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MODLoc: Localizing Multiple Objects in
Dynamic Indoor Environment
Xiaonan Guo, Member, IEEE, Dian Zhang Member, IEEE,
Kaishun Wu, Member, IEEE, Lionel M. Ni Fellow, IEEE

Abstract—Radio Frequency (RF) based technologies play an important role in indoor localization, since Radio Signal Strength (RSS)
can be easily measured by various wireless devices without additional cost. Among these, radio map based technologies (also referred
as fingerprinting technologies) are attractive due to high accuracy and easy deployment. However, these technologies have not been
extensively applied on real environment for two fatal limitations. First, it is hard to localize multiple objects. When the number of target
objects is unknown, constructing a radio map of multiple objects is almost impossible. Second, environment changes will generate
different multipath signals and severely disturb the RSS measurement, making laborious retraining inevitable. Motivated by these,
in this paper, we propose a novel approach, called Line-of-sight radio map matching, which only reserves the LOS signal among
nodes. It leverages frequency diversity to eliminate the multipath behavior, making RSS more reliable than before. We implement our
system MODLoc based on TelosB sensor nodes and commercial 802.11 NICs with Channel State Information (CSI) as well. Through
extensive experiments, it shows that the accuracy does not decrease when localizing multiple targets in a dynamic environment. Our
work outperforms the traditional methods by about 60%. More importantly, no calibration is required in such environment. Furthermore,
our approach presents attractive flexibility, making it more appropriate for general RF-based localization studies than just the radio map
based localization.

Index Terms—Multiple objects, Dynamic environment, Localization.

✦

1 INTRODUCTION

Localization is highly in demand and essential in many ap-
plications [1][2][3]. Among various technologies, radio map
based technologies seem very promising. This is because
the radio map technique can be easily implemented without
additional hardware support and the localization accuracy is
high.

A large number of works have been written based on the
technologies [5][6][4][7]. In general, only several wireless
nodes are required in localization [8] [9]. Therefore, their
hardware cost is low. However, these methods have two great
challenges for real application: The first is that it is hard
to localize multiple objects and multiple objects scenario is
usual in practical application. The reasons are as follows.
The process of radio map technique has two stages: offline
training and online localization. At the first stages, we need
to survey the site by dividing the target area into cells and
measuring the signal strength one by one. However, when
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multiple objects exist and the number of target objects is
unknown, it is impossible to measure the signal strength at
different permutations in advance, since the positions of the
objects are independent, the RSS of an object at a specific
position depend on the other objects [10]. Second, environment
changes (e.g., more target objects appear or layout changes)
will generate different multipath signals and severely disturb
the RSS measurement, making laborious calibration inevitable.
In a real environment in particular indoors, signal propagation
suffers from severe multipath fading effect subject to signal
reflection, diffraction and absorption by humans or structures
[8]. As a result, a transmitted signal can reach the receiver
through different paths and these different components are
combined to reproduce a distorted version of the original
signal [11][12]. Thus, radio map based technologies usually
require a labor-intensive calibration procedure, which limit
their usage in real applications.

Traditionally, there are usually two ways to handle this
problem. The first is to utilize densely deployed nodes as
a reference (e.g., LANDMARC [23]) to localize the targets.
However, this approach is costly. Also, if the multiple objects
are close to each other, it is very hard to find the correct
nearest reference nodes and thus the accuracy may dramati-
cally reduced. The second way is to localize the target based
on the radio map of single object [9] [8]. As a result, the
localization of multiple objects is far from accurate. Moreover,
once the environment changes, the RSS signals are usually
different. Therefore, many systems have to rebuild the radio
map between the RSS and distance by repeating the training
process [8] [14] [15]. Although some works try to reduce such
overhead by using various methods, such as adaptive training
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Fig. 1: Illustrate basic idea by collecting RSS of LOS

[16], they cannot fully eliminate such overhead.
To solve the above problems, in this paper, we propose a

novel approach, called Line-of-Sight (LOS) map matching. It
is able to accurately localize multiple objects without rebuild-
ing the radio map in dynamic environments (the environment
often changes). Our basic idea is triggered by the following ob-
servations. The target objects or other environmental changes
often generate or change some non-line of sight (NLOS) paths
(reflection, diffraction and absorption of the original signal). If
we could build a radio map based on LOS signal, the multipath
signal influence by the target objects or environmental changes
will be eliminated.

Looking at Fig. 1, suppose we have three anchor nodes
acting as the receiver and a person hold a mobile device is
the target object acting as the transmitter. R1, R2, R3 denote
the RSS value received from the three anchor nodes, a person
appearing in this environment will cause an additional signal
reflection path for A, changing the RSS. If we are able to
construct a radio map that only reserves the RSS of LOS
path, the appearing person will not affect the LOS signal.
As shown in Fig. 1, R′

1, R
′
2, R

′
3 denote the RSS at LOS

path from three anchor nodes. Since the LOS signal is not
blocked by the person, the value of R ′

1, R
′
2, R

′
3 will not change

after introducing the person. Therefore, such a map is more
stable in a dynamic environment, and it is denoted as LOS
radio map. To the best of our knowledge, we are the first
to accurately localize multiple objects by using radio map
based technologies. In order to realize the LOS radio map
construction and valid map matching for localization, a key
issue is to identify the LOS signal from different paths. Our
approach is to leverage the frequency diversity to help RSS
provide phase information indirectly. We find that RSS values
are significantly different when the nodes are in different
spectrum channels (the other setting is the same). Such RSS
differences on different channels carry valuable phase informa-
tion. By analyzing these RSS, we can identify the amplitudes
and phases of signals from each path. We may then derive the
RSS of the LOS path by solving the optimization problem.
As a result, we can eliminate the multipath behavior, making

RSS more reliable than before. These reliable RSS signals can
be leveraged to construct the LOS radio map instead. Such
map only reserves the LOS signal among nodes. By careful
pre-deployment (e.g., the reference nodes are deployed on the
ceiling of the floor and the targets are on the ground), the
environment changes and the number of objects do not affect
the LOS signal between the targets and the reference nodes.
This LOS radio map is easily constructed and requires no
training if reference nodes are carefully pre-deployed.

We have also implemented our approach on commercial
802.11 NICs with CSI information, which describes how a
signal propagates from the transmitter to the receiver and
represents the combined effect of, for example, scattering,
fading, and power decay with distance.

Compared with other traditional radio map based localiza-
tion methods, our approach has the following advantages:

• We are able to accurately localize multiple objects in
dynamic environment without calibration on the map.
Our approach is based on collecting RSS of LOS path.
Thus we may achieve a more reliable RSS value, and
fundamentally solve the traditional problem and achieve
good localization result.

• Our approach is adaptive to environmental changes. The
LOS radio map we build reserves only the LOS signal
among nodes, so if the environment changes, we do not
need to rebuild it.

• Our solution is able to eliminate the multipath effect of
RSS signal without additional hardware support. Through
solving the related optimization problem, we may identify
the signal along the LOS path.

• Our work is not only suitable for the radio map based
localization. Many current RSS based approaches may
need a revisit. We identify the LOS signal among nodes,
making RSS more reliable. This presents promising gen-
erality which enable it be applied in a much broader scope
of application.

• Our work utilizes CSI to improve the localization accu-
racy. We could obtain such information from 802.11 NICs
with OFDM technology and relatively high accuracy re-
sult is achieved compared with use only RSS information.

We implement a real time tracking system based on TelosB
platform with only three anchor nodes and three 802.11
NICs. Experimental results show that localization accuracy
of multiple objects in dynamic environments outperform the
traditional approaches by 60%.

The rest of this paper is organized as follow. In the next sec-
tion, we introduce the theoretical background. Sec. 3 describes
our methodology in details. Sec. 4 presents our localization
system implementation and evaluates the performance. Related
work is presented in Sec. 5. Finally, we conclude this work
and point out some possible future work directions.

2 THEORETICAL BACKGROUND

In this section, we first introduce the radio propagations in free
space and multipath environment. Then we will discuss the
limitation of radio map based localization on multiple objects.
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Fig. 2: Multipath Effect

2.1 Radio propagation in free space and multipath
environment
Radio propagation is the behavior of radio waves when they
are transmitted from transmitters to receivers. Radio propaga-
tion along the LOS path can be expressed as follows according
to Friis model [17] in free space,

Pr = |−→p | = PtGtGrλ
2

(4πd)2
(1)

Here Pr, Pt represents received radio strength and transmit-
ted signal strength in Watts respectively. Gt is antenna gain of
transmitter and Gr is antenna gain of receiver. λ is the signal
wavelength. d is the path length of the LOS path (the physical
distance between the transmitter and receiver). −→p = {|−→p |, θ}
is the signal wave vector, |−→p | is its path power (amplitude)
and θ is the path phase at the receiver. Suppose the sender has
the phase zero, the path phase of the signal at the receiver is,

θ = 2π ·
(
d

λ
−
⌊
d

λ

⌋)
(2)

However, in real environments, many NLOS paths exist.
Such paths are caused by the radio reflection and refraction
by surroundings. In each reflection or refraction, only partial
energy will be transmitted [17]. These parts can be measured
by a reflection (refraction) coefficient, which is denoted as γ,
γ ∈ (0, 1). As a result, for a given NLOS path, the path power
is,

|−→p | = γ
PtGtGrλ

2

(4πd)2
(3)

It is noted here that d is no longer equal to the physical
distance between the transmitter and receiver. Eq. (3) is the
same as Eq. (1) when the path is LOS path (γ = 1).

The multipath effect refers to a signal that arrives at the
receiver by more than one path. For example, in Fig. 2,
there are three paths from the transmitter to the receiver. l 1
is the LOS path, l2 and l3 are the reflection paths by the
surroundings. As a result, the signal strength at the receiver is
the signal combination of all the paths. It can be denoted as

|−→p | = |
n∑

i=1

−→pi | (4)

0 5 10 15 20 25 30
−90

−80

−70

−60

−50

Position

R
S

S
I (

dB
m

)

without environment change
after environment change

Fig. 3: Impact of environmental change

2.2 Radio Map Based Technology and its Limita-
tions When Localizing Multiple Objects
The radio map technique (also referred as fingerprint tech-
nique) is to construct a mapping between the RSS (e.g., from
Aps or sensors) and location information of the target in
advance. The target object then can be localized by matching
its received RSS information with it in the radio map. The
mapping construction part is known as the off-line training
phase and the matching part is know as the online localization
phase.

However, the localization accuracy suffers from localizing
multiple objects and environment changes. Since in the off-
line training phase, it has to put the target in advance to
stay at all the possible locations and collect the corresponding
RSS information. Once the environment changes (e.g., a new
target object appears or layout changes), the RSS may change
significantly. As shown in Fig. 3, based on 2 TelosB sensor
platform (one is transmitter at fixed position, the other one
is the target acting as the receiver, the transmission power is
fixed at 0 dBm), we test the RSS of the receiver at different
locations in our lab. The result shows that the RSS is sensitive
to the environment changes (A person walking around act as
the new object). It is easy to understand such behavior due to
the multipath effect introduced by the new object.

Consider a scenario of multiple objects, it is too costly to
build such a map. For example, suppose for one object we
have to build a radio map of n locations. For two objects
we have to build a radio map of n × n locations. If we
do not know how many objects in advance, it is almost
impossible for us to build such a map. Traditional radio map
based technology only localizes objects based on the radio
map of single object. The localization accuracy is dramatically
reduced when multiple target objects exist. Moreover, if the
environment layout changes, we have to rebuild to the radio
map. It is a very laborious work which limits its application
in the real use.

3 METHODOLOGY

In this section, we first explain our basic idea by showing the
framework of MODLoc. Then, we explain how to construct
our LOS radio map. We describe our algorithm of leveraging
frequency diversity to identify the LOS signal from multipath.

This is the Pre-Published Version 



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. X, XXXX 2012 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−70

−65

−60

−55

−50

−45

−40

Time (s)

R
S

S
 (

dB
m

)

Fig. 6: RSS over time

Finally the localization method of our LOS map matching is
proposed.

3.1 Framework of MODLoc
The Framework of our TelosB based system is demonstrated
in Fig. 4. The whole localization process is divided into
two phases: LOS radio map construction and localization. In
the map construction phase, we are able to construct LOS
radio map either by the theoretical approach or by training
as detailed in the last section. Once the map is constructed,
no calibration is required. When the localization phase begins,
we collect RSS information from each target node at different
channels. After all the channels have been visited, we differen-
tiate RSS of LOS path by leveraging frequency diversity. Then
we apply the KNN algorithm to estimate each target node’s
position. This procedure is repeated until the users terminates
it.

For the use of CSI, the workflow is similar. As shown
in Fig. 5. The key difference lies in collecting the CSI
information when constructing the radio map, and the phase
information could be obtained directly.

3.2 LOS Radio Map Construction
It is known that RSS is a signal combination of all the paths
in a real environment. If we are able to learn the phase
information of signal along each path, we may easily get the
LOS signal. However, RSS itself has no phase information
and we find that the RSS is different at different operating
frequencies. Such a difference is potentially able to give us
information to infer the phase information of signal. As a
result, we may filter out the LOS signal from multipath signals
between transmitter and receiver pair, based on just the RSS
information.

This idea is triggered by an interesting observation from
experiments of two TelosB sensors. One of the sensors acts
as the transmitter and the other one is the receiver. The
transmission power is fixed at 0 dBm and The default channel
is 13. We find that if the environment does not change, the RSS
is stable as shown in Fig. 6. However, in such an environment,
if we only change the channels, the RSS tend to vary, as
shown in Fig. 8. Such a difference is due to the different
radio wave length on different channels. For a fixed path with
the same radio propagation distance, the path phase will be
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Fig. 7: LOS accuracy by training methods

different when radio arrives at the receiver. Therefore such
RSS difference potentially gives us phase information. We
could eliminate the multipath effect and get the LOS signal
accordingly. Note that when the difference of radio wave
length is extremely small when we change the channel (only
several millimeters between different channels for TelosB
nodes), the existing radio propagation paths are unlikely to
change.

Our radio map and localization method are all based on
the LOS signal. Since the LOS radio map only keeps the
LOS signal between the transmitter and receiver, we may
easily construct it through using the free space model without
training. In the following localization, frequency diversity
method is used to eliminate the multipath signal between the
anchor nodes and target. The details are listed in the following
subsections.

In our system, the whole tracking area is divided into cells.
Suppose we have anchor nodes acting as the receivers and
the target nodes as the transmitters. The first fundamental step
is to construct a LOS radio map. We offer two methods to
construct such a map. The first one is to construct it from
theory, while the second one is from the training results.

In the first method, we can easily construct the map by using
the Friis free space model. In each cell, we are able to estimate
the received power by using Eq. 1. In this equation, the
transmission power Pt is configured by users, the transmitter
and receiver antenna gain Gt, Gr can be obtained from the
hardware specification manual [18]. Also since the anchor
nodes are fixed deployed, the length of LOS path d between
each anchor node and transmitter can be estimated. The main
advantage for building such a map is that we do not require
the laborious offline training to construct the radio map and
the LOS signal can be accurately modeled.

In the second method, we build the LOS radio map from
training. The procedure is similar to traditional radio map
construction, except that we should measure RSS in different
channels, then we identify the LOS signal by using the
frequency diversity, which is introduced in the next subsection.
To compare the estimate distance with the true distance, we
use training methods to compute distance between a anchor
node and the target node and we show the accuracy of LOS
path in Fig. 7,

After the LOS radio map is constructed, it can leverage
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Fig. 4: System workflow of RSSI Fig. 5: System workflow of CSI
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Fig. 8: RSS with different channel

the localization. As long as the environment changes do not
block the LOS signal between transmitter and receiver, the
map does not need to be rebuilt. We may realize it by carefully
deploying the anchor nodes in advance. For example, we may
deploy the anchor nodes on the ceiling of the floor and the
target nodes are supposed on the ground. Therefore, most
environment changes will not affect the LOS signal. Only
if the transmission power of the anchor nodes change (P t

changes) or the nodes themselves change (G t, Gr change), or
the anchor nodes are redeployed, the map needs to be rebuilt.

3.3 Eliminate Multipath Effect by Using Frequency
Diversity

Suppose there are n radio propagation paths between trans-
mitter and receiver. According to Eq. 4, we use orthogonal
decomposition on each path, i.e., every path is transformed to
a combination of sine and cosine, the received power could
be represented a combination of each path. The total received
power at the receiver is:

|−→p | =

(( n∑
i=1

(
γi
PtGtGrλ

2

(4πdi)2
sin

(di
λ

)))2

+
( n∑

i=1

(
γi
PtGtGrλ

2

(4πdi)2
cos

(di
λ

)))2
) 1

2

= f(γ1, . . . , γn, d1, . . . , dn) (5)

In Eq. 5 Pt, Gt, Gr and π are all constant values. Transmit
power Pt is configured by users. The output power level is
from 3 to 31 with the corresponding output power from -
25dBm to 0dBm. The antenna gain of transmitter and receiver
is 3.1dBi.

Suppose we measure up to m channels, the wavelengths
of the radio at these channels are λj ,j ∈ [1,m]. For different
radio wave lengths we have different received power, therefore
we could have the following equation,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε1 = fλ1(d1 · · · , dn, γ1 · · · , γn)− |−→pλ1 |,
ε2 = fλ2(d1 · · · , dn, γ1 · · · , γn)− |−→pλ2 |,
...
εm = fλm(d1 · · · , dn, γ1 · · · , γn, )− |−−→pλm |. (6)

Here εm is the individual fitting error. Our goal is to find
proper d1, · · · , dn , γ1, · · · , γn, which can minimize such
errors. As such, the problem is transferred into the following
non-linear optimization problem

Minimize(
m∑
j=1

(εj)
2) (7)

We have proved that when the number of used channels is
larger than 2n, we can solve the optimization problem and
obtain the numerical result by using Newton and Simplex
approach [19]. Due to limited space, we skip this part. Our
goal is to accurately find d1 and estimate the LOS path power,
the accuracy of the other parameters is trivial.

In addition, we use a similar idea to implement our system
based on WiFi devices, that is to use frequency diversity
to eliminate the multiple phenomenon. We could obtain the
physical layer information by using the commodity NICs. With
this rich information we extract the phase. The CSI of a single
subcarrier is mathematically represented as

h = |h|ejsin{∠h} (8)

where |h| is the amplitude and ∠h is the phase of each
subcarrier and j represents the imaginary unit.

Since the multipath effect will introduce inter symbol inter-
ference, a cyclic prefix (CP) is added to each symbol to combat
the time delay in OFDM systems. However, the CP technique
is useless for the multiple reflections within a symbol time.
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For narrow-band systems, these reflections will not be
resolvable by the receiver when the bandwidth is less than
the coherence bandwidth of the channel. Fortunately, the
bandwidth of 802.11n waveforms is 20MHz (with channel
bonding, the bandwidth could be 40MHz), which provides the
capability of the receiver to resolve the different reflections
in the channel. We propose a multipath mitigation mechanism
that can distinguish the LOS signal or the most closed NLOS
from other reflections in the expectation of reducing the
distance estimation error. The commonly used profile of the
multipath channel in the time domain is described as

h(τ) =

LP−1∑
k=0

αKδ(τ − τK) (9)

where Lp is the number of multipath channel components.
αk and τk are the amplitude and propagation delay of the
k-th path. In practice, OFDM technologies are efficiently
implemented using a combination of fast Fourier Transform
(FFT) and inverse fast Fourier Transform (IFFT) blocks. The
30 groups of CSI represent the channel response in the fre-
quency domain, which is about one group per two subcarriers.
With IFFT processing of the CSI, we can obtain the channel
response in the time domain, i.e., h(t). Then we reconstruct
the CSI using FFT.

Since the channel bandwidth of an 802.11n system is larger
than the coherence bandwidth in a typical indoor environment,
the fading across all subcarriers are frequency-selective. To
combat such fading of wireless signals, multiple uncorrelated
fading subchannels (multiple frequency subcarriers) are com-
bined at the receiver.

3.4 Path Number Selection
In order to solve Eq. 7, we have to set the number of
paths in advance. However, in a the real indoor environment,
it is almost impossible to know how many paths existing
between a transmitter and receiver pair for several reasons.
First, the signal radiation is evenly distributed in the directions.
Second, the environment is so complex that the layout may add
more surfaces. So in this subsection, we discuss the impact
of multipath and conclude with a reasonable result of path
selection without sacrificing too much accuracy.

As introduced in the last section, given a radio propaga-
tion path between a fixed transmitter and receiver (G t ,Gr

are fixed) with fixed transmission power (Pt is fixed) and
wavelength (λi is fixed), there are two parameters deciding
the signal power of each path: (refraction) coefficient γ i and
the distance between transmitter and receiver di. Then we will
discuss how to determine these two parameters.

The first one actually depends on the surface of the reflec-
tion (refraction) materials. For common materials, this value
is around 0.5 [20]. Therefore, if the radio is reflected (or
refracted) multiple times, its contribution to the total received
power is minimal. For example, a reflection more than three
times results in only (0.5)3 = 0.125 times the original energy.
Since there is no reflection or refraction, the LOS path value is
1. Therefore, in practice, though some accuracy is sacrificed,
we may skip those signal propagation paths having many
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Fig. 9: Simulation result for different number of paths

reflections (refractions), e.g., larger than three. The second
parameter is di, including the LOS path and the other Non-
LOS paths. The received power is is inversely proportional
to (di)

2 according to Eq. 1. Therefore, if the length of the
Non-LOS paths is large, its influence on the total received
power is also minimal. For example, if the path is longer than
two times the LOS path, the remaining energy is smaller than
1
2

2
= 0.25 of the original energy. Therefore we also skip the

signal reflection paths whose path length is very large, say
twice the length of the LOS path length.

Furthermore, since all the multipath signals have at least
one reflection (refraction) and their length are all longer than
the LOS path, most of their influence on the total received
power is limited. For example, if one path is twice as long
as the LOS path and with one reflection, it remaining energy
will be 0.5× 1

22 = 0.125 of the original energy.
After discussion of these two parameters, recall that in order

to solve the non-linear optimization problem stated as Eq.9,
we should find proper di and i according to Eq.8. Therefore
we easily get the result of those Non-LOS path length returned
by algorithm easily.

We further show the impact of the different number of paths
to the total received power at the receiver through simulation
on TelosB sensor nodes. For a fixed transmitter and receiver,
we set the transmission power to 0 dBm. The distance between
the transmitter and receiver (also the length of the LOS path)
is 4m. We perform six test rounds to observe the signal
combination effect when different numbers of paths combine.
These are: just one LOS path, LOS path with on multipath
(8m), LOS path with two multipaths (4m and 8m), LOS
path with three multipaths (4m, 8m, 12m), LOS path with
four multipaths (4m, 8m, 12m, 16m), LOS path with five
multipaths (4m, 8m, 12m, 16m, 20m), LOS path with four
multipaths (4m, 8m, 12m, 16m, 20m, 24m). We assume each
multipath signal is reflected (refracted) only once. At each
round of tests, all 16 channels on TelosB are tested. From Fig.
9, we can see that, when path length is longer than twice the
LOS path length, its influence on the combined signal at the
receiver is very small, no matter which channel is selected. An
interesting observation is that when the number of path exceed
a certain value (in this example is 3), the RSS in each channel
becomes stable. In other words, the RSS does not change a lot
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with more paths introduced. Thus, we could utilize a limited
number of paths to represent the influence of the multipath
with minimal loss of accuracy.

Therefore, the number of paths we use is limited through
to the above reasons. We skip those paths whose path length
is long or having many reflection (refraction) times, say two
times of the LOS path length. Therefore in practice, we
suppose the path number is no larger than 5, though some
accuracy is sacrificed.

3.5 802.11 NICs with CSI

As commercial 802.l1 NICs could provide additional informa-
tion CSI, which could not be obtain from the sensor node, we
also implement our basic idea with WiFi devices. Eq.8 shows
that the CSI of a single subcarrier can be mathematically
represented in terms of amplitude and phase. therefore we
could treat the CSI in the same way. The amplitude in
this equation represents the transmission power of a single
subcarrier, which can be applied directly into the equation
array with the phase information in Eq.5. Then, we could solve
a similar optimization problem and obtain the signal strength
of The LOS path.

4 PERFORMANCE EVALUATION

In this section, we show the system architecture and evaluate
the proposed methods under different environments. We es-
timate the localization accuracy of a single object in both a
static and a dynamic environment. Then we show the impact
of the number of targets. At last, we compare two different
LOS construction approaches and show the latency analysis.

4.1 Impact of Environmental Changes on Different
Maps

In this part, we investigate how environmental changes affect
different radio maps.

At first, we collect RSS data from all the 50 training
points. After that, we change the environment by introducing
more people and alter some of the interior layout. We then
collect the RSS data again. The RSS difference after the
environmental change is demonstrated in Fig. 10. Each cell
represents a training point and the cell with dark area means
its RSS difference is big, otherwise it is small. This figure
well illustrates that traditional radio maps can be significantly
affected by the environmental change. Furthermore, the impact
is irregular and it is hard to find a pattern, making multiple
objects tracking a challenging task for traditional map match-
ing. Fig. 11 illustrates differences in the RSS at the LOS path
under such an environmental change. We can see that, the RSS
difference is very small (paler) compared with the traditional
one. From these two figures we find that our LOS radio map is
more stable under environmental changes than the traditional
map.

4.2 Comparison of Different Map Construction
Methods
In this section, we compare the localization accuracy based on
different map construction methods. 24 target locations have
been tested in our experiment area and the results are shown
in Fig. 12. We find that using training to construct the LOS
radio map, results in slightly better localization accuracy than
using theory to construct the map. This is because different
nodes may have different variance on the hardware parameters.
Therefore, if users prefer higher accuracy, they may choose
training to construct the LOS radio map. Otherwise, using
theory to construct the map will save more cost. We use
training to construct the map in in the following experiments.

4.3 Impact of Path Number Selection
In this section, we show the impact of number of a path
on the localization accuracy. We test different numbers of
paths from 2 to 5, based on 24 different target positions on
the ground. Fig. 13 shows the experiment result, where n
denotes the number of path. We find that when n = 2, its
average localization accuracy is only about 2m. When we
take more path into consideration, say n = 3, 4, 5, we obtain
better localization accuracy. However, we also observe that
when n ≥ 3, the improvement in accuracy is marginal with
a localization accuracy of about 1.5m. Therefore in our later
experiments, we set this value as 3.

4.4 Impact of Number of Channel
TelosB nodes can adjust to 16 different channels. In our
system, we leverage frequency diversity by transmitting data
through all the possible channels. In this part, we would like
to examine the impact of different number of channel in use.
we compares the normalized ranging accuracy with different
channel numbers with m = 8, 11, 16 respectively. In Fig. 14.
The experiment shows that for m = 8, the averaged range
error is about 32%. When we use the maximum number of
channels 16, the accuracy is at best 25% on average. From
this, we could draw the conclusion that when latency and
measurement overheads are not a concern, we should use more
channels.

In this section, we evaluate the localization accuracy of a
single object in a dynamic environment, where we arrange
some people walking around. Based on 24 different target lo-
cations, we compare the accuracy of our algorithm with Horus
[9], which has the best localization accuracy in the traditional
work. The localization results are shown in Fig. 15. We may
see that, in a dynamic environment, the localization accuracy
of Horus is around 3m while our LOS map matching has the
accuracy of 1.5m. The localization accuracy is improved by
50%.

4.5 Accuracy of Multiple Objects in Dynamic Envi-
ronment
In this experiment, we evaluate the system performance of
multiple objects in a dynamic environment, where we arrange
for some people to walk around. We have two target objects,
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named O1 and O2. These two objects are TelosB nodes held
by two people. In the experiment, both people try to keep the
target node at a fixed height and direction to minimize the
effect of other factors. For each target object, 40 locations on
the ground are tested. From Fig.16 we can observe that, by
using Horus, the localization accuracy is about 4.4m, which is
much worse than the localization accuracy of a single object.
Our LOS map matching method, however, has a localization
accuracy of about 1.8m and outperforms traditional radio map
based technologies by 60%.

Second, to better understand the impact of multiple objects,
we introduce another person known as O3 while keeping
the other environmental factors stable. We show the impact
of the third object O3 on the localization of the other two
target objects O1 and O2. The experiment result by using
the traditional radio map is shown in Fig. 17. The top figure
demonstrates an absolute localization error of O1 with and
without O3 presents, and the bottom figure demonstrates the
impact of object O3 on O2. However, the extra object O3 has
little impact on RSS of LOS path and the experiment result is

shown in Fig. 18. By using LOS map matching, both O1 and
O2 have an average localization error of around 1.8 meters.
The experiment results have indicated that, without calibration,
the LOS map matching has high accuracy for multiple objects
in a dynamic environment.

4.6 Performance of CSI information
In this part, we implement our basic idea with 802.11 NICs,
which is manufactured by TP-LINK technologies CO.Ltd. we
use a laptop with 2.4Ghz dual-core CPU as the transmitter and
three WiFi devices are deployed on the ceiling as receivers.
In Fig. 19, we show the CDF of the amplitude change of
CSI between two successive packets in 5 mobile traces and
the amplitude variance of CSI is within 15%. The temporal
variance of RSSI in corresponding traces is much larger within
30% as presented in Fig.20 . Therefore, the relative stability
for CSI is an essential advantage for a higher accuracy gain
compared with the use of only RSSI information.

In addition, we compare the CSI based localization result
with an RSSI based localization result. In Fig. 21, the ex-
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periment showss that, with this additional information from
the physical layer, we could obtain more accurate location
information.

4.7 Latency
The latency of a TelosB based system mainly depends on
how much time it takes for each node to finish visiting all
the channels. In our system, we transmit beacon messages
through all the 16 channels and at each channel, 5 packets are
transmitted. TelosB node takes approximately 7ms to transmit
a single packet and 0.34ms for channel switching. In order
to avoid beacon collision when multiple objects exist, the
target nodes transmit packets every 30ms. Therefore, for each
node, the minimum time spend on visiting all the channels is
(37+0.34)×16 ≈ 0.59s. Since we transmit 5 packets in each
channel, the total latency will be (37× 5+ 0.34)× 16 ≈ 2.9s
The total latency can be expressed as

Tl = (Tt + Ts)×N (10)

where Tt denotes the time interval between packet transmis-
sion, Ts represents the channel switch time and N denotes the
number of channels.

Furthermore, 802.11 NICs with OFDM technology could
provide information of all the subcarriers simultaneously, thus,
there is no such latency issue.

5 RELATED WORK
There are some video-based technologies that track multiple
objects, such as [21] [?] [22]. Their computation complexity
is relatively high and it is hard to track objects in a dark area.
In [10], a RF-based method has been proposed for multiple
objects localization. However, this approach is sensitive to
environment change.

Significant work has been done in the area of indoor local-
ization by using RSS information. These works can be roughly
divided into two categories: radio map based technology and
non-radio map based technology.

In radio map based technology, some works use adaptive
learning approaches such as found in [24]. This work uti-
lizes the RSS information of some reference points to help
reconstruct the radio map. Thus, reducing the calibration
cost. However, calibration on the map is still required if
the environment changes. A large number of probabilistic
approaches [9] [4] have also been proposed. Their main idea is
to construct a probabilistic model to represent the behavior of

the linked RSS values. Many parameters still need to be trained
in real environments, which also suffer from environmental
changes. One work [14] built multiple radio maps in advance
under various environmental conditions and selected the most
appropriate radio map to localize an object by using sensors to
identify the current environment. However, if environments or
the number of targets changes often, it is hard to construct
all possible maps. Another work [7] assumes positions of
access points (anchor nodes) are unknown. Their proposed
algorithm does not rely on knowledge of the placement of the
access points. [25] considered the NLOS issue by leveraging
the prior probabilities and distribution of the NLOS errors.
However, these performances also suffer from environment
change. In our previous work[26], though we could achieve
relatively high accuracy in localizing multiple objects in a
dynamic environment, we only leverage the RSS information,
which will introduce latency for switching channel. In this
work, we consider leveraging CSI information to improve the
localization accuracy and reduce the latency as well.

In non-radio map based technologies, RIPS [27] [28] uti-
lized the interference behavior between two nodes with slightly
frequency difference to localize target. This is improved in[29]
[30] used Doppler effect work to track mobile target and
improve the system accuracy. Although these work have
excellent positional accuracy and sensing range in outdoor
environments, they are unsuitable for indoor environment due
to severe multipath effect indoors. LANDMARC [23] used
RFID technology to localization object inside building by
finding similar RSS value between reference nodes and the
target nodes. However, the accuracy of this approach relies on
dense deployment of the reference nodes. Its extended work
[31] is able to localize target by using less reference nodes.
However, its density is still high. In [3][32], it leverages vector
network analyzer to obtain the channel impulse response (CIR)
and improve the accuracy by adopting the neural networking
training algorithm.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel localization system called
MODLoc and we implement it on TelosB sensor nodes and
802.11 NICs respectively. This system is able to accurately
localize multiple targets in a dynamic environment without
any calibration procedure making it totally different from tradi-
tional approaches. Moreover, it presents promising generality
which enables it to be applied in a much broader scope of
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application. With this new approach, many of the existing RF-
based localization approaches may need a revisit.

Our radio map construction and localization methods are
both based on the LOS path information among nodes. The
LOS signal is identified from the original signal by utilizing
frequency diversity of wireless nodes to eliminate multipath
behavior. During the multipath elimination procedure, each
wireless node only needs to visit different channels to transmit.
Then, the elimination problem is transferred into an optimiza-
tion problem. Our system shows that the number of targets and
environmental changes do not affect the LOS map and no cal-
ibration is required. Through extensive experiments, compared
with traditional radio map based technologies, the accuracy of
localizing multiple objects in a dynamic environment (e.g., the
target number changes or layout changes) can be dramatically
improved by 60% and more gain with CSI provided by 802.11
NICs. Our method can be widely used and benefit all the RF-
based localization methods.

Future work can be conducted in the following directions.
First, based on this new technology, some fundamental radio
map based localization problems become open. For example,
based on the new LOS radio map, other appropriate map
matching methods should be further investigated. Second, we
only conduct our experiments in an area of 15× 10 meters. A
larger experiment area is expected in our future work. Third,
in our experiment, the number of target nodes is at most three.
The localization results of more target objects will be given
in our ensuing work. Finally, the parameter of path number
selection in frequency diversity is from our empirical results
and its theoretical foundation calls for further investigation.
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