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the leptogenesis by decays of right-handed neutrinos in this model. It is shown that masses

of right-handed neutrinos are about 1013GeV in order to account for the observed baryon
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neutrinos, which can be tested by future neutrino experiments.
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1 Introduction

The standard model (SM) is well established by the discovery of the Higgs boson. There

are, however, various unsolved problems, and the flavor puzzle is one of those problems.

One interesting approach to the origin of flavor structure is to impose a flavor symmetry on

a theory. Especially, to explain the large mixing angles in the lepton sector, lepton flavor

models with non-Abelian discrete symmetry such as S3, A4, S4, A5, and other groups have

been studied [1–5].

Recently, lepton flavor model with A4 being a subgroup of modular group has been

proposed [6]. Modular symmetry is a geometrical symmetry of a two-dimensional torus

T 2, and the modulus is a complex field deciding the shape of the torus. Modular group

induces S3, A4, S4, or A5 as the finite quotient group [7]. In this framework, Yukawa

couplings are written in terms of modular forms, which are non-trivial representation of

flavor symmetry and constrained as explicit functions of the modulus. These features of

Yukawa couplings enable us to construct flavor models without flavons. The lepton models

with S3 [8], A4 [6, 8–15], S4 [16–18], and A5 [19, 20] have been studied. Moreover, quark

model [21], combination of lepton and quark models [22], and GUT model [23, 24] have

also been studied.

Modular symmetry is also interesting in the viewpoint of superstring theory. The

torus compactification is a simple compatification of the extra dimensions, and which leads

modular symmetry as explained above. Moreover, the orbifold compactification as well

as magnetized torus compatification leads flavor symmetry including modular group or its

finite subgroups [25–30]. In this sense, the modular symmetry or its finite subgroups can

be expected as geometrical symmetries of extra dimensions.

Interestingly, models with the modular symmetry can predict the patterns of masses

and mixing angles of charged leptons and neutrinos by using a very limited number of

parameters. It has been discussed that the neutrino masses are generated by introducing
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the Weinberg’s dimension five operators or right-handed neutrinos with the seesaw mech-

anism, and both possibilities have been shown to be successful. It is a natural question

to investigate whether right-handed neutrinos in the models can also explain the baryon

asymmetry of the universe (BAU) through the leptogenesis.

The BAU is now measured very precisely by the cosmic microwave background radia-

tion as [31]

YB =
nB

s
= (0.852− 0.888)× 10−10 , (1.1)

where the BAU at the present universe, YB, is defined by the ratio between the number

density of baryon asymmetry nB and the entropy density s. This asymmetry should be gen-

erated before the beginning of the big-bang nucleosynthesis after the primordial inflation

ends. One of the most studied scenarios for baryogensis is the canonical leptogenesis sce-

nario [32] in which the decays of right-handed neutrinos can generate the lepton asymmetry

that is partially converted into the baryon asymmetry [33] via the sphaleron process [34].

The sign and magnitude of the BAU are predicted by the masses and Yukawa coupling

constants of right-handed neutrinos.

The absolute mass scales of right-handed neutrinos cannot be determined by the data

of the neutrino oscillations and the BAU. When their masses are hierarchical, the lightest

one must be larger than O(109)GeV [35, 36] to explain the BAU. It can be, however, small

as TeV scale if right-handed neutrinos are quasi-degenerate in mass [37].

Furthermore, the sign of the BAU is controlled by the CP violation pattern in lep-

tonic sector. Note that the sign of the BAU cannot be predicted uniquely even if the CP

violations associated with active neutrinos (i.e., the Dirac and Majorana phases in the

mixing matrix of active neutrinos) are determined. This is because there exist one or more

additional phases associated with right-handed neutrinos which decouple from the low en-

ergy phenomena if they are sufficiently heavy. Under these situations, it is interesting to

investigate the sign and magnitude of the BAU in the models with the modular symmetry,

since there are non-trivial relations between the properties of right-handed neutrinos and

the low energy observables of neutrino physics due to the symmetry. As our first work,

we shall discuss the leptogenesis in the model with A4 symmetry [10] simply because the

model has a small number of free parameters and then very predictive.

The paper is organized as follows. In section 2, we briefly review the modular symmetry

in the framework of the theory with extra dimensions which is compactified on a torus.

We then explain the model with the A4 symmetry in section 3. The leptogenesis in the

model is discussed in section 4. We present in section 5 the results of the analysis, namely

the sign and magnitude of the BAU predicted by the model. The final section is devoted

to conclusions.

2 Modular group and its finite quotient subgroups

In this section, we give a brief review on the modular symmetry on a torus. A two-

dimensional torus T 2 can be constructed by R
2/Λ, where Λ denotes a two-dimensional

lattice. We use the complex coordinate on R
2 and denote basis vectors of Λ as α1 = 2πR
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and α2 = 2πRτ , where R is real and τ is a modulus belonging to upper-half complex plane

Im τ > 0. There is some ambiguity in choice of the basis vectors. The same lattice can be

spanned by the following basis vectors,
(

α′
2

α′
1

)

=

(

a b

c d

)(

α2

α1

)

,

(

a b

c d

)

∈ SL(2,Z), (2.1)

where

SL(2,Z) =

{(

a b

c d

)∣

∣

∣

∣

∣

a, b, c, d ∈ Z, ad− bc = 1

}

≡ Γ. (2.2)

This transformation of basis vectors is written in terms of the modulus τ ≡ α2/α1 by

τ → τ ′ = γτ =
aτ + b

cτ + d
,

(

a b

c d

)

∈ SL(2,Z). (2.3)

The modular group is the transformation group acts on the modulus preserving the lattice

Λ. Since γ and −γ transform τ in the same way in (2.3), the modular group is isomorphic

to SL(2,Z)/{I,−I} ≡ Γ. The modular group is generated by two generators S and T ,

S =

(

0 1

−1 0

)

, T =

(

1 1

0 1

)

(2.4)

In terms of the modulus, they induce the transformations, S : τ → −1/τ and T : τ → τ+1.

We can easily see that they satisfy the following algebraic relations, S2 = I and (ST )3 =

I. We introduce a series of groups Γ(N), N = 1, 2, 3, . . . called principal congruence

subgroups,

Γ(N) =

{(

a b

c d

)

∈ SL(2,Z),

(

a b

c d

)

=

(

1 0

0 1

)

(modN)

}

. (2.5)

We also define Γ(N) = Γ(N)/{I,−I} for N = 1, 2 and Γ(N) = Γ(N) for N > 2. The

groups Γ(N) are infinite subgroups of the modular group. The quotient groups defined

ΓN ≡ Γ/Γ(N) are finite subgroups of the modular group, called finite modular groups. In

the finite modular groups ΓN , generators obey additional, algebraic relation TN = I. The

groups ΓN with N = 2, 3, 4, 5 are isomorphic to S3, A4, S4, and A5, respectively [7].

Modular forms f(τ) of weight k and level N are holomorphic functions transforming

under the Γ(N) as

f(γτ) = (cτ + d)kf(τ), γ ∈ Γ(N), (2.6)

where k is even and non-negative value and called modular weight. In the case of Γ3 ≃ A4,

the explicit form of A4 triplet modular forms of weight 2, Y A4(τ) = (Y1(τ), Y2(τ), Y3(τ)),

is obtained as [6]

Y1(τ) =
i

2π

(

η′(τ/3)

η(τ/3)
+

η′((τ + 1)/3)

η((τ + 1)/3)
+

η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

)

,

Y2(τ) =
−i

π

(

η′(τ/3)

η(τ/3)
+ ω2 η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)

, (2.7)

Y3(τ) =
−i

π

(

η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2 η

′((τ + 2)/3)

η((τ + 2)/3)

)

.

where the Dedekind eta-function η(τ) is given by η(τ) = q1/24
∏∞

n=1(1− qn), q = e2πiτ .
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Under the modular transformation (2.3), chiral superfields φ(I) transform as [38],

φ(I) → (cτ + d)−kIρ(I)(γ)φ(I), (2.8)

where −kI is the modular weight and ρ(I)(γ) denotes an unitary representation matrix of

γ ∈ ΓN . A coupling constant for the n-th order term between φ(I1), · · · , φ(In) should be a

modular form of weight kY (n) and a representation of ΓN transformed as

YI1,I2,...,In(γτ) = (cτ + d)kY (n)ρ(γ)YI1,I2,...,In(τ), (2.9)

where ρ(γ) is representation of γ for the modular form, and a modular invariant superpo-

tential W is written by

W = YI1,I2,...,In(τ)φ
(I1)φ(I2) · · ·φ(In) (2.10)

satisfying kY (n) =
∑

n kIn and ρ(γ)
∏

n ρ
(In)(γ) = I.

We study the model which field content is the same as the minimal supersymmetric

standard model (MSSM) extended by right-handed neutrinos in the following sections.

The superpotential of our model has vanishing modular weight. We note that Yukawa

couplings as well as higher order couplings depend on modulus and can have non-vanishing

modular weights. The breaking scale of supersymmetry (SUSY) can be between O(1)TeV

and the compactification scale. Here we take the breaking scale is sufficiently high, namely

it is much higher than the masses of right-handed neutrinos, for simplicity. Then, the

lepton flavor physics and the leptogenesis can be discussed without SUSY.1 The modular

symmetry is broken by the vacuum expectation value of τ at the compactification scale

which is the Planck scale or slightly lower scale order.

3 Lepton flavor model with modular A4 symmetry

The A4 flavor models with flavon field have been discussed in the lepton sector [1–5]. On

the other hand, a modular invariant flavor model with the A4 symmetry can explain the

large mixing angles of lepton flavors without flavons. One of the authors (THT) has already

obtained a successful result of the lepton sector in A4 modular symmetry [10]. In order

to clarify the difference in the flavor structure of mass matrices between the quarks and

leptons, we briefly summarize the previous results of the lepton sector and add discussions

of the feature of the lepton model.

It is supposed that the three left-handed lepton doublets Li are compiled in a triplet of

A4. The three right-handed neutrinosN c
i are compiled in a triplet of A4. On the other hand,

the Higgs doublets, Hu,d, are supposed to be singlets of A4. The three right-handed charged

leptons are assigned for three different singlets of A4 as (e
c
1, e

c
2, e

c
3) = (ec, µc, τ c) = (1, 1′′, 1′).

Therefore, there are three independent couplings α, β and γ, in the superpotential of the

charged lepton sector. Those coupling constants can be adjusted to the observed charged

lepton masses. The assignments of representations and modular weights to the MSSM

fields and right-handed neutrino superfields are presented in table 1.

1In our scenario we assume that SUSY is broken at Planck scale or close to that. In this condition the

masses of SUSY particles including gravitino are around Planck scale. Thus, the stringent constraint on

the reheating temperature of the inflation from the gravitino problem can be avoided.
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L ec, µc, τ c N c Hu Hd

SU(2)L 2 1 1 2 2

A4 3 1, 1′′, 1′ 3 1 1

−kI −1 −1 −1 0 0

Table 1. The charge assignment of SU(2)L, A4, and the modular weight −kI .

The modular invariant mass terms of leptons are given as the following superpotentials:

We = α ecHd(LY
A4)1 + β µcHd(LY

A4)1′ + γ τ cHd(LY
A4)1” , (3.1)

WD = g1
(

N cHu(LY
A4)3s

)

1
+ g2

(

N cHu(LY
A4)3a

)

1
, (3.2)

WN = Λ(N cN cY A4)1 , (3.3)

where sums of the modular weights vanish. The parameters α, β, γ, and g1,2 are coupling

constants, and Λ is a mass parameter for the Majorana masses for right-handed neutrinos.

Following ref. [10], we take g1 and g2 as real and complex parameters, respectively.

g2 = |g2|eiφg . (3.4)

The functions Y A4(τ) are A4 triplet modular forms of weight 2 which components are

shown in eq. (2.7). As for the field contents and the basis for A4 group, see discussions

in ref. [10].

The superpotential (3.1) leads to the following charged leptons mass matrix:

ME = vd diag[α, β, γ]







Y1 Y3 Y2
Y2 Y1 Y3
Y3 Y2 Y1







RL

, (3.5)

where vd = 〈Hd〉. Note that we should evaluate the mass matrix at the SUSY-breaking

scale and also include the corrections due to the RGE evolution and SUSY-breaking. In this

analysis we neglect these effects without specifying the scale and the mediation mechanism

of SUSY-breaking. Such corrections have been discussed, for example in ref. [9]. The

coefficients α, β, and γ are taken to be real positive by rephasing right-handed charged

lepton fields without loss of generality. Those parameters can be written in terms of the

modulus τ and the charged lepton masses together with vd. The superpotential (3.2) gives

the Dirac neutrino mass matrix:

MD = vu







2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2
(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1
(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3







RL

, (3.6)

where vu = 〈Hu〉. On the other hand, the right-handed Majorana neutrino mass matrix is

obtained from the superpotential (3.3):

MN = Λ







2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3







RR

. (3.7)
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observable 3σ range

sin2 θ12 0.275–0.350

sin2 θ23 0.427–0.609

sin2 θ13 0.02046–0.02440

∆m2
21 (6.79-8.01)× 10−5 eV2

∆m2
31 (2.432–2.618)× 10−3 eV2

Table 2. The 3σ ranges of neutrino oscillation parameters for the normal hierarchy case from

NuFIT 4.1 (2019) [40, 41].

Finally, the effective neutrino mass matrix is obtained through the type I seesaw as follows:

Mν = −MT
DM

−1
N MD . (3.8)

The masses of active neutrinos, mi, are found by diagonalizing Mν , and the lepton mixing

matrix U in the charged current is also found by the diagonalization of Mν and ME . The

matrix U is parameterized as

U =







c12c13 s12c13 s13e
−iδCP

−c23s12 − s23c12s13e
iδCP c23c12 − s23s12s13e

iδCP s23c13
s23s12 − c23c12s13e

iδCP −s23c12 − c23s12s13e
iδCP c23c13






(3.9)

× diag(1 , ei
α21

2 , ei
α31

2 ) ,

where sij = sin θij and cij = cos θij . δCP is the Dirac CP violating phase, and α21 and α31

are the Majorana phases.

It is notable that the model can reproduce the observed values of the mixing angles

(sin2 θ23 is predicted to be larger than 0.54.) and the mass squared differences ∆m2
ij =

m2
i − m2

j [10]. Furthermore, the model is very predictive, e.g., the normal hierarchy of

neutrino masses is predicted, the Dirac phase is in the range δCP = ±(50◦ − 180◦), the

effective neutrino mass in the neutrinoless double beta decay is around 22 meV, and the

sum of neutrino masses is larger than 145 meV. See the details in ref. [10].

It is natural to verify whether the model can explain the BAU or not, since it contains

all the essential ingredients for the leptogenesis, i.e., right-handed neutrinos, lepton number

violation by the Majorana masses and CP violation in the modulus field and the coupling

constants. The yield of the BAU depends on the masses Mi and Yukawa coupling constants

of right-handed neutrinos. Since these parameters are highly restricted due to the symmetry

in the model, we can expect non-trivial relations between the BAU and the observables in

the active neutrino physics, which are the main outcomes of the present article.

Before discussing the leptogenesis, we shall summarize the properties of right-handed

neutrinos inferred from the neutrino oscillation data. For this purpose, we reanalyze the

numerical study of the model following ref. [10]. We use this time the charged lepton masses

in ref. [39] and update the neutrino oscillation parameters in refs. [40, 41] (See table 2.).

In addition, we require
∑

mi < 160 meV [31]. We find no qualitative difference from the

previous analysis. Here we show only the results which are essential in the leptogenesis.
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Figure 1. The allowed region of mass ratios between right-handed neutrinos.
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Figure 2. The allowed regions of α21 and φg (left) and that of α31 and φg (right). At the orange

(blue) points the sign of YB is positive (negative).

First, the allowed range of the mass ratios of right-handed neutrinos is shown in figure 1.

It is seen that M2/M1 and M3/M2 are both about 1.6. Notice that the absolute values of

right-handed neutrino masses cannot be determined from the oscillation data, however, as

we will show in section 5, the order of magnitude of them can be found from the BAU.

There are two consequences to the leptogenesis; (1) All three right-handed neutrinos should

be taken into account in the leptogenesis dynamics. (2) The resonant production of the

lepton asymmetry by the decays [37] is less effective.

Next, we consider the CP violating parameters in the present model. There are two

such parameters τ and g2, which are relevant for baryogensis. Note that they induce the

CP violations for active neutrinos (that are observables at low energies) and also for right-

handed neutrinos. Interestingly, we observe the strong correlations between the Majorana

phases α21,31 and the phase of g2, φg, which is represented in figure 2. The allowed value

of the Majorana phase changes whether φg is slightly larger or smaller than ±π/2. No

strong correlation is found between the Majorana phases and τ . On the other hand, the

Dirac phase δCP depends non-trivially on τ and φg, and there is no correlation between

these parameters.
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Figure 3. The allowed regions of δCP and φg. At the orange (blue) points the sign of YB is positive

(negative).

4 Leptogenesis

Now we are at the point to discuss the leptogenesis by decays of right-handed neutrinos in

the model. As explained before, the mass ratios of right-handed neutrinos are not so large

as ∼ 1.6, and then we have to include the effects of all three right-handed neutrinos to

the leptogenesis. Here we assume for simplicity that the reheating temperature of inflation

is sufficiently higher than the mass of the heaviest right-handed neutrino and that the

initial abundances of all right-handed neutrinos are zero. On the other hand, the mass

differences of right-handed neutrinos are not so small, and then the resonant enhancement

of the leptogenesis [37] does not occur. Thus, we shall use the formalism based on the

Boltzmann equations for the estimation of the asymmetries. Furthermore, as shown below,

the required masses of right-handed neutrinos are O(1013)GeV, and hence the simple one-

flavor approximation of the leptogenesis can be applied and we only consider the (total)

lepton asymmetry neglecting the so-called flavor effect [42–49].

We solve the Boltzmann equations for the number densities nNI
for right-handed neu-

trinos and the lepton asymmetry density nL.

dYNI

dz
=

−z

sH(M1)

{(

YNI

Y eq
NI

− 1

)

(

γNI
+ 2γ

(3)
tI + 4γ

(4)
tI

)

+
3
∑

J=1

(

YNI

Y eq
NI

YNJ

Y eq
NJ

− 1

)

(

γ
(2)
NINJ

+ γ
(3)
NINJ

)

}

, (4.1)

dYL
dz

=
−z

sH(M1)

{

3
∑

I=1

[(

1− YNI

Y eq
NI

)

εI γNI
+

YL
Y eq
ℓ

γNI

2

]

+
YL
Y eq
ℓ

(

2γ
(2)
N + 2γ

(13)
N

)

+
YL
Y eq
ℓ

3
∑

I=1

[

YNI

Y eq
NI

γ
(3)
tI + 2γ

(4)
tI +

YNI

Y eq
NI

(

γ
(1)
WI + γ

(1)
BI

)

+ γ
(2)
WI + γ

(3)
WI + γ

(2)
BI + γ

(3)
BI

]}

,

(4.2)
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where z = M1/T . The yields are defined by YNI
= nNI

/s and YL = nL/s with the entropy

density of the universe s. The superscript “eq” represents its equilibrium value. We take

the yield for a massless particle with one degree of freedom in equilibrium as Y eq
ℓ . Here

we apply the Boltzmann approximation and Y eq
ℓ = 45/(2π4g∗s), with g∗s = 110.75. Our

notations of the reaction densities correspond to those in ref. [50]. The CP asymmetry

parameter for the leptogenesis εI is defined by

εI =
Γ
(

NI → L+ H̄u

)

− Γ
(

NI → L̄+Hu

)

Γ
(

NI → L+ H̄u

)

+ Γ
(

NI → L̄+Hu

) . (4.3)

The explicit form of the reaction density for the NI decay is given by

γNI
=

(

YνYν
†
)

II

8π3
M4

1a
3/2
I

K1

(√
aIz
)

z
, (4.4)

where z = M1/T , aI = (MI/M1)
2, and K1(x) is the modified Bessel function of the second

kind. Note that Yν is the Yukawa coupling matrix of neutrinos in the base where the mass

matrices of charged leptons and right-handed neutrinos are diagonal. The reaction density

for the process A+B → C +D is given by

γ(A+B → C +D) =
T

64π4

∫ ∞

(mA+mB)2
ds σ̂(s)

√
sK1

(√
s

T

)

, (4.5)

where mA and mB are masses of the initial particles and σ̂(s) denotes the reduced cross

section for the process. As for the ∆L = 1 processes induced through top Yukawa in-

traction, the ∆L = 2 scattering processes and the annihilation processes of right-handed

neutrinos, the expressions of the reduced cross sections are found in ref. [50]. Note that

the correct subtraction of the NI on-shell contribution for LH̄u → L̄Hu process gives [36]

σ̂
(2)
N (x) =

1

2π

[

∑

I

(YνYν
†)2II

aI
x

{

x

aI
+

x

DI
−
(

1 +
x+ aI
DI

)

log

(

x+ aI
aI

)}

+
∑

I>J

Re[(YνYν
†)2IJ ]

√
aIaJ
x

{

x2 + x(DI +DJ)

DIDJ

+ (x+ aI)

(

2

aJ − aI
− 1

DJ

)

ln

(

x+ aI
aI

)

+ (x+ aJ)

(

2

aI − aJ
− 1

DI

)

ln

(

x+ aJ
aJ

)}

]

, (4.6)

where cI = (ΓNI
/M1)

2 and DI = [(x − aI)
2 + aIcI ]/(x − aI), in which ΓNI

is the total

decay rate of right-handed neutrino NI . The reduced cross sections for ∆L = 1 processes

through the SU(2)L SM gauge interaction are [36, 37]

σ̂
(1)
WI(x) =

3g22(YνYν
†)II

16πx2

[

− 2x2 + 6aIx− 4a2I + (x2 − 2aIx+ 2a2I) ln

∣

∣

∣

∣

x− aI + aL
aL

∣

∣

∣

∣

+
x(aLx+ aLaI − aWaI)(aI − x)

aL(x− aI + aL)

]

, (4.7)
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σ̂
(2)
WI(x) =

3g22(YνYν
†)II

8πx(x− aI)

[

2aIx ln

∣

∣

∣

∣

x− aI + aH
aH

∣

∣

∣

∣

+ (x2 + a2I) ln

∣

∣

∣

∣

x− aI − aW − aH
−aW − aH

∣

∣

∣

∣

]

, (4.8)

σ̂
(3)
WI(x) =

3g22(YνYν
†)IIaI

16πx2

[

x2 − 4aIx+ 3a2I
aI

+ 4(x− aI) ln

∣

∣

∣

∣

x− aI + aH
aH

∣

∣

∣

∣

− x(4aH − aW )(x− aI)

aH(x− aI +mH)

]

. (4.9)

Here σ̂
(1)
WI , σ̂

(2)
WI and σ̂

(3)
WI are the reaction densities for the processes NIL → HuW , NIW →

L̄Hu and NIH̄u → L̄W , respectively. We have used aL,H,W,B = m2
L,Hu,W,B/M

2
1 where

mX with X = L,Hu,W,B are thermal masses of lepton doublets, up-type Higgs, SU(2)L
gauge bosons and U(1)Y gauge boson, respectively. The reaction densities for the ∆L = 1

processes through U(1)Y gauge interaction are obtained by substituting aW → aB and
3
2g

2
2 → 1

4g
2
Y in σ̂

(i)
WI .

For the estimation of the reaction densities, we have taken into account the one-loop

RGE evolutions of couplings and the renormalization scale is taken as µ = 2πT . The

important effect is the suppression of top Yukawa coupling at high temperatures due to

the RGE effect, which reduces the washout of the produced lepton asymmetry and enlarges

a viable parameter space.

The Boltzmann equations are then solved numerically and the total lepton asymmetry

YL from the decays of right-handed neutrinos is estimated. The present baryon asymmetry

can be estimated as YB = −8/23YL,
2 where we have taken into account for the effect of

the two Higgs doublets.

Now, since the lightest right-handed neutrino is sufficiently heavy, we can neglect the

flavor effect of the leptogenesis [42–49]. In this case, the final baryon asymmetry becomes

insensitive to the PMNS mixing matrix of active neutrinos. However, in the considering

model, the phases in the PMNS matrix and the high energy phases associated with right-

handed neutrinos are originated in the limited complex parameters τ and g2. In this

situation, there may exist the correlations between the phases in the PMNS matrix and

the yield of the BAU.

5 Sign and magnitude of baryon asymmetry

Let us then show the results of the BAU by right-handed neutrinos in the model. We begin

with the sign of the BAU produced by right-handed neutrinos in the model.

The first important result is that the sign of the BAU is determined by the phase φg

of the complex coupling g2. This point is represented in figure 4. The positive BAU is

obtained when φg is slightly larger than π/2 or −π/2. On the other hand, as shown in

figure 5, there is no strong correlation between the BAU sign and the complex parameter τ .3

2Here, we assume that two-Higgs doublet survive at sphaleron freeze-out temperature. On the other

hand, YB = −28/79YL for the one-Higgs doublet case.
3The mass ratios between right-handed neutrinos are determined by τ as shown in eq. (3.7). It is then

found from figure 5 there is no correlation between mass hierarchy of right-handed neutrinos and the sign

of the BAU.
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Figure 4. The allowed regions of Re τ and phase φg. Red and blue points correspond to the

positive and negative signs of the BAU, respectively.
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Figure 5. The allowed regions of Re τ and Im τ when the sign of the BAU is positive (left) or

negative (right).

The phase φg is strongly correlated with Majorana phases α21 and α31, and then

the positive BAU is possible only for the restricted range of Majorana phases, which is

shown in figure 6. We can see that two regions in the Majorana phases are allowed by

the observational data about active neutrinos, which are related as α21,31 ≃ 2π − α21,31.

The positive BAU is, however, realized only when α21 ∼ 1.3 π and α31 ∼ 1.5 π. This

is an important prediction of the leptogenesis in the model although the experimental

measurements of Majorana phases are very difficult. Notice that the range of the effective

neutrino mass in the 0νββ decay is the same for the both cases YB > 0 and YB < 0, as

shown in figure 7.

Second, we find from figure 6 that the dependence of the BAU sign on Dirac phase

is different depending on sin2 θ23. For sin2 θ23 . 0.58 the positive BAU can be obtained

for δCP < 0. On the other hand, for sin2 θ23 & 0.58 the positive BAU is possible for both

δCP < 0 and δCP > 0. This shows that the precise measurements of sin2 θ23 and δCP provide

a crucial test for the correct sign of the BAU in the considering baryogenesis scenario.
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Figure 6. α21 and α31 (left), and sin2 θ23 and δCP (right). YB is positive (negative) at the orange

(blue) points.
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Figure 7. The allowed ranges of α21 and meff .

Next, we discuss the magnitude of the BAU yield. We find that the yield can be at most

the same order of the observed value of the BAU (1). This is because the model predicts a

relatively large value of the effective neutrino mass of the leptogenesis m̃1 which is defined

as m̃1 = (YνYν
†)11vu

2/M1. We find numerically m̃1 ≃ 54 − 57 meV, and then the strong

wash-out effect is inevitable. This leads to an important consequence that the lightest

right-handed neutrino should be in the mass range M1 ≃ (1.5− 10)× 1013GeV. As can be

seen from figure 8, we find that the dependence of the magnitude of the BAU on the lightest

right-handed neutrino mass changes at M1 ≃ 4.0 × 1013GeV. At M1 . 4.0 × 1013GeV,

the larger M1 is, the larger the magnitude of the generated BAU is. On the other hand at

M1 & 4.0× 1013GeV, the larger M1 is , the smaller the magnitude of the generated BAU

is. This is because the larger M1 is, the more the wash-out effect of the ∆L = 2 processes

is important. Thereby, the lightest right-handed neutrino mass is restricted to the specific

range (M1 ≃ (1.5− 10)× 1013GeV) in order to explain the observed BAU.
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Figure 8. The yields of the BAU in terms of the mass of the lightest right-handed neutrino for

different values of δCP. δCP is taken in the range [0, π/2] (top-left), [π/2, π] (top-right), [−π,−π/2]

(bottom-left) and [−π/2, 0] (bottom-right). The solid lines are upper or lower bound for the obser-

vational value of YB .

6 Conclusions

We have considered the leptogenesis in the model with three right-handed neutrinos intro-

ducing the modular A4 invariance. The model is very predictive in the sense that all the

parameters apart from the overall scale of right-handed neutrino masses are determined

within the limited ranges in order to be consistent with the observed values of charged lep-

ton masses as well as mixing angles and masses of active neutrinos. We have shown that

the observed value of the BAU can be explained when the mass of the lightest right-handed

neutrino is (1.5− 10)× 1013GeV. This means that the successful baryogenesis determines

the absolute masses of all right-handed neutrinos.

We have also shown that the sign of the BAU is strongly related with the CP violating

parameters, Majorana and Dirac phases, since the possible breaking pattern of the CP

symmetry is very limited in the considering model. In fact, the positive sign of the BAU is

realized only for the unique range of Majorana phases, namely α21 ∼ 1.3 π and α31 ∼ 1.5 π.

Moreover, we have shown that the precise measurements of sin2 θ23 and δCP provide a

crucial test for the correct sign of the BAU in the considering baryogenesis scenario.
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