Secchi disk depth. 𝑅2 is 

the ratio of the square of the regression to the sum of the total 

deviation squared. Higher model accuracy and more significant 

regression effects are indicated by larger ratios. The value of 𝑅2 

is between 0~1. The closer to 1, the better the regression fitting 

effect is. 

 

RMSE=(
1

𝑛−1
∑ [𝑍𝑆𝐷𝑖

𝐷 − 𝑍𝑆𝐷𝑖
𝑀]

2𝑛
𝑖=1 )

0.5

               (7) 

               MRE= (
1

𝑛
∑

|𝑍𝑆𝐷𝑖
𝐷−𝑍𝑆𝐷𝑖

𝑀|

𝑍𝑆𝐷𝑖
𝑀

𝑛
𝑖=1 )× 100%                  (8) 

 

III. STUDY AREA AND DATA 

A. Study Area 

The Yellow Sea is the research area in this study, and it is 

located at 31.6-39.8°N, 119-126.8°E as a fringe sea in the 

western Pacific Ocean. It borders North Korea and South Korea 

to the east, China’s Liaoning Province to the north, Shandong  

 

 

 

Province and Jiangsu Province to the west and Jeju Island to the 

south. 

The winter temperature in the Yellow Sea is between -2~8°C, 

the lowest average temperature occurs in January, and the 

temperature difference between the north and south is large. In 

summer, due to solar radiation, the usual rainy season for the 

Yellow Sea is from June to August, and rainfall during this 

period can account for 50% to 70% of the total annual rainfall. 

In this period, the temperature generally rises, and the surface 

water temperature is between 24~27°C. The turbidity of the 

water in this study area has significant variability. 

 
Fig. 1. Map of study area 
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B. Data 

1) MODIS Data 

MODIS ocean color products (https://oceancolor.gsfc.nasa. 

gov/) provide spectral reflectance for bands 1-6 (i.e., 412, 443, 

490, 555, 660 and 680 nm) and diffuse attenuation coefficient 

𝑘𝑑(490) at 490 nm with a spatial resolution of 500 m. The 

product data are an important data source for long-term and 

large-scale marine-environment monitoring [22]. The ocean 

color data of the Yellow Sea in August and November 2016 

were downloaded from the NASA website to match the in situ 

data and develop the model. 

2) In Situ Data 

Two samplings were conducted in August and November 

2016. There were 47 sampling points each month. The sampling 

points in these two months were exactly the same, for a total of 

94 sampling points. The geographical location sampled is 

36°18'48"~ 36°36'33"N, 121°00'43"~ 121°51'44"E, mainly 

distributed along the southeastern Shandong Peninsula. The 

sampling point distribution is shown in Fig. 2. Partial 

transparency measured data are shown in table Ⅱ. The in situ 

measured ZSD data were matched up with monthly MODIS 

product data for the purpose of developing a water transparency 

inversion algorithm. 

 

 
Fig. 2. Sampling distribution 

 
Table Ⅱ 

Partial transparency measured data 

Site name Lat(N) Lon(E) Date 𝑍𝑆𝐷(m) 

1 36.52436 121.0119 2016.8.14 2.5 

2 36.40623 121.0794 2016.8.14 4 

3 36.39723 121.2686 2016.8.14 5 

4 36.72018 121.8621 2016.8.14 1.5 

5 36.7226 121.6776 2016.8.14 0.6 

6 36.61443 121.2889 2016.11.16 1 

7 36.51999 121.3507 2016.11.16 1.7 

8 36.37733 121.443 2016.11.16 2.3 

9 36.55832 121.6411 2016.11.16 1.5 

10 36.76694 121.6496 2016.11.16 0.6 

 

3) IOCCG Data 

In addition to the in situ dataset, the Hydrolight simulated 

IOCCG dataset (https://www.ioccg.org/data/ioccg2010_simul 

ated_data.d/) consists of 500 data points. IOCCG data set is 

obtained from radiative transfer simulation, at 30°sun zenith, of 

synthesized inherent optical properties (IOPs). IOCCG spectra 

were simulated assuming the solar irradiance model of Gregg 

and Carder and a cloud-free sky [30]. It includes the remote 

sensing reflectance 𝑅𝑟𝑠,the absorption a, and the backscattering 

coefficient, 𝑏𝑏, in the range of 400 nm to 800 nm. In this study, 

the IOCCG dataset was employed to develop the water 

transparency inversion algorithm and analyze the applicability 

of the model. In the dataset, the Forel-Ule index can be 

calculated from 𝑅𝑟𝑠. The 𝑍𝑆𝐷 of each simulation can be derived 

by the method proposed by Lee et al. [23]. 

IV. RESULTS AND DISCUSSION 

A. 𝑍𝑆𝐷 model development 

 Previous studies did not produce a universal method to 

determine the parameters A in the Poole-Atkins Model. 

Different studies have reported different values of A. Through 

the analysis of the IOCCG data set, we found that there is a 

strong correlation between the undetermined parameters A and 

the Forel-Ule index, which means that parameter A should not 

always be a constant but a variable that changes constantly 

according to variations in water quality. However, the Forel-

Ule index, as a water color index, can reflect the water quality 

of different water bodies to a large extent.  

The IOCCG dataset, a Hydrolight simulated dataset, is used 

to analyze the relationship between the Forel-Ule index and 

parameter A in this study. The dataset provided the diffuse 

attenuation coefficient 𝑘𝑑, and we can calculate ZSD from the 

dataset through the method proposed by Lee et al. Then, 

according to formula (3), we can obtain the value of A. The 

Forel-Ule index can also be calculated from the remote sensing 

reflectance 𝑅𝑟𝑠 at wavelengths of 450 nm, 550 nm and 650 nm 

in the IOCCG dataset. The distribution of the calculated FUI (0-

16) is shown in Fig. 3. Finally, we obtain 500 sets of FUI and 

parameter A corresponding to each other. To better analyze the 

relationship between the FUI and the undetermined parameter 

A, we removed the values of A when the FUI was equal to 15 

and 16 for a small amount of data and took the average of the 

A corresponding to each FUI value from 1 to 14. The results are 

shown in the table Ⅲ. 

 
Fig. 3. Number of data sets corresponding to different FUI 

  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3085556, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

Table Ⅲ 
FUI and Corresponding average undermined parameters (A) table 

 

FUI 1 2 3 4 5 6 7 

A(Average) 1.0492 0.8662 0.7603 0.7553 0.6864 0.6711 0.6238 

FUI 8 9 10 11 12 13 14 

A(Average) 0.6084 0.5771 0.6242 0.5972 0.5883 0.5929 0.6021 

 

Next, we analyzed the relationship between the simulated 

FUI and parameter A and found that there was a strong 

correlation between these two parameters. Linear formulas, 

quadratic formulas, exponential formulas, and logarithmic 

formulas were used in the process of data analysis. In addition, 

the fitting results are shown in Fig. 4. The poor results of 

exponential fitting showed a correlation coefficient 𝑅2 of only 

0.74. The linear fitting and quadratic fitting results are better 

than the exponential fitting, and 𝑅2  reached 0.88 and 0.93, 

respectively. The logarithmic fit yields the best result with an 

𝑅2  of approximately 0.93. Therefore, the water transparency 

inversion formula can be developed as follows: 

A=f(FUI), ZSD=
𝑓(FUI)

𝑘𝑑
                           (9)

 

 

 

  
Fig. 4. Scatterplots of parameters A (average) and FUI based on the IOCCG dataset 

 

B. Model validation 

After developing a new model by analyzing the IOCCG 

dataset, it is necessary to use measured data to verify and 

evaluate the accuracy y of the established model. In this study, 

MODIS product data were selected to retrieve water 

transparency with the new model. First, the hue angle α can be 

calculated from the remote sensing reflectance at 450 nm, 550 

nm, and 650 nm. Based on the chromaticity coordinates table, 

we can obtain the hue angle α. For eliminating the error caused 

by the MODIS, we corrected the obtained hue angle, and the α 

comparison before and after correction is shown in Figure 5.  

 

The MODIS product data also include the diffuse attenuation 

coefficient at 490 nm, 𝑘𝑑(490). Then, based on the proposed 

formula, we can obtain the derived Secchi disk depth, which 

should be compared with the measured data. The processing 

flow for MODIS data is shown in Fig. 6. 

When parameter A is expressed in linear, quadratic, 

logarithmic and exponential formulas, and the dependent 

variable is FUI, four sets of the derived water transparency 

values are obtained. The four sets of water transparency values 

are compared and analyzed with the in-situ transparency values. 

And the analysis results are shown in Fig. 7. and table Ⅳ. 
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Fig. 5. The chromaticity angle α before and after correction 

 

Fig. 7. illustrates that the overall inversion results are a little 

larger than the measured data. And there is not much difference 

between the four inversion results. However, from the error 

analysis table of the developed model, we can conclude that the 

quadratic fitting performs better than the other fitting formulas 

with the RMSE and MRE are 1.83 and 43.74% respectively. 

And inversion accuracy of the developed model is much higher 

than the traditional inversion algorithm proposed by Robert O. 

Megard & Tom Berman (A is always equal to 1.54) [26]. 

Therefore, the formula can be written as the formula (10). 

 

                 𝑍𝑆𝐷=
1.06−0.094×𝐹𝑈𝐼+0.00448×𝐹𝑈𝐼2

𝑘𝑑
                     (10)  

 

     
 Fig. 6. The flow chart for MODIS data processing 

  

  
 

Fig.7. Scatterplots of the in-situ measured 𝑍𝑆𝐷 and MODIS derived 𝑍𝑆𝐷 
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Table Ⅳ  
Error analysis table of the developed model 

Formula linear quadratic exponential logarithmic  1.54/𝑘𝑑 

RMSE 2.1150 1.8307 2.0271 1.9280  6.6115 
MRE 46.63% 43.74% 46.24% 45.25%  74.64% 

R2 0.6898 0.7254 0.6986 0.7047  0.7006 

C. Spatial patterns of water transparency across the Yellow 

Sea 

The MODIS product data were selected as the remote sensing 

data source in this study, which is suitable for water 

transparency mapping in the Yellow Sea. The dataset used for 

mapping is from September 22 with fewer clouds and sufficient 

data. The developed model is used in the inversion process, and 

the inversion result is colored and shown in Fig. 8. The figure 

shows that the Secchi disk depth of the Yellow Sea ranges from 

0 to 17.383 meters with an average value of approximately 

7.573m. Moreover, it is easy to find that the Secchi disk depth 

of the water body in coastal waters is low, most of which is 

below 10 m. However, as far from the shore, the value of water 

transparency also increases significantly. The water 

transparency value of the central sea area can reach more than 

12 m. In general, the northeastern part of the Yellow Sea is 

slightly more transparent than the southwestern part.  
 

 
Fig. 8. 𝑍𝑆𝐷 Inversion results mapping of the Yellow Sea in September 22 

 

D. Discussion 

1) Factors affecting inversion results 

First, the MODIS product data used in the research have a 

low resolution: 1000 m per pixel. It is difficult to ensure that the 

water transparency value of 1 square kilometer is the same, 

which will affect the accuracy of the remote sensing inversion 

results. In future research, it will be necessary to use higher-

resolution remote sensing images. 

 

 

Second, the Yellow Sea is a typical case Ⅱ water body. The 

coastal area has frequent human activities and serious pollution. 

Therefore, the water transparency value is extremely low, and 

some may be less than 1 m; thus, the relative error of the 

inversion will be greatly increased. 

2) Algorithm uncertainties 

In this study, we have proposed a new idea to solve the 

parameter A in the Poole-Atkins model, and the developed 

method has strong applicability and can be applied to different 

waters. In the process of verifying the model with measured 

data, it is found that the accuracy of the new model is indeed 

higher than that of the traditional method, but it still has not 

reached a high level of accuracy. In the follow-up, more 

measured data for different seas should be involved to improve 

and validate the model. 

Moreover, satellite remote sensing data should be effectively 

combined with ground measured data. Therefore, a simple and 

effective atmospheric-correction algorithm based on current 

sensor technology should be studied and developed for near-

shore water bodies [31]-[35]. 

The determination of parameter A in the developed model 

still adopted the empirical method. The Secchi disk depth 

inversion methods and techniques should be further optimized 

to improve the inversion efficiency and analyzed to develop 

theoretical models with rigorous derivation processes and 

robust physical mechanisms. 

3) Factors affecting water transparency 

The transparency of seawater is one of the water quality 

evaluation indicators. The main factors affecting the 

transparency of seawater are the height of the sun, the 

concentration of suspended solids and plankton et al. Generally, 

the greater the sun's altitude angle, the greater the amount of 

light entering the lake and the greater the transparency, and vice 

versa. In the same way, the more suspended matter and 

plankton in the lake water, the stronger the scattering and 

absorption of light, and the lower the transparency. 

V. CONCLUSIONS 

The In this study, we improved the Poole-Atkins model to 

estimate 𝑍𝑆𝐷  for the Yellow Sea of China based on the 

hydrolight simulated dataset IOCCG dataset and verified the 

accuracy of the developed model based on the measured Secchi 

disk depth data and synchronous MODIS product data.  

By analyzing the IOCCG dataset, we found that the 

parameter A in the Poole-Atkins model should not be always 

constant. However, when the Forel-Ule index is different, the 

parameter A should also be changed, in order to ensure the 𝑍𝑆𝐷 

inversion accuracy. In other words, there is a good correlation 

between the FUI and the undetermined parameter A. Through 

analysis, the logarithmic and quadratic fitting results are better 

than the linear and exponential relationship. 

When comparing with the measured data, it is found that the 
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exponential fit is the best, and the accuracy of the new model is 

greatly improved compared with the traditional model (A is a 

constant). Therefore, the inversion formula of the new model 

can be determined.  

Based on the 𝑍𝑆𝐷  inversion results mapping of the Yellow 

Sea, we can conclude that the water transparency of the sea 

center is higher than that of coastal waters. And some areas 

along the coast have extremely low transparency, which require 

the government to control marine pollution to reduce the impact 

of human activities. 

In the future, more research on water transparency is needed 

for water quality conservation and management. And it is 

important to highlight the value of satellite remote sensing in 

monitoring water quality at large scale and over long term. 
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