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Kurzfassung

Biologische Systeme, und insbesondere Signaltransduktionsnetzwerke, sind durch eine hohe

Komplexität aber auch durch eine Modularstruktur gekennzeichnet. Das Leitmotiv dieser Ar-

beit ist, durch Ausnutzung der letzteren die erstere zu beherrschen. Um diesen Modularansatz

anzuwenden, müssen folgende Schritte durchgeführt werden:

1. Zerlegung der Signalnetzwerke in sinnvolle Module,

2. Grundsätzliche Analyse dieser Module, und

3. Zusammenschaltung der Module (oder eines reduzierten Ersatzes davon) und Analyse

des gesamten Netzwerkes.

Diese Arbeit beschäftigt sich mit allen drei Schritten, deren Implementierung in nützliche

Werkzeuge und deren Anwendung an praktischen Beispielen.

Ein Ingenieurwissenschaftliches Kriterium für die Zerlegung in Module wurde entwick-

elt. Dieses Kriterium basiert auf dem Konzept der Rückwirkungsfreiheit. Dieses Konzept

wurde durch einen automatischen Algorithmus implementiert, der in der Lage war, selbst

sehr komplexe Signalnetzwerke in sinnvolle Untereinheiten zu zerlegen.

Ein domänenorientierter Ansatz liefert einen komplementären Gesichtpunkt zu der Mod-

ularität von biologischen Systemen: Er ergibt, dass die Moleküldomänen die Grundeinheiten

von Signaltransduktionsnetzen sind. Deswegen wurde ein Baukasten von Domänen (Mo-

tiven) definiert, mit dem man beliebige Netzwerke aufbauen kann.

Die Motive wurden sorgfältig in Hinblick auf drei entscheidende system-theoretische

Eigenschaften untersucht: Stabilität, Monotonie, und Eingang/Ausgang Verhalten.

Die Analyse zeigt, dass einige Motive Multistabilität aufweisen können, aber diese Eigen-

schaft gegenüber Konzentrationsfluktuationen nicht robust ist. Darüber hinaus sind fast alle

Motive monoton, und alle sind durch ein monotones stationäres Verhalten gekennzeichnet.

Weiterhin können diese Motive größenteils durch eine nichtlineare Kennlinie und ein ein-

faches lineares System ersetzt werden.

Als Grenzfall können Motive durch logische Funktionen ersetzt werden. Dies erlaubt eine

Vereinfachung der Signalnetzwerke, wodurch sehr komplexe Netzwerke untersucht wer-

den können. Am Beispiel der Signalwege in Lymphozyten konnte gezeigt werden, dass

v
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damit nicht nur die aktuellen biologischen Kenntnisse zusammengefasst und getestet wer-

den können, sondern auch neue, unerwartete Erkenntnisse gewonnen werden können.

Anschließend wurden die dynamischen Eigenschaften von Zusammenschaltungen kleine

Module untersucht. Unter anderem wurde eine minimale mathematische Realisierung für

ein ganz bestimmtes dynamisches Verhalten erarbeitet, welches man in der Aktivierung der

MAPK Kaskade in Lymphozyten beobachtet hat.

Außerdem wurde diese Implementierung in der Signalkaskade identifiziert. Letztlich wurde

die Anwendung des Modularansatzes für die Analyse der Dynamik komplexerer Signal-

transduktionsnetze anhand eines detaillierten Modells der EGF-induzierten MAPK Kaskade

demonstriert.
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Chapter 1

Introduction

1.1 Motivation

Cells are fascinating objects, able to perform extremely complex tasks. One of their most

remarkable properties is the ability to sense their environment, process external signals, and

react accordingly. Thanks to the spectacular development of molecular biology during the

last years, our view of cellular processes in general, and signal transduction in particular,

has evolved into a picture of captivating, but almost discouraging, complexity. Particularly,

in the case of signal transduction, the large number of elements involved, their complicated

non-linear interactions, the high number of feedback loops, and the crosstalk among different

pathways (see Figure 1.1), make impossible an intuitive understanding10, specially of how

this signaling machinery works as a whole.

This holistic understanding is the goal of systems biology141. Thereby, the goal is not only

to gain insights into the fundamental principles of life, but there is also the hope to improve

treatment of important diseases: essential processes like proliferation, cell development or

even apoptosis (cell suicide) are controlled, at least in part, by cell signaling. Thus, defective

signal processing can lead to important diseases such as cancer or diabetes, and therefore

signaling pathways are important targets for disease therapy158.

Three main fields converge in systems biology248: (i) Experimental molecular biology,

which provides large sets of (as quantitative and reproductive as possible) data; (ii) bioin-

formatics, contributing with tools to process, organize and visualize these data, and (iii)

mathematical foundations (coming mainly from biophysics and systems theory) to analyze,

on the basis of mathematical models, cellular processes. The knowledge and amount of

data available about signaling networks grows steadily, boosting the development of increas-

ingly complex models. These models offer a highly detailed picture of signaling pathways,

but the properties of these systems as a whole are difficult to understand. Therefore, the

definition of functional units, i.e. entities whose function is separable from those of other

units, has been proposed as a promising rationale for the analysis of large biochemical net-

works103;151;197;220. This modular approach follows a simple rationale: divide and win. As

1
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Figure 1.1: Complexity in signaling networks. The figure represents the key elements involved in

the signaling processes triggered by the Epidermal Growth Factor Receptor (EGFR), Insulin

Receptor, Tumor Necrosis Factor Receptor (TNFR) and Hepatocyte Growth Factor Receptor

(HGFR), see Section 2.2.1). These pathways are key for the cell fate of many mammal cell.

Some of the mechanisms responsible for the complexity of signaling networks can be seen

here: high number of elements involved, crosstalk among the different pathways, and feedback

loops (for the sake of clarity, only two are depicted).

depicted in Figure 1.2, by decomposing a system into subunits, one obtains modules which

are significantly easier to handle. Once these relatively simple units are well understood, they

can be re-assembled in order to analyze the emergent properties of the resulting systems. Fur-

thermore, one could set up a kit of reusable elements, simplifying the setup of models, since

many parts of biological networks are found in several signal transduction pathways. The

present work is devoted to this modular approach, and tries to contribute to the different

aspects it involves, as outlined in the following section.

1.2 Outline

As mentioned above, to apply a modular approach (see Figure 1.2), the following tasks must

be performed:

• decompose the signaling network into modules,

• analyze the modules, and

• rewire the modules into the network and analyze the network.

This thesis is structured accordingly, after a biological prelude in Chapter 2, where the

basic principles of signal transduction are introduced and the signaling networks used as
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Figure 1.2: General procedure of a modular analysis approach. The approach starts with the de-

composition of a large network in a suitable manner into smaller, easier to analyze subunits.

Upon a thorough analysis of the resulting modules, they can be rewired together (either in their

original form or in a reduced one47), and new insights into the network as a whole can be

obtained220.

case studies throughout this work are presented. These networks are the Epidermal Growth

Factor (EGF) induced MAPK cascade and the T-cell receptor (TCR)-dependent signaling

network.

Chapters 3 and 4 deal with the first point: the decomposition of signaling networks into

functional units. Even though modularity is an accepted property of biological systems, how

biochemical modules should be delimited remains an open question276. It starts with a re-

view of the current understanding of the modularity of biochemical networks in Section 3.1.

In Section 3.2, a novel system-theoretical criterion for this decomposition, namely the ab-

sence of retroactivity, is presented. Subsequently, Section 3.3 presents an algorithm for the

automatic identification of modules for a given model (network), based on the concept of

retroactivity, whose applicability is demonstrated with several examples in Section 3.4. The

modularly structured models can be imported into ProMoT, a modeling tool which offers a

natural environment for a modular set up of networks, providing thus a framework to analyze

isolated modules or combination of them.

Chapter 3 deals with the decomposition of a given model; however, a related yet different

question which is also of great importance in this context is the inherent modularity of sig-

naling networks. Chapter 4 is devoted to this issue. There, it is shown how the application of

a domain-oriented approach recently introduced48 allows to define a discrete set of minimal

modules (motifs) which appear recurrently. Since most networks can be set up as a combi-

nation of them, they can be seen as a construction kit for signaling networks. Therefore, a

set of motifs was defined and implemented in ProMoT95. The applicability of this library
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is exemplified in Section 4.3.1 by a model for the T-cell receptor (TCR) induced MAPK

cascade.

Once modules are defined or found in a given network, they should be systematically ana-

lyzed. However, thorough systems-theory-oriented analyses of signaling networks based on

their modularity are still scarce. The application of system-theoretical methods to biology,

yet appealing, is not a trivial task and in fact, systems biology poses stimulating challenges

to systems theory241. The motifs resulting from Chapter 4 are analyzed with respect to their

system-theoretical properties in Chapter 5. In particular, stability, monotony, and dynamic

behavior are examined. The dynamic was analyzed by comparing these motifs to simple lin-

ear systems combined with a non-linear characteristic curve (so-called Hammerstein mod-

ules).

Finally, Chapters 6 and 7 deal with the last question: how to cope with the network as a

whole once it is structured in a modular manner. In Chapter 6 it is proposed to handle large

signaling networks as a set of modules described as Boolean functions. It is shown that, even

though this approach imposes a strong simplification of the reality, it allows to gain holistic

insights into large networks. To illustrate its applicability, a large, curated model of T-cell

signaling was set up. The model is, to the best of our knowledge, the largest one of its sort,

comprising 94 different compounds. To set up large logical models in an efficient manner,

ProMoT’s abilities were extended, providing thus a new tool for a visual set up of large

signaling networks within a Boolean formalism.

For a more detailed analysis, particularly addressing points dealing with the dynamics, a

kinetic description is certainly required, as will be discussed in Chapter 7. Here, an impor-

tant issue is the emergence of new properties due to the connection of simple models20. In

Section 7.1 this topic will be explored via two simple models, one of a MAPK cascade134

and a simple feedback system motivated by a non-trivial dynamic observed in the TCR-

induced MAPK cascade. Finally, a remarkably complex model of the EGF induced MAPK

cascade234 will be thoroughly analyzed, using the concepts introduced in Section 5.3, ex-

ploring which new insights can be obtained.

To sum up, through this thesis contributions to the different steps involved in a modular

approach will be presented.



Chapter 2

Molecular Biology

of Signal Transduction:

Basic Principles and Cases of Study

This chapter introduces the basic concepts required to understand signaling networks and

their functioning, and presents succinctly the systems used through this thesis. The explana-

tions are kept basic and concise, as they are aimed to provide the reader not familiar with

signal transduction a certain background to understand this work. For deeper information the

reader is referred to books devoted to signal transduction such as the book of Krauss146.

2.1 Basic Principles of Signal Transduction

Cells, ranging from bacteria (which need to be aware of changes in their environment, e.g. of

temperature, pH, or concentration of nutrients) to human cells (which must coordinate them-

selves with the rest of the cells in the organism), are equipped with exquisite sensing systems

which allow them to receive and process a myriad of signals, and response accordingly. The

complexity of the corresponding molecular machineries, in accordance with the complicated

tasks they have to perform, is overwhelming.

Typically, the binding of extracellular ligands to molecular receptors at the cell membrane

results in changes in the intracellular part of the receptor. The activated receptor transmits

the signal to intracellular signaling intermediates. Finally, these intermediates activate tran-

scription factors which move into the nucleus and modify the gene expression of the cell,

resulting in the production of the proteins required to react to the external stimuli60 (see

Figure 2.1).

The key components in this transfer of information are proteins that can change their state

by interaction with other proteins or by biochemical modifications, such as phosphorylations,

catalyzed by other proteins. The proteins that catalyze phosphorylations are known as kinases

and their counter partners, which remove phosphate groups from proteins, phosphatases. An-

5
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Figure 2.1: Simplified schema of a signal transduction network. Binding of ligand(s) to the recep-

tor(s) typically lead to conformational changes in their cytoplasmatic part. This, in turn, trig-

gers the activation of a number of intermediate components. Eventually, transcription factors

are activated which control the gene expression.

other important biochemical modification is the conversion between an active, GTP-bound

form to an inactive, GDP-bound form∗. Molecules regulated by this mechanism are known

as GTPases. Activators of the GDP →GTP conversions are the guanine nucleotide exchange

factors, and promoters of the inverse reaction GTPase activating proteins (GAPs)146. In Sec-

tion 2.2.1 the most famous GTPase, Ras, will be presented. Proteins without catalytic activity

that play an important role by binding to other proteins are known as adaptors146. For ex-

ample, an adaptor may bind simultaneously an enzyme and its substrate, allowing thus the

former to act on the latter.

Sets of proteins activating subsequently each other are known as cascades. However, there

are strong interactions (known as crosstalk) among the different cascades, giving rise to com-

plex signaling networks that perform signal-processing tasks integrating information coming

from different stimuli28. The complexity (and thereby the potential to process signals) is en-

hanced by feedback mechanisms. Spatial localization also increases the complexity of these

networks: the cell is structured into different compartments, and a protein might be present

only in a certain region of the cell (e.g. bound to the membrane). All these factors make sig-

naling networks extremely complicated systems10. Therefore, even though much has been

learned on the functioning of these networks over the last years, how this signaling machin-

ery works as a whole, is still far from clear.

Proteins are built in a modular manner, as a composite of so-called domains. Each do-

main allows them to perform a specific task. For example, SH2 and PTB domains bind to

so-called Tyrosine-based signaling motifs (TBSMs) when the TBSMs are phosphorylated,

PH domains bind to phospholipids, and SH3 domains which bind to domains containing se-

quences of aminoacids rich in proline146. The interface between protein domains is built in

∗Guanosine triphosphate (GTP) and Guanosine diphosphate (GDP) are purine nucleotides272
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a modular fashion, with few interactions between the domains212. Therefore, these domains

can be considered as the fundamental elements of signal transduction199. This property of

the proteins, combined with a novel modeling approach based on it, will be exploited in

Chapter 4 to define a construction kit of modules to set up models of signaling networks.

Interestingly, although eukaryotes systems are generally more complex, both prokaryotes

and eukaryotes follow the same logic. Therefore, even though this work will focus on eu-

karyotes, the methodology and conclusions obtained here are extendible to prokaryotes.

In the following sections, two specific signaling systems from mammalian cells, namely

the Epidermal Growth Factor (EGF) induced MAPK cascade and the T-cell Receptor (TCR)

induced signaling network, will be presented. These two systems will serve as case studies

for the different analyses used in this thesis.

2.2 Systems under Study in this Work

2.2.1 EGF induced MAPK cascade

An important family of receptors are the receptor tyrosine kinases (RTKs), which share many

elements and mechanisms231. As the name says, RTKs possess a domain with tyrosine ki-

nase activity in their intracellular part. When a ligand binds to a RTK it causes pairwise

binding of the receptor proteins to create dimers, a process called dimerization, resulting

in the activation of the receptor’s kinase231. The kinase can then phosphorylate either the

receptor itself or a substrate protein. The phosphorylated residues are binding sites for sev-

eral proteins. RTKs are a large family of receptors for different ligands such as Hepatocyte

Growth Factor (HGF), Epidermal Growth Factor (EGF) and Insulin, and they share to a large

extent the proteins they bind to and activate (see Figure 1.1).

The Epidermal Growth Factor Receptor (EGFR) is the prototype of the EGFR family, the

best-studied group of the RTKs, and perhaps the best understood cellular signaling system in

mammalian cells. The EGF receptor can bind to several growth factors including EGF and

TGF-α283. Activation of the EGFR can trigger responses that include growth and cell migra-

tion270. There is a tight connection between EGFR and cancer, as evidenced by the fact that

EGFR is over-expressed in a wide variety of human tumors270. Therefore, the EGFR path-

way has been intensively analyzed as a drug discovery target for cancer therapy, and some

of the resulting drugs are currently in clinical development43. Since EGFR is both so well-

known and important, many modeling efforts have been devoted to this system20;29;135;234,

recently reviewed by Wiley et al.275.

An important process involved in the regulation of EGFR signaling is the internaliza-

tion274, a process in which the receptors are retrieved from the cell surface and moved into

special compartments known as endosomes.
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2.2.1.1 MAPK cascade

Among the main targets of the RTKs are the highly-conserved Mitogen-Activated Protein

Kinases (MAPKs), which play a pivotal role in the transduction of signals in eukaryotes37.

There are several families of MAPKs, and at least four expressed in mammals: ERK-1/2,

JNK, p38 and ERK537. MAPKs have different names, but they share the same mechanism

of activation: each MAPK (see Figure 2.2), is phosphorylated at two points by another kinase

- hence called MAPK kinase (MAPKK) ,- which is also activated through a double phospho-

rylation by another kinase - called MAPKK kinase (MAPKKK). There are also phosphatases

which reverse these phosphorylation steps (see Figure 2.2).

P

P PP

P PP

ERK ERK* ERK**

MEK MEK* MEK**

Raf Raf*

MAPK

MAPKK

MAPKKK

Figure 2.2: Structure of the MAPK cascade. the Raf/MEK/ERK cascade, the most prominent MAPK

cascade, is used as example here. A positive or negative feedback from the last to the first

module can be present.

In mammals, MAPK cascades are involved in the response to a wide range of stimuli,

ranging from growth factors to stress, which result in the regulation of essential cellular pro-

cesses such as differentiation, cell proliferation and survival229. How MAPKs are able to

produce specific responses to different stimuli is an issue not fully understood yet. A partic-

ularly important MAPK cascade in the context of RTKs is the Raf/MEK/ERK-1/2 cascade.

Its main activation pathway starts with binding of the adaptor Grb2 to phosphorylated RTK

(or alternatively, binding of Shc to RTK and binding of Grb2 to Shc), and binding of the

guanine nucleotide exchange factor (see Section 2.1) Sos to Grb2. Then Sos activates the

GTPase Ras (see Figure 1.1). Subsequently, Ras binds to the MAPKKK Raf, targeting it to

the membrane and thus leading to its activation. Active Raf activates MEK, which in turn

activates ERK-1/2 (see Figure 2.2).

Both a model of the MAPK cascade and one for the EGF-induced MAPK will be analyzed

with regard to their modularity in Section 3.4 and to their dynamic properties in Chapter 7.
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2.2.2 T-cell receptor induced signaling
T-cells play a key role within the immune system: cytotoxic T-cells destroy cells infected by

viruses or malignant cells, and helper T-cells coordinate the functions of other cells of the

immune system18. Cytotoxic and helper T-cells are also known as CD8+ and CD4+ T-cells,

respectively, since they express in one case the coreceptor CD8 and in the other the core-

ceptor CD4. Loss or dysfunction, especially of CD4+ T-cells (as it occurs e.g. in the course

of HIV infection or in immuno-deficiencies) has severe consequences for the organism and

results in susceptibility to infections as well as in the development of malignancies.

The importance of T-cells for immune homeostasis is due to their ability to specifically

recognize foreign, potentially dangerous, agents and, subsequently, to initiate a specific im-

mune response that is aimed at eliminating them. T-cells detect foreign antigens by means of

their T-Cell Receptor (TCR) which recognizes peptides only when presented on MHC (Ma-

jor Histocompatibility Complex) molecules. The peptides that are recognized by the TCR are

typically derived from foreign (e.g. bacterial, viral) proteins and are generated by proteolytic

cleavage within the so-called antigen presenting cells (APCs). Subsequent to their produc-

tion, the peptides are loaded onto the MHC-molecules and the assembled peptide/MHC-

complex is then transported to the cell surface of the APC were it can be recognized by T-

cells. The whole process of antigen uptake, proteolytic cleavage, peptide loading onto MHC,

transport of the peptide/MHC complex to the surface of the APC and the recognition of the

peptide/MHC-complex by the TCR is called antigen presentation and provides the molecular

basis for the fine specificity of the adaptive immune response143 (see Figure 2.3(a)).
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Figure 2.3: Different types of stimulation of T-cells. (a) Physiological stimulation by an antigen

presenting cell, (b) stimulation by antibodies, and (c) stimulation by streptamers.

The binding of peptide/MHC to the TCR, and the additional binding of a different region

of the MHC molecules to the coreceptors (CD4 or CD8) and the costimulatory molecule
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CD28, initiate a plethora of signaling cascades within the T-cell. As a result, several tran-

scription factors - most importantly, AP1, NFAT and NFκB - are activated. These transcrip-

tion factors, in turn, control the cell’s fate, e.g. whether it becomes activated and prolifer-

ates118;143 or not (see Figure 2.4).

In laboratory studies, the use of antibodies to stimulate T-cells is widespread (see Fig-

ure 2.3(b)). For example, antibodies specific for the CD3 subunit of the TCR and/or for the

coreceptor CD4/CD8 and the costimulatory molecule CD28 are routinely used. An advan-

tage of the antibodies with respect to the use of APC is that one deals with a defined system

(APCs are cells and as such highly variable) but at the price of using unphysiological condi-

tions, since the antibodies have a much higher affinity for the receptors and coreceptors than

the physiological ligands. A compromise solution engineered to join the advantages of both

methods are the so-called streptamers (or tetramers278): several MHC/peptide monomers

bound to a large molecule to form a complex†. (see Figure 2.4). The streptamers are par-

ticularly useful when used with transgenic mice such as the OT-1 mice. The T-cells of the

OT-1 mice express all the T-Cell Receptor specific for ovalbumin (and the CD8 coreceptor,

i.e., are cytotoxic T-cells). On the one hand, since the variety in the TCR allows T-cells to

recognize virtually any foreign elements, OT-1 mice have a severely hindered immune sys-

tem. On the other hand, they represent an ideal system for experiments, as the nature of the

TCR is clearly defined. In Section 7.1.2 the effect of the use of these different stimuli on the

dynamics of the signaling network will be addressed.

In contrast to RTKs, the TCR has no enzymatic activity and how it triggers signaling is

still a topic of intense debate41;55;157;263. Different hypotheses have been formulated such as

• the heterodimerization model, which claims that TCR signaling can be initiated by the

dimerization of TCR with the coreceptor263,

• the pseudodimer model, which proposes that TCR engaged to an antigen can be crosslinked

by the coreceptor to another TCR263,

• the clustering model, where clustering of receptors allows kinases, which are bound to

the receptors but inactive for esterical reasons, to cross-phosphorylate190,

• the conformational model, where binding of a ligand promotes conformation changes

in a certain unit of the TCR, triggering signaling92, and

• the kinetic-segregation model, where the binding of ligand signaling is initiated in

regions of close APC-TCR, what would exclude the ’big’ phosphatase CD45, which

constitutively dephosphorylates several proteins, allowing thus the kinases to act42;55.

†Specifically, MHC/peptide monomers are biotinylated (bound to biotin). Biotin has a strong affinity for the

large molecules avidin or streptavidin, which are used then build the complex.
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No model seems to be conclusive, and the existence of coreceptor dependent and independent

activation is still puzzling263. A combination of the models is also possible, since they are

not exclusive41. Despite this lack of knowledge about the first - and arguably most important-

step of T-cell activation, it is generally accepted that the first step involves the activation of the

Src-family kinases p56lck (in the following termed Lck) and p59fyn (Fyn in the following),

followed by the activation of ZAP70 (Zeta Associated Phosphoprotein of 70 kDa), triggering

a number of signaling pathways118.
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Figure 2.4: Schema of the main signaling paths triggered by T-cell receptor activation. A detailed

description can be found in the appendix Section A.6

In the following, the biochemical steps involved in the TCR-induced signaling network

will be briefly described (see Figure 2.4); for a detailed description the reader is referred

to reviews118;260 and the references therein. Additionally, a comprehensive logical model

describing TCR-mediated signaling will be presented in Section 6.3, and a detailed docu-

mentation of all molecules and reactions involved can be found in the appendix, Section A.6.

• Upon binding of peptide/MHC to the TCR, the first main step in the TCR-mediated

signaling cascade is, as stated above, the activation of Lck and Fyn, although the exact

mechanism is still unclear.

In resting T-cells, the major negative regulator of Lck, the kinase Csk (C-terminal Src

kinase) is bound via a SH2-domain (see Section 2.1) to the constitutively tyrosine

phosphorylated transmembrane adaptor protein PAG (Protein Associated with Gly-
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cosphingolipid enriched microdomains) and consequently inhibits membrane-bound

Lck by phosphorylating a C-terminal negative regulatory tyrosine residue of Lck114.

Upon ligand binding, PAG is dephosphorylated by a so far unknown phosphatase,

thereby leading to the detachment of Csk from PAG, and hence releasing Lck from the

inhibitory effect of Csk. The release of Csk from PAG, together with the activity of the

membrane associated tyrosine phosphatase CD45 (which dephosphorylates Lck on the

same inhibitory residue that is phosphorylated by Csk), and the concomitant binding

of the MHC molecule to the coreceptor CD4, lead to full activation of Lck.

After a few minutes, PAG is rephosphorylated262, probably by Fyn, and subsequently

Csk is re-recruited to PAG inhibiting Lck again.

Another important regulatory mechanism of Lck involves the phosphatase SHP-1. Lck

activates SHP-1, which in turn dephosphorylates Lck at its positive regulatory site, re-

sulting thus in a negative feedback. Additionally, ERK, downstream of Lck, can inhibit

the effect of SHP-1 on Lck, creating a double negative feedback (Lck →...→ERK ⊣
SHP-1 ⊣ Lck) which has the net effect of a positive feedbackAltan-Bonnet and Ger-

main3; Stefanova et al.245.

• Activated Lck can phosphorylate Fyn (Fyn can probably also be activated in a Lck-

independent, TCR-dependent manner81). Additionally, Lck phosphorylates the so-

called ITAMs (Immunoreceptor Tyrosine-based Activation Motifs) that are present in

the cytoplasmic domains of the TCR-complex (the latter if the TCR is close to Lck, i.e.,

if there is a concurrent activation of the TCR). Subsequently, the kinase ZAP70 binds

to the phosphorylated ITAMs and, if Lck is active, becomes activated by Lck-mediated

tyrosine phosphorylation. Thus, during the initial phase of signal transduction via the

TCR, three tyrosine kinases become activated in a sequential manner, first Lck and Fyn

and then ZAP70. Together, these three kinases propagate the TCR-mediated signal by

phosphorylating a number of membrane associated and cytosolic signaling proteins.

• Active ZAP70 can phosphorylate LAT (Linker for Activation of T-cells), a second

transmembrane adapter protein, at four different tyrosine residues. Subsequently, cy-

toplasmic signaling molecules containing SH2-domains, including the scaffolding pro-

teins Grb2, Gads, and the lipid kinase PLCγ1 (Phospholipase gamma 1), can bind to

phosphorylated LAT. Additionally, Grb2 binds to the nucleotide exchange factor Sos,

and Gads to the adapter protein SLP-76. The latter, upon phosphorylation by ZAP70,

can bind to the kinase Itk. Binding to SLP76 and additional phosphorylation by ZAP70

activates Itk. Finally, Itk phosphorylates and thereby fully activates PLCγ1.

• Activated PLCγ1 hydrolyzes phosphatidyl-inositol-4,5 biphosphate (PIP2), thereby
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generating the second messenger molecules diacyloglycerol (DAG) and inositol trispho-

sphate (IP3)118;260.

• IP3 mediates calcium flux. Calcium (together with calmodulin) activates the serine

phosphatase calcineurin, which dephosphorylates the cytosolic form of the transcrip-

tion factor NFAT (Nuclear Factor of Activated T-cells). The calcineurin-mediated re-

moval of phosphate groups allows NFAT to translocate to the nucleus and to regulate

gene expression.

• The second messenger DAG activates PKCθ and activates the nucleotide exchange

factor RasGRP1. The amount of DAG is tightly regulated by the DAG kinases (DGKs),

which degrade DAG into phosphatic acid261.

• RasGRP1 and Sos (the latter if it is close to the membrane, that is, if it is bound to

LAT by means of Grb2), can activate Ras, which in turn activates the Raf/MEK/ERK

MAPK cascade.

• ERK, activated by the Ras/Raf/MEK cascade, activates Fos which, together with Jun,

forms the fundamental transcription factor AP1.

• PKCθ is involved in the activation of the essential transcription factor NFκB (via phos-

phorylation and subsequent degradation of the NFκB inhibitor, IκB, by the PKCθ-

activated IκB-kinase, IKK).

• Lck, in addition to the cascade described above, triggers the PI3K/PKB pathway that

regulates many aspects of cellular activation and differentiation, particularly survival.

• The costimulatory molecule CD28 plays an important role in T-cell signaling. Its

mechanism, however, is still unclear. Nevertheless, it has two main targets: PI3K and

Vav1175. Vav1, in turn, acts on many elements such as PKCθ and Rac1284. This path-

way will be discussed in detail in Section 6.3.

• The E3 ubiquitin ligase c-Cbl is important for shutting off TCR-mediated signaling

processes by ubiquitination of key proteins, which are subsequently targeted for degra-

dation61. One important target of c-Cbl is ZAP70; upon tyrosine phosphorylation of

ZAP70, c-Cbl binds to ZAP70, leading to ZAP70’s ubiquitination and degradation as

well as to the downregulation of the TCR.

This signaling network as a whole will be analyzed using a boolean formalism in Sec-

tion 6.3 and a portion of it, the TCR-induced MAPK cascade, will be dynamically modeled

in Section 4.3.1 and studied with respect to its dynamics in Section 7.1.2.
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Chapter 3

On the Modularity

of Signal Transduction Networks

The previous chapter illustrates the high complexity of signal transduction. In Chapter 1, it

was introduced that a sound rationale to untangle it is a modular approach, where systems

are decomposed into subunits.

This chapter is devoted to an analysis of the modularity of signal transduction networks

from a system-theoretical perspective. Although the modularity of biological processes is

generally accepted, a distinctive criterion for defining modules is still lacking. Different pro-

posals, such as evolutionary conservation, robustness, and genetic co-expression have been

suggested276. Section 3.1 reviews briefly different efforts towards unraveling the modularity

of biochemical networks.

In Section 3.2, a novel criterion for the definition of modules, namely the absence of

retroactivity in the connections between the modules, is proposed. This approach, inspired

by systems theory, provides a theoretical framework to analyze signaling networks in a mod-

ular manner. Most approaches use a description of the system under study as a protein in-

teraction network. The approach presented here, however, relies on the description of a sig-

naling system as a biochemical network. Thus, it uses more refined information and acts

on the kinetic formalism most mathematical models are set up with. Therefore, it is par-

ticularly convenient to decompose models of signaling networks to facilitate their analysis

and provides a framework to set up modular models. The different situations that can lead

to a retroactivity-free connection are first examined by means of the network theory93 in

Section 3.2.3. Subsequently, in Section 3.3 an algorithm to automatically detect modules

connected in a retroactive-free manner will be outlined, and finally its applicability will be

illustrated with several examples in Section 3.4.

15
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3.1 An Overview on the Current View of Modularity

That biology is modular is a largely accepted notion. Specifically, the concept of functional

units is widely prevailing103;148;151: functional units are entities whose interaction with their

environment is significantly smaller than their internal interaction, and can be thus seen as

semiautonomous modules. However, a general, unique definition of module is lacking276.

For example, some propose modules to be a group of molecules chemically isolated from

their environment or clustered according to graph-theory methods. Others, a set of elements

active at a certain time scale or place, or connected in a statistically relevant fashion. Alterna-

tive criteria may involve to be evolutionary conserved or robust. Accordingly to this large list

of definitions, there are an extensive number of works attempting to unravel the modularity

of biochemical networks from all kind of perspectives.

3.1.1 Statistically relevant motifs

Since the concept of modularity can be applied to different levels of detail in a hierarchical

manner222, these subunits may comprise anything ranging between a single domain of a

particular molecule to a whole organism. Usually, the simplest units are referred to as motifs,

while larger components are named modules276. Motifs comprise normally no more than 2 or

3 proteins, appear repeatedly, and are characterized by their structure (topology) or dynamic

properties (e.g. a switch, an amplifier, a filter, etc)103;276. Statistical analyses have uncovered

that there are motifs which appear significantly often in signaling and regulatory networks

which can be connected to specific functions177;178;239.

In a modular system, the potential damage of perturbations are confined to a separable

subunit. Therefore, It has been proposed that modularity combined with other design princi-

ples such as redundancy contributes to robustness. Importantly, this source of robustness is

not incompatible with evolvability (i.e., the ability to evolve in order to adapt to new con-

ditions), which can take place either by rewiring of the modules or by modifications inside

the modules which do not affect directly other functional units251. In fact, modularly varying

goals (different targets, set up of a certain combination of sub-targets, which change repeat-

edly), characteristic of biological evolution, when applied to evolving networks, lead to the

generation of modular network structure and network motifs131.

3.1.2 Graph-based analyses

A large number of works have addressed the properties of large biological networks, among

them the modularity, using technics of graph theory. It could be shown that metabolic net-

works210 as well as protein networks in yeast125;216 and human217 have a modular, hierar-

chical structure14 using different clustering methods.

A remarkable effort towards the decomposition of networks into modules has been devel-
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oped by Newman and colleagues183;185, whose approach has also been applied by others to

metabolic100 and protein-protein networks40. Particularly appealing is their idea of defining

the modularity as a mathematical formula, which is subsequently optimized100;183. In princi-

ple, one would intuitively quantify the modularity as a function of the number of connections

among the modules with respect to the connections within the modules. This, however, would

lead to the trivial solution that the modularity is maximum if all elements are in one single

module. Therefore, one requires to somewhat ’normalize’ the number of interconnections.

Accordingly, their definition is based on the idea that the modularity is high if there are fewer

edges than expected between modules, i.e., if there are fewer than in a randomly generated

network. Therefore, the modularity Q is defined by Newman as the sum, over all pairs of

vertices, of the differences between the network of interest and a random network regarding

the number of connections inside the modules183. For a network containing n vertices and m

edges decomposed into 2 modules the modularity reads

Q =
1

4m

n

∑
i j

(Ai j −
kik j

2m
)(sis j +1) (3.1)

where si = 1 if vertex i belongs to module 1 and si = −1 if it belongs to module 2, so that
1
2
(sis j + 1) is 1 if i and j are in the same module and 0 otherwise. The adjacency matrix A

contains the information about the edges between pairs of vertices, i.e., Ai j = 0 if there is no

connection between vertices i and j, 1 if there is one, etc. The number of edges between i and

j expected in a random network is
kik j

2m
, where ki and k j are the number of edges connected

to i and j, respectively, and m is the total number of edges in the network (m = 1
2 ∑i ki) .

The leading factor 1
4m

is just conventional for compatibility purposes with other definitions

of modularity100;183.

The works described here analyze large biological networks as graphs, and aim to unravel

general structural principles. Even though we will take use of some of their ideas (in par-

ticular, the approach of Newman) in Section 3.3, the goal of this work is not to tackle such

networks but rather, to decompose a given (model of a) signaling network into units in or-

der to facilitate its analysis, providing thus a rationale for modular models. To that extent,

it is connected to the approach of Ederer et al.63, where also a kinetic model is analyzed

by clustering methods. There, however, typical trajectories of the concentrations are used to

cluster compounds into modules, while here the focus is on the network structure. There are

also related ideas from the analysis of metabolic networks, also relying on a description of

biochemical networks as in Equation 3.6, which we shall revise in the next section.

3.1.3 Insights from Metabolic Networks Analysis
Elementary flux modes107 (EFMs) and extreme pathways230, two very close concepts142,

are key instruments in the analysis of metabolic networks142. An EFM is a minimal sub-
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network that can operate (i.e., present a flow) in steady state142. While their applicability

for enlighting signal processing is possible195;196 but limited (since they capture the mass-

transfer rather than the information transfer143, and are thus not applicable in important

cases, see Chapter 6), they provide an interesting basis to define functional units: the ubiq-

uitous cycles of activation/deactivation are elementary modes that can be seen as modules

with regenerative capacity, connected via either shared compounds or enzymatic influence17.

However, in cases where there is no flux (see Figure 3.6 and Section 3.6(a)), EFMs fail to

identify signal process units. As will be discussed later, application of the concept of retroac-

tivity captures not only the modules one would capture applying EFM but also where there

is no flux, and is thus a more suitable approach.

Important efforts towards a modular understanding of biochemical networks have been

performed in the field of Metabolic Control Analysis (MCA), which has proofed to be suc-

cessful in the analysis of metabolic networks, and has been extended to signal transduc-

tion networks129;136. Importantly, MCA provides a framework for modular analysis. The

approach was firstly restricted to modules which do not share mass flows129, but later ex-

tended to modules which can share mass flows and have to fulfill conditions similar to the

absence of retroactivity that is proposed and formalized in the next section.

3.2 The Absence of Retroactivity as a Criterion to

Demarcate Modules

3.2.1 System-theoretical decoupling vs. absence of retroactivity

Since engineering sciences are used to work in a modular manner, it is tempting to approach

the definition of biological modules from a technical perspective. From a system-theoretical

point of view an interesting criterion might be the definition of elements where both the

input and the output are unidirectional. This is actually the form in which most technical

systems are devised, facilitating their analysis and design: for example, a thermometer is

constructed in such a way that it receives information (in the form of thermic energy) about

the temperature of a certain object, but it does not affect significantly the energy (and thus

temperature) of the object itself.

Consider a signaling network as a general non-linear dynamical system described by a set

of ordinary differential equations (ODEs) of the form

~̇c =
d~c

dt
= f (~c,~u,~p), (3.2)

where d~c
dt

∈ IRn is the vector of the ’balances’ of the concentrations ci, ~u the vector of inputs

and ~p the vector of parameters. A vector of outputs ~y = g(~c) may also be defined. The goal
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would be to decompose~c into two sub-systems ~c1 and ~c2 so that

~̇c1 = f1(~c1,~u,~p)

~̇c2 = f2(~c1,~c2,~u,~p). (3.3)

If modules are connected in the same form as ~c1 and ~c2, they fulfill the requisite of indepen-

dence postulated for functional units103: the behavior of ~c1 is only influenced by the input ~u

and is independent of what is downstream of it. Importantly, decoupled units can be relatively

straightforwardly analyzed by means of systems theory’s tools. Actually, the decomposition

into decoupled systems of the form of Equation 3.3 is a well studied problem in the field of

systems theory243.

Unfortunately, a hallmark of biochemical - in particular signaling - networks is the high

degree of coupling. Hence, a clean decomposition in the form of Equation 3.3 is in most

cases not possible. We therefore introduce a subtly different, more relaxed definition, which

we shall call the absence of retroactivity, illustrated in Figure 3.1: two modules ~c1 and ~c2

are connected without retroactivity if there is no pair of elements (compounds), one in each

module, which influence each other, i.e.

∄(i, j) : ċ1i = f1i(c2 j, ...)∨ ċ2 j = f2 j(c1 j, ...) with c1i ∈ ~c1,c2 j ∈ ~c2. (3.4)

The key difference with the previous concept of decoupling is that here, instead of the global

decoupling between the modules as a whole imposed in Equation 3.3, we just require a local

decoupling between all elements of one module and all elements of the other module. Note

that both criteria work on the systems considered as autonomous, since neither the inputs ~u

nor the outputs~y are taken into account for the delimitation of the modules.

cc

c c2j

1 2

1i

Figure 3.1: Schematic representation of the concept of retroactivity. If the state c1i of the module

~c1 influences the submodule state c2 j of the module ~c2 (solid line), but the state c2 j does not

directly influence c1i (dotted line), the connection between ~c1 and ~c2 is free of retroactivity.

A unidirectional feedback from another element ~c2 to ~c1 (dashed-dotted line) does not change

the input/output behavior of module ~c2, but restricts the range of possible values for the input

c1i
220. Note that hear each elemental block corresponds to one state associated to a differential

equation.
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Even the relaxed concept of absence of retroactivity (Equation 3.4) may not be completely

fulfilled by biological systems. Therefore, the algorithm to decompose signaling networks

which we shall see in Section 3.3 will rely on methods optimizing the modularity (i.e.,

finding the set of modules so that the number of retroactive connections among modules

is minimized), rather than pursue a clean separation.

The particularities of biochemical systems should be taken into account. Specifically, a

biochemical system is often described as a set of ordinary differential equations of the form

dc1

dt
= ċ1 = N11v1 +N12v2 + ...+N1kvk + ...+N1mvm,

...
dci

dt
= ċi = Ni1v1 +Ni2v2 + ...+Nikvk + ...+Nimvm, (3.5)

...
dcn

dt
= ċn = Nn1v1 +Nn2v2 + ...+Nnkvk + ...+Nnmvm,

or in matrix form
d~c

dt
= ~̇c = N~v, (3.6)

which is a special form of Equation 3.2. Here, ~v(~c,~u,~p) ∈ IRm is the vector of the m reac-

tions, and N ∈ IRn×m the stoichiometric matrix (see e.g.107). This structure of the differential

equations will be helpful in Section 3.3 to cleanly characterize, from a biochemical point of

view, the coupling among modules.

The structure of Equation 3.6 emerges naturally from a description of signaling networks

following the network theory, which is also a convenient framework for a modular approach.

We shall hence introduce in the next section the network theory and, thereafter, discuss in

Section 3.2.3 the different cases which lead to the absence of retroactivity.

3.2.2 Network theory and biological systems

A suitable frame for developing modular models is provided by the network theory intro-

duced by Gilles93. Systems are described as a combination of two types of elementary units:

components, which have storages of physical quantities and coupling elements, which de-

scribe the interactions between the components. These elements can be aggregated into a

single elementary unit (corresponding to the modules introduced in the previous section∗) on

a higher level, which can be again described by means of components and coupling elements,

leading to a hierarchical structure167. Components and coupling elements are connected by

two types of signal vectors: potential vectors, which are outputs of components and inputs of

∗Note that in Section 3.2.1 (e.g. in Figure 3.1) a unit was assigned to each component, and now a unit is

assigned to both the components and coupling elements.
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coupling elements, and current vectors, which are outputs of coupling elements and inputs

of components. For example, in a chemical network the compounds would be the compo-

nents, the reactions the coupling elements, potential vectors would carry information about

the concentrations from the compounds to the reactions and current vectors would bring in-

formation about the rates back to the compounds (see Figure 3.3(a)), leading to a system of

differential equations of the form of Equation 3.6. The application of the network theory to

biochemical systems leads to a modular modeling concept introduced elsewhere148.

One argument supporting the application of the network theory to cellular pathways is the

proposed hierarchy of biological systems148;156. Actually, this hierarchical structure can be

represented similarly for biological systems and chemical processes (see Figure 3.2). If we

consider a human body, we can divide it into different systems which fulfill different tasks

(e.g. the digestive system, the locomotive system, etc.), connected mainly (but not only) by

blood vessels. Each of these systems can be described as a sum of organs connected also

mainly by blood vessels. Organs are made up of several tissues, set up of cells. The coupling

between cells takes place by means of exchange of different substances as well as by direct

contact between the cells. The machinery of a cell can be decomposed into functional units

which perform different functions. These biochemical pathways are connected by common

compounds. Finally, each of these modules can be decomposed into molecules which interact

by means of molecular interactions or reactions (see Figure 3.2). This work focuses on the

last two levels of detail.
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Figure 3.2: Hierarchical structure of biological systems. Analogously to chemical processes167,

biochemical systems are structured in a hierarchical manner. The network theory is a convenient

framework for both kind of systems.
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3.2.3 The absence of retroactivity in biochemical systems

Consider the simple general schema depicted in Figure 3.3(a), which represents one reaction

(coupling element) r and three compounds (components), A, B and C, involved in the reaction

r, according to the network theory. If one of the potential or current vectors can be neglected,

the system shows a junction free of retroactive effects. But, under which conditions can a

current vector (rate) or a potential vector (concentration) be neglected? In the following we

discuss some typical simple cases.

Neglect of a potential. A potential can be neglected if the concentration of one of the

compounds, say C, does not affect the reaction rate, which corresponds to neglect vector 1 in

Figure 3.3(a). An example is an irreversible reaction, where the product does not affect the

reaction rate. Hence, an irreversible reaction of A and B to give C would be represented as in

Figure 3.3(b). There are some common irreversible reactions in biochemistry.
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Figure 3.3: Representation of different reactions schemes according to the network theory.

Dashed lines represent potential (concentration) vectors, solid thin lines current (rates) vectors,

and solid thick lines the borders of the modules. (a) general case; (b) neglect of a potential;

(c) neglect of a current; (d) system defined by Equations 3.7 and 3.8; (e) system defined by

Equation 3.10; (f) same system as in (e) but with a change of variable E0 = E +SE; (g) system

defined by Equation 3.11; (h) system defined by Equations 3.15 and 3.16.

Neglect of a current. A retroactive-free connection by neglect of a current is possible if a

compound influences a reaction rate, but the reaction rate does not influence this component

(i.e., if the vector 2 in Figure 3.3(a) can be neglected), leading to the system depicted in

Figure 3.3(c). One possibility would be if a compound is consumed or produced in a reac-

tion, but the amount involved in the reaction is negligible compared to the total amount. For
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example, if one of the substrates is in excess, say A ≪ B, then the amount of B consumed in

the reaction will be negligible compared to the total amount of B, leading to a unidirectional

connection.

If we consider the general case where a compound S is transformed into P, by reaction with

another compound E, being E regenerated in an additional step, as defined by the equations

E ′
⇋ E (3.7)

and

S + E ⇋ SE ⇋ P + E ′, (3.8)

we arrive at the schema depicted in Figure 3.3(d). The system is highly interconnected, with-

out unidirectional connections. If the second step of the second reaction (Equation 3.8) is

considered irreversible we obtain

S + E ⇋ SE ⇀ P + E ′ (3.9)

instead of Equation 3.8. The representation of the new system is obtained by deleting the

vectors 1 and 2 in Figure 3.3(d). In this system, there is a unidirectional connection defined

by the irreversible step, but the connection between E ↔ E ′ and S ↔ P has still retroactivity

(see Figure 3.3(d)). If, additionally, E = E ′, the system

S + E
k1

k−1

⇋ SE
k2

⇀ P + E (3.10)

is obtained, which is shown in Figure 3.3(e) and represents the irreversible conversion of

S into P catalyzed by an enzyme E. The reactions are normally described according to the

mass action law. Defining a new variable E0 = E +SE we obtain an alternative representation

(Figure 3.3(f)). Analyzing this schema we can see that a connection free of retroactivity from

the enzyme to the reaction can be achieved if:

(i) The reactions that influence E0 but are not represented in Figure 3.3(f) are not influ-

enced by E, which is equivalent to neglect the vector 1 in Figure 3.3(f). This is actually the

case introduced above of absence of retroactivity by an irreversible reaction.

(ii) The dynamics of the compound SE can be neglected (i.e., if dcSE/dt ≈ 0, which means

that the vector 2 in Figure 3.3(f) is negligible). This approximation is known as the quasi-

steady-state assumption, and leads to the reduced system (see for example236)

S → P, (3.11)
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following the reaction rate r the classical Michaelis Menten equation235

v =
Vmax ·S
Km +S

=
k2 ·E0 ·S
Km +S

, (3.12)

where Km = (k−1 + k2)/k1. We obtain thus a connection free of retroactivity by absence

of a current vector, as represented in Figure 3.3(g). If, additionally, the enzyme is saturated

by the substrate (Km ≪ S), then the reaction rate r becomes

r = k2E0 (3.13)

and the system can be represented as in Figure 3.3(g) deleting the vector 1. We obtain hence

an additional connection free of retroactivity between the reaction r and the substrate S.

The assumption dcSE/dt ≈ 0 is correct for the system defined in Equation 3.10 if ε ≪ 1,

where ε = E0/(Km +S0), being E0 and S0 the total concentration of E and S, respectively236.

This condition is fulfilled if E0 ≪ S0 and if E0 ≪ Km. E0 ≪ S0 (much less enzyme than

substrate, a usual situation in many in vitro experiments) is the usual assumption for the

application of Michaelis Menten equation.

The condition E0 ≪ Km can be rewritten as E0k1 ≪ k2 + k−1. Since k1 is the kinetic con-

stant for the formation of the complex SE, and k−1 and k2 the kinetic constants for the

dissociation of the complex SE (see Equation 3.10), this condition can be interpreted as the

decomposition of SE being much faster than the formation of SE. This situation is analogous

to many electrical measuring devices, e.g. a thermocouple. In a thermocouple, a difference

of temperature generates a voltage V , which in turn produces a current I through a conductor.

A very high value is given to the resistance R and therefore the current is very low (V = IR).

This current provides a measurement of the voltage that does not affect the source of the sig-

nal. In the case of an enzymatic reaction where E0 ≪ Km, the reaction rate (or the amount of

product) is a ”measurement” of the concentration of the enzyme, but, since E0 ≪ Km, there

is a high resistance against the consumption of the enzyme, which is thus not affected by its

”measuring device”.

The Michaelis Menten expression (Equation 3.12) is widely used for enzymatic reactions

without considering whether the assumptions described above are fulfilled or not.

If the Equation 3.7 of the general case can be neglected, but the second term of the Equa-

tion 3.8 can not be considered irreversible, we obtain a system defined by the equation

S + E ⇋ SE ⇋ P + E (3.14)

which, under the quasi-steady-state assumption, can be transformed into a system with a

unidirectional connection by neglect of a current as depicted in Figure 3.3(c).
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On the other hand, the neglect of the complex SE in the general case (Equations 3.7 and

3.8) leads to the system

E ′
⇋ E (3.15)

S + E ⇋ P + E ′. (3.16)

As can be seen in Figure 3.3(h) this system is still highly interconnected.

In the following section, we shall formalize these ideas and devise an algorithm to realize

them.

3.3 Automatic Identification of Modules Considering

the Absence of Retroactivity

In Section 3.2.3 it was introduced how, if one of the potential or current vectors can be

neglected, the system shows a junction free of retroactive effects. Additionally, typically

biochemical cases were analyzed which lead to the neglect of a current vector (rate) or a po-

tential vector (concentration). In this section, we formalize the concept of absence of retroac-

tivity and show how this can be implemented in an algorithm to detect modules considering

the concept of absence of retroactivity.

3.3.1 Formalizing the concept of absence of retroactivity into

mathematical equations

As described in the previous Section 3.2, there are two cases which can lead to a connection

free of retroactivity: neglect of a potential and neglect of a current. Therefore, the first step

towards a mathematical formalization of the concept of retroactivity is to determine which

reactions influence which storages and vice versa.

3.3.1.1 Neglect of a current

Recall from Equation 3.6 that the balance of the concentration of a storage ci is a function of

the reaction rates,

dci

dt
= ċi = Ni1v1 +Ni2v2 + ...+Nikvk + ...+Nimvm.

Therefore, a reaction vu does not influence significantly a storage ci (see Figure 3.4) if its

contribution to the balance is negligible, that is to say, if

Niuvu ≪
m

∑
k=1

Nikvk ⇒
Niuvu

∑m
k=1 Nikvk

= ĝc
iu ≪ 1. (3.17)
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This definition might lead to numerical problems since in steady state dci

dt
= ∑m

k=1 Nikvk = 0.

Using the absolute values would circumvent this problem; we use thus

|Niuvu|
∑m

k=1 |Nikvk|
= gc

iu ≪ 1, (3.18)

which is a more strict condition than Equation 3.17. Therefore, the time-dependent function

gc
iu defines the effect of the reaction vu on a storage ci.
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Figure 3.4: Representation of the conditions leading to a retroactive-free connection. Dashed lines

represent potential (concentration) vectors, and solid thin lines current (rates) vectors.

3.3.1.2 Neglect of a potential

Since in the general case the reaction rates vu(~c,~p,~u) are not a linear function of the concen-

trations, the effect of a storage c j on a reaction vu can be estimated by the derivative

ε∗u j =
∂vu

∂c j
(3.19)

This derivative is known as (unscaled) elasticity in the field of Metabolic Control Analy-

sis107, and we adopt this nomenclature here. For example, in the case of a reaction v1

c1

k1

k2

⇋c2 (3.20)

following simple mass action law kinetics, ε∗11 = k1 and ε∗12 = −k2.

However, the derivative alone does not capture the full effect of a component on a reaction.

For example, if c2 = 0, then the actual effect of c2 on v1 is zero, but ε∗12 = k2. Therefore, it

would be more convenient to use the term ε∗u jc j. Accordingly, a storage c j does not affect

significantly a reaction vu (see Figure 3.4) if its effect is negligible when compared to that of

the rest of storages, i.e.

|ε∗u j|c j ≪
n

∑
k=1

|ε∗uk|ck ⇒
|ε∗u j|c j

∑m
k=1 |ε∗uk|ck

= g
p
u j ≪ 1. (3.21)

The time-dependent function g
p
u j defines thus the effect of a storage c j on a reaction vu.

Note that, as in the case of the neglect of a current gc, we use absolute values. If we divide
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numerator and denominator by vu we obtain

g
p
u j(t) =

|ε∗u j|c j

|vu|

∑m
k=1

|ε∗uk|c j

|vu|
=

|εu j|
∑m

k=1 |εuk|
, (3.22)

where εu j(t) is the scaled elasticity, εu j = ∂vu

∂c j

c j

vu
= ∂vu/vu

∂c j/c j

107.

To sum up, the information about the retroactivity is stored in the time-dependent matrices

gp : IR+ → IRn×m and gc : IR+ → IRm×n.

3.3.1.3 Some considerations on the functions gc and gp and the structural

retroactivity

The values of gc
i j or gc

u j are strictly zero if there is a structural absence of retroactivity. For

example, a strictly irreversible reaction will lead to Niu = 0⇒ gc
iu(t) = 0 between the reaction

u and the product i, and an enzymatic reaction modeled with Michaelis Menten kinetics will

result in εu j = 0 ⇒ g
p
u j=0 between the enzyme j and the reaction u.

However, in many other cases, gc or gp might not be strictly zero but have very low values.

For those cases, a criterion determining what is low enough is required. Simple criteria could

be that the maximal or the average value might be lower than a certain threshold θ, that is to

say

max
t

(gc
u j(t)) < θ (3.23)

or
1

∆t

Z ∆t

0
gc

u j(t)dt < θ (3.24)

at a characteristic trajectory. Alternatively, one could perform more exhaustive analyses using

e.g. Monte Carlo methods to explore the parameter space. Note that to determine the rigor-

ous, stricter, structural absence of retroactivity only the structure of the network is needed,

while for the approximate, kinetic-dependent absence of retroactivity a parameterized model

and a particular ’experimental (simulation) condition’ has to be defined.

3.3.1.4 Definition of the retroactivity matrix

Once a certain criterion has been applied, the matrices Rp ∈ {0,1}n×m
and Rc ∈ {0,1}m×n

can be obtained which define which storages affect which reactions and vice versa. Now, at

the connection between a storage ci and a reaction v j following cases are possible:

R
p
i j = 1, Rc

ji = 1 retroactive connection

R
p
i j = 1, Rc

ji = 0 unidirectional connection (neglect of current)

R
p
i j = 0, Rc

ji = 1 unidirectional connection (neglect of potential)

R
p
i j = 0, Rc

ji = 0 absence of connection

(3.25)
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Importantly, if one considers only the structural retroactivity, since Ni j = 0 ⇒ Rc
i j = 0 and

εi j = 0 ⇒ Rp = 0, Rc and Rp correspond to the matrices expressing the occupancy of N and

ε (what we shall call the indicator matrices NI and εI ) , respectively:

Rc
i j = NI

i j =

{
0 if Ni j = 0

1 else
(3.26)

and, analogously,

R
p
i j = εI

i j =

{
0 if εi j = 0

1 else
(3.27)

From now on we shall concentrate on the structural case, but the same arguments can be

applied to the general case.

Now, defining a matrix R ∈ {0,1,2,3}n×m
, which we shall call the retroactivity matrix , so

that Ri j = R
p
i j + 2Rc

ji, we would obtain the information about the retroactivity in a compact

manner:

Ri j = 0 absence of connection

Ri j = 1 unidirectional connection (potential)

Ri j = 2 unidirectional connection (current)

Ri j = 3 retroactive connection

(3.28)

3.3.2 Implementation into an algorithm

The next step should be to try to demarcate the modules in such a way that the number of

retroactive connections (where Ri j = 3) among modules is minimized (ideally zero), and

maximized inside the modules. Considering the matrix Rr ∈ {0,1}n×m
where

Rr
i j =

{
1 if Ri j = 3

0 else,
(3.29)

clustering technics can be applied, as those introduced in Section 3.1.2. The methods of New-

man and colleagues, relying on the maximization of a mathematical value of the modularity

(see Section 3.1.2), seem particularly suited for this task, since we are trying to minimize the

number of retroactive connections (recall Section 3.2.1).

However, these approaches consider mostly (undirected) interaction graphs of networks,

but here we are dealing with a bipartite graph (since there are 2 kinds of nodes: storages and

reactions). Unfortunately, clustering algorithms for bipartite graphs are much less developed.

A detour to circumvent this problem would be to somewhat convert the information about the

relationships between the storages and reactions coded in R into a quadratic matrix defining

the connections among one type of elements (storages). Thereby we would move from a
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bipartite to a monopartite graph.

A natural monopartite graph would be one reflecting the reciprocal influence among the

compounds. A compound ci does not influence directly a compound c j if there is no con-

nection from ci to c j through any reaction. The influence of ci on c j via the reaction vv is

determined by Rc
jv ·R

p
vi: the influence of ci on vv (R

p
vi) multiplied by the influence of vv on c j

(Rc
jv). Thus, extending this argument to all reactions, one gets that the influence of ci on c j

reads

Rc
j1 ·R

p
1i +Rc

j2 ·R
p
2i + ...+Rc

jm ·Rp
mi =

m

∑
k=1

Rc
jk ·R

p
ki, (3.30)

and thus, if this expression is equal to zero, there is no influence of ci on c j. And for the

structural case, from Equations 3.26 and 3.27,

m

∑
k=1

NI
jk · εI

ki = 0 (3.31)

There is a close relationship between this expression and the Jacobian J ∈ IRn×n with

Ji j =
∂ fi

∂c j
(3.32)

of a system of differential equations in the form of Equation 3.2. The sign of Ji j informs

whether c j has a direct positive or negative influence on ci, and a matrix considering the sign

of these entries can be seen as the adjacency matrix of the underlying interaction graph143.

The relation to Equation 3.31 is simply obtained by deriving fi with respect to c j. From

Equation 3.6 it results

∂ fi

∂c j
= Ni1

∂v1

∂c j
+Ni2

∂v2

∂c j
+ ...+Nik

∂vk

∂c j
+ ...+Nim

∂vm

∂c j
, (3.33)

that is

Ji j = Ni1ε∗1 j +Ni2ε∗2 j + ...+Nikε∗i j + ...+Nimε∗m j, (3.34)

or in compact manner

J = Nε∗. (3.35)

Therefore, for the structural case that we are considering, the indicator matrix of the Jaco-

bian JI ∈ {0,1}n×n
,

JI
i j =

{
1 if Ji j = ∑m

k=1 Nik · εk j 6= 0

0 else
(3.36)

would provide a starting point for these algorithms.

However, one still needs to include the criterion of the retroactivity. We are trying to define

modules so that the number of retroactive connections are maximized inside the modules and
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minimized among the modules. Therefore, for the decomposition purpose, the presence of a

unidirectional connection is equivalent to no connection at all. The connection between two

compounds ci and c j is retroactive if JI
i j = JI

ji = 1. If JI
i j = JI

ji = 0, there is no connection

between the elements, and if JI
i j = 1 and JI

ji = 0 there is an unidirectional connection from

ci to c j (involving either the neglect of a current or of a potential). The retroactivity can thus

be captured via a symmetric matrix JIR ∈ {0,1}n×n
, so that

JIR
i j = JIR

ji =

{
1 if JI

i j = JI
ji = 1

0 else
(3.37)

This has also an advantage for applying Newman’s algorithms, since they are devised for

symmetric matrices. We will use thus the Newman definition for Modularity (Equation 3.1)

applied to JIR and we will try to optimize it using different methods, which are succinctly

described in the next section.

3.3.2.1 Optimization algorithms

Let us recall that we try to optimize the modularity, defined as the number of edges within

modules with respect to the number of edges within modules expected for a random network.

This concept can be defined mathematically as in Equation 3.1183, which reads for a network

decomposed in 2 modules

Q =
1

4m

n

∑
i j

(Ai j −
kik j

2m
)(sis j +1) (3.38)

and in matrix form

Q =
1

4m
~sT ·B ·~s, (3.39)

with si = 1 if i belongs to module 1 and si = −1 if it belongs to module 2. A number of

algorithms have been used to optimize the modularity of Equation 3.1. The results of the

different algorithms were compared for the examples discussed below (see Section 3.4), and

for each case the best results were taken. Importantly, the algorithms as implemented here,

and as should be according to the ideas of Newman, do not require a priori information about

the number of modules, they rather propose a number and how the nodes are distributed

along the modules. The methods will be presented here succinctly; for a detailed description

of them, the reader is referred to the original papers cited and to87.

Leading Eigenvector method operates as follows: first, it separates the network into two

modules. Subsequently, each module is further decomposed into two modules, and so on. The

procedure stops when, upon a certain decomposition, the modularity does not increase183. In
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each iteration, to determine which elements belong to which module, the eigenvalues † λ of

the matrix B (see Equation 3.39) are evaluated. The rationale reads as follows: Let us write~s

as a linear combination of the normalized eigenvectors ui so that s = ∑n
i=1 ai~ui with ai =

~uT
i ~s.

Then, from Equation 3.39 it follows

Q =
1

4m

n

∑
i=1

(~uT
i ·~s)λi. (3.40)

Since the eigenvector umax associated to the largest eigenvalue (λmax) has the heaviest weight

on Equation 3.40, we define s as parallel to umax as possible, to maximize the product~uT
imax ·~s.

Since si can only be +1 or -1, we define si = +1 (i.e., element i belongs to module 1) if

the corresponding element of umax is positive and si = −1 ( i belongs to module 2) if it is

negative183. This procedure is applied recursively then to each of the modules obtained: for

each submodule a new objective function Q is calculated and maximized.

Multiple Eigenvector method can be considered an extension of the previous method

(leading eigenvector). Here, one tries to use the information about several eigenvalues. Im-

portantly, this method allows to determine all modules in one single step184.

Extremal optimization is a method13;26 that considers a population of individuals, each

of them with a certain fitness. A new fitness is assigned to the individual with the smallest

fitness, and subsequently a certain global fitness of the population is computed. Since a

change in an individual affects the whole population, the global fitness of the population

may increase (and then the change is updated) or decrease. In case of decrease, one would

in principle not accept the change. However, to avoid getting trapped in local minima, those

negative changes are accepted with low frequency13.

The method can be naturally applied to find modules in networks62: one considers each

node as an individual and its fitness, roughly speaking, as the number of edges connecting

it with other members of the modules related with its total number of edges it is bound to.

The global fitness of the population, which is the objective function, would correspond to the

modularity as defined in Equation 3.38.

Simulated annealing140 is a method inspired by thermodynamics used to solve optimiza-

tion problems in a wide range of fields (e.g. parameter estimation). It combines a relatively

high efficiency with the ability to avoid local minima. It can be straightforwardly applied to

maximize the modularity, by simply defining Equation 3.38100 as cost function.

†for a certain matrix B, if there is a vector ~v 6= 0 such that B ·~v = λ ·B, then λ is an eigenvalue, and ~v an

eigenvector of B
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Table 3.1: Types of connections between two species as a function of JIR and NCI . All possible

dependencies between 2 storages i and j can be unambiguously determined by the values of

JIR
i j , JIR

ji , NCI
i j and NCI

ji .

JI
i j 0 0 1 0 1 0 1 1

JI
ji 0 0 0 1 0 1 1 1

NCI
i j 0 1 0 0 1 1 0 1

NCI
ji 0 1 0 0 1 1 0 1

(Bio) No Products of Control by Control by Reciprocal control Coupled

Chemical connection common irrev. potential current by potential storages

Interpretation reaction (enzyme) (irrev. reaction) (enzyme) (rev. reaction)

ci

vu

cj

ci

vu

cj

ci

vu

cj

ci

vu

cj

ci

vu vv

cj cj

ci

vu

3.3.2.2 Characterization of the connections among the modules

After applying a modularity analysis, one would like to know what kind of connections bind

the different modules. This information is, however, not present in the matrix JI alone. One

can obtain this information from the matrices Rp(ε∗) and Rc(N). Alternatively, one can de-

duce the nature of the connections from JI and N. The latter has the advantage that it is not

required to compute ε∗ if it is not available (JI is available from the previous steps and N

is easily obtainable). Additionally, one remains in the monopartite (concentrations) descrip-

tion and does not need to go back to the bipartite (concentrations+reactions) formalism. The

matrix NC = N(−N)T is a symmetric matrix so that NC
i j = NC

ji 6= 0 if there is a mass flux be-

tween the species i and j, and is 0 otherwise69. Considering conjunctly its indicator matrices

NCI ∈ {0,1}n×n
and JI the different cases can be retrieved (see Table 3.1). This will allow us

to characterize the connection among the modules, as will be shown in Section 3.4.

3.3.2.3 Integration of the algorithm into ProMoT

The identification of the modules underlying a given model provides useful insights into its

structure. More useful would be, however, to allow one then to subsequently analyze the

system in a modular manner. For example, one would like to consider only one module in

isolation, or the combination of several of them, eventually testing different variants consid-

ering different connexions between modules, a reduced version of one of the modules, etc.

These analyses are the topic of Section 7. Rewriting by hand the model to consider all these

possibilities is a cumbersome and error prone task. Therefore, it would be convenient to have

at one’s disposal a framework where these tasks can be performed in an automatic man-

ner. The modeling tool ProMoT (Process Modeling Tool)95 provides a natural environment
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for such a modular modeling: ProMoT is based on an object-oriented modeling concept,

facilitating the reuse and combination of modules. For this purpose, different libraries of

models and modules can be implemented, which can be easily combined via a user inter-

face. Thus, ProMoT allows to intuitively implement models in a modular and hierarchical

manner. Therefore, an extension for ProMoT was developed, which allows to import models

modularly decomposed according to the procedure described above. Currently, the modu-

larity analysis is performed in Matlab170 and the results are imported into ProMoT. A full

integration of those methods into ProMoT is to be performed in the close future.

In the following, the applicability of the criteria to real cases will be exemplified by sev-

eral examples of mathematical models of signal transduction pathways, ranging from the

paradigmatic MAP kinase cascade to the complicated EGF signaling pathway in humans

(introduced in Chapter 2).

3.4 Examples

3.4.1 MAP kinase cascade

Considering its structure, the MAPK Cascade can be decomposed in three submodules cor-

responding to the 3 kinases, as depicted in Figure 2.2. The connections between the three

modules belong to the type discussed above (Equation 3.10). The assumption (i) introduced

in page 23 does not hold, because the concentration information about E (e.g. MEK-PP) is

needed in order to compute the dephosphorylation steps. However, the assumption (ii) might

hold, depending on the values of the kinetic parameters and kinases concentrations. Some

mathematical models (e.g.29;134) that include the MAPK cascade have been set up assum-

ing (ii), i.e., the quasi-steady-state assumption - which implies the application of Michaelis

Menten kinetics,-while others have not (e.g.234). As a proof of principle for the approach

outlined in Section 3.3, we shall analyze the MAPK Cascade model of Kholodenko134.

This model is set up simply, with all of the reactions described by Michaelis Menten ki-

netics (which provides a connection between the modules free of retroactivity), see Sec-

tion 2.2.1.1‡. The model includes a negative feedback from ERK to Raf (see Figure 2.2). As

expected, the algorithm finds the 3 modules (Figure 3.5), and characterizes their connections

accurately.

‡In Section 3.4.4 we shall explore the modularity of a MAPK cascade modeled with mass-action law, embed-

ded in a larger model.
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P

P PP

P PP

ERK ERK* ERK**

MEK MEK* MEK**

Raf Raf*

(a) Biochemical representation

of the MAPK cascade

(b) Result of the automatic decomposi-

tion and subsequent characterization

Figure 3.5: Automatic modularization of the MAPK cascade model of Kholodenko134. Each color

of the edges represents a module: Raf (green), MEK (red) and ERK (yellow). Green lines

represent control by a potential, and black bidirectional (potential+current) coupling. Figure

Figure 3.5(b) was created with Pajek15.

3.4.2 Simple receptor system

The modularity of the MAPK cascade can not only be captured applying the concept of

retroactivity, but also the elementary flux modes (EFMs) (see Section 3.1.3). However, the

latter fails when dealing with subsystems with no mass flow, as for example the binding of a

ligand to a receptor. If there is a production and degradation of the receptor, an EFM would be

present in that module but if not, there is no EFM and thus this approach can not be used. A

similar problem would arise if one considers the binding of two proteins as a necessary step

in a signaling cascade. A simple example, describing an extension of the MAPK Cascade of

the previous section (Figure 3.6) to include a receptor, illustrates this situation.

3.4.3 EGF signaling network

We shall now consider the comprehensive map of EGF signaling (see Section 2.2.1) of Oda

et al.187, which is probably the largest model of a signaling network within a kinetic (sto-

ichiometric) framework. The enzymatic reactions are described as the conversion of a sub-

strate into a product, being the enzymes considered as modifiers of the reaction. This can be

interpreted as an abstraction of the Michaelis-Menten kinetics: the enzyme is not sequestered

by the reaction but no specific law is given. This would hinder to make simulations with this

model but, fortunately, is enough for our purposes here. In spite of the remarkable size and

complexity of the network (comprising over 200 reactions and 300 species), the algorithm

is able to decompose it into 42 modules. The results were correct in the sense that coupled

elements were assigned to the same module, but imperfect since, in many cases, completely

decoupled elements were grouped together (e.g. module 7 lumped together MKK1, MKK4,

and CREB, Figure 3.4.3). Since the separation into 2 modules of decoupled elements should
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(a) Biochemical representation

of a simple receptor system

EM

EM EM

EM

EM

(b) Elementary flux modes

in the model

(c) Automatic decomposition and charac-

terization

Figure 3.6: Retroactivity vs. Elementary Flux Modes as a criterion to identify modules. While

both are able to capture the modules for the cycles of activation/deactivation, the EFMs (Fig-

ure 3.6(b)) fail to identify the unit describing the binding of ligand to receptor, since there is no

mass flow in steady state.

increase the modularity, this is most probably due to the fact that the optimization algorithms

are not able to find the global optimum, and they remain stuck in a local optimum.

3.4.4 EGF-induced MAPK cascade

The EGF induced MAPK Cascade was introduced in Section 2.2.1. Here, the model of the

EGF induced MAPK Cascade of Schoeberl et al.234 will be analyzed, which describes the

activation of the ERK MAPK Cascade by EGF. The model includes (a) the reception of

EGF, (b) the formation of signaling complexes by interaction of several signaling proteins

(namely Sos, Grb2 and Shc), (c) the activation of a signaling intermediate called Ras and (d)

the activation of the Raf/MEK/ERK MAPK Cascade (see Figures 3.8 and 3.9). Furthermore,

the model also includes the internalization processes: the EGF receptor, alone or bound to

other proteins, can be internalized. Once internalized, the EGFR is still active and can bind to

the same compounds as the receptor on the surface234. Hence, the internalization duplicates

all the steps described above and increases the complexity of the system (see Figure 3.9(a)).

This duplication, together with the different complexes that the 13 components (from the

EGF ligand to ERK) can form, gives rise to 94 states included in the mathematical model.

It constitutes thus a submodel of the network of Oda et al.187 analyzed in the previous

section. However, we consider this case at the end as it poses the hardest problem to the

algorithm. The difficulty arises from the fact that all reactions are modeled with mass action

law, and from the high grade of entanglement of the model (see Figure 3.8).

Let us try to demarcate the modules first ’by hand’. If we focus on the non-internalized
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Figure 3.7: Automatic decomposition into modules of the EGF signaling network of Oda et al.187.

For the sake of simplicity, the names of the compounds have been replace by numbers, and a

label in a golden box indicates the key molecules comprised in each of the modules. The color

of the edges labels the module they belong to. Green lines represent control by a potential, blue

ones control by a current, and black ones bidirectional (potential+current) coupling. The figure

was created with Pajek15.

pathway of the model (see Figure 3.9(a)) , the system can be decomposed as depicted in

Figure 3.8. The first module includes the EGF reception process. In principle, it is not clear

which particular step should be the border of the module, e.g. the receptor phosphorylation

(v3 in the model of Schoeberl et al.234, see Figure 3.9(b)) or the binding of GAP. A careful

analysis of simulation results reveals that, although the receptor phosphorylation is formally

considered a reversible step in the model, it is a suitable point to separate units, since the

effect of the backward term is almost negligible, and the connection is hence almost free

of retroactivity (data not shown). Note that when we apply the algorithm in this section we

will use only structural information. However, in Section 3.4.4.1 we will perform a precise

analysis using kinetic parameters and simulation data.

The next unit is the signaling complex formation. Here we can conceptually distinguish

two submodules, corresponding to the complex formation with and without the adaptor

molecule Shc (see Figure 3.9(b)). These two submodules are however strongly coupled since

they share several signaling molecules. The output signal of both units (compounds c35 and

c25 in the model) is integrated into an enzymatic signal leading to a connection of the type

discussed above (Equation 3.14).



3.4. EXAMPLES 37

Figure 3.8: Biochemical representation of the EGF-induced MAPK Cascade of Schoeberl

et al.234. The colored boxes represent the modules as one would define them applying the

concept of retroactivity ’by hand’, i.e., by inspecting the network visually222.

The next elements are the activation of Ras, Raf, MEK and ERK. The activations of Ras

and Raf are strongly coupled, since Ras activates Raf through a reaction of the type of Equa-

tion 3.9. Therefore, it is more reasonable to consider Ras and Raf as a unique module, obtain-

ing three modules (Raf-Ras, MEK and ERK, see Figure 3.9(b)) with enzymatic outputs (c45,

c51 an c59, respectively). The connection between Raf-Ras and MEK modules, as well as the

connection between MEK and ERK modules, belong to the type defined in Equation 3.10

which, even if the quasi-steady-state assumption does not hold, are reasonable points for

defining modules’ borders, at least from an ’intuitive’ perspective.

To check the ability of the algorithm to cope with this entangled structure (see Fig-

ure 3.10(a)), and at the same time examine the accuracy of the ’intuitive’ decomposition

described above, the whole model as published by Schoeberl et al.234 is analyzed. Remark-

ably, the algorithm proposes the same number of modules we have discussed above and,

additionally, the distribution of the nodes in the modules is in both cases very similar (see

Figure 3.9(b)). By applying a more advanced optimization algorithm, a slightly higher mod-

ularity could be achieved based on the decomposition of the Raf-Ras module into the inter-

nalized and not internalized part87.
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Figure 3.9: Representation of the EGF signaling model of Schoeberl et al.234. (a) 3D representation

of the whole model; (b) Modular representation of the non-internalized part of the model. The

module Raf-Ras corresponds to a modified version of the module MAPKKK of the MAPK

Cascade, the module MEK to the module MAPKK and the module ERK to the module MAPK

(see Figure 2.2).

3.4.4.1 Quantitative analysis of the EGF-induced MAPK cascade

The examples discussed above rely on the structural absence of retroactivity. This has been

the focus of our analysis since we wanted to handle as many networks as possible: for most

of them detailed and complete information about kinetic parameters and concentrations is

not available, and thus a quantitative analysis of the retroactivity as outlined in Section 3.3.1

is not possible. The model of Schoeberl et al.234 is a good example to test this approach on

a realistic case, as it is a fully characterized model.

Here, we shall use typical simulation conditions of the model to quantify the retroactivity

matrix. Subsequently, we used a criterion to define which retroactivities are important defined

as follows: for each time point, we compare the value of all elements Ji j (which represents

the influence of ci on c j) and Jmax,i := max
j

Ji j the maximum of Ji1, Ji2, etc., representing

the most important influence on c j. We define a certain Ji j to be relevant (and thus JI
i j = 1),

if, at least for one time point, Ji j is larger than a certain fraction ε of the maximum Jmax,i
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(a) JI matrix

(b) Result of the automatic decomposition

Figure 3.10: Automatic modularization of the model of the EGF induced MAPK cascade model of

Schoeberl et al.234. In Figure 3.10(b), the color of the edges labels the module they belong to.

Blue lines represent control by a current and black bidirectional (potential+current) coupling.

Note that the colors of the modules correspond to those of Figure 3.8. Both figures were created

with Pajek15.
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(Equation 3.23),

JI
i j =

{
0 if

Ji j(t)
Jmax,i(t)

< ε ∀t

1 else.
(3.41)

For ε = 0 one would get the structural retroactivity, and thus the same results as in the pre-

vious section. Increasing the values of ε, elements in JI
i j become 0 which were before 1, and

thus the coupling of the network decreases. Therefore, the number of modules increases. For

instance, for ε = 0.001, one finds 9 modules, and 11 for ε = 0.1 (data not shown). The re-

sulting modules, however, were not intuitively ’good’ modules. Therefore, it seems that the

application of a ’fine’ quantitative analysis, at least in this case, is not an advantage.

3.5 Conclusions

This chapter considers the modularity of signaling networks from a systems-theoretical per-

spective. A new criterion to demarcate modules, namely the absence of retroactivity, is in-

troduced and, relying upon methods from graph theory, implemented into an algorithm. The

method allows to work at two levels of detail: either at the level of the pure stoichiomet-

ric structure of the model (with the advantage that much less information is required), or at

a more detailed level, where kinetic information can provide subtle additional information.

The procedure was tested with a number of case studies, mainly focusing on the structural

approach. Particularly important are the results with the EGF signaling map of Oda et al.187

and the EGF-induced MAPK of Schoeberl et al.234. These examples have been carefully

chosen as they represent, as far as signaling networks are concerned, the largest model cur-

rently available the former, and (probably) the most entangled the latter. The fact that the

algorithm successfully decomposes these two models suggests that our approach is able to

deal with any state-of-the-art model.

Several points may be subject of future development. For example, we have focused on

a ’single-level’ modularity: find a number of modules, all of them at the same hierarchical

level. It would be interesting to analyze recursively the modularity of them, obtaining thus a

multi-hierarchical modularity. Besides, the optimization algorithms proved to be remarkably

efficient, but, particularly in the largest case (the EGF signaling map of Oda et al.187), not

perfect. There may be additional methods which could be tested, as well as combinations of

them. Particularly promising in the case of highly decoupled networks (as the EGF signaling

map of Oda et al.187) seems to be the combination of graph theory methods to identify

completely decoupled subgraphs in the graph (which are computationally not expensive and

could be thus used as a pre-processing step) with the methods described here.

The integration of the decomposition method presented here into ProMoT provides a

unique platform for a modular analysis: one can take a model - e.g. in SBML119 (Systems

Biology Markup Language) from a database such as BioModels153,- ’blindly’ decompose
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it into sensible subunits, and easily create models of isolated subunits and combinations of

them for analysis. In this context, it would be of interest to have in ProMoT a visualization

of the models exploiting this modularity.
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Chapter 4

Definition and Setup of a Construction

Kit for Signaling Networks

As explained in Section 2.1, a hallmark of the proteins involved in signal transduction pro-

cesses is their ability to bind different molecules via different domains. Recently, a new

approach has been developed tailored to this fact, which thus considers the protein domains

as the actual units of signal transduction. Applying this new method, signal transduction net-

work models posses a modular structure where, if the domains do not interact allosterically,

each module corresponds to a molecular domain47;221. Since the possible events taking place

at a single domain are discrete, the number of possible modules is limited. Therefore, one

could develop a construction kit of motifs, so that any signal transduction network can be set

up as an aggregation of those elements.

Once such a kit is defined, it would be reasonable to analyze its elements systematically;

upon thorough analysis of the units, the properties of combinations of them should be easier

to understand. Chapter 5 is devoted to this goal. In this chapter, the method leading to the

construction kit will be presented in Section 4.1, the elements of this library will be intro-

duced in Section 4.2, and its implementation in ProMoT will be outlined in Section 4.3.

4.1 A Domain Oriented Approach leads to a Natural

Decomposition of Signaling Networks into Modules

Consider a signaling network. If one tries to describe all possible combinations of proteins,

the number of feasible states explodes to thousands or even millions27;47;111;221 (see Fig-

ure 4.1(a)). This combinatorial complexity has typically been circumvented by assuming

that only certain compounds are relevant (see Figure 4.1(b)). However, it is not possible to

determine a priori which of all the possible molecular combinations of proteins (which we

shall call micro-states) are the important ones68, and therefore, a rigorous description has to

include all possible states23.
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(a) (b)

(c) (d)

Figure 4.1: Combinatorial complexity in signal transduction networks and their rigorous, mod-

ular description using a domain-oriented approach, illustrated by a protein with 3 do-

mains. The first domain can be phosphorylated by an enzyme E1. At the second domain, an-

other protein A can bind and at the third, upon phosphorylation by an enzyme E2, a protein

B can bind. The possible states (micro-states) are represented in Figure 4.1(a). Traditionally,

the modeler assumes an order of reactions, e.g. as in Figure 4.1(b) which, however, is not al-

ways justified. Note that in this case, a separation into modules is not possible. If the domains

do not influence each other, they can be rigorously considered as independent entities (Fig-

ure 4.1(c)), corresponding to the simple motifs B1, C2s and C2B1 depicted in Figures 4.4(a),

4.3(a), and 4.4(b), respectively. If two are somehow interconnected, they must be considered

together, while the third can be considered alone (Figure 4.1(d)).

Recently, a new approach based on the macro-states (the states of the different domains

considered independently, see Figure 4.1(c)) instead of the micro-states has been proposed27

which has been extended and formalized by Conzelmann et al.48. The latter methodology

provides a description exactly equivalent to the microscopic one, but the resulting models

are of a lower dimension and -in contrast of the ’intuitive’ reduction of e.g. Figure 4.1(b),-

are structured in a modular manner, corresponding each module to a protein domain (and

thus, to one macrostate). The key idea is that a state space transformation allows a reversible

move between the macroscopic and microscopic description. This approach, which has been

exposed in a detailed manner elsewhere48, will be introduced here succinctly for the sake of
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completeness. The method operates according to the following steps48:

1. Define a complete mechanistic description of the microstates ~c of the system (corre-

sponding to Figure 4.1(a)), creating a set of ODEs in the form of Equation 3.6. The

macro-states of interest~y are a function of the micro-states,~y = h(~c),

2. Adjust the kinetic parameters according to domain interactions. For example, if a scaf-

fold molecule M can bind to A and B, and both binding sites are independent, the

kinetic parameters for the binding of M to A will be the same for all micro-states

where M can bind A:

M +A
k1

kr1

⇋ MA (4.1)

MB+A
k1

kr1

⇋ MAB. (4.2)

Importantly, this simplification is independent of the parameter values; one only needs

to know whether the binding sites influence each other.

3. Perform a linear transformation~z = T~c, where T is a quadratic, non-singular matrix.

The resulting states zi can be classified into levels or tiers, representing each tier a

level of detail: the 0th tier corresponds to the total concentration of the protein, the 1st

tier to the macro-states (the state of the individual domains), the 2nd tier to the state

of all pairs of domains (i.e., the concentration of proteins with concurrently occupied

domains 1 and 2, 1 and 3, 2 and 3, etc.), the 3rd tier to the triples of domains, and so on.

Importantly, this transformation is general, i.e., independent of domain interactions and

kinetic parameters48. Furthermore, the new states of tiers 0 and 1 represent the state

of the domains (e.g. degree of phosphorylation, of binding, etc.), a quantity biologists

are used to work with, and that can be measured more easily than the concentration of

particular species.

4. In many relevant cases the transformed model equations for~z can be decomposed into

two sets~z1 and~z2 so that

~̇z =

[
~̇z1

~̇z2

]
=

[
g1(~z1,~u)

g2 (~z1,~z2,~u)

]
, (4.3)

~y = h(T−1~z1). (4.4)

In systems theory~z2 is said to be non-observable122∗ because~z2 can not be determined

from the output function ~y. The macro-states (which are a subset of~z1) are not influ-

∗Formally, a system is said to be (completely) observable if, starting at any time point, the state vector can be

determined from the output function defined over a finite time interval122.
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enced by the state vector~z2 and, therefore, a reduced model only has to account for the

ODEs~̇z1 = g1(~z1,~u)48.

A key advantage is that the domains can be modeled as independent motifs when the

domains do not influence each other (Figure 4.1(c)). However, if the state of one domain

influences the properties of another, they must be considered together (Figure 4.1(d)). A

typical example is when binding of a protein to a certain domain changes the conformation

of another domain. Note, however, that if e.g. the phosphorylation of a domain converts it

into an active catalytic center which in turn can affect another domain in a trans-molecular

manner, but the latter domain does not affect the former, then the domains can be modeled

independently (see Figure 4.2).

Figure 4.2: Trans-molecular interactions and their description in the domain-oriented approach.

If e.g. in the system defined in Figure 4.1, the phosphorylation of the first domain converts it

into an active catalytic center which can catalyze the phosphorylation of another domain in a

trans-molecular manner, but the latter domain does not affect the former, then the domains can

be modeled independently.

Accordingly, to set up large signaling networks one could wire together a number of motifs

belonging to a discrete set wherever domains can be considered independent, and only where

an inter-domain influence is present, model them in a combined manner.

In summary, a domain-oriented approach48 provides a mathematically rigorous rationale

for the biologically intuitive fact that protein domains are the units of signaling networks. In

the next section such a kit of motifs will be presented.

4.2 Definition of a Construction Kit of Motifs to Set

Up Models of Signaling Networks

A kit was defined which comprises common recurring biochemical processes taking places

at protein domains (see Figures 4.2, 4.5, and 4.6). A central motif is a cycle of activa-

tion/deactivation137. It typically involves a phosphorylation, which leads to the activation

of the protein146, and is counteracted by a dephosphorylation (see Figure 4.3(a)). Another

common realization of this motif is via a guanine nucleotide exchange factor (GEF) that pro-

motes the exchange of GDP by GTP and is opposed by a GTPase-activating protein (GAP),
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see Section 2.1. Sometimes, an activated motif can phosphorylate (activate) the same domain

in another molecule, leading to an auto-catalytic effect (Figure 4.3(b)). On the other hand,

the activated motif may be able to deactivate the same motif in another molecule, giving rise

to a negative feedback (Figure 4.3(c)†). Since these are cycles involving 2 states, we shall

call C2 the generic case, and add an additional letter (e.g. C2p) to specifically mention a

variant of this motif.

E1

E2

A*A

(a) C2s: simple cycle

E2

A*A

E1

(b) C2p: cycle with positive feedback

A A*

E1

(c) C2n: cycle with negative feedback

Figure 4.3: Motifs involving simple cycles of activation/deactivation.

In addition to activation/deactivation cycles, another essential motif of signal transduction

is the binding of two domains (see Figure 4.4(a)), leading to the formation of a complex, as

it is for example the case of the SH3 domains which bind to domains containing sequences

of aminoacids rich in proline (see Section 2.1)‡. This process can also take place combined

with an activation/deactivation cycle (see Figure 4.4(b)), as is for example the case of SH2

or PTB domains, which bind to certain phosphorylated motifs146 (see Section 2.1). Here, it

may happen that two or more molecules compete to bind to the domain (see Figure 4.4(c)).

 A

B

 AB

(a) B1: binding of

two domains.

E1

E2

A*A

B

A*B

(b) C2B1: binding of one do-

main to an activated one.

E1

E2

B

A*B

C

A*A

A*C

(c) C2B2: binding of two possible

domains to an activated one.

Figure 4.4: Motifs involving binding of domains.

It is often the case that the activation of a protein requires the phosphorylation of 2 binding

sites. In principle, one would describe such a case as a combination of 2 domains.

However, in many cases it is known that the phosphorylation is not random and a se-

quential phosphorylation of both domains takes place, as in the case of the Mitogen Protein

Activated Kinase (MAPK)37. Therefore, this case can be (and is virtually always) described

†Note that if an additional enzyme can also deactivate the motif, the system is symmetric, and thus regarding

the purpose of this work equivalent, to the case C2p depicted in Figure 4.3(b).
‡In a sense, this could be interpreted as an activation/deactivation cycle, but it is reasonable to separate both

cases since here (i) no chemical change in the domain(s) takes place (the binding is a pure physical process)

and (ii) in the cases of the activation/deactivation cycles only one domain is considered, being the other

element (e.g. the phosphate group) neglected.
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as a lumped motif where a double activation cycle takes place. Since these motifs involve 3

states connected by cycles of activation/deactivation, we shall call these modules C3.

Commonly, both the phosphorylation and dephosphorylation follow a distributive mech-

anism45;168, where the enzyme releases the substrate after the first phosphorylation (Fig-

ure 4.5(a)). Here, often there is one enzyme responsible for the activation of both domains,

and one for the deactivation ((Figure 4.5(a)). However, in some cases, there is an specific

enzyme involved in the activation and/or deactivation of each domain (see Figures 4.5(b)

and 4.5(c)§). Alternatively, one of both enzymes may follow a processive mechanism, where

it does not release the substrate between both activation processes (Figure 4.5(e)¶)45;168.

Furthermore, autocatalytic or autoinhibitory effects can also appear. We consider here one

specific case, where the intermediate and fully activated form are both active and also pro-

duce a positive feedback via activation of the second reaction (Figure 4.5(d)). This is the case

for example of Src kinases (see Chapter 2.2.2), where the deactivated form (left) is phospho-

rylated at a negatively regulating site and the fully activated is phosphorylated at a positive

regulating site, being the intermediate form not phosphorylated in any of them193.

A**A*

1

E2

E

A

(a) C3dd: both reactions follow-

ing a distributive mechanism.

1

E2 E3

A**A*A

E

(b) C3di: one reaction follows a dis-

tributive mechanism and the other one

is catalyzed by 2 independent enzymes.

E3

1 2

E

A**A*A

E E

4

(c) C3ii: all reactions are cat-

alyzed by independent enzymes.

E3 E2

E1

A**A*A

(d) C3sr: the second reaction is autocatalyzed by

its product.

E2

E1

A A* A**

P

(e) C3dp: one reaction follows a distributive

mechanism and the other one a processive one.

Figure 4.5: Motifs involving double cycles of activation/deactivation.

It is also common that cycles of activation/deactivation are coupled. An example widespread

in bacteria is the two-component system, where one protein (the sensor) is phosphorylated

upon perception of a stimulus and then the phosphate group is transferred to another protein

(the receiver), resulting in its activation252. We consider here two variants of this motif, one

§Note that the case of two enzymes involved in the activation and one in the deactivation is symmetric, and

thus regarding the analysis of e.g. in Section 5.1 equivalent, to the case C3di depicted in Figure 4.5(b).
¶As in the case of C3ii (Figure 4.5(c)), here there are two cases (either activating or inhibiting enzyme are)

which are regarding posterior analysis, e.g. in Section 5.1, equivalent.
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E2

A A*

E1

  B* B

(a) C2C2: two single cycles

coupled.

E2

A

E1

A* A**

  B* B

(b) C3C2: one single and

one double cycle coupled.

Figure 4.6: Motifs involving coupled cycles of activation/deactivation.

coupling two simple cycles (Figure 4.6(a)), and one consider a double and a simple cycle

(Figure 4.6(b)).

These motifs will be thoroughly analyzed in Chapter 5. Previously, an implementation in

ProMoT95 of a construction kit describing these motifs will be presented in the next section.

4.3 Implementation of a Construction Kit of Signal

Transduction Motifs in ProMoT

As discussed in Section 4.1, domains are the ’bricks’ of the signaling process. However,

except a few of them23;152;163, most modeling tools -including ProMoT - only allow to set

up signaling networks following the ’metabolic’ paradigm, where one element is assessed

to each state rather than to each domain. It would be useful to combine the binding-site-

oriented perspective with the modular approach, which is already present in ProMoT (see

Section 3.3.2.3). However, this is not a trivial task, since both approaches rely on very dif-

ferent methodologies.

Towards this goal, a library was developed in ProMoT. First, a new family of elements,

describing each a domain, were implemented, using a different visual definition (see Fig-

ure 4.7). Two key variables were defined, one for the total concentration of the domain (con-

stant if there is no degradation or formation of the molecule where the domain is embedded)

and another for the fraction of the domain in the different possible states (see Section A.4 for

technical details). Special care was taken to generate modules compatible with the already

existing ’metabolic’ ones.

Subsequently, the motifs presented in Section 4.2 were set up combining the modules

for the domains and the existing reactions for different types of kinetics: mass action law,

Michaelis Menten, etc. The modules were also implemented using the classical, ’metabolic’

framework, for comparison purposes. Importantly, in many cases both kind of modules are

exchangeable (see Figure 4.8). Using these modules, one can model any network as long

as the domains can be considered independent (see Figure 4.1). It turned out that, in the
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(a) C3dd, compare to Figure 4.5(a) (b) C3C2, compare to Figure 4.6(b)

Figure 4.7: Visual definition of motifs using a domain-oriented formalism. This formalism was

used in ProMoT to define the modules (see Section 4.3.1 for an example).

cases studied here (e.g. TCR-induced MAPK cascade, see below, and EGF induced MAPK

cascade, not shown), there is an interaction of motifs, but always of one nature: a domain A

influences a domain B in a unidirectional fashion. In that case, domain B must be modeled

in a different manner48;220, and thus a special module was defined (see Section A.4).

Once the library is implemented, using ProMoT’s modular, object-oriented philosophy

(see Section 3.3.2.3) and this library of modules, large signaling networks can be modeled

by simply drag-and-drop and subsequent wiring of the corresponding modules. Furthermore,

ProMoT models can not only be exported using the Systems Biology Modeling Language

(SBML)119, but also directly to Matlab170 and DIVA, where the analysis described in Chap-

ter 5 will be performed.

To describe a general system in a rigorous manner, one should create all possible species

(as done e.g. in BioNetGen23) and, subsequently, perform a model reduction as outlined in

Section 4.148. The integration of both steps into ProMoT would provide a more powerful

environment to set up models considering both a modular and domain-oriented perspective.
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4.3.1 Proof of principle: TCR-induced MAPK cascade
To demonstrate its ability to describe large signaling networks, a dynamic model of the TCR-

induced MAPK cascade (see Section 2.2.2) was set up (Figure 4.8). Note how this approach

allows to combine a modular structure and the domain-oriented approach. Besides, since, as

stated above, this new library in compatible with the metabolic one, it is possible to combine

both approaches. Here for example the MAPK module ( a C3dd motif, see Figure 4.5(a))

was described using the classical metabolic approach, see Figure 4.8, green box.

Figure 4.8: Screenshot of the modular, domain-oriented dynamic model of the TCR-induced

MAPK cascade implemented in ProMoT. The model describes the main processes involved

in the activation of the MAPK cascade via the T-cell receptor (see Section 2.2.2), comprising 92

compounds and 204 parameters. The formalism for the domain-oriented modules is described

in Sections 4.3 and A.4.
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4.4 Conclusions

In this chapter, the modularity of signaling networks was examined from a molecular per-

spective. This approach can be interpreted as a molecular ’bottom-up’ analysis of modularity,

in contrast to the system-theoretical ’top-down’ of Chapter 3.

From a molecular point of view, protein domains are the units of signaling networks. A

new modeling strategy developed by Conzelmann et al.48 demonstrates that a rigorous and

simplified description of signaling processes is possible, where each module corresponds to

one motif, being the later connected in a unidirectional manner.

Since the number of possible processes taking place at a motif is discrete, the number of

motifs to be considered is also limited, and these motifs can be combined to set up a variety

of signaling networks. In the light of these results, a set of recurring themes was presented

in Section 4.2, comprising the typical events occurring in motifs such as binding to another

motif and cycles of activation/deactivation.

Furthermore, this construction kit was implemented in ProMoT. The resulting library can

be used to set up large signaling networks, and is fully compatible with the basic library. Ad-

mittedly, it is not as general as the methodology of Conzelmann et al.48, and represents only

a first attempt to fuse the modular and domain-oriented concepts using ProMoT’s current

architecture. Therefore, a full integration of the methodology of Conzelmann et al.48 would

be highly desirable.

Once the set of motifs is defined, one would ask himself how they behave, how similar

they are, and whether they can show a certain complex non-linear behavior. The next chapter

will explore these issues.



Chapter 5

System-theoretical Analysis

of Signal Transduction Motifs

In Chapter 4 a construction kit for signal transduction networks was introduced, and it was

shown how this can be used to set up large models of signaling processes. Once such a kit

is defined, it is reasonable to analyze its elements systematically; upon thorough analysis of

the units, the properties of combinations of them should be easier to understand. Three key

properties will be analyzed in this chapter: stability, monotony, and input/output behavior.

Stability would arguably be one of the first properties to examine, not only from a system-

theoretical but also from a biological point of view, since it is related to important biological

processes such as irreversible decision-making events controlling cell fate and differentiation

processes65;277. In Section 5.1, the motifs will be thoroughly analysed with respect to their

multistability, using Feinberg’s Chemical Reaction Network Theory72, bifurcation methods

(combined with a novel method to generate a large number of randomly chosen parameter

sets leading to bistability46), and an analysis of the corresponding Jacobian matrix.

Monotone systems are well-behaved in a mathematical sense242 and it is thus very inter-

esting to find out whether our construction kit fulfills this property. This question will be

tackled in Section 5.2.

Finally, the input/output (I/O) dynamic behavior will be characterized in Section 5.3. The

steady state value, signal amplitude, signaling time and signal duration106;220 will be used

as characteristic parameters. Furthermore, it will explored to what extent these biochemical

modules can be substituted by a linear system or a so-called Hammerstein module, composed

of a non-linear characteristic curve and a simple linear dynamical system.

For the analysis, we will model the motifs as a set of ordinary differential equations

(ODEs) of the form of Equation 3.6 (~̇c = N~v) . While for the multistability analysis (Sec-

tion 5.1) we will describe the enzymatic reactions with the more rigorous mass-action-

law kinetics, for the analysis of the monotony (Section 5.2) and of the dynamic properties

(Section 5.3), these expressions will be simplified into Michaelis-Menten kinetics (see Sec-

tion 3.2.3, page 22). Admittedly, the assumptions underlying Michaelis-Menten kinetics may

53
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not hold in all the cases studied and may introduce undesired side-effects25, but, on the other

hand, they simplify significantly the system making thus possible the analysis. Therefore, it

is arguably a good compromise between detailed description and easiness of analysis∗.

5.1 Multistability Analysis of Signaling Motifs

5.1.1 Theoretical principles
A number of methods will be used to tackle the issue of the possible multistability. The

methods are ordered so that first those which require less effort are applied, and, to obtain

more insight, more complex methods are applied thereafter (see Figure 5.1 for a description

of their interconnections).

Figure 5.1: Methodology for the analysis of the multistationarity of signaling motifs. Once the

modules are defined, the presence of positive feedbacks in the Jacobian of all motifs is deter-

mined. Parallelly, they are set up in CRNT Toolbox and ProMoT. Analysis with CRNT Toolbox

indicates whether a motif can show multistationarity. In case a motif shows multistationarity,

a large number of randomly generated parameters showing multistability is generated, and a

detailed bifurcation analysis is performed for all of them in DIVA. The results are subsequently

analyzed statistically. The results of the different approaches are finally compared. See the main

text and Methods section for details.

5.1.1.1 Identification of feedback loops in the Jacobian matrix

First, the Jacobian matrix (see Section 3.3.2) of the corresponding models will be inspected

to detect positive feedbacks. The reason is that it is well-established that there is a connection

∗Note that one could simplify it further to first order kinetics and, on the other hand, one could argue that

mass action law is not realistic enough and thus argue for a stochastic description.
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between multistationarity (the ability to display two or more distinct steady states under iden-

tical conditions) and positive feedback: the presence of a positive feedback in the incidence

graph associated to the Jacobian matrix (Equation 3.32) is a necessary (but not sufficient)

condition for multistationarity143;244. The algorithm for the detection of feedbacks in the Ja-

cobian matrix is embedded in CellNetAnalyzer144, see Section 6.2. The differential equation

models where set up with ProMoT95 (see Section 3.3.2.3).

5.1.1.2 Chemical Reaction Network Theory

Subsequently, Chemical Reaction Network Theory (CRNT) is applied to determine which

motifs can show multistationarity at all. CRNT is an elegant theory developed by Feinberg

which allows to make assertions about the ability of a certain (bio)chemical reaction network

to show multistationarity, based purely on its structure45;72;73. The key concept is the so-

called deficiency δ (a non-negative integer), which can be derived from the structure of the

network. If δ = 0, the system of ODEs describing the corresponding network with mass-

action-law kinetics can not admit multiple steady states for any parameter values. If δ = 1,

it can be determined whether a network can admit multiple steady states or not. If δ > 1,

however, only under certain conditions can the possibility of existence of multistationarity be

gauged. For an introduction to Chemical Reaction Network from the perspective of systems

biology the reader is referred to Conradi et al.45, and for a deeper understanding of the theory

itself to the work of Feinberg himself72;73. Fortunately, one does not need to understand the

details of CRNT, since Feinberg and colleagues have developed the CRNT Toolbox74, which

provides a simple and fast way to apply CRNT to a particular case (of limited size, however).

The analyses presented here have been performed with the CRNT Toolbox.

5.1.1.3 Bifurcation analysis

A method recently developed by Conradi et al.46 allows to characterize analytically the re-

gion in the parameter space where a biochemical reaction network described with mass-

action-law kinetics allows more than one positive steady state. This powerful method was

used here to generate a large number of randomly-chosen parameter sets leading to multista-

tionarity.

The differential equation models where set up with ProMoT95 (see Section 3.3.2.3). The

bifurcation analyses were performed using the continuation methods of DIVA95.
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5.1.2 Results

5.1.2.1 Analysis of the Jacobian Matrix

Surprisingly, there are positive feedbacks in the Jacobian matrix of not only those motifs

exhibiting multistationarity, but of all of them. Therefore, we can in principle not exclude

any motif from having the ability for showing multistability.

The analysis was performed on models assigning one differential equation to each bio-

chemical entity. However, the modules presented several conservation relationships (since

the total concentrations of the protein A and all enzymes Ei are constant), and therefore

several differential equations can be replaced by algebraic equations227.

We also considered this reduced description, since it could happen that these over-dimensioned

models introduced ’artificial’ positive feedbacks, masking the result of our analysis. How-

ever, also under consideration of the conservation relationships, all modules showed positive

feedbacks in the incidence graph associated to the Jacobian.

In summary, even though in some cases they may not be obvious from the reaction net-

work, all motifs possess feedbacks: a simple reversible reaction generates a positive feedback

between the substrate and the product.

5.1.2.2 CRNT Analysis

The motifs described above (see Figures 4.2, 4.5, and 4.6) were systematically analyzed

using CRNT. The results are displayed in Table 5.1. Except for the cases where a distributive

mechanism is present (C3dd and C3di), only modules involving an explicit positive feedback

are able to show multistationarity: motifs C2p (Figure 4.3(b)) and C3sr (Figure 4.5(d)). By

explicit we mean ’visible’ in the biochemical network, produced by an autocatalytic reaction.

It should be noted that a larger set of variants of the motif C2p has been recently presented

by Kholodenko137.

The results for C3dd and C3dp were firstly presented by Markevich et al.168 (using bifur-

cation methods), and confirmed with CRNT45. The requirement that a kinase mediates both

steps of either the activation or deactivation was recently shown by analytical methods191.

Here, we extend these results in the sense that we show that the distributive activation is the

only mechanism (of a set of alternatives including simple and double cycles, coupled cy-

cles, and binding of proteins) without an explicit autocatalytic feedback that has the ability

to produce multistationarity. Furthermore, our analyses rely on a mass-action law expres-

sion for the enzymatic reactions, instead of the implicit quasi-steady state assumption of the

Michaelis-Menten description used in the works above168;191. This is an important gener-

alization as it is known that such assumptions can introduce important differences in the

behavior of the systems 25;176.

Furthermore, even though the simple presence of a processive mechanism for either acti-

vation or deactivation excludes multistationarity (C3dp, see Figure 4.5(e)), multistationarity
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Table 5.1: Summary of the analysis of the multistationarity of the motifs depicted in Figures 4.2,

4.4, and 4.5. First, the existence of a positive feedback in the Jacobian (P.F.) was determined.

The deficiency δ and the possibility of multistationarity was computed with the CRNT toolbox

(see methods). For the cases where multistationarity is possible (marked with MSS in the third

column), a large (≃1000) set of parameters leading to multistability was computed, its area of

bistability characterized with the parameters ∆AT
, ∆E1T

, and ∆E2T
(see Equations 5.1, 5.2 and

5.3, respectively) and the resulting values were statistically analyzed. The statistical distribu-

tions are depicted in Figures A.1, A.3, and A.2. Here, the mean values ∆AT
, ∆E1T

, ∆E2T
are

presented. Additionally, the estimated fraction of cells which would lay out of the bistability

region [1-F(-∆AT
,∆AT

)] (see main text and methods) is shown.

Motif P.F. δ CRNT ∆AT
1-F(-∆AT

,∆AT
) ∆E1T

∆E2T

C2s ∃ 1 - - - - -

C2p ∃ 2 MSS 0.2708 0.0367-0.652 0.9037 0.3661

C2n ∃ 1 - - - - -

B1 ∃ 1 - - - - -

C2B1 ∃ 1 - - - - -

C2B2 ∃ 1 - - - - -

C3dd ∃ 2 MSS 0.2562 0.3831-0.6694 0.0808 0.0806

C3di ∃ 2 MSS 0.0786 0.793-0.8958 0.039 0.0875

C3ii ∃ 2 - - - - -

C3sr ∃ 3 MSS 0.2773 0.3553-0.6440 – 0.3760

C3d p ∃ 1 - - - - -

C2C2 ∃ 1 - - - - -

C3C2 ∃ 1 - - - - -

is possible if both steps are performed by independent enzymes (C3di, Figure 4.5(b)).

A comparison of these results from this section with those of the previous one suggests

that, even though it is a requirement for multistability, the presence of positive feedback is

not a suitable criterion for identifying multistable systems, since it seems to be ubiquitous in

signal transduction motifs.

5.1.2.3 Bifurcation Analysis

In order to go into the nature of the multistationarity of these modules in depth, bifurcation

analyses were performed using the continuation methods of DIVA95 (see Figure 5.1). Note

that CRNT can only provide information about the multistationarity, i.e. the presence of

more than one possible steady state for certain parameter values. If we are interested in

the multistability (presence of more than one stable steady state), it is required to perform

bifurcation studies.

To characterize the modules independently of particular parameter values, a large set

(around 1000) of randomly chosen parameters leading to multistationarity was generated

(see Section 5.1.1.3), and subsequently evaluated statistically. The analysis of the properties
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Figure 5.2: Characteristic bifurcation analysis for the module C3di (Figure 4.5(b)) with respect to

AT . The values of A1
T and A2

T , which are used to compute ∆AT
(see Equation 5.1) are depicted.

of signaling and gene networks using randomly generated parameters has been successfully

applied in different contexts24;64;139;145. The bifurcation analyses revealed that every motif

showing multistationarity is bistable (i.e. with two stable steady states) for all the parameter

sets studied and that the bifurcation is characterized by a limit point. Figure 5.2 shows a

characteristic example.

In every case the total concentration of protein AT was used as a bifurcation parameter.

This parameter was chosen for the following biological reason: since concentrations typically

fluctuate, we argue that, in order to be a useful bistable switch, these motifs must keep bista-

bility over a wide range of concentrations. Robustness against this sort of noise is postulated

to be a hallmark of biological systems251. Therefore, we computed a ’robustness’ against

concentration fluctuations as the relative range of concentration of AT where bistability is

present as

∆AT
=

|A1
T −A2

T |
A1

T +A2
T

2

, (5.1)

where A1
T and A2

T are defined as in Figure 5.2. The mean values for ∆AT
are summarized in

Table 5.1. Interestingly, all modules show an average value of around 25 % for the range

of protein concentration where multistability is possible, except C3di, which shows a much

lower value (≈ 8 %). In the case of C3di (Figure 4.5(b)), a distributive double-step acti-

vation mechanism is responsible for multistationarity. In the case of C3dd (Figure 4.5(a)),

two double-step activation mechanisms contributing to multistationarity, while in the other

cases (C2d and C3sr, see FigsC2pC3sr), an explicit autocatalytic activation is responsible.

Therefore, these results suggest that autocatalytic activation is a stronger precursor of mul-

tistationarity than a distributive activation, since one of the earlier leads to similar ranges of

∆AT
as two of the latter.

Recent experimental results in living human cells revealed that the variability in protein

concentrations between cells shows a standard deviation of about 15 to 30 %240. Similar

ranges have been also reported in yeast182;208, and bacteria66. According to this data, we

estimated the percentage of cells that would lose their switch-like behavior due to these

concentration fluctuations. This is based on the idea that if a certain motif is designed to be
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Figure 5.3: Typical continuation curve for the module C3sr (see Figure 4.5(d)) with respect to

E1. After an initial critical amount, any increase in concentration of E1 has no influence on the

steady state. the system is shifted to the right cycle and thus behaves as a single cycle without

input and a autocatalytic reaction. Therefore, we do not observe the second bifurcation point.

a switch, and optimized against noise, its average concentration should be approximately in

the center of the bistability region, µ =
A1

T +A2
T

2
. Therefore, for each motif, the proportion of

cells with a concentration of A outside the range leading to bistability (assuming a normal

distribution, see methods and Figure 5.4) was calculated. The resulting percentages can be

thus interpreted as an estimation of the robustness against real fluctuations. Due to the focus

here on mammal signaling processes, the ranges 15 to 30 % of Sigal et al.240 were used, but

the results would be similar for yeast or bacteria, since the ranges are similar. The results

summarized in Table 5.1 indicate that for an implementation of a switch with an average

robustness (∆AT
) a significant fraction of the cells would not be able to operate in the bistable

modus, in any of the 4 motifs able to be bistable.

∆AT

∆AT
2

∆AT
2

σ

AT AT
1 + 2

=µ
2

1−F( ,µµ +− )

Figure 5.4: Schematic representation of the procedure to estimate the amount of cells out of the

bistability regime. Assuming a normal distribution with µ =
A1

T +A2
T

2
, for a certain σ the amount

of cells can be computed as 1−F(µ− ∆AT

2
,µ+

∆AT

2
).

However, if one considers the most robust (highest ∆AT
) implementations of each of the

motifs, (see Figure A.1) one sees that there are cases with a remarkably high ∆AT
, specially

for C3dd (∼=0.95). Thus, such a hypothetical realization, if feasible from a physical point of

view, could be a quite robust one, since only for ≈ 2−11% of the cells would the switch lie
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out of the bistability region.

In summary, the use of single-level bistable switches does not seem to be a robust design

as there would be a significant part of the cells where it would not be operative, even though

particular implementations may be.

The same analysis was performed with respect to the enzymes E1 (activating) and E2

(deactivating), defining analogously to Equation 5.1

∆E1T
=

|E1
1T −E2

1T |
(E1

1T +E2
1T )/2

, (5.2)

and

∆E2T
=

|E1
2T −E2

2T |
(E1

2T +E2
2T )/2

, (5.3)

respectively. Here, however, the interpretation is different: rather than robustness against fluc-

tuations in the concentration of the corresponding protein, ∆E1T
and ∆E2T

provide information

about the range of operativity of the switch: it indicates for which input values (E1 and E2)

the module shows bistability. In this context, also the range of multistationarity is much nar-

rower for the modules where the multistationarity relies on the distributive mechanism, see

Table 5.1. Note that, for C3sr, the parameter ∆E1 can not be computed: for an input higher

than a certain critical value, the system is ‘shifted’ to the right cycle and it converts into a

single cycle without input and an autocatalytic reaction. The system is thus autonomous and

does not depend on the input E1 (see Figure 5.3).

The results are summarized in Table 5.1. Except for the cases where a distributive mech-

anism is present (C3dd and C3di), only modules showing an explicit feedback produced by

an autocatalytic reaction are able to show multistationarity. The results for C3dd and C3dp

were firstly presented by Markevich et al.168 (using bifurcation methods), and confirmed

with CRNT by Conradi et al.45. Here, we extend these results in the sense that we show

that the distributive activation is the only mechanism without a explicit autocatalytic feed-

back that ’hides’ an ability to produce multistability (C2p, C3sr). Furthermore, even though

the presence of a processive mechanism for either activation or deactivation excludes multi-

stationarity (C3dp), multistationarity is possible if both steps are performed by independent

enzymes (C3di).
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5.2 On the Monotony of Signaling Motifs

In the previous section the multistability of the signaling motifs was investigated. This results

characterize one (yet essential) property, but certainly other properties should be analyzed.

Since signaling is a highly dynamic process, the dynamical properties are of large interest.

We shall start exploring the monotony since, if a system is monotone, many counterintuitive

aspects of the dynamics can be excluded.

5.2.1 Theoretical foundations
5.2.1.1 A brief introduction to monotone systems and their relevance in biology

A system that is monotone is well-behaved in a mathematical sense242. Consider the re-

sponse of a system to a certain stimulus. If one modifies the stimulus (or other conditions),

and the system starts to response, say, with a higher value than before, one would expect

that, for a ’simple’ system, the response would remain higher for the whole trajectory. Also,

one would expect that, if an even higher value for the input is applied, the response would be

even higher. Similar behavior would be expected for the initial values, as well. This intuitive

property is what characterizes a monotone system. In mathematical terms, this intuitive idea

is formalized as follows: a system of the form of Equation 3.2 is said to be input/output (I/O)

monotone if

ξ1 ≤ ξ2 and u1 ≤ u2 ⇒ x(t,ξ1,u1) ≤ x(t,ξ2,u2) ∀t > 0, (5.4)

where ξ represents the initial value. A more strict and even better-behaved system is a

strongly I/O monotone system, which fulfills

ξ1 < ξ2 and u1 < u2 ⇒ x(t,ξ1,u1) < x(t,ξ2,u2) ∀t > 0. (5.5)

Monotone systems have a number of interesting properties. For example, under weak ad-

ditional assumptions, there is at least one steady state xu for every stepwise input u. Further-

more, if there is only one steady state for each input, this is a global attractor, i.e., all solutions

converge to xu for t → ∞242. Importantly, under this condition, the steady-state characteristic

curve xss(u) is well defined. Additionally, considering Equation 5.4 for t → ∞, it results

(ξ1 ≤ ξ2 and u1 ≤ u2 ⇒ lim
t→∞

x(t,ξ1,u1)≤ lim
t→∞

x(t,ξ2,u2))⇔ xss(ξ1,u1)≤ xss(ξ2,u2), (5.6)

that is, the characteristic curve of a monotone system is monotone.

It would be therefore very useful to know to what extent biochemical systems, and in

particular the elementary units defined in Chapter 4, are monotone. If that were the case, one

could rigorously exclude ’surprises’ at the single level motif and thus comfortably analyze

the properties of aggregations of monotone systems. This is particularly convenient since

certain combinations of monotone systems, such as chains, are also monotone7.



62 CHAPTER 5. SYSTEM-THEORETICAL ANALYSIS OF SIGNALING MOTIFS

A simple condition which guarantees strong monotony can be obtained by analyzing the

incidence graph of the system, as outlined by Angeli et al.7. For a system with n states, one

input u and one output y in the classical form of Equation 3.6 (~̇c = f (~x,u,~p), with y = f (~x),

the incidence graph has n + 2 nodes (one for each state plus one for the input u and one for

the output y). A labeled edge is drawn from ci to c j if ci influences the balance of c j, that is

to say, if the element Ji j of the Jacobian (see Equation 3.32) is not zero. Additionally, if the

input u influences a state xi, a labeled edge is drawn from u to ci, and if a state ck influences

the output y, an edge is drawn from ck to y.

If the signs of all edges are definite, and there is no negative feedback in the incidence

graph, the system is said to be strongly input/output monotone7. This method will be applied

in the following to the motifs described in Chapter 4.

5.2.2 Analysis of the monotony of signaling motifs
We shall illustrate by an example, namely C3sr (see Figure 4.5(d)), the application of the

method described in the previous section. As discussed above, the enzymatic reactions will

be described using Michaelis-Menten kinetics. Considering the conservation relationship

A+A∗ +A∗∗ = A0, (5.7)

the equations describing the motif C3sr read

Ȧ =
dA

dt
= −E1 · k1 ·A

Km1 +A
+

E2 · k−1 · (A0 −A−A∗∗)
Km−1 +(A0 −A−A∗∗)

(5.8)

Ȧ∗∗ =
dA∗∗

dt
= −E3 · k−2 ·A∗∗

Km−2 +A∗∗ +
(A∗∗ +(A0 −A−A∗∗)) · k2 · (A0 −A−A∗∗)

Km2 +(A0 −A−A∗∗)
. (5.9)

Furthermore, the input is u = E1 and the output y = A∗∗. One can determine the sign of the

Jacobian (see Equation 3.32)

J =
∂ f

∂~c
=

[
− −
− −

]
, (5.10)

together with

Jinput =
∂ f

∂~u
=

[
−
+

]
(5.11)

and
∂y

∂~c
= [0 +] . (5.12)

With this information the incidence graph can be easily set up (see Figure 5.5). As can be

seen in both the structure of the Jacobian and in the graph, there is no negative feedback

and the path from the input to the output is sign-constant. The system is thus strongly I/O

monotone7.
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Figure 5.5: Incidence graph of the motif C3sr (see Figure 4.5(d)). Since there is no negative cy-

cle and the path from the input u to the output y is sign-constant, the system is strongly I/O

monotone7.

One can proceed in a similar manner with the rest of the motifs defined in Chapter 4 (see

Figures 4.2, 4.4, 4.5, and 4.6). The results are summarized in Table 5.2. Remarkably, with

the exception of the motifs C3dp, C2C2 and C3C2 all motifs are monotone. Furthermore,

for the latter examples, at least the characteristic curve is monotone (see Section A.3 for

a proof). The fact that the characteristic curves are monotone will be exploited in the next

section when these motifs are compared with Hammerstein modules.

5.3 Analysis of the Dynamics of Signaling Motifs

It is tempting to try to describe biological systems in technical terms. Motivated by the fact

that the signaling motifs are monotone, and thus ’simple’, one could start comparing the

motifs to simple technical systems. In this chapter, we shall explore to what extent this is

possible. First, the technical elements to be used will be presented, together with some use-

ful definitions, in Section 5.3.1. Later, these technical systems will be compared with the

biochemical motifs introduced in Chapter 4.

To keep the models as simple as possible, a Michaelis-Menten description will be used

for the kinetics, as in Section 5.2. Furthermore, to minimize the number of parameters to

consider, the equations are normalized with respect to the total concentration of protein and

with respect of the kinetic constant of the first reaction. For example, for the motif C3sr,

dividing Equations 5.8 and 5.9 by A0 and k1, and redefining k−1 := k−1

k1
, k2 := k2

k1
, k−2 := k−2

k1
,

t := t
k1

, as well as Km1 := Km1

A0
, Km−1 := Km−1

A0
, Km2 := Km2

A0
, and Km−2 := Km−2

A0
, one obtains

Ȧ =
dA

dt
= − E1 ·A

Km1 +A
+

E3 · k−1 · (1−A−A∗∗)
Km−1 +(1−A−A∗∗)

(5.13)

Ȧ∗∗ =
dA∗∗

dt
= −E2 · k−2 ·A∗∗

Km−2 +A∗∗ +
(1−A) · k2 · (1−A−A∗∗)

Km2 +(1−A−A∗∗)
. (5.14)

The equations for the rest of the motifs can be found in Section A.1.2. A number of methods,

mainly arising from classical ideas from systems theory, will be applied to these simplified

systems. In the following, they are succinctly presented.
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5.3.1 Methods
5.3.1.1 Linear systems and the Hammerstein module

The standard linear transfer elements used in systems theory are temporally lagged propor-

tional elements, derivative and integral elements, and combinations of these elements82;94.

We shall start with a very brief presentation of such systems. A detailed study is out of the

scope of this work, and the reader is referred to standard system-theory textbooks82;94.

Simple linear systems. The simplest linear system is a proportional element (so-called

P element), defined by the equation

y = Ku, (5.15)

or, in the frequency domain82;94 by its so-called transfer function

G(s) =
y(s)

u(s)
= K. (5.16)

An ideal proportional system responds instantaneously to the input (see Figure 5.6(a)). Ad-

dition of time-lags (so-called T elements) delays the response of the system (and represents

thus more realistic systems). Additionally, the curve of the response gets more sigmoidal

the higher the order of the system is (see Figure 5.6(a)). For example, a temporally lagged

element of first order (PT1) is defined by

T ẏ+ y = Ku (5.17)

or its transfer function

G(s) =
y(s)

u(s)
=

K

T s+1
. (5.18)

The system’s output response y to an input signal u can be derived either by solving Equa-

tion 5.17 or by evaluating y = G(s)u. The parameter K (amplification magnitude) determines

whether the input signal is amplified (K > 1) or attenuated (K < 1). T (time constant) defines

how fast the system responses to an input u (corresponds to the time required to reach 63.2%

of K†, see also Section 5.3.1.2). Similar lagged systems with second (PT2), third (PT3), etc.

order are also often used. The transfer function for a system of order n (PTn), with all time

constants equal, would then read

G(s) =
y(s)

u(s)
=

K

(T s+1)n
. (5.19)

Also of interest in our context are systems containing a derivative element. For example,

†this value derives from the solution of Equation 5.17 for a unitary input 1 (or from computing the inverse

Laplace function of the transfer function, L−1(G(s)): y(t) = 1− et/T → y(T ) = 1− e−1 ≈ 0.632.
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Figure 5.6: Typical step responses of simple linear systems. The simulations were performed with

Matlab mapping all constants to 1.

the equation of a DT2 system reads

T1T2ÿ+(T1 +T2)ẏ+ y = Ku̇, (5.20)

and its transfer function

G(s) =
Ks

(T1s+1)(T2s+1)
(5.21)

While a proportional element reacts according to the magnitude of input, a derivative element

responds to changes in the input value. Therefore, the response to a step input has a transient

form (see Figure 5.6(b)).

The third main type of elements are integrators. An integrator, as the name says, integrates

the signal. Therefore, the response of an ideal integrator is a steadily growing signal (see

Figure 5.6(c)), which is delayed by the addition of lag-elements. The equation of an IT1

element, for example, reads

T ẏ+ y = K

t
Z

0

u(τ)dτ, (5.22)

and its transfer function

G(s) =
K

s(T s+1)
. (5.23)

Additionally, we shall also consider combinations of these standard elements. A particu-

larly important one will be a PDT2 system, described by

T1T2ÿ+(T1 +T2)ẏ+ y = K(u̇+u), (5.24)

and with transfer function

G(s) =
K(s+1)

(T1s+1)(T2s+1)
. (5.25)

The response of this system is a certain combination of a proportional and derivative system.

If the derivative element is important enough, a certain ’peak’ (so-called overshoot) can be
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seen (see Figure 5.6(d)).

The Hammerstein module. While linearized systems can provide useful insights into

biochemical systems under certain conditions, the high non-linearity of the latter limits the

applicability of the former. Therefore, it may be more convenient to extend the linearized

systems with a non-linear static characteristic curve, resulting in the so-called Hammerstein

module38 (Figure 5.7). The characteristic curve describes the value of the output at steady

Figure 5.7: Hammerstein module with a Hill function describing its characteristic curve. The

higher h, the more sigmoidal gets the characteristic curve. The dynamic part is described by a

simple linear system such as a PT1.

state as a function of a stationary input u, yss = f (u). The modules analyzed here are mono-

tone except three, and the static characteristic curve is monotone for all of them (see Sec-

tion 5.2). A reasonable candidate for the function yss = f (u) would be a normalized (since

the amplification is already defined by the amplification magnitude K in the linear model,

see Equation 5.19) Hill function

û(u) =
uh

Kh
0.5 + uh

, (5.26)

where K0.5 is the value of u for which û = 1/2 and can be considered as a threshold value

(see Figure 5.7), and h is the Hill coefficient. If h = 1, then the curve is hyperbolic and is

known as the Michaelis-Menten equation. If h > 1, then the curve shows a sigmoidal (also

called ultrasensitive96) form. The higher the Hill coefficient, the more the curve tends to a

step-form response. The Hill function is thus a suitable expression because it is monotone

and has relatively few parameters which are easy to interpret. In addition, it is familiar to

biologists, and was actually first introduced in the field of enzyme kinetics235.

5.3.1.2 Characteristic parameters

It is convenient to use parameters that capture key features of a system to characterize them.

In the analysis of signaling networks, special attention should be paid to their dynamic be-

havior, since the biological response is often determined by the transient characteristics of

the output signal, such as how fast the system reacts (signaling time) and for how long (signal

duration), rather than steady state properties10. Therefore, the classical steady state analysis



5.3. DYNAMICS 67

of such systems, though useful, might not provide sufficient insight into the properties of

signaling pathways. Heinrich et al.106 have introduced the parameters signal amplitude S,

signaling time τ, and signal duration θ. For the output y(t) of a module, these parameters can

be calculated as

τ =

Z ∞

0
t y(t)dt

Z ∞

0
y(t)dt

, θ =

√√√√√√

Z ∞

0
t2 y(t)dt

Z ∞

0
y(t)dt

− τ2, S =

Z ∞

0
y(t)dt

2 θ
.

τ and θ (analogous to the mean value and standard deviation of a statistical distribution,

respectively) represent the average time to activate the output element and the average time

during which this output component is activated, respectively (see Figure 5.8). S gives the

relationship between the total amount of output signal (the area under the curve), and the

duration θ of the signal, hence providing a measurement of the average concentration of the

output element106. These parameters provide meaningful information but, if the output signal
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Figure 5.8: Parameters to quantify the dynamic of a module. The left plot shows the parameters S,

τ, and σ as defined by Heinrich et al.106 (see Equation 5.27), and the right one τ as defined by

Saez-Rodriguez et al.220 (see Equation 5.27).

does not return to zero after a certain time, τ and θ tend to infinity. A reasonable alternative

to τ might be a parameter describing the time the system needs to reach a percentage of its

maximal signal output. For example, τ0.9, defined as the time to reach 90% of the maximum

(see Figure 5.8),

y(τ0.9) = 0.9 max(y(t)), (5.27)

which can be more generally applied‡. The value of the percentage adopted is somewhat

arbitrary, and we shall use here the value τ0.9.

Additionally, if the signal does not return to the basal level, the signal amplitude S depends

on the simulation time. Since S tends to the steady-state value multiplied by
√

3 as the time

tends to infinity220, in such cases S at t = ∞ should be used to have a unique S.

‡Note that τ0.632 (63.2%) would correspond to the time constant T of a first order system, see Section 5.3.1.1
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5.3.2 Results
We shall now investigate to what extent the motifs introduced in Section 4.2 can be approxi-

mated by linear systems and, if not, by a Hammerstein module (see Section 5.3.1.1).

5.3.2.1 Approximation by linear systems

For extreme conditions, the simple motifs can be reduced to linear systems. Consider for

example the motif C2s (Figure 4.3(a)). Its output A∗ can be computed as

dA∗

dt
=

k1 [A]

Km1 +[A]
u− k2 A∗

Km2 +A∗ = F1([A])u−F2(A
∗). (5.28)
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Figure 5.9: Comparison of the MAPK module to simple linear systems. The response of the MAPK

module (solid line) is compared to a simple linear system (dashed line). An ideal integrator is

able to reproduce the behavior of the MAPK module for high stimuli (Figures 5.9(a) and 5.9(b))

and a system with first order lag for low stimuli (Figures 5.9(c) and 5.9(d)). The input is shown

in the inset figure.

It should be noted that A and A∗ are coupled, since A + A∗ = A0. If the input is low, the

conversion of A into A∗ will be low. Considering the parameters of the model of the MAPK

cascade of Kholodenko134 (see Section 3.5(b)), the initial concentration of A is A0 = 100nM

and Km1 = 10nM, then A≫Km1 holds approximately, and hence F1 can be roughly estimated

with k1. Additionally, since the value of A∗ is low (specifically, A∗ ≪Km2), F2 ≈ (k2/Km2)A
∗.

Therefore, Equation 5.28 results in

dA∗

dt
≈ k1 u− (k2/Km2)A

∗, (5.29)

which is the equation of a system with a first order lag.

On the other hand, if the input value u is high, F1 u ≫ F2. The condition A ≫ Km1 is

fulfilled for a certain period of time and hence F1 ≈ k1, leading to the equation

dA∗

dt
≈ k1 u, (5.30)

which is the equation of an integrator. If the assumption A ≫ Km1 is not fulfilled, the system

behaves as an integrator, but with variable gain F1. Since the output is limited by the amount

of A (A0), the system saturates at a certain time.
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Analogous considerations can be applied to other modules such as C3dd (Figure 4.5(a)),

leading to the same conclusion: behavior as an integrator for high inputs and as a proportional

system with first order lag for low inputs, see Figure 5.9. However, for the intermediate range

of inputs, none of these extreme cases hold, and thus the modules can not be simplified

by linear systems. Thus, in the next section, we shall try to describe these modules with a

Hammerstein module where we add a nonlinear characteristic curve to a linear system (see

Section 5.3.1.1).

5.3.2.2 Approximation by a Hammerstein module

In this section we shall explore to what extent the motifs introduced in Chapter 4 can be

replaced by a Hammerstein module. The goal here is twofold: (i) to gain insights into the

behavior of the motifs (whether e.g. the dynamic is as simple as that of a PT1, or on which

kinetic parameters and how the characteristic curve depends), and (ii) to gauge the ability to

replace biological by Hammerstein modules.

To characterize the motifs independently of a particular realization (parameterization), for

each motif a large number (≈ 1000) of randomly chosen parameter sets was generated, the

corresponding implementation of the motif analyzed, and the results evaluated statistically.

The parameters were chosen from a log-normal distribution, which is a reasonable assump-

tion for biochemical parameters145. A similar rationale was applied in Section 5.1 for the

analysis of multistationarity, and in other works in different contexts24;64;139;145.

The modus operandi reads as follows: for each parameter set, the steady state was com-

puted and the parameters of the Hill function (see Equation 5.26) which fits the characteristic

curve best were determined using the optimization methods of DIVA. Subsequently, a num-

ber (≈ 100) of different input values were chosen, and for each of them, the linear PDTn sys-

tem which fits the step-response of the biological system best was identified, using a method

developed by Gayer88. The results were subsequently studied using different correlation and

statistical tools. Here, we shall use the parameters introduced in Section 5.3.1.2 to character-

ize the dynamics of the response. Particularly revealing in this context is the signaling time

τ.

To characterize the quality of the approximation, two errors, ∆ys and ∆τ0.9, were defined.

∆ys is the relative difference between the steady-state characteristic curve of the biological

motif yb
s s(u) and the Hammerstein module yH

s s(u) (= K û(u), see Equation 5.26),

∆ys =

Z ∞

0
|yb

s s(u)− yH
s s(u)|

Z ∞

0
yb

s s(u)
, (5.31)

and gauges thus the error of the steady-state error. Analogously, ∆τ0.9 is defined as the rela-
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tive difference of the signaling time τ0.9

∆τ0.9 =
|τb

0.9 − τH
0.9|

τb
0.9

, (5.32)

and gives a measure of the error of the dynamic response. With the identification method of

Gayer88, the linear system is identified whose response has the same point of inflexion and

slope at this points as the biochemical motif. Therefore, τ0.632 will be useful to characterize

the behavior of the motifs, but the error in the dynamics will be estimated via the parameter

τ0.9, since τ0.632 is typically very close to the point of inflexion, where the biochemical and

Hammerstein modules behave very similarly.

Since ∆τ0.9 is an absolute value, it is convenient to assess the error but it does not capture

the information about which of the systems compared is faster. As we are interested in this

fact, a similar parameter will be computed, without the absolute value,

∆τ̂0.9 =
τb

0.9 − τH
0.9

τb
0.9

, (5.33)

The sign of ∆τ̂0.9 will thus inform whether the biological or the Hammerstein system is

faster (see Table 5.2). The thorough analysis of all motifs has been exhaustively described

elsewhere88. Here, the analysis of one motif, namely C2s (see Figure 4.3(a)), will be exem-

plarily described . This example is deliberately chosen for being the simplest (and thus its

results are the easiest to understand); it will however also illustrate the limitations of this

approach. The results for the rest will be presented in a compact manner; for a detailed study

the reader is referred to Gayer88.

Analysis of C2s. The steady state curve of C2s could be well described by a Hill function,

with an error of around 2.0 % (see Table 5.2). Furthermore, a detailed analysis shows that

the steady-state parameters K0.5 and h strongly correlate with the kinetic parameters of the

motif (see Figure 5.10). K0.5 increases logarithmically with k2 (activity of the backwards

reaction) and Km1 (Michaelis-Menten constant for the forwards reaction), but it decreases

with Km2(Michaelis-Menten constant for the backwards reaction; see Section A.1.2 for the

definition of the equations defining the motifs and the corresponding parameters).

In fact, the logarithm of K0.5 correlates linearly well with the sum of the logarithms of k2,

Km1 and Km2 (see Figure 5.10(d)), in the form

logK0.5 = logk2 + logKm1 − logKm2 = log
k2 ·Km1

Km2
. (5.34)

This connection has a simple explanation: the higher k2, the stronger would be the backwards

reaction r2, and thus stronger should be the input to overcome it. Similar arguments hold for
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Figure 5.10: Correlation of K0.5 and the Hill coefficient with the kinetic parameters of the motif

C2s. The plots, in logarithmic scale, show the dependency of the constants K0.5 and h of the

Hill Equation (see Equation 5.26) on the kinetic parameters of C2s (see Section A.1.2 and

Figure 4.3(a)). A linear dependency for K0.5 as proposed in Equation 5.34 can be seen in the

plot 5.10(d). For the Hill coefficient there is no simple linear dependency, and h depends in a

non-linear fashion on 1
Km1·Km1

, plot 5.10(h).

Km1 and Km2: High Km1 values weaken the forwards reaction r1 (and thus stronger inputs are

required), and Km2 weakens r2 (and weaker inputs are required). Besides, h is not correlated

with k2, but decreases with both Km1 and Km2, being correlated in a non-linear fashion (see

Figure 5.10(h)).

The situation is more complex with respect to the dynamics. The identification algorithm

reveals that a simple PT1 describes at best the dynamics. Furthermore, the error ∆τ0.9 is

relatively low (≈ 10%). Interestingly, the mean of the parameter ∆τ̂0.9 reveals that the Ham-

merstein module tends to require ≈ 10% more time to reach the steady state than C2s. How-

ever, as Figure 5.11 shows, and in difference to a PT1, τ0.632 is not constant with respect to

the input. τ is indeed constant for low inputs (as was previously demonstrated analytically,

see Equation 5.29), but after a certain value the signaling time decreases, eventually after a

transient ’peak’ (see Figure 5.11). This shows that, even for the simplest system, only a lin-

ear system with an input-dependent τ can approximate a biochemical motif well. Here, also

correlations of the response time with the kinetic parameters can be retrieved. For example,

the system responds faster for lower k2 (as one would expect since the lower k2, the weaker

the ’brake’ that the backwards reaction makes on the signal transfer).

General results. The linear systems which were most commonly identified as the equiva-

lent to the different biochemical motifs are summarized in Table 5.2, together with the mean

and standard deviation for both the steady-state ∆ys and dynamical ∆τ0.9 error. The analy-
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Figure 5.11: Dependency of τ0.632 on the input and k2 for the motif C2s. The three-dimensional plot

shows the dependency on both k2 and the input u. Two characteristic plots of τ0.6321 vs. u (one

with peak for input values around K0.5 and one without) are depicted the upper-right corner.

ses were not performed for the motifs B1, C2B1, and C2B2 because they posed enormous

numerical problems that were impossible to overcome. Note also that C3di is in this context

equivalent to C3dd (compare Figures 4.5(a) and 4.5(b)). Besides, for C3ii (see Figure 4.5(c))

only co-stimulation via E1 and E2 can lead to an output signal (A∗∗). This would require to

consider a multiple-input system, which is out of the scope of this work. Therefore, both

inputs were considered to have the same value, leading thus to an equivalent system to C3dd.

We had seen in Section 5.1 that some of the motifs (specifically, C2p, C3dd, C3di, and

C3sr) could show multistable behavior under a mass-action law description. During the ex-

ploration of the parameter space performed here, and even though we now simplified the

enzymatic kinetics into a Michaelis-Menten expression, we found for all of them (and only

for them) cases of bistability. These results thus are in agreement with those of Section 5.1

(note that with the approach described in this Section we could not exclude multistability for

the cases where we could not find it, something we could do with the methods of Section 5.1).

In general, the approximation of the characteristic curve by the Hill function was very

satisfactory (see Table 5.2), being the average error in the worst case (C2n) ∆ys≈ 5.0%.

Furthermore, the standard deviation of the error σ∆ys
was also relatively narrow for most

cases, laying in the range 0.5−18%. The widest σ∆ys
was again for the motif C2n, implying

that in this case there are a relevant (but not dramatic) number of cases far from the average,

and thus with the particular structure of C2n (probably its negative feedback) lead in some

cases to a characteristic curve difficult to describe with a Hill function. An inspection of the

corresponding characteristic curves shows that, for large inputs (u > K0.5), the curve is quite

’sigmoidal’ (large h), but, in contrast, less sigmoidal (lower h) for low inputs (u < K0.5), a
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Table 5.2: Summary of the analysis of the monotony and dynamics of the motifs depicted in Fig-

ures 4.2, 4.4, and 4.5. The monotony was determined according to Angeli et al.7. The second

column shows the linear system which most commonly was identified as the closest to the

motif87. Additionally, the mean and standard deviation for both the steady-state ∆ys (Equa-

tion 5.31) and dynamic ∆τ0.9 (Equation 5.32) error for each motif, as well as ∆τ̂0.9 (Equa-

tion 5.33) are summarized. The later analyses were not performed for the motifs C2B1, and

C2B2, B1 due to numerical problems.

Motif S. I/O Closest ∆ys σ∆ys
∆τ̂0.9 σ∆τ̂0.9

∆τ0.9 σ∆τ0.9

monotone lin. system

C2s
√

PT1 0.0016 0.0089 -0.0923 0.2496 0.1037 0.2451

C2p
√

PT1 0.0252 0.1566 -0.1385 0.1895 0.1484 0.1819

C2n
√

PDT2 0.0512 0.4305 -0.1588 0.1286 0.1596 0.1276

B1
√

- - - - – - -

C2B1
√

- - - - – - -

C2B2
√

- - - - – - -

C3dd
√

PDT2 0.0009 0.0254 0.1349 0.2098 0.2023 0.1459

C3di
√

PDT2 0.0009 0.0254 0.1349 0.2098 0.2023 0.1459

C3ii
√

PDT2 0.0009 0.0254 0.1349 0.2098 0.2023 0.1459

C3sr
√

PDT2 0.0266 0.1288 0.2262 0.2752 0.2714 0.2308

C3d p X PDT2 0.0019 0.0056 0.9963 0.0374 0.9976 0.0185

C2C2 X PT1 0.0349 0.1731 -0.0481 0.2737 0.1197 0.2308

C3C2 X PT1 0.0258 0.1551 0.2125 0.2333 0.2597 0.1793

shape that can not be captured with a Hill function, since the shape of the curve is symmetric

with respect to K0.5.

The approximation of the long-term response (recall that for short-time the identification

algorithm guarantees a good approximation) is also quite satisfactory (≈ 10.0−25.0%), with

the notorious exception of C3dp. This motif shows a clear difference in both ∆τ0.9 and ∆τ̂0.9of

≈ 100 and at the same time a remarkably narrow set of values. This result suggest that the

corresponding hammerstein motif is always much faster for time greater than τ0.632. Also

noteworthy is the fact that the motifs set up exclusively single cycles (C2s, C2p, C2n, C2C2)

are slightly faster than the corresponding Hammerstein module, while the rest, which involve

double cycles are slower.

Interestingly, in many cases there was a peak in the signaling time τ (see e.g. Figure 5.11,

upper-right corner, green line) for the region of input values around K0.5 (see Equation 5.26

and Figure 5.7), where the steady-state curve shows the largest slope (see Figure 5.12). This

means that the system gets ’sluggish’ in this region. A simple explanation for this fact reads

as follows: at the points at the steady state curve it holds ~̇c = 0. For inputs slighltly higher

than K0.5, the system runs for a while close, almost parallelly to this curve, in regions where

~̇c is small, and thus it needs a long time to evolve.
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Figure 5.12: Correlation observed between yss and τ and a simple explanation. The figure is an

scheme resembling typical plots of the characteristic curve and τ (ccf. Figure 5.11). For inputs

u slightly higher than K0.5 the system evolves in a region where the field is very weak, and gets

thus more sluggish.

5.4 Conclusions

In this chapter, the motifs presented in Section 4.2 have been thoroughly analyzed with re-

spect to three essential properties: multistability, monotony and input/output behavior. The

results provide a first step towards a characterization of signal transduction building blocks.

To explore the multistability, a number of methods (bifurcation analysis, identification

of positive feedback loops, Feinberg’s Chemical Reaction Network Theory (CRNT), and a

novel method to characterize the parameter space where multistability is possible46) have

been applied, and their results compared. It was shown that CRNT provides a fast and re-

liable method to uncover mechanisms leading to multistability (limited by the number of

compounds that the toolbox can handle). To be more precise about the nature of the multista-

tionarity, bifurcation methods are required: here, they revealed that bistability (a particular

form of multistationarity of high biological relevance) was present in all motifs showing mul-

tistationarity. Furthermore, the statistical analysis of the bifurcations of these motifs for dif-

ferent parameter sets illustrates the new possibilities which opens a method as that described

in46, which allows to analytically characterize the parameter space where multistationarity

takes place.

On the other hand, the presence of positive feedback in the Jacobian matrix, even though

being a condition for multistationarity, does not seem to be a conclusive tool since positive

feedbacks are present in the Jacobian matrix of virtually any signal transduction system.

A more sophisticated analysis of the nature of the feedback loops, however, could help to

determine which positive feedbacks have potential to induce multistability237.

The analysis shows under which conditions multistationarity can be expected and sug-

gests that, in general, it may not be very robust against concentration fluctuations. Since the

noisy nature of signaling and gene expression processes is a well-established fact127;200;209,

this results may pose a word of caution with regard to the biological relevance of single-

motif multistability, particularly in the light of recent experimental data in human cells240,
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yeast208, and bacteria66: the cell-to-cell variation in the protein level within a cell population

would shift many cells out of the bistability range of a certain switch.

It may be however that single-motif switches, when embedded in cascades with positive

feedback regulation, expand their parameter space of bistability168. Alternatively, such a

switch would be plausible if the concentration of the corresponding protein would be subject

of strict regulation. Additionally, it would be interesting to know to what extent the parameter

sets leading to a large ∆AT
are physiologically plausible; if they were, it would be tempting

to speculate whether they are de facto implemented in cellular networks.

The analysis also suggests that autocatalytic reactions are stronger promoters of multista-

tionarity than the competition between substrates and enzymes in distributive double-step

activation processes. This would argue for a more common use of the former mechanism

to obtain robust bistable behavior. Actually, cases of bistability controlled by autocatalytic

steps are well-described16;192, while those mediated by distributive double-step activation

processes have been recently discovered and only theoretically.

Thereafter, it was explored, using a Michaelis-Menten formalism, the monotony and in-

put/output dynamic behavior. Remarkably, all motifs revealed to be monotone except one,

which at least has a monotone characteristic curve. Finally, the motifs were analyzed with

regard to the input/output dynamic behavior. Since the non-linearities of these systems are

notorious, a combination of a non-linear characteristic curve and a simple linear system was

chosen as a reasonable compromise between simplicity and reality. For the characteristic

curve, and motivated from the results on the monotony which guarantee that all motifs have

a monotone characteristic curve, we adopted a sigmoidal curve in the form of the Hill func-

tion, which proofed to describe well the steady state behavior of the motifs. As far as the

dynamics are concerned, all motifs seem to have a simple behavior, mainly analogous to that

of a simple first-order system (PT1) or a second-order system with differential part (PDT2).

However, an important drawback for the analysis is that the time-constant depends on the

input.

Natural future steps of this work would be to analyze how these properties evolve upon the

aggregation of motifs. For example, whether a cascade comprising a bistable motif is also

bistable, and how the robustness of this switch differs from that of the single motif. Another

interesting question would be to explore to what extent real models set up as a combination of

these monotone motifs are themselves monotone, or what part of them67. This would allow

to determine which subnetworks are monotone and thus well-characterized in a mathematical

sense242. Regarding the input/output behavior, it would be particularly interesting to model

a realistic signaling network with Hammerstein modules, and compare the behavior of the

resulting model with a model set up using the classical reaction-network formalism, and with

experimental data. In case this formalism would prove applicable, one would benefit from

the structure of the model (a pure combination of non-linear characteristic curves and linear
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dynamical systems), what would facilitate the analysis enormously.

It is well known that coupling of modules can lead to the appearance of new, emergent

properties20. Therefore, probably unexpected and exciting discoveries wait for us along this

path. A mouthful of them will be presented in Chapter 7.



Chapter 6

Structural Analysis

of Large Signaling Networks

Once a model has been decomposed into modules, one has to define the modeling approach

to use for the analysis. There is a large array of possibilities. The choice depends mainly on

the question to be answered, the quantity and quality of the data available, and the complexity

of the system123;242. Some of them are depicted in Figure 6.1. Generally, as the rigor of

the approach increase, the level of detail and potential insights increase, but at the cost of

higher experimental and computational requirements, shrinking thus the size of the system

to be analyzed. For reviews on different approaches the reader is referred to56;123;250. In

this thesis, the application of two approaches will be illustrated: first, in this chapter, a rather

rough approach, based on an interaction-based logical description, will be used. In Chapter 7,

a detailed approach, based on a mechanistic description using ordinary differential equations

(ODEs) as formalism, will be applied.

Kinetic models - either described as ODEs or as stochastic systems (see Figure 6.1) -

provide a suitable formalism to study cellular networks. Actually, it is arguably the most

applied in the field. It has proved successful in unraveling certain properties of networks of

moderate size2;4;226;275. In Chapter 7, and using the methods introduced in Section 5.3.1.2,

different aspects will be investigated, ranging from the new properties emerging from the

concatenation of simple motifs to a modularity-based model reduction.

The mathematical structure of kinetic models can be more or less obtained from biochem-

ical maps but they require for their parameterization a huge amount of quantitative data

which is currently not available for large-scale networks. Furthermore, even supposing one

would have such an enormous amount of data, the challenges it would pose on steps such as

parameter estimation and model discrimination are far beyond the current state of the art147.

Therefore, at the present stage, methods which require only information on the topology

(structure) of the network are very useful, particularly considering the current considerable

efforts to reconstruct maps of signaling networks, relying on a number of novel experimental

and theoretical methods187;198.

77
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Figure 6.1: Some mathematical approaches for the analysis of signaling networks. As one moves

from the left (undirected graph) to the right (stochastic, master-equation-based modeling), the

detail and potential insights increase, but at the same time more data is required and thus smaller

systems can be analyzed. For more details on modeling approaches see56;123;250.

Several methods relying on graph-based statistical analysis have been applied to signaling

networks21;124;165;286 and other types of protein interaction networks125. These studies are

important for examining statistical properties and for understanding the global organization

of a certain network, but they are limited for providing insights into the modus operandi of

the network. To address these functional questions, a large corpus of methods has been de-

veloped for metabolic networks relying mainly on the constraint-based approach201;247;250.

However, methods allowing a functional analysis of signaling networks have been applied to

a much lesser extent198.

Arguably, the shortage of such analyses could be mainly due to two reasons: On the one

hand, the absence of enough information about signaling networks (which is however chang-

ing in recent years). On the other hand, the intrinsic dynamic behavior of signaling processes

limits the applicability of constraint-based methods (which have proved to be successful for

metabolic networks), since they assume steady state conditions. However, there have been

some efforts to apply constraint-based methods to signaling networks52;195;196. Even though

this approach proved able to undercover interesting properties, it is limited to networks that

show an actual mass flow through the network196, or need a hand-made modification to

consider effects such as activation and inhibitions52, ubiquitous in signaling networks.

Due to these drawbacks, a different approach was followed here. As shown in Section 5.2,

the recurring set of motifs present in signaling networks are monotone, and their character-

istic curve (see Section 5.3) can be in most cases estimated with a Hill curve. The Hill curve

tends to adopt the form of a switch as the Hill coefficient (i.e., the ultrasensitivity) increases
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(see Figure 5.7). It is therefore tempting, and to a certain extent justified, to try to describe

these motifs as simple switches which can be on or off. Admittedly, this representation is

an enormous simplification but, on the other side, leads to a huge increase of the size of the

models which can be handled, as will be illustrated in Section 6.3, where a model including

94 different compounds is analyzed. Particularly important is the fact that one does not re-

quire values of parameters, but only information on the structure of the network. Therefore,

a structural analysis can be performed.

The problem of applying a mass-flow-based framework (the constraint-based methods) to

a signal-flow system (signaling networks), is not present in the approach used here, which is

specifically tailored to signal transfer processes. However, a part of the methods are adapted

from structural analyses of metabolic networks (but using a new formalism), and take thus

advantage of the developments there. For example, concepts such as elementary flux modes

are meaningful for signaling networks.

In Section 6.1, the foundations for a structural analysis of large signaling networks using

a logical (Boolean) framework will be briefly introduced, suitable tools will be presented

in Section 6.2 and its applicability illustrated by a realistic model of T-cell activation in

Section 6.3. The usefulness was demonstrated by its ability not only to reproduce known

data, but also and more importantly, by its predictions of unexpected results which where

subsequently tested experimentally.

6.1 Methodological foundations

6.1.1 Representation of a signaling network as a logical hypergraph
The starting point for the analysis is an interaction graph, which is very similar to the typical

biochemical maps (see Figure 6.2(c)): nodes representing molecules (e.g. an adaptor protein

or a kinase) are connected via directed arcs indicating that a certain compound has an effect

upon another one. These arcs are signed: they have either positive (activation, for example

mediated by phosphorylation) or negative (inhibition, e.g. mediated by dephosphorylation)

nature. Formally, an interaction graph (IG) is a signed directed graph G = (V,A), where V

is the set of vertices or nodes (species) and A the set of labeled directed edges (arcs)56. An

arc from vertex i to j with sign s is denoted by an ordered tuple (i, j,s) with i, j ∈ V and

s ∈ {+,−}.

Apart from based on a map such as Figure 6.2(a) (e.g. from a database), which provides

directly the IG, one can set up the model from the mechanistic description of a signaling net-

work. If the kinetic model is modularly structured as described in Section 3, the conversion

into the IG is particularly straightforward: one just need to consider which modules influence

which ones, and whether it is a positive or a negative influence. Consider the toy system de-

picted in Figure 6.2(a). Two Receptors (R1 and R2) can bind via the corresponding domains
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(Rb1 and Rb2) to 2 different ligands (L1 and L2). Binding of ligand promotes a conforma-

tional change at a second domain of the receptors (Rp1 and Rp2, respectively), allowing the

binding of the kinase K1 (there are 2 pools of K1, one related to each receptor). Binding of

K1 to Rp localizes K1 to the proximity of the membrane, allowing it to phosphorylate the

membrane-bound kinase K3. K1 bound to the Rp1 can, in addition, phosphorylate the kinase

K2, which is constitutively bound to R1. Both K2 and K3 phosphorylate the transcription

factor TF1, activating it. They also phosphorylate a second transcription factor TF2 but at

different sites; therefore, the joint action of K2 and K3 is required to active TF2. K2, in ad-

dition, activates a phosphatase Ph which in turn dephosphorylates (and thus deactivates) K2.

This information can be easily coded in the IG depicted in Figure 6.2(c).

(a) Biological map
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(d) Logical interaction hypergraph

Figure 6.2: Formulation of a simple network as a kinetic model, an interaction graph (IG), and a

logical interaction hypergraph (LIH). A typical biological cartoon is depicted in (a). Given

a modular, mechanistic description (b), the conversion of the kinetic model into the IG (c) is

relatively straightforward. Adding logical operators to the IG, one obtains the LIH (d). Here

additional mechanistically information as in the IG is required. Sometimes the connection is

not clear and a SOMEHOW (incomplete truth table) may be applied, see text. The dashed line

denotes that both pools depend on a common reservoir. The labels in the golden boxes of the

modules in (a) correspond to the modules defined in Chapter 4.
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An IG provides useful information (and in fact part of the analyses presented here are

based on it), but is somewhat ambiguous: in the example in Figure 6.2(c), it is for example

not clear whether one requires K2 AND K3 to activate TF1, or any of them alone is enough.

To obtain a more precise description, Boolean operators (AND, OR and NOT) are intro-

duced. AND-relationships are not possible in graphs but in hypergraphs. Similar to a directed

graph, a directed hypergraph H = (V,A) consists of a set V of nodes and a set A of hyper-

arcs. A hyperarc a connects two subsets of nodes: a = {S,E},S,E ⊆V . S comprises the start

nodes and E the end nodes of the connection. S and E can comprise an arbitrary number of

nodes (actually a graph is a special case of a hypergraph where all arcs consist of one input

and one output nodes). Specifically, a special representation of Boolean functions known as

disjunctive normal form (DNF, also called ‘sum of product’ representation) is used, which

uses exclusively AND, OR and NOT operators. Therewith, one can describe any Boolean

operator in an hypergraph. We shall call the hypergraph corresponding a Boolean network

with Boolean functions in DNF form logical interaction hypergraph (LIH)143∗.

Now, it is clearly defined that e.g. both K2 AND K3 are required to activate TF2, while

in the case of TF1, either K2 or K3 are enough (see Figure 6.2(d)). More mechanistical

information - which is generally not provided by the biological map (Figure 6.2(a)) - is

required to define the LIH than to define the IG: when two compounds can fulfill the same

task (e.g. phosphorylate a certain substrate, as K2 and K3 in Figure 6.2(b)), this process is

considered as a logical OR. When both are required such as when the effect of two kinases

is required to activate a substrate (e.g. K2 and K3 to activate TF2 in Figure 6.2(b)), an AND

connections is used.

However, the mechanistic details are not always enough to determine the logical operators.

A recurring example occurs when the phosphorylation of a protein is dependent on a kinase

and its counteracting phosphatase (e.g. K1 and Ph acting on K2 in Figure 6.2(b)). Here, it

is clear that if the kinase is active and the phosphatase is not active, the substrate would be

phosphorylated; vice versa, if the kinase is inactive but the phosphatase is active, it will not

get phosphorylated. However, what occurs when either both are active or both inactive is not

clear, and depends on the amount of active kinase and phosphatase and their relative activi-

ties. If detailed experimental information is available, it might be possible to assign a logical

operator. However, this is often not the case, and thus an incomplete truth table (where only

the known effects are determined) of the form

K1 1 0 1 0

Ph 1 0 0 1

K2 ? ? 1 1

is required, leading to the definition of the operator ’somehow’.

∗Note that, each LIH has a unique underlying interaction graph (which can be easily derived from the LIH

representation) whereas the opposite is, in general, not true.
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There is an additional relationship which should be considered: the 2 pools of K1 are ac-

tivated independently (upon binding to R1p and R2p, respectively), but they are actually set

up of equivalent molecules. Therefore, a perturbation such as a genetical knock-out would

affect both pools. To model this circumstance, we introduce an additional state, K1r (reser-

voir of K1), which is by default active and is required to activate both pools of K1 (i.e., is

AND connected to Rb1 and Rb2, respectively). We shall not represent explicitly the reser-

voirs, and draw a dashed line connecting them to the corresponding pools; in this way, the

mathematical information (there is a reservoir present) is maintained in the graphical repre-

sentation, but coded in such a way that it is not confused with other kind of information. This

and other visualization considerations are conveniently handled in ProMoT’s framework for

logical models, which will be presented in Section 6.2.

By converting the kinetic model into a LIH, each module is substituted by a logical switch.

Generally, each module (component) can be either on (“1”) or off (“0”). We consider a

compound to be on if it is fully activated and able to trigger downstream events properly;

otherwise it is off. While the models and analyses described here are based on this binary

description, the formalism and methods can be easily extended to multiple levels, e.g. off

(“0”), weakly activated (“1”), and fully activated (“2”).

The analysis of regulatory mechanisms using Boolean formalisms is a commonly used

technique256. However, it has been applied so far only to systems of moderate size, e.g.39;133;174.

Here, in contrast, we aim to handle large signaling networks. The following subsections will

introduce succinctly the methods used.

6.1.2 Analysis of the interaction graph

The structure of a signed graph can be stored conveniently by an m× q incidence matrix

B ∈ {0,1,−1}m×q
in which the columns correspond to the q arcs (interactions) and the

rows to the m nodes (species), similar to the stoichiometric matrices of metabolic reaction

networks107. In fact, considering the graph as a reaction network with the arcs being irre-

versible mono-molecular reactions, the incidence matrix would be equivalent to the stoichio-

metric matrix. For the k-th arc (i, j,s) a (−1) is stored in the k-th column of B for the tail

vertex i and (+1) for the head vertex j of arc k, i.e. Bik =−1, B jk = +1, and Blk = 0 (l 6=i, j).

For storing the signs, a q-vector s is introduced so that sk = +1 if arc k is positive and sk =−1

if k is negative.

From the incidence matrix of an interaction graph we can identify important features like

feedback loops as well as signaling paths and network-wide interdependencies between pairs

of species (e.g. perturbing species A may have no effect on B as there is no path connecting

A to B).

Feedback loops are of major importance for the dynamic behavior of the network44;214;256.
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Positive feedbacks, as pointed out in Section 5.1†, are responsible for multiple steady state

behavior244, which plays a central role in differentiation and other decision-making pro-

cesses65;277. In contrast, negative feedback loops are essential for homeostatic mechanisms

(i.e. for adjusting and maintaining levels of system variables) or for generating oscillatory

behavior257.

The computation of all the paths between a pair of species i and j allows the classification

of i with respect to j as

• activator, if i is involved in at least one positive path and in no negative path to j,

• inhibitor, if i is involved in at least one negative path of and in no positive path to j,

• ambivalent factor, if i is involved in at least one negative and one positive path to j,

and

• non-influencing, if there is no path from i to j.

In the case of activator and inhibitor, a subtle additional distinction should be made: i is a

total activator (total inhibitor) if there is no path from i to j that touches a negative feed-

back circuit. This definition is required since the contact to a negative feedback loop hinders

predictions on the effect of a perturbation (e.g. increasing the activity of a total activator of a

species s would unambiguously lead to an increase of s, but in the case of a non-total activa-

tor it could decrease after some time). The influences among species can be represented in a

compact manner via the dependency matrix D, where the element Di j denotes the nature of

i (activator, inhibitor, etc.) with respect to j‡.
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Figure 6.3: Dependency matrix of the simple Boolean model of Figure 6.2(d). The color of a matrix

element Di j has the following meaning143: (i) dark green: i is a total activator of j; (ii) light

green: i is a (non-total) activator of j; (iii) dark red: i is a total inhibitor of j; (iv) light red: i is a

(non-total) inhibitor of j; (v) white: i does not influence j.

†Note that in Section 5.1 we were interested in positive feedback inside a module, while here we are looking

for network-wide loops.
‡Actually, to classify the pairwise effects among the nodes and construct the dependency matrix, it is not

necessarily required to compute all paths between all species i and j. Computing the shortest positive and

negative path, which is a much less computationally intensive task, is enough143.
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Remarkably, the determination of feedback cycles and of all the signaling paths between

any pair of species from the incidence matrix is equivalent to the computation of elemen-

tary modes known from metabolic networks143. This allows to use the highly optimized

algorithms for computing elementary modes. Other concepts of metabolic network analysis,

such as Minimal Cut Sets can also be applied143.

Even though important properties can be obtained from the IG (such as identification of

all or particular signaling pathways, feedback loops and crosstalks, and network-wide inter-

dependencies between network elements), as argued above, this description is limited. For

example, in the simple model of Figure 6.2(c), one could not know whether, upon addition

of ligand, TF1 would get activated. Therefore the LIH must be analyzed, as will be explained

in the next section.

6.1.3 Analysis of the logical interaction hypergraph
The structure of the LIH can be stored, similarly to the IG, conveniently by an m× q inci-

dence matrix B ∈ {0,1,−1}m×q
so that Bik = −1 if i is contained in the set of start nodes of

a hyperarc k, B jk = +1 if i is the endpoint , and Bik = 0 if it is not involved. Analogously to

the vector s in IG, a matrix U ∈ {0,1}m×q
is defined so that Uik = 1 if and only if i enters the

hyperarc k with its value negated.

One can compute in the LIH the effect of defining a set of input stimuli on downstream

signaling by computing the resulting logical steady state143. Sometimes a logical steady

state is not unique or does not exist due to the presence of feedback loops. However, many

feedback loops become active only in a longer time scale justifying setting them “off” in

the first wave of signal propagation (allowing them to be switched “on” for the second time-

scale). This motivates the introduction of time-scales at which the different interactions can

be active143.

The effect of knocking-out a species can be easily tested by re-computing the logical

steady state for the respective stimuli. Thus, one can check the plausibility and consistency

of the network structure by confronting the predictions of the model, for both ’wild type’

(unmodified network structure) and ’knock-out’ (changed structure) with experimental data

(as done in Section 6.3).

A useful concept for the analysis of LIHs is that of Minimal Intervention Set (MIS)143: a

minimal collection of components that must be externally activated or deactivated to fulfill a

certain task such as the permanent activation/deactivation of certain compounds. This allows

to identify key elements for a certain process: for example, elements recurrently present in

the MISs for the activation of a certain protein are important for its activation. This idea can

be used, for example, to identify potential oncogenes, by analyzing the MISs that lead to

the activation of the transcription factors controlling proliferation of a cell (see Section 6.3).

The analysis of MISs is thus closely related to structural network properties like redundancy
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and robustness. MISs can also help to find targets and intervention points in the network for

repressing or provoking a certain behavior or response, useful for drug target identification.

Furthermore, if a model fails to reproduce a certain experiment, MISs can be applied to

provide candidates to fill this gap in the network structure. An example illustrating this use

can be found in Section 6.3.

6.2 ProMoT and CellNetAnalyzer: Tools to setup and

analyze logical models of large signaling networks

The methods described above have been embedded in CellNetAnalyzer (CNA), a toolbox

for Matlab170 facilitating, in an interactive and visual manner, a comprehensive structural

analysis of metabolic, signaling and regulatory networks144. All the analyses described here

were performed in CNA.

In CNA, the user should provide a graphical map of the network, a mathematical (textual)

input of the network structure, and a mapping from the latter to the former. However, the

setting up procedure for large-scale networks by hand, of both the graph and text, can be a

cumbersome and error-prone task. There are many tools available to set up models describing

signaling networks as a biochemical reaction network85;95. However, there is currently no

tool available that allows the visual setup of large logical networks, and has the ability to

export both the mathematical model and the graphical representation together.

Therefore, the abilities of the modeling tool ProMoT95 (whose original application is the

set up dynamical models, see Sections 3.3.2.3 and 4.3) were extended to fill this gap223. First,

a library of basic logical elements (compound, and, not, etc.) was set up, which also pos-

sesses properties that contain additional information. Subsequently, we developed advanced

visualization techniques that allow the user to customize the representation of the logical

model. Finally, an export to CNA (and other formats, such as a Matlab function expressing

the Boolean network) was implemented, and other exports can be easily implemented223.

In the following, ProMoT’s main properties with regard to Boolean models will be de-

scribed.

6.2.1 Definition of a library of basic elements in ProMoT

There are two main classes in the modeling library, compound (representing a state), and

gate (defining a logical interaction between compounds). Applying ProMoT’s object-oriented

modeling paradigm95, subclasses of a certain class can be easily defined. For example, we

have defined subclasses of the class compound (e.g. receptor, kinase, and reservoir),

which are all mathematically equivalent to compound but can be specifically considered in

the later visualization process, for example, using different colors for the different subclasses.
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(a) ProMoT’s Visual Editor (b) CNA screenshot

Figure 6.4: Screenshot of the visual editor of a toy model in ProMoT (a) and of its visually pro-

cessed export to CNA (b). The model corresponds to the LIH depicted in Figure 6.2(d). In

Figure 6.4(a), a palette containing some of the modules used to set up logical models can be

seen, as well as the model for the whole network (small box) and its module describing the

content of the cell. This model was treated using a convenient visual scenario, and exported to

CNA. Figure 6.4(b) shows a screenshot upon the computation of a logical steady state when

only the ligand L1 is present. Note how, the feedback Ph →K2 was switched off, since it has a

time-scale τ=2 and here only the early events (τ=1) are considered. Small text boxes display the

signal flows along the hyperarcs (green boxes: fixed values prior to computation; blue boxes:

hyperarcs activating a species; red boxes: hyperarcs which are not active).

Thereby, additional documentation of the model is provided with the map (Figure 6.4).

To define different logical connections among the elements we subclassed the class gate

into activ (to describe a causal one-to-one relation between two compounds), and (to de-

fine the requirement of several elements to activate a certain compound), and not (to express

a negative effect, i.e., an inhibition). An OR gate can be implemented by including sev-

eral activ elements pointing at a certain compound. Since any logical connection can be

described as a combination of ANDs, ORs, and NOTs (see Section 6.1), the set of basic

elements described above allows to set up any logical network of arbitrary size. In addition,

to describe cases where the logic is unclear (see Section 6.1), we have also included the class

somehow which represents logical gates with partially incomplete truth tables.

Finally, the classes input and output allow to define the incoming and outgoing signals

of the model, respectively.

Properties can be easily added to the different classes. For example, we have defined pa-

rameters for the default value and time-scale, which are exported with the model. Multiple

levels (i.e., discretizing the states into more than two (0,1) levels) are also implemented using

the properties of the gates223. Additionally, all elements have a documentation, which can

also be exported with the model.
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6.2.2 Exploiting ProMoT’s modularity and visualization techniques
ProMoT allows to set up models in a modular manner95. This unique property can be used

to define different submodules, either physically delimited (e.g. a cell, see Figure 6.4(a)) or

comprising a particular submodel (e.g. the cell cycle regulation). For example, in the toy

model introduced in the previous section, one module is defined to model the content of the

cell (see Figure 6.4(a)).

The elements described above enable to precisely set up a mathematical model, but the

representation is not biologically intuitive. This issue is tackled with scenario-based visu-

alization techniques (compare Figure 6.4(a) and Figure 6.4(a)). A visual scenario - which

can be easily edited - describes a set of mapping functions defining the visual properties of

the different elements. Therewith, biologically important elements are emphasized and ele-

ments that are non-relevant are de-emphasized or hidden. For example, in the visual editor,

inhibition is encoded by a not element between the compound and the gate (Figure 6.4(a))

and, after applying the visual scenario, it is represented by a single red-colored connection

line. Additionally, the direction is indicated by an arrow symbol (different for activation and

inhibition), which is implicitly defined in the mathematical description. Also the elements of

the class reservoir are hidden (e.g. k1r in Figure 6.4). As pointed out it in Section 6.1.1,

reservoirs are mathematical entities with no biological meaning and a very particular inter-

pretation. Therefore, they are hidden and the information of their presence is coded via a

dashed line (compare Figure 6.4(a) and Figure 6.4(b)).

Furthermore, setting the property visibility, the content of a particular module can be

shown in the graph or not. The earlier might be desired if the module comprises different

elements of biological interest (e.g. a module describing the nucleus), while the latter might

be useful for modules describing a particular logical operation as a set of basic elements.

The ability of ProMoT to set up a large logical network was demonstrated with a compre-

hensive model of T-cell signaling, which will be described in the following section.
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6.3 Structural Analysis of T-cell signaling

The methodology is applied to a curated model of T-cell signaling, which was introduced

in Section 2.2.2. The signaling network was constructed, as much as possible, from data

collected from primary T-cells (from the literature and own experiments), and only well-

established connections were considered. Several players, in particular, some whose role and

activation is not completely understood, are not included in our model and thus their effects

are not considered or lumped with others. Additionally, in several, currently still controver-

sial cases, we have assumed one of the possible hypotheses; however, this does not mean

that we propose this to be the correct description of the TCR-induced signaling network; we

just want to demonstrate the applicability of our approach on a realistic, complex case. The

logical model (Figure 6.5 and Tables A.1 and A.2) describes the main events and elements

connecting the T-cell receptor (TCR), its coreceptor CD4, and the costimulatory molecule

CD28, to the activation of transcription factors, e.g. AP-1, NFAT and NFκB, that determine

T-cell function. In general, it includes: the activation of the Src kinases Lck and Fyn, followed

by the activation of ZAP70 and the subsequent formation of the LAT signalosome (which

in turn triggers MAPKs and calcium cascades)118. Additionally, it includes the activation of

the PI3K/PKB pathway that regulates many aspects of cellular activation and differentiation,

particularly survival.

The high number of kinases, phosphatases, adaptor molecules and their interactions give

rise to a complex map (94 compounds and 123 interactions) which cannot be interpreted via

pure intuition (see Figure 6.5).

Note that a species can represent different states of a molecule: for example, CD45 refers to

the availability of CD45 to act on its substrates (Lck and Fyn), PLCg(bind) refers to PLCγ1

bound to LAT, and PLCg(act) to the active (bound to LAT and phosphorylated) form of

PLCγ1. It is also important to realize that several steps can be lumped together or expressed

in higher detail; for example, the two steps of c-Cbl’s effect (ubiquitination and degradation)

are lumped in the hyperarcs pointing to its targets ZAP70 and TCR.

Two time-scales (see Section 6.1)143 are considered: early (τ=1) and late (τ=2), involv-

ing processes occurring during or after the first minutes of activation, respectively (see Ta-

ble A.2). Key regulatory processes such as the degradation of signaling proteins mediated by

c-Cbl occur after a certain time, and are thus assigned τ=2.

This will be important in Section 6.3.2, where the analysis of signal propagation during

the early events reveals which elements get activated (Table 6.1), and the consideration of the

late events allows a rough approximation to the dynamic behavior (sustained vs. transient)

of the network (Figure 6.9). We shall start first with some analyses based on the interaction

graph. All the investigations performed on the T-cell model were performed with CNA.
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Figure 6.5: Logical model of T-cell activation. The model was implemented in ProMoT (see Sec-

tion 6.2). Each arrow pointing at a species box is a hyperarc representing one possibility to

activate that species (see Section 6.1). All the hyperarcs pointing at a particular species box

are OR connected. Yellow species boxes denote output elements, while green ones represent

(co)receptors.

6.3.1 Interaction-graph-based analysis

The interaction graph underlying the logical model has 172 feedbacks, thereof 89 negative.

As mentioned above, feedback loops are of major importance for the dynamic behavior of the

network. Here, the feedback loops are only active in the second time-scale because each loop

contains at least one process of the second time-scale. The elements of the MAPK cascade

are involved in most (92%) feedbacks. This is due to the fact that there is a connection

ERK→SHP-1 (from bottom to top of the network)4, and the resulting feedback can return

to ERK via many different paths leading to a high number of loops. If the ERK→SHP-1

connection is not considered, the number of loops is reduced dramatically to 13 (11 negative),

located in the upper part of the network. c-Cbl is involved in ≈85% of them, underscoring

its importance in regulating signaling61.

There are 4538 paths, each connecting a compound from the input layer (TCR, CD4 and
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Figure 6.6: Dependency matrix of the logical T-cell signaling model when all interactions are

active. The color of a matrix element Di j has the following meaning143: (i) dark green: i is

a total activator of j; (ii) light green: i is a non-total activator of j; (iii) dark red: i is a total

inhibitor of j; (iv) light red: i is a non-total inhibitor of j; (v) yellow: i is an ambivalent factor

for j; (vi) white: i does not influence j.

CD28) with a compound in the output layer (transcription factors and other elements con-

trolling T-cell activation). The high number of negative paths (2058) can be traced back to

the presence of two negative connections (via DGK and Gab2). In fact, considering the early

events, where these mechanisms are not active, the number of paths is reduced to 1530,

with only 6 of them being negative. These paths are from the TCR and CD28 to negative

regulators of the cell cycle (p21, p27 and FKHR), having thus a positive effect on T-cell pro-

liferation. These and other effects can be graphically inspected via the dependency matrix143

(Figures 6.7 and 6.6). Remarkably, when considering time-scale τ=1, there is no ambivalent

effect between any pair of species (e.g. TCR has only a positive effect on AP1, see Fig-

ure 6.7).

6.3.2 Logical-Interaction-hypergraph-based analysis
Using the logical model, we first analyzed the activation pattern of key elements upon differ-

ent stimuli (activation of the TCR and/or CD4 and CD28). The model was able to reproduce

data from literature and own experiments, providing a holistic and integrated interpretation

for a large body of data.

Furthermore, the model predicted a non-obvious signaling event: activation of the costim-
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Figure 6.7: Dependency matrix of the logical T-cell signaling model for the early events scenario

(τ=1). The color of a matrix element Di j has the following meaning143: (i) dark green: i is n

total activator of j; (iii) dark red: i is a total inhibitor of j; (vi) white: i does not influence j.

Note that there are no non-total activators/inhibitors or ambivalent factors in the early events

scenario (compare to Figure 6.6).

ulatory molecule CD28 alone leads not only to the activation of PI3K (which is expected),

but also to activation of JNK (but not ERK) via Vav1. The published data supports the view

that CD28 stimulation alone without TCR crosslinking is not sufficient for102;253 (or induces

only weak98) JNK activation. However, the model clearly predicted that we should observe

JNK activation and provided a holistic explanation for it (see Figure 6.8).

Driven by this surprising observation, we performed the corresponding experiments in

vitro. As shown in Figure A.7A, stimulation of mouse primary T-cells with a CD28 antibody

induced an evident and sustained JNK phosphorylation (independent of PI3K, Figure A.8),

thus confirming almost perfectly the predicted binary response. The discrepancies with the

literature could be due either to the different cellular systems (primary T-cells in our case

versus T-cell lines in the literature) or to the different stimulation conditions (e.g. different

antibody concentrations, different medium, etc).

The nature of the kinase involved in CD28-mediated signaling remains unclear. Src ki-

nases (Fyn and Lck) have been proposed to mediate CD28 signaling113. To test this hy-

pothesis in our experimental system, we analyzed the effect of a Src kinase inhibitor (in-

activating Lck+Fyn) on CD28-dependent events. The experiment showed that Src kinases

are dispensable for CD28-mediated signaling (Figure A.9). Therefore, the model contains a
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Figure 6.8: Paths activated upon CD28 stimulation in the logical model of T-cell activation. The

analysis was performed in CNA and the results imported in the visual navigator of ProMoT

for representation (see Section 6.2). Full boxes in green and red represent states fixed to 1

and 0, respectively. Transparent elements are not activated upon CD28 stimulation, while non-

transparents are.

to-be-identified kinase X connected to CD28 (Figure 6.5), probably of the Tec family.

The model was also challenged to predict results under different knock-out conditions,

and the results were compared with published data (Table 6.1). The model could repro-

duce the phenotype of several experimental knock-outs. Furthermore, as with the wild type

upon CD28 stimulation, it also reported an unexpected result: activation of the TCR in

Fyn-deficient cells triggers the PI3K/PKB pathway. This prediction was tested using Fyn-

deficient mice, corroborating the model result (Figure A.7B). However, there was a re-

sult which the model could not reproduce experimentally: TCR-mediated JNK activation is

blocked by PI3K inhibition (Figure A.7C). This result is not in accordance with the current

network because PI3K has no influence upon JNK (see dependency matrix, Fig. S1).

To identify potential connections which could explain the data, the concept of Minimal

Intervention Sets (MISs, see Section 6.1) was applied to determine which minimal combina-

tions of elements should be directly or indirectly affected by PI3K to produce the observed
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Table 6.1: Summary of the activation pattern predicted by the logical model for T-cell signal-

ing upon different stimuli and knock-out conditions. The “KOs” row denotes the perturbed

(switched-off) element. In the case of PI3K and Lck&Fyn, the perturbation was done via a

chemical inhibitor, and for the rest it was through a genetic knock-out (see A.5). The “In-

put” rows show the stimuli, and “Output” the predictions of the model for key elements of

the network. Therein, green boxes denote results corroborated by published data, while blue

ones where confirmed by our own data (see line Fig./Refs.). The red box shows a discrepancy

between model and experiment (see text).

KOs WT WT WT PI3K PI3K PI3K SLP

76

Fyn Fyn Fyn Rlk &

Itk

Lck &

Fyn

Lck &

Fyn

Lck &

Fyn

Input

TCR 1 0 1 1 0 1 1 1 1 1 1 1 0 1

CD4 0 0 0 0 0 0 0 0 1 0 0 0 0 0

CD28 0 1 1 0 1 1 0 0 0 1 0 0 1 1

Output

ZAP 1 0 1 1 0 1 1 0 1 0 1 0 0 0

LAT 1 0 1 1 0 1 1 0 1 0 1 0 0 0

PLCga 1 0 1 0 0 0 0 0 1 0 0 0 0 0

ERK 1 0 1 0 0 0 0 0 1 0 0 0 0 0

JNK 1 1 1 1 1 1 1 0 1 1 0 1 1 1

PKB 1 1 1 0 0 0 1 1 1 1 1 0 1 1

AP1 1 0 1 0 0 0 0 0 1 0 0 0 0 0

NFKB 1 0 1 0 0 0 0 0 1 0 0 0 0 0

NFAT 1 0 1 0 0 0 0 0 1 0 0 0 0 0

Fig./

Ref.

A.7 A.7,

A.8

A.8 A.7 A.8 A.8
254

A.7,254A.7,254A.7
228

A.9 A.9 A.9

result. The MISs from Table 6.2 provide a list of minimal combinations of elements that

should be affected (directly or indirectly) by PI3K to explain the block of the TCR-dependent

activation of JNK upon inhibiting PI3K .

Some of them are obvious, e.g. the first MIS in Table 6.2 suggests that JNK activation

could be directly interacting with PI3K or downstream elements (e.g. PIP3). However, to

the best of our knowledge, there is no experimental evidence for a direct effect of PI3K

on JNK. An effect on the activation of Vav (both 1 and 3 isoforms) seems to be a good

mechanism to include, since it appears in some of the MISs. Vav has a PH domain which can

bind to PIP3, and this mechanism could be important for Vav activation264, thus making it

a reasonable extension of the model. Another element of importance is HPK1. Interestingly,

HPK1 is phosphorylated by Protein Kinase D1 (PKD1)9, a kinase dependent on PKC (in

turn dependent on DAG, downstream of PI3K) for activation. Since the regulation and role

of both PKD1 and PKC (with the exception of the θ isoform) are not well established in

T-cells, we did not include them into the model, but a connection DAG→ PKC→ PKD1→
HPK1 would be plausible. An alternative could be a Rac dependent activation of HPK1105;

however, this is a not-well-established connection.

Definitely, the model requires a direct or indirect connection from PI3K to JNK and test-

ing the mechanisms proposed here in experiments could be a way to reconcile the network
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Table 6.2: Application of the Minimal Intervention Sets (MISs) to identify candidates to fill the

gap between PI3K and JNK. The MISs of maximal size 3 to obtain JNK off under the con-

ditions (i) TCR on, (ii) PI3K off, and (iii) ZAP70 on (as shown in the experiment, see Fig. 2A

and Table 6.1) were computed, setting the rest of conditions to the standard values for the early

events. Here, each MIS represents one set of molecules that should be influenced by PI3K in

order to be consistent with the fact that PI3K inhibition blocks JNK activation.

MIS MIS

jnk hpk1 mkk4 rac1p2

zap70 hpk1 mlk3 vav3

hpk1 rac1r hpk1 rac1p1 rac1p2

hpk1 sh3bp2 hpk1 rac1p1 vav3

mekk1 mkk4 hpk1 rac1p2 vav1

mekk1 mlk3 hpk1 vav1 vav3

hpk1 mekk1 rac1p1 hpk1 mlk3 rac1p2

hpk1 mekk1 vav1

structure with the PI3K-inhibitor data. This example illustrates another useful application of

our approach: the model not only reveals that a link is missing, but also suggests candidates

that can be verified experimentally.

Table 6.1 summarizes the results of 14 different scenarios, in which the logical model

predicted 126 states. For 44 of them, experimental data was available (15 from literature and

29 from own experiments) confirming the predictions except the case discussed above: the

model was able to predict that a PI3K inhibitor would block ERK activation, but not that it

would also inhibit JNK activation (Figure A.7C).

Table 6.3: Minimal Intervention Sets (MISs) to produce the full activation pattern in T-cells. The

MISs of maximal size 3 that induce sustained full activation (namely: ap1, bcat, bclxl, cre,

cyc1, nfkb, p70s, sre and nfat are on, whereas fkhr, p21c and p27k are off) of T-cells without

external stimuli. The exclamation mark denotes “deactivation”; species without this symbol

have to be activated (constitutively). Interestingly, the compounds involved in these MISs are

involved in oncogenesis. Note that, since PIP3 is a second messenger and not ‘mutable’, for the

purpose of this analysis the MISs involving its activation can be considered equivalent to those

involving its activator PI3K (i.e., these MISs are equivalent).

MIS

!gab2 pi3k zap70

!gab2 pip3 zap70

pi3k plcga zap70

pi3k slp76 zap70

pip3 slp76 zap70

pip3 plcga zap70

pdk1 plcga zap70

As an additional application of MISs, we computed combinations of failures (constitu-

tive activation or deactivation of elements caused e.g. by mutations) which lead to sustained



6.3. CASE STUDY: T-CELL SIGNALING 95

T-cell activation without external stimuli. These failure modes would cause uncontrolled

proliferation and thus may be connected to diseases such as leukemia or autoimmunity. In-

terestingly, the components occurring in the MISs with few elements (Table 6.3), are in fact

involved in oncogenesis: ZAP70108, PI3K36, Gab219, PLCγ1186 (and SLP76 is directly in-

volved in PLCγ1 activation, see Figure 6.3 and Table A.2) .

We have focused here mainly on the analysis of which elements would get activated upon

signal triggering (i.e. for the first time scale τ=1), for which a larger corpus of data is avail-

able (see Table 6.1). However, the model was also able to roughly predict the dynamics upon

different stimuli and conditions (see Figure 6.9). This sort of analysis not only shows the

ability of the Boolean approach to reproduce the key dynamic properties (transient vs. sus-

tained) of a signaling process, but also underscores the redundancy of negative feedbacks in

switching off signals: KOs of different key regulatory mechanisms would not have a definite

effect on the dynamics of key output signals, and only a multiple KO could lead to a clear

effect. It is well known that the form (transient versus sustained) of e.g. the activation of ERK

is decisive in the cellular outcome169;181;226. Therefore, the effect on the dynamics should

be carefully analyzed in order to understand the effects of a certain intervention. Thereby,

a complementary approach would be to consider a time-dependent (synchronous or asyn-

chronous) approach56, where properties such as the robustness39 of the dynamic behavior in

signaling networks of moderate size could be studied .

Figure 6.9: Rough description of dynamics considering different time scales. The activation of

key elements upon activation of the TCR, the coreceptor CD4, and the costimulatory molecule

CD28 is represented at the resting state, τ=0 (no inputs); early events, τ=1 (input(s), no feed-

backs); and later-time events, τ=2 (input(s), feedbacks). The black lines correspond to a wild

type while the green ones to a PAG KO. Note that the absence of PAG has no effect on key

downstream elements of the cascade, due to the redundant role of other negative regulatory

mechanisms (degradation via c-Cbl and Cbl-b, Gab-2 mediated inhibition of PLCγ1). Multi-

ple knock-out of these regulatory molecules leads to sustained activation of key elements (red

lines).
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6.4 Conclusions

In this section, it was shown how large signaling networks can be analyzed using a Boolean

formalism. One can perform logical steady state analyses unraveling the processing of sig-

nals and the global input-output behavior. Moreover, by converting the logical model into an

interaction graph, one can extract further important features, such as feedback loops, signal-

ing paths, and network-wide interdependencies between species. Furthermore, the concept

of intervention sets allows one (a) to identify missing links in the network, (b) to reveal

failure modes that can explain the effects of a physiological dysfunction or disease, and (c)

to search for suitable intervention strategies, while keeping track of potential side-effects,

which is valuable for drug target identification.

The methodology was illustrated with a comprehensive model describing T-cell signal-

ing. While in the model set up we only considered local information about the interaction

of signaling molecules (e.g. kinase A phosphorylates adaptor B), the model recapitulates

global published data upon different stimuli (e.g. activation of receptor R lead to activation

of transcription factor T F1) and knock-out conditions for both natural and perturbed condi-

tions (e.g. knock-outs, inhibitors, mutations, etc.). More importantly, the model could predict

unexpected results that were then verified experimentally.

At last but not least, convenient tools for the setup (ProMoT) and analysis (CellNetAna-

lyzer) within this Boolean framework have been developed.

This approach may surely not replace a detailed analysis based on a mechanistic descrip-

tion, and can certainly not answer the same questions. However, requiring a relatively small

amount of quantitative information, it proved to be a promising in-silico tool for the analysis

of large signaling networks. Particularly, it may be of great use in foreseeing the effects of

drugs, mutations, and other network modifications. The following section is devoted to il-

lustrate the use of a mechanistic-based approach where more subtle questions regarding the

dynamics and quantitative differences can be precisely addressed.



Chapter 7

Dynamic Analysis of Modularly

Structured Signaling Networks

In Chapter 6 a Boolean framework was presented that allows to handle large signaling net-

works at the price of neglecting details, particularly concerning quantitative and dynamic

aspects. In this chapter, we shall discuss the analysis of signaling networks using kinetic,

ODE-based models from a modular perspective. This framework is particularly suitable to

analyze the aspects which a Boolean approach can not (but in a smaller scale), and is thus a

complementary approach to the former.

First, it will be explored how the connection of simple motifs as those presented in Sec-

tion 4.2 leads to the appearance of new, emergent properties. We will start with an open-loop

concatenation of modules (the MAPK cascade, see Sections 2.2.1 and 3.4.1), which is also

extended to consider a closed-loop system incorporating a negative feedback. As a second

example, in Section 7.1.2 it will be shown how a simple feedback system can explain a

non-trivial dynamic behavior observed upon activation of T-cells. Finally, the model for the

EGF-induced MAPK cascade of Schoeberl et al.234 (see Section 2.2.1) will be considered

as a case of a given, non-modularly setup model. Using the decomposition outlined in Sec-

tion 3.4.4, in Section 7.2 it will be shown how a modular approach can unravel properties of

the whole network and facilitate a model reduction. We shall start by considering how the

properties of modules change as they are aggregated into more complex models.

7.1 Aggregation of modules and emergent properties

A thorough analysis of signaling modules as the one presented in Chapter 5 is certainly a

reasonable first step towards understanding signaling systems. However, as introduced in

Chapter 1, signaling networks are characterized by a high number of crosstalks and feed-

backs among the modules. In fact, aggregation of modules with different connections can

lead to the appearance of properties not present at all in the single modules, so-called emer-

gent properties20. Therefore, only by analyzing how these units work in an orchestrated

97
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manner can we attempt to understand biological signal processing. This is, however, an ex-

tremely challenging task: as stated in the motivation (Section 1.1), the size and complexity of

the systems to analyze is discouraging. Here, we shall illustrate the appearance of emergent

properties with two simple examples, a concatenation of motifs to set up a MAPK cascade,

and a simple positive feedback able to reproduce a complex behavior from T-cell signaling.

7.1.1 MAPK cascade
Let us consider a cascade of 3 motifs, one of the type C2s and two of the type C3dd (see

Section 4.2). A prominent example of this structure is the MAPK cascade, introduced in

Section 2.2.1.1 (see Figure 2.2), whose system-theoretical properties have been studied ex-

tensively. To illustrate its analysis, we shall take, from the variety of models available, the

implementation of Kholodenko134, which has also been discussed with regard to its modu-

larity in Section 3.5(b).

The characteristic parameters for the signal amplitude S and signaling time τ0.9, as defined

in Section 5.3.1.2, are computed for the three modules of the MAPK cascade (MAPKKK,

MAPKK, and MAPK) and for the whole cascade operating in open and closed loop, see

Figure 7.1, using steps of different magnitude as inputs.
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Figure 7.1: Signaling time and signal amplitude for the MAPK cascade and its subunits. All the

subunits show an ultrasensitive behavior and a peak of the signaling time around the threshold

value for the signal amplitude. The entire cascade combines the sigmoidity of the 3 subunits,

and the negative feedback decreases the signal amplitude (see Figure 2.2).

The MAPK cascade is a paradigm of a modular system: through 3 subunits and eventu-

ally a feedback loop, the MAPK is able to perform several tasks. Probably the most evident

property of such a three-step structure is its potential to amplify the input signal75. In our

case study, however, since the concentration of the three proteins is the same, there is no

such amplification. Additionally, the characteristic curve of the MAPK cascade provides a

sigmoid (ultrasensitive) I/O behavior75 (see Figure 7.1). The three modules show ultrasensi-

tivity, with Hill coefficients (see Section 5.3.1.1) of 4.0 for MAPKKK and 6.6 for MAPKK
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and MAPK, due to the saturation of the enzymes in the case of MAPKKK, and, in the case

of MAPKK and MAPK, due to the dual-phosphorylation mechanism and to the saturation

of the enzymes75. Moreover, the different levels add their ultrasensitivity76, producing high

steepness in the curve of the total signal amplitude (Hill coefficient of 111).

Interestingly, the threshold 0.085 of the cascade is close to, but slightly lower than, the

threshold 0.103 of the first module, meaning that the system does not need the complete

activation of the first module to reach full activation. Additionally, the maximal signal am-

plitude of the whole cascade corresponds to the maximal possible signal amplitude of the

last module (Figure 7.1), meaning thus that the MAPK module can be fully activated while

connected to the others.
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Figure 7.2: Oscillations in the MAPK cascade. The different simulation results were obtained vary-

ing the feedback strength of the model of Kholodenko134: (a) Kt=105; (b)Kt=23.5; (c)Kt=9;

(d)Kt=610−2; (e)Kt=10−3. The input is V1 = 2.5nM/s for all the cases. In the bifurcation graph

(Figure 7.2(b)), the black line shows Hopf bifurcation points as a function of the feedback

strength (Kt value) and input (V1 value). For values between both lines sustained oscillations

occur. The dashed line shows the input value (V1) used by Kholodenko134 (Hopf bifurcations

points at Kt=0.0532 and Kt=23.6).

The three modules and the whole cascade show a sharp deceleration of the response around

the threshold value, as shown by the parameter τ0.9. This result was already observed in

Section 5.3 in the systematic analysis of different signal transduction motifs (which included

the motifs C2s and C3dd corresponding to Raf and MEK/ERK, respectively).

The peak is higher and narrower for the total cascade than for the first module parameter

(Figure 7.1). Far from this peak value, the whole cascade is mostly slower than the single

modules. This is an intuitive result; however, it does not need to be the case and, depending

on the parameter values, cascade of motifs can accelerate signal propagation106. In fact, for

a narrow range of inputs (≃ 0.1-0.3 nM), the whole cascade is faster than the first module.

Several MAPK cascades have been found to be embedded in feedback loops, both positive

and negative (see Figure 2.2), enriching the versatility of the MAPK cascades. A positive

feedback can, together with the inherent ultrasensitivity of the MAPK cascade, produce a
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bistable system and, if the feedback is strong enough, the system is able to give an irre-

versible on/off response to a transient continuous stimulus77;78;277.

Negative feedback can potentially drive the system to return to the basal state after a

transient response to a constant input, a phenomenon known as adaptation11. Additionally,

it can introduce sustained oscillations134. In the model of Kholodenko134, the inclusion of a

negative feedback loop decreases the response time, but only around the peak, and a decrease

in the signal amplitude (Figure 7.1). Depending on the strength of the feedback, sustained

and damped oscillations can be observed134. A bifurcation analysis shows that, over a wide

range of feedback strengths determined by the value of Kt , there is a range of the values of

the input V1 for which the system shows sustained oscillations220 (Figure 7.2). For strong

feedback values, the oscillations disappear and the output signal decreases to almost zero.

7.1.2 Identification of the minimal realization to describe the

dynamics of the TCR-induced MAPK cascade
In this section, a simple model is used to tackle an interesting question arising from a set of

experimental data upon activation of T-cells. We shall start describing the experiments, and

subsequently the model will be described and analyzed.

7.1.2.1 Dynamics of the TCR-induced MAPK cascade: experimental results

As outlined in Section 2.2.2, antibodies have been extensively used in T-cell signaling re-

search, even though they trigger an unphysiologically strong stimulation. In the last years,

the use of streptamers (or tetramers) loaded with MHC-peptides has provided a more re-

alistic system115, closer to the real activation of a T-cell by an APC (Antigen Presenting

Cell, see Section 2.2.2). Importantly, streptamers produce a costimulation of CD4/CD8, and

allows the use of different ligands with different affinities (agonist, antagonists, etc.).

To understand the dynamics of the TCR-induced MAPK cascade, experiments were per-

formed by X. Wang at the Institute of Immunology (University of Magdeburg) with naive

primary T-cells extracted from the spleen of OT-1 transgenic mice (see Section 2.2.2). In the

experiments, T-cells were stimulated either with antibodies (against both the CD3 subunit of

the TCR and the coreceptor CD8), or with streptamers loaded with the agonist for the TCR

of the OT-1 mouse. Thus, one can compare the effect of two different inputs: the moderately

strong one driven by the physiological affinity of the agonist for the TCR, and the extremely

strong one triggered by the unphysiological affinity of the antibodies.

Upon activation, the time-dependent phosphorylation pattern of some key elements (us-

ing specific antibodies against ZAP70 at position p319, LAT p171, PLCγ1p783, ERK pp, and

AKT p473) was quantified relative to the maximal value (see Figure 7.3). Additionally, the

blots revealed a ’ladder’ structure in the phosphorylation of ZAP70, characteristic of ubiq-

uitination processes, which lead to degradation61. Therefore, the total amount of ZAP70
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was quantified (via an antibody which binds to ZAP70 independently of its phosphorylation

state). The amount of ZAP70 was normed with the amount of ZAP70 in the resting state.

Subsequently, the difference with respect to the total amount was computed and, indeed, a

significant degradation could be observed (see Figure 7.3). The experiments were performed

three times, and the mean, together with the standard error of the mean, were computed.
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Figure 7.3: Data on the dynamics of key molecules of the TCR-induced MAPK cascade. The

time-dependent phosphorylation pattern of key molecules in primary T-cells is plotted upon

stimulation with CD3+CD8 antibodies (black lines) and streptamers loaded with the agonist

for the OT-1 TCR (red lines). The experiments were performed by X. Wang at the Institute of

Immunology, University of Magdeburg.

The experimental results show that a strong input (antibodies) leads to the propagation of

a strong, transient signal throughout the cascade, while a weak input (streptamers) triggers a

moderate, sustained signaling. Furthermore, T-cells proliferate vigorously upon streptamers

stimulation, but weakly upon antibody perturbation (data not shown). Collectively, these data

suggest that antibody-mediated (=strong) signals initiate negative feedback loops (probably

involving ZAP70 degradation) which could serve to prevent inappropriate T-cell activation.

A reasonable next step would be to try to describe this data with a mathematical model, to

confirm that ZAP70 degradation can lead to the observed behavior (the experiments show a

correlation, but not a proof of causality), providing thus support to the hypothesis that ZAP70

is responsible for this behavior. This goal will be pursued in the following section.
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7.1.2.2 Failure of a bottom-up approach drives to adopt a top-down perspective

First, we tried to explore the utility of a bottom-up perspective to tackle this question. Even

though a bottom-up approach is arguably the most common one while facing questions such

as ours, it is mostly convenient when there is a relative large amount of data and knowledge.

In our case, however, we have only information about 6 states to build up a model describing

60; we decided to test whether this was a tractable problem at all. Therefore, using the ap-

proach outlined in Section 4.3, a detailed kinetic model describing the TCR-induced MAPK

cascade was set up in ProMoT. It was trained with the experimental data depicted in Fig-

ure 7.3. The model, however, was not able to reproduce the data (even though it possesses

enough complexity to do so). This was the case probably due to parameter estimation prob-

lems: the computational effort and complexity of the estimation problem grow exponentially

with the number of parameters. Even though a battery of methods was used∗, no success-

ful fit could be found. Since the number of parameters to fit is around one hundred, it is

reasonable to suspect that those algorithms could not find the global optimum.

This result confirmed our hypothesis that it was not the most convenient approach to tackle

the analysis of the data. Accordingly, an opposite, ’top-down’ approach was adopted. The

idea is to perform the following steps:

1. recognize the key behavior emerging from the data,

2. determine what is needed mathematically to achieve this behavior, and

3. identify these mathematical ingredients in the biochemical network.

Once the minimal realization has been found, it should be straightforward to expand it

into a detailed, ’bottom-up’ model. First, to identify the key property, the experimental re-

sults should be evaluated from a general, abstract perspective. As explained above, the gen-

eral pattern of the experimental data is that the strong input triggers a response with a high

maximum but transient signal down to ERK (and thus with a low long-term value), while the

weaker input leads to a not-so-high maximum but a sustained signal (with a higher long-term

value). Supposing that the latest value available resembles the steady-state value, this could

be interpreted in system-theoretical terms as that the characteristic curve is non-monotone

(see Figure 7.4).

Importantly, a body of experimental evidence supports the view that sustained ERK ac-

tivation leads to a different physiological outcome than a transient activation of ERK. First

observations on this concern can be found in a seminal paper by Marshall169. Later on, the

molecular mechanisms responsible for this fact have been uncovered181: the level of activa-

tion of ERK serves as an input signal which is integrated over the time at the level of the

∗The methods include: genetic algorithms implemented in Diana, an evolutionary algorithm215 based on the

ideas of Rechenberg211, implemented both in DIVA and Matlab249, simulated annealing and several local

optimizers implemented in the Matlab Systems Biology Toolbox232.



7.1. AGGREGATION OF MODULES AND EMERGENT PROPERTIES 103

Figure 7.4: System-theoretical interpretation of the biological data and hypothesis. Somewhere

in the early events close to the binding of ligand to the TCR, strong inputs are converted into

strong but transient signals with a low asymptotic value, while moderate inputs are converted

into mild and sustained outputs, with a higher asymptotic value. The characteristic curve of

such a system is therefore non-monotone.

early gene expression: phosphorylated (active) ERK controls the activation of the transcrip-

tion factor c-fos, and only a long-enough ERK signal leads to the formation of active and

stable c-fos. Furthermore, in the context of T-cell signaling, it has been shown that sustained

ERK activation upon moderate inputs leads to survival of lymphocytes in the course of T-

cell development, while a transient ERK signal associated to strong inputs is correlated with

strong apoptosis and absence of survival51;271. These results are very similar to those with

naive T-cells presented in Section 7.1.2.1. Therefore, it is reasonable from a biological point

of view to propose the steady-state value of ERK activation as a key property of this system

and what our data suggests:

• strong input →transient ERK →death

• weak input →sustained ERK →survival.

An additional observation is that this pattern is present throughout the cascade, since it can

be already observed for LAT phosphorylation. Therefore, the key mechanism responsible is

upstream of LAT, involving early events of T-cell signaling.

Once the key behavior has been characterized, one should try to identify a system, as

small and simple in mathematical terms as possible, which can explain it. The next section

is devoted to this goal.

7.1.2.3 Determination of the minimal system able to reproduce the data

How should such a system look like? A first intuitive idea would be that a negative feedback

is required, as the system is able to convert a sustained signal (addition of a ligand) into a



104 CHAPTER 7. MODULAR ANALYSIS OF THE DYNAMICS OF SIGNALING NETWORKS

transient output (Figure 7.4). Arguably, the minimal system one could think about would

consist of 2 states operating in closed loop. Such a system, depicted in Figure 7.5(a), is of

(a) Simplest model

c2

u

y

−
g

g

h

h1

1 2

2

c1

(b) Biochemical implementation. The names of the functions

as defined in Equations 7.9 and 7.10 are shown
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y
(c) Block diagram of the simplest model

Figure 7.5: Simplest feedback model. The structure depicted in Figure 7.5(a) is arguably the simplest

able to describe the behavior shown in Figure 7.4, and the scheme in Figure 7.5(b) shows a

plausible biochemical implementation. If not marked otherwise, all arrows denote a positive

effect. Figure 7.5(c) shows a block diagram of this system.

the general form of Equation 3.2

~̇c =
d~c

dt
= f (~c,~u,~p). (7.1)

For the sake of compactness, we shall remove the parameters ~p from the notation, since they

are not relevant for the analysis hereafter. Additionally, and to avoid unnecessary notation,

we shall refer to both the state and module with ci. Accordingly, the system depicted in

Figure 7.5(a) can be specifically defined in mathematical terms by the equations

ċ1 = f1(c1,c2,u) (7.2)

and

ċ2 = f2(c1,c2), (7.3)

where u is the input to the system, and the output y = c1.

As explained in Section 5.2, monotone systems are ’simple’ in a mathematical sense. Since

we are trying to find the simplest system to explain the behavior, let us assume that c1 and c2
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are both monotone or, more strictly, strongly input/output (I/O) monotone. Since both sys-

tems only comprise one state, it is enough that Jinput , the partial derivatives of f with respect

to the inputs, have definite sign to guarantee strong I/O monotony7 (see Section 5.2.1.1).

Furthermore, we would like to have a positive effect of c1 on c2, a negative effect of c2 on

c1 (to produce a negative feedback) and a positive effect of the input u on c1. Therefore, the

partial derivatives must fulfill that

∂ f1/∂c2 < 0 ∀c2, (7.4)

∂ f2/∂c1 > 0 ∀c1, and (7.5)

∂ f1/∂u > 0 ∀u. (7.6)

In addition, we would like to have biologically realistic systems where the states (concen-

trations) have a limited value. To this end, the growth of each state is limited by its own

value,

∂ f1/∂c1 < 0 and (7.7)

∂ f2/∂c2 < 0. (7.8)

To be able to perform simulations, but without losing generality, a concrete form has to be

assigned to f1 and f2. We shall try to define a ’biologically inspired’ implementation, as we

are interested in finding afterwards an analogous realization in a real biological system.

Recall from Section 5.2.2 that most signaling motifs are monotone, and that all have a

monotone characteristic curve. Thus, we could consider c1 and c2 equivalent to any of the

motifs described there. As we are seeking the simplest, we shall consider the motif C2s (see

Figure 4.3(a) here). Here, a Hill function (Equation 5.26) shall be used for the kinetics, as a

generalization of the Michaelis-Menten used in Sections 5.2 and 5.3†.

In addition, one also has to model in biochemical terms the connections between c1 and

c2. The connection c1 → c2 (with ∂ f2/∂c1 > 0 ∀c1) could be simply realized by assuming c1

being the enzyme catalyzing the activation of c2. Besides, two simple alternatives could be

envisioned for the connection c2 → c1 (with ∂ f1/∂c2 < 0 ∀c2): a multiplicative, deactivating

effect counteracting the activating input (which would resemble an inhibitor), and an additive

effect diminishing the presence of c1, mimicking the effect of a degradation.Note that with

the interconnections defined as above, a coupling free of retroactivity (see Section 3.2) is

guaranteed.

According to the premises described above, the equations for a biochemical realization for

†It should be noted that the results hereafter hold qualitatively also for Michaelis-Menten kinetics; the use of

Hill kinetics has as only reason more degrees of freedom to obtain a better fit to the time courses.
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the system defined by Equations 7.2 and 7.3 read

ċ1 = ug1(c1,c2)−h1(c1) = u
(c0

1 − c1 − kac · c2)
h1

Kmh1
1 +(c0

1 − c1)h1
− kr1ch1r

1

Kmrh1r
1 + ch1r

1

, (7.9)

ċ2 = g2(c1,c2) −h2(c2) = c1

k2(c
0
2 − c2)

h2

Kmh2
2 +(c0

2 − c2)h2
− kr2ch2r

2

Kmrh2r
2 + ch2r

2

, (7.10)

with‡

∂g1/∂c1 < 0 ∀c1, ∂h1/∂c1 > 0 ∀c1, ∂g1/∂c2 < 0 ∀c2, (7.11)

∂g2/∂c2 < 0 ∀c2, ∂g2/∂c1 > 0 ∀c1 and ∂h2/∂c2 > 0 ∀c2, (7.12)

including the aforementioned additive mechanism for the connection c2 → c1, whose strength

is controlled by the parameter kac
§.

This simple model defined with Equations 7.9 and 7.10 was trained with the experimental

data. Recall from Section 7.1.2.2 that this small system describes the early events. There-

fore, the output c1 = y was mapped to the phosphorylation of LAT (Figure 7.3), an event

immediately downstream of the early events (see Figure 7.4).

The model was able to successfully fit the experimental data for LAT phosphorylation.

Additionally, the state c2 (not fitted to any data) behaved qualitatively similar to the degra-

dation of ZAP70 (see Figure 7.3), supporting thus the hypothesis that ZAP70 is involved in

the feedback responsible for the behavior of LAT. Furthermore, when the model was trained

with both the LAT phosphorylation and ZAP70 data (for c1 and c2, respectively), the fit was

remarkably good.

As mentioned above, the characteristic pattern spreads downstream of LAT to PLCγ1 and

ERK (see Figure 7.3). It therefore seems that, as far as from this set of data can be ex-

tracted, there are no additional complex mechanisms between LAT and ERK¶. Therefore, the

model depicted in Figure 7.5(b) was extended with the minimal elements to fit the data for

PLCγ1 and ERK: two additional modules, c3 and c4 (corresponding the C2s motifs modeled

as the ones above, with Hill kinetics) added in series to the output of c1 (see Figure 7.6(a)).

The resulting model provided a good fit to the data mapping c1 ↔ LAT p, c2 ↔ ZAPdeg,

c3 ↔ PLCγ− 1p, and c4 ↔ ERK pp (see Figure 7.6(b) and Section A.7.1 for details). The

parameters varied in a range of ≈ 10−1 − 104. The range is narrow enough to consider the

‡strictly, ∂g1/∂c1 < 0 holds only for c0
1 − c1 − kac · c2 > 0 or for h1 = 1,3,5, ... We shall consider here thus

h1 = 1.
§If one would like to include the multiplicative feedback, one would just replace u with u

(1+kmc·c2) . In the

following, the additive feedback will be used, but the results hold also for the multiplicative.
¶A detailed inspection reveals that there is a subtle difference at the level of ERK, where the signal upon

streptamers stimulation increases, decreases, and then increases again. This suggests the presence of os-

cillations, sustained or dumped. As no further experimental data is available, and thus no clear statement

could be made, this point was not further pursued.
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(a) Extended model (b) Fit to the data

Figure 7.6: Extension of the simplest feedback model to consider PLCγ1 and ERK and its fit of

the data. The scheme in Figure 7.6(a) shows a plausible biochemical implementation of the ex-

tended model. If not marked otherwise, all arrows denote a positive effect. Figure 7.6(b) shows

the result of the fitting to the experimental data of Figure 7.3 (red: streptamers stimulation;

black: antibody stimulation). The dots with bars correspond to the experimental values (mean

± standard error of the mean), and the continuous lines to the simulation results.

parameters as plausible; too different values would be impossible de facto due to physical

limitations such as diffusion coefficients, etc. It is important to stress that better fits than

those of Figure 7.6(b) could be found, at the expense of introducing additional parameters

into Equations 7.9 and 7.10. As the subject of this analysis is the qualitative behavior rather

than the quantitative fit, the results depicted in Figure 7.6(b) are used as a balance between

good fit and simplicity of the model.

Additionally, including a supplementary block with two modules c5 and c6 connected in

the same way as c1 and c2, the data of PKB could be fitted.

In summary, a simple model (Figure 7.6(a)) has been found which can reproduce the

experimental data. This means that the degradation of ZAP70 could be the mechanism re-

sponsible for the observed behavior, but it is, however, not a proof for it, as we can not rule

out other mechanisms to be involved. Actually, as it will be seen in the next section, a deeper

analysis reveals that the behavior of the system is not the desired one.

7.1.2.4 Analysis of the steady state behavior of the simple model

In order to gain more insight into this control system, which may help to decide whether

it is plausible that this mechanism is behind the behavior, its system-theoretical properties
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will be analyzed, in particular its steady-state behavior. The plots of Figure 7.6(b) suggest

that the steady-state behavior is as desired: higher value for moderate inputs than for strong

inputs (recall Figure 7.4). However, if one runs the simulations plotted in Figure 7.6(b) for

a longer time, the curves eventually cross again at a certain time (Figure 7.7). Accordingly,

computation of the characteristic curve reveals that it has a monotone shape (Figure 7.8).

Figure 7.7: Simulation of the model trained to the data for a longer time. Extending the simulation

(see Figure 7.6(b)) until 200 minutes reveals that the system tends to an asymptotic state which

is not higher for the stronger input.

Figure 7.8: Steady-state characteristic curve for the simplest feedback model. The parameter

values correspond to those obtained from the fit of the data (see Figure 7.6(b) and Sec-

tion A.7.1)The characteristic curve has a monotone form.

It may be that this is the case for this particularly set of parameters, or an inherent property

of this structure. To clarify this point, a deeper mathematical analysis will be performed.

We shall consider solely c1 and c2 (Figure 7.5(a)), as this is the part where the interesting

dynamic behavior takes place. Recall from Section 5.2.1.1 that monotone systems have a

monotone steady-state characteristic curve. Therefore, if the system defined by Equations 7.9

and 7.10 is monotone, its characteristic curve will be monotone, which could then not have

the desired form (Figure 7.4).
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If one computes the Jacobian, one gets

J =
∂ f

∂~c
=

(
∂ f1
∂c1

∂ f1
∂c2

∂ f2
∂c1

∂ f2
∂c2

)
=

(
u

∂g1

∂c1
− ∂h1

∂c1
u

∂g1

∂c2
− ∂h1

∂c2
∂g2

∂c1
− ∂h2

∂c1

∂g2

∂c2
− ∂h2

∂c2

)
(7.13)

which, considering the conditions in Equations 7.11 and 7.12, leads to

J =

(
(+)(−)− (+) (+)(−)−0

(+)−0 (−)− (+)

)
=

(
− −
+ −

)
(7.14)

and

Jinput =
∂ f

∂~u
=

(
+

0

)
. (7.15)

Therefore, with the method presented in Section 5.2, one can not guarantee that the system

as a whole is monotone, because it is sign-definite but there is one negative feedback in the

incidence matrix associated to the Jacobian242.

However, the steady-state characteristic curve css
1 (u) is monotone. The demonstration is

similar to the one employed for the motifs C3dp, C2C2 and C3C2 (see Sections 5.2.2 and

A.3): since c depends on u, from Equation 7.1 in the steady state it holds

0 = f (~css,u). (7.16)

Deriving with respect to u and applying the chain rule, since~css depends on u, we obtain

0 =
∂ f (~css(u),u)

∂c

∂c

∂u
+

∂ f (~css(u),u)

∂u
= J · cu + fu, (7.17)

from where it leads

cu = −J−1 fu (7.18)

with J = ∂ f
∂c

, cu = ∂c
∂u

, and fu = ∂ f
∂u

. Since

J−1 =
−1

J22 J12 − J21 J11

(
J22 −J12

−J21 J11

)
=

−1

(−) · (−)− (+) · (−)

(
− −(−)

−(+) −

)
=

(
− +

− −

)
,

it results from Equation 7.18 that

cu =

(
∂css

1

∂u
∂css

2

∂u

)
= −J−1 fu = −

(
− +

− −

)(
+

0

)
=

(
+

+

)
. (7.19)

That is to say, both characteristic curves css
1 (u) and css

2 (u) are monotone. This result is unex-

pected when compared to the fitting of data (Figure 7.6(b)): it seemed that the steady state
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value for the strong input would be lower than for the weak input. However, the rigorous

result of Equation 7.19 states that, without question, the characteristic curve is monotone for

any parameter values.

As we are looking for a system where the steady state value is higher for weak inputs than

for strong ones, the system defined by Equations 7.9 and 7.10, even though able to fit the

experimental data (available for a short range of time), is not a suitable candidate. In the next

section an extension will be presented to fulfill the desired criterion.

7.1.2.5 Extension of the model to provide reasonable steady-state behavior

The analysis of the previous section demonstrates that two monotone systems connected as

in Figure 7.5(a) must have a monotone characteristic curve. If we want to keep the structure

simple, a reasonable way to circumvent this problem is to simply make the element J22 in

the Jacobian non-definite, since from Equation 7.19

∂css
1

∂u
= J−1

11 (+)+ J−1
12 0 =

J22

J22 J12 − J21 J11
(+). (7.20)
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Figure 7.9: Emergence of bistability via an autocatalytic step. For a range of values of the input c1,

the forward reaction g2(c2) crosses the backward reaction h2(c2) at three points, 2 stable and

one unstable, leading to bistability (Figure 7.9(b)). Since negative values for c1 are physically

not possible, when the input c1 is large enough, creating an irreversible switch (Figure 7.9(c)).

For example, since ∂g2/∂c2 < 0, by somehow adding a term which leads to a positive effect
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of c2 on g2, this goal could be achieved. In biochemical terms, an element has a positive

effect on itself if there is a sort of autocatalytic regulation. One can e.g. extend g2 (see

Equation 7.10) to

g2(c1,c2) =
(c1 + ka f cn

2)k2(c
0
2 − c2)

h2

Kmh2
2 +(c0

2 − c2)h2
. (7.21)

Now, the sign of the element of the Jacobian J22 = ∂ f2/∂c2 is not determined. Therefore, and

operating as above with Equation 7.18, it results that the sign of
∂css

1

∂u
is not definite, i.e., the

characteristic curve is not necessarily monotone. Furthermore, c2 is converted from a C2s

into a C2p motif (see Figure 7.10(a) and Section 4).

This motif can show bistability‖ and, thus, its characteristic curve can show a sharp,

switch-like form (see Figure 7.9). Hence, it is a promising extension as it could bring this

switch-like form in the characteristic curve of the whole system, while keeping the desired fit

to the data of the simplest model. In fact, the form of such a system can have a non-monotone

characteristic curve with an abrupt decay (see Figure 7.10(c)).

c2

u

y

−
c1

(a) Biochemical implementation of the extended

model including an autocatalytic step

(b) Block diagram of the extended

model including an autocatalytic step

(c) Steady-state characteristic curve for y = c1

Figure 7.10: Model including an autocatalytic step. The simplest model of Figure 7.5 is extended

with an autocatalytic step (Equation 7.21) to obtain the switch-like behavior (Figure 7.10(c)).

However, a further analysis reveals that, after a certain value of the input u, css
1 grows again

monotonely with the input u:

∃ui :
∂css

1

∂u
> 0, ∀u > ui (7.22)

‖This result was already demonstrated in Section 5.1.
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First, consider the nullclines∗∗ of the system:

ċ1
ss = 0 → ug1(c

ss
1 ,css

2 ) = h1(c
ss
1 ) ⇔ u

(c0
1 − css

1 − kac · css
2 )h1

Kmh1
1 +(c0

1 − css
1 )h1

=
kr1cssh1r

1

Kmrh1r
1 + cssh1r

1

(7.23)

ċ2
ss = 0 → g2(c

ss
2 ,css

1 ) = h2(c
ss
2 ) ⇔ k2(c

ss
1 + ka f )(c

0
2 − css

2 )h2

Kmh2
2 +(c0

2 − css
2 )h2

=
kr2cssh2r

2

Kmrh2r
2 + cssh2r

2

. (7.24)

Both nullclines together are sufficient to characterize the steady state values and it can

be seen that the input u is involved in the nullclines. Therefore, the steady state values of

both css
1 and css

2 depend on the input. Furthermore, studying the form of the nullclines, it can

be shown that the values of css
1 and css

2 grow with the input u (see Figure 7.11). Therefore,

the characteristic curve grows steadily with the input and, for strong inputs, the steady state

value can be similar to the one of the ’optimal’, moderate inputs.

(a) Nullcline for c2 (red, Equation 7.28),

and trajectories for different values of u

(b) Steady-state characteristic curve for high inputs (y = c1)

Figure 7.11: Nullclines and characteristic curve for high inputs for the model including an au-

tocatalytic step. In Figure 7.11(a), the red line represents the null-cline for css
2 , and the black

lines different trajectories corresponding to different values of u. It results from Equation 7.23

that, the higher the input, the higher is the nullcline for css
1 , and thus, at a higher point meets

the css
2 nullcline. Therefore, for strong input values, the steady state values become inexorably

high.

This result means that, even though inputs moderately higher than the agonist (optimal

stimulus) could be shut down, extremely strong inputs would not (see Figure 7.11(b)). This

is not reasonable from a biological point of view: if e.g. upon a certain mutation a peptide is

generated which has an extraordinary affinity for the TCR, it would lead to incorrect T-cell

activation. Additionally, we have seen in Section 7.1.2.1 that antibodies (which have a huge

affinity for the TCR) do not lead to high, but rather very low, long-term ERK activation.

Therefore, the extension of the model with the positive feedback, even if it takes us closer

∗∗Nullclines are curves along which the vector field is either completely horizontal or vertical, i.e., where

ċi = 0273. The intersections between nullclines correspond to points of equilibrium.
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to the goal, is not the answer. We are looking for a system so that the output reaches a high

value if the input is below a certain threshold ut but, for u > ut it should remain low and

independent of the input value.

It is well-known in control theory that a hallmark of an integral feedback system is that

the output in steady-state is independent of the input and always zero. The key property of

an integrator is its ability to adapt to the strength of the signal and thus to switch off sig-

nals of different strength. Interestingly, integral feedback can be found in biological control

systems121. It seems thus reasonable to consider an integral element as an extension of our

system. Importantly, we shall consider a real instead of ideal integrator (see Section 5.3.1.1)

for 2 reasons: (i) purely ideal integrators are not realizable and (ii) an ideal integrator would

lead to an output signal which is always (including for low inputs) zero and would ’destroy’

the bistable system generated by the autocatalytic step.

(a) Biochemical implementation of the extended

model including a real integrator

(b) Block diagram of the extended

model including a real integrator

Figure 7.12: Model including a real integrator. The simplest model of Figure 7.5 is extended with an

autocatalytic step (Equation 7.21) and an integrator (Equation 7.25) to obtain the switch-like

behavior (Figure 7.13(b)).

We shall consider a biologically inspired integrator of the form

ċ2i = f2i(c1,c2) = (Dc + k2i · c2)
c1

Kmd + c1
−F (7.25)

and subsequently rewrite g1 (see Equation 7.9) to

g1(c1,c2i) = u
(c0

1 − c1 − kac · c2i)
h1

Kmh1
1 +(c0

1 − c1)h1
. (7.26)

Note that for Dc = 0 and F = 0, when c1 ≫ Kmd (saturation), Equation 7.25 converts into

ċ2i = k2i · c2, which is the equation of an ideal integrator.

The form of Equation 7.25 can be motivated as follows: it describes a real, biological in-

tegrator, where c2i is a degradation process which depends on the amount of protein c1 in a
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(a) Nullclines for c2 (red, Equation 7.28) and c2i

(blue, Equation 7.29). Full points are the stable steady

states, and the empty circle the unstable one

(b) Steady-state characteristic curve for y = c1

Figure 7.13: Nullclines and characteristic curve for the model including a real integrator. The

parameter values correspond to those obtained from the fit of the data (see Figure 7.14(b) and

Section A.7.2). Note that the nullcline for c2 in Figure 7.13(a) represents at the same time the

characteristic curve of c2(c1).

Michaelis-Menten manner, as well as on the amount of ’enzyme’ c2 catalyzing the degrada-

tion. The terms Dc and F represent the constitutive degradation and formation, respectively.

In steady-state, from Equations 7.2, 7.3, and 7.25, the nullclines read

ċss
1 = 0 → ug1(c

ss
1 ,css

2i) = h1(c
ss
1 ) ⇔ u

(c0
1 − css

1 − kac · css
2i)

h1

Kmh1
1 +(c0

1 − css
1 )h1

=
kr1cssh1r

1

Kmrh1r
1 + cssh1r

1

(7.27)

ċss
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1 ,css

2 ) = h2(c
ss
2 ) ⇔ k2(c

ss
1 + ka f cn

2)(c
0
2 − css

2 )h2

Kmh2
2 +(c0

2 − css
2 )h2

=
kr2cssh2r

2

Kmrh2r
2 + cssh2r

2

(7.28)

ċss
2i = 0 → f2i(c

ss
2 ,css

1 ) = 0 ⇔ (Dc + k2i · css
2 )

css
1

Kmd + ccc
1

= F . (7.29)

Equations 7.28 and 7.29 define a system of 2 equations and 2 variables (css
1 and css

2 ). There-

fore, the concentration in steady-state of both c1 and c2 is fixed, i.e. only dependent on the

kinetic parameters but not on the input (see Figure 7.13(a)). Equation 7.27, in turn, defines

css
2i as a function of css

1 , css
2 and the input u. As expected, the characteristic curve of such

a system has a clean switch-like form (see Figure 7.13(b)). Thus, a design was found that

possesses all the properties required to be an effective ’fuse’ of T-cell activation.

The model with the real integrator was extended with two additional modules (analogously

as done in Section 7.1.2.3) to train it with the experimental data (see Figure 7.14(a)). First,

parameters for the module c2 where found which lead to an irreversible switch (see Fig-

ure 7.13(a)). Subsequently, the fit to the experimental data was used to determine the rest of

parameters (Section A.7.2). Remarkably, the extended model is able to reconcile the fit of

the data (Figure 7.14(b)) with the desired asymptotic behavior (Figure 7.13(b)).
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−
c2

u
c2i

c1

c3

c4

LATp

PLCg1p

ERKpp

ZAPdeg

(a) Extended model (b) Fit to the data

Figure 7.14: Extension of the model including the integrator to consider PLCγ1 and ERK and its

fit of the data. The scheme in Figure 7.14(a) shows a plausible biochemical implementation of

the extended model. If not marked otherwise, all arrows denote a positive effect. Figure 7.14(b)

shows the result of the fitting to the experimental data of Figure 7.3 (red: streptamers stimu-

lation; black: antibody stimulation). The dots with bars correspond to the experimental values

(mean ± standard error of the mean), and the continuous lines to the simulation results.

7.1.2.6 Identification in the signaling network of the mathematical ingredients

In the previous section, a system able to produce the desired behavior was characterized. In

summary, 3 mathematical elements are required:

• A negative feedback

• an autocatalytic step, to break the monotony and also to create the bistable system

essential for the switch and

• an integrator, to repress strong inputs and make the output independent of the input.

Interestingly, these ingredients are present in the molecule ZAP70 (see Figure 7.15)118;204:

Upon Lck††-mediated phosphorylation at the residue p493, ZAP70 becomes activated. Re-

call from Section 2.2.2 that Lck is directly downstream of the TCR and the first element

activated in the TCR-dependent signaling cascade (see Figure 7.4). Activated ZAP70 au-

tophosphorylates at positions p292, p315, and p319 in a trans manner162. cCbl can bind at

the phosphorylated position p292, leading to an ubiquitination and subsequent degradation of

ZAP70. Recall that the experimental data shows that the degradation seems to be involved

in the shut-off of the too strong signal (see Figure 7.3), supporting thus the involvement

††and probably Fyn, see Section 2.2.2.
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Figure 7.15: Identification in the protein ZAP70 of the required mathematical ingredients. The

kinase ZAP70 has the 3 ingredients required to generate a system of the form of Figure 7.12(a):

activation by phosphorylation, and feedback loop comprising an autophosphorylation and an

integrator (degradation).

of ZAP70 and, furthermore the training of the model to the data also suggests that ZAP70

degradation could be the state in the feedback.

7.1.2.7 Interpretation of the results in the context of T-cell signaling

T-cell activation is a complex process, and so it has to be, as it is a critical decision which,

if wrongly taken, risks the whole organism. Accordingly, it must be precisely regulated.

Furthermore, T-cell activation does not only depend on the affinity of a particular ligand for

the TCR, but also on other context-dependent factors, including signals from other immune

cells. Therefore, and not surprisingly, a large array of factors have been proposed to play

a role in T-cell activation. A particularly fascinating fact is that T-cells must be precisely

controlled to respond only to an antigen characterized by a specific affinity. If one would

plot the response (which, as discussed above in Section 7.1.2.2, can be roughly mapped to

the ERK activation) vs. affinity, one would expect a pulse form characterized by two sharp

switch-like transitions (see Figure 7.16).

The mechanism underlying T-cell specificity is still matter of intense debate. The mecha-

nism firstly proposed is kinetic proofreading173: a series of biochemical processes must take

place during binding of ligand to the TCR to lead to full activation, and the longer the chain of

processes, the sharper (more ultrasensitive) is the activation switch. Therefore, only ligands

with enough affinity to bind the TCR for a sufficient time (more precisely, enough lifetime

of the complex pMHC:TCR) lead to full T-cell activation. A counteracting phenomenon is

serial triggering266: since the density of pMHC on the surface of the APC is low, the life-

time of the pMHC:TCR must be short enough to allow a single peptide to engage different

TCRs. Kinetic proofreading together with serial triggering leads to the existence of an opti-

mum half-life of the complex pMHC:TCR, in agreement with experimental and modeling49

studies.

However, a number of recent experimental results show an all-or-none response in T-
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Figure 7.16: Combination of positive and negative feedback gives rise to a double switch mech-

anism guaranteeing the specificity of T-cell activation. On the one hand, the positive (to be

more precise, double negative) feedback Lck →...→ERK ⊣ SHP-1 ⊣ Lck4;245 gives rise to the

first switch. On the other hand, the mechanism of autophosphorylation+degradation of ZAP70

(Figure 7.16(b)) could produce the second switch, avoiding activation upon unphysiologically

strong inputs.

cell activation3. This, together with the fact that the kinetic-proofreading schemes can only

provide adequate ligand discrimination at the expense of sensitivity or speed of response, in

addition to the lack of robustness of kinetic-proofreading32;34;203 pose serious doubts on the

actual importance of classical kinetic-proofreading and serial triggering.

As an alternative, it has been proposed that feedback regulation in the signaling cascade

downstream of TCR activation can provide this specificity and sensitivity3;32. Chan et al.33

explored how a simple system based on the interplay of a positive and a negative feedback

(implemented by an autocatalytic kinase and a phosphatase operation in closed loop) can lead

to a switch-like response, assuring that too weak ligands do not activate T-cells. Previous,

similar work can be found in132.

More recently, Altan-Bonnet and Germain3 developed a comprehensive model, based also

on the interplay of a positive and a negative feedback. In their model, the key mechanism

comprises Lck-mediated activation of SHP-1, which in turn inhibits Lck. Since Lck is di-

rectly downstream of the TCR (and above ZAP70), this would create a negative feedback

at the level of the early events. To counteract this negative regulation ERK, downstream of

Lck and ZAP70, can inhibit the effect of SHP-1 on Lck, creating a double negative feed-

back (Lck →...→ERK ⊣ SHP-1 ⊣ Lck) which has the net effect of a positive feedback (see

Figure 7.16(b) and also Section 2.2.2). This model relies on well-founded biochemical ev-

idence245 and ad-hoc wet-lab experiments3, and seems to be a good candidate for the first

switch, i.e., the one responsible to avoid T-cells to get activated by too weak inputs (Fig-

ure 7.16).

Another complex phenomenon controlling T-cell activation is the immunological synapse,

a highly structured junction between T-cell and APC surfaces. It has been shown, both ex-
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perimentally and mathematically, that this structure works as an adaptative controller: it con-

centrates the players to boost the signaling process but, at the same time, attenuates strong

signals by promoting receptor degradation154. The latter effect is very similar to the one

described in this work, both regarding its goal (block of too strong signals) and the meth-

ods used (ubiquitination and degradation). However, in our experimental system there is no

synapse, as we stimulate T-cells with streptamers and not APCs (see Figure 2.3). Therefore,

the effect of the synapse may probably complement the one proposed here.

Without challenging the importance of this and other mechanisms, the analysis presented

here tries to make the point that the negative feedback involving ZAP70 autophosphorylation

plus degradation, is responsible, or at least involved, in the generation of the second switch

to avoid activation by too-strong, unphysiological signals (see Figure 7.16). Also of biolog-

ical relevance is the irreversibility of this mechanism: once the strong input signal triggers

the switch (c2), it remains active. This would block activation upon a posterior input. This

property makes sense in biological terms: if a T-cell meets such an extremely high input, it

means that something unnormal is happing either in the cell or in its environment. Therefore,

as a safety measurement, should be permanently switched off.

In summary, even though the experimental data per se suggested the involvement of

ZAP70 degradation in the switch off of strong signals, only together with a mathemati-

cal model was it possible to demonstrate that ZAP70 degradation can be responsible for

this behavior (since a simple model including only this regulatory mechanism can fit the

data). Furthermore, a detailed analysis of the simple model provides insights into the sys-

tems properties of this control mechanism which can be seen as an explanation of why it is

an ’expensive’ degradation process and not a simple inhibition via e.g. dephosphorylation

what is included into the design of this biochemical fuse.

7.2 Modular analysis of the EGF-induced MAPK

cascade

To illustrate the applicability of the modular approach and the definitions introduced in Sec-

tion 5.3.1.2 to a large signaling network, these concepts will be applied to the model of the

EGF-induced MAPK cascade of Schoeberl et al.234 (see Section 2.2.1) , which was decom-

posed into modules in Section 3.4.4.

One hallmark of this signaling system is a remarkable independence on the concentra-

tion of the ligand234. The amount of EGF can vary over a wide range of biologically sig-

nificant values without major effect on the output signal, the double phosphorylated form

of ERK (Figures 7.17(a) and 7.17(b)). For any value higher than approximately 0.1 nM,

neither the amplitude (Figure 7.17(c)/7.18(a)) nor the signaling time (Figure 7.18(b)) vary.
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Interestingly, the output of the module MEK depends on the concentration of the ligand

(Figure 7.17(d))220. Therefore, it is the ERK module that produces independence from the

ligand concentration. This phenomenon is due to the sigmoid input/output relationship of

the module ERK (Hill coefficient of 2.44), and to the fact that the threshold value of the

ERK module (Kh
0.5 ≈ 3100 molecules per cell (molec/cell)) is reached for low stimuli, ≈

0.007 nM. Hence, the output (ERK-PP) shows little variation for input values above 0.1 nM

(Figure 7.17(e))220.
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Figure 7.17: Analysis of the input/output behavior of the EGF induced MAPK cascade. For a wide

range of inputs (blue to green line in Figure 7.17(a)), the output (ERK-PP) remains almost

unaltered (Figure 7.17(b)). This information can be represented in a compact manner with a

characteristic curve plotting the signal amplitude S of ERK-PP vs. input220 (Figure 7.17(c)).

Since MEK does not show this saturation (Figure 7.17(d)), this property can be traced back to

the ERK module220 (Figure 7.17(e))

Additionally, the contribution of the internalized receptors is important only for input val-

ues below 0.1 nM234, since for higher values the amplitude of the signal for the internalized

pathway is negligible, see Figure 7.18.

Another point still unclear is the role of the adaptor molecule Shc, which provides a second

mechanism for activating Ras. The Shc-dependent pathway is redundant and seems to be

preferentially used97. When this pathway is disabled - by setting the concentration of Shc

to zero, simulating an Shc knock-out, - the output signal is slightly lower for high EGF

concentrations, higher than roughly 0.1 nM, and slightly higher for lower values, between

approximately 0.01 nM and 0.1 nM (see Figure 7.18(a))220. For EGF concentrations under
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Figure 7.18: Signal amplitude and signaling time in the EGF-induced MAPK cascade. Signal am-

plitude S and signaling time τ0.9 for (i) the total output of the complete model (solid black

line), (ii) the total output of the model without Shc (dashed-dot green line), (iii) the output

of the complete model due to the receptors on the surface (solid blue line) and (iv) the out-

put of the complete model due to the internalized receptors (dashed red line) from the EGF

model220;234. The internalized receptors are important only for input values below 0.1 nM. The

adaptor molecule Shc accelerates the response and increases the signal amplitude moderately

for input values below 0.01 nM.

0.01 nM the signal without Shc is again lower, but in this case the difference is relatively

more important, see Figure 7.18(a). The system reacts faster if Shc is present, although the

difference is small (Figure 7.18(b)). Therefore, Shc seems to play an important role only at

low EGF concentrations233.

This subsection illustrates how the parameters introduced in Section 5.3.1.2 help to de-

scribe in a compact manner key properties of signaling networks (and thus facilitate their

analysis), and how a modular analysis can uncover the elements responsible for a certain

property (e.g. that the low sensitivity to ligand concentration of the EGF-induced MAPK

cascade can be traced back to the saturation of the ERK module220). In the following section

it will be shown that a modular decomposition also facilitates model reduction.

7.2.1 Model reduction of the EGF-induced MAPK cascade model

An advantage of a decomposition into modules without retroactivity is that, if a less complex

model can be found which retains the essential input/output behavior of the original module,

it can directly replace the original one, leading to a model reduction47. In the case of (weak)

retroactivity, a certain difference may appear.

In Section 5.3.2 it was shown that, for extreme cases, simple motifs can be approximated

by linear systems or, for more general conditions, by a combination of a non-linear character-

istic curve and a linear system (i.e., by a Hammerstein module). For more complex modules,

however, finding such a simple replacement may be probably not possible. Nevertheless, one

is also interested in reducing such modules - probably more than in the case of the simple mo-

tifs, since the more complex the module, the larger the potential reduction is and, besides, the



7.2. MODULAR ANALYSIS OF THE EGF-INDUCED MAPK CASCADE 121

P

P

P

P

P

P

P

P

(a) Biochemical representation of the Shc-

module222 and the corresponding reduced

module47.

0 5 10
0

5000

10000

15000

Time (min)

O
u

tp
u

t 
(m

o
le

c
/c

e
ll)

 

 

0 5 10
0

500
1000

Input        
 (molec/cell)

(b) Pulse response of the Shc-

module vs the reduced module47.
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(c) Comparison of the original model (EGF-induced MAPK234 without receptor internalization) and

a reduced one replacing the complex formation with the simple pattern of Figure 7.19(a). In both

cases the system is stimulated by a step in the EGF concentration. The input (EGF-EGFR*) and

output (active form of Sos) of the module, as well as 2 downstream signals (Ras-GTP and ERK-PP),

are depicted. Note how there is a difference at the value of the input, due to the retroactive effects.

Figure 7.19: Modular reduction of the model of the EGF-induced MAPK cascade. Simulation

studies (e.g. Figure 7.19(b)) showed that many modules of the cascade (e.g. the Shc module)

behave like a simple pattern Figure 7.19(a). Thus, modules of the model could be replaced

by the simple pattern. For example, the module comprising the complex formation could be

replaced47, and the behavior was similar to the original model (Figure 7.19(c)). In all cases, the

response of the original model is depicted with black, solid line, and of the reduced in green,

dashed lines.

harder it is to understand (and thus the more helpful is a simplification). There are a number

of model reduction methods which can be applied to signaling systems147;221: elimination of

non-observable states48 (see Section 4.1), substitution of differential equations by algebraic

equations using conservation relationships227, separation of fast from slow processes if dif-

ferent time hierarchies are present149;290, neglect of states using optimization techniques172,

etc. Some of these methods have been recently reviewed elsewhere147.

However, in many cases, rigorous methods do not provide enough reduction or are even not

applicable. In these cases a more heuristic approach, based on simulation studies, can be of

help47. We shall illustrate its application briefly using as a case study, again, the modularized

model for the EGF-induced MAPK cascade of Schoeberl et al.234.

If possible, the first step should be to linearize the modules, since a linearization provides

insight into the behavior of the different modules (see also Section 5.3.1.1). For example,
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the module regarding the EGF reception (Figure 3.9), can be analytically linearized, and a

subsequent analysis reveals that this subunit behaves as a differentiating system with a third

order lag behavior47. For more complex modules, such as the complex formation, testing

the response of the system to different inputs allows one to find the linear system that best

reproduces its behavior. However, due to the strong role played by the nonlinearities, a linear

system cannot completely reproduce the dynamics of this and of most modules.

In such cases, one can try to replace the nonlinear modules by less complex nonlinear

models, showing approximately the same input/output (I/O) behavior. This substitution re-

quires a detailed knowledge of the model dynamics and its transfer behavior, which not only

helps to find suitable model reductions, but also to get a qualitative and quantitative compre-

hension of the system. However, only few tools exist to analyze the dynamics of nonlinear

models and they are mainly restricted to the analysis of low dimensional systems. Therefore,

simulation studies were used here , which can be applied to the analysis of the I/O behav-

ior of essentially all systems: considering the system’s output responses to input signals like

steps, oscillations or pulses may help to categorize the system’s transfer performance and to

understand the signal processing.

Surprisingly, simulation studies of the EGF model showed that the I/O behavior of several

complex modules was strikingly similar (see Figure 7.19(b)) to that of a simple pattern (Fig-

ure 7.19(a)). Thus, the most complex modules could be replaced by the structure of the most

simple one, obtaining a very good approximation to the original model47;221 (Figure 7.19(c)).

The output of the module and downstream elements showed a behavior remarkably similar to

the original model while the input, however, exhibits a clear difference, due to the retroactive

effects.

The modules which can be approximated by this pattern involve different biochemical

processes. For example, the Raf-Ras module is mainly a transfer of phosphate between two

proteins, while the complex formation modules involve mainly physical interactions among

proteins. However, they can be both reproduced by the same pattern, meaning that the dy-

namics, at least as far as they have been analyzed47, are very similar. It is tempting to specu-

late whether this pattern might also be applied to other signal transduction systems; it might

be that, due to its characteristics for the transfer of information, is a recurring theme in signal

transduction.

In summary, simulation studies applied in a modular fashion might be very helpful to

analyze the input/output behavior of a system, and may also be helpful in finding suitable

model reductions.
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7.3 Conclusions

This chapter explored the application of a modular concept to analyze the dynamics of signal-

ing networks, using differential equations as modeling formalism. The focus on the dynamics

gives rise to a plethora of new aspects (oscillations, steady-state characteristic curves, etc.)

compared to the Boolean approach of Chapter 6, but, on the other hand, these properties

can only be studied on systems of moderate size: the EGF-induced MAPK studied here is

arguably a limit case.

We started with a simple concatenation of motifs to set up the MAPK cascade. This exam-

ple presented ’expectable’ emergent properties: e.g., that the characteristic curve of a series

of motifs is roughly a product of that of the elements, or that closing the loop with a negative

feedback can produce oscillations.

In the next section, a feedback of two simple motifs, inspired in TCR signaling, gave

rise to a number of interesting results. First, a small model was found which could fit a set

of data. However, the system-theoretical properties were not as they should, and the model

had to be extended. This result illustrates the fact that solely fitting of data has a limited

meaning. Subtle analysis of the properties of the underlying mathematical systems, however,

can provide insights into the design of biological systems, as was in our case the fact that a

feedback driven by an autocatalytic step plus degradation produces a robust switch to block

undesired signaling. In this context, the results of the thorough analysis of the motifs of

Chapter 5 proved to be of great help: by knowing what one can expect from the single motifs,

one can concentrate on the emergent properties arising from their combination. For example,

the fact that the characteristic curve for all motifs are monotone, gave us the security that the

results with regard to the characteristic curve of the simple feedback model of Section 7.1.2

would apply independently of the particular implementation of the motifs. Additionally, we

could look into the catalog of motifs to find one possessing a particular property, namely, the

ability to show bistability, and easily incorporate it into the model.

Finally, in Section 7.2.1, a model already available of the EGF-induced MAPK234 was

extensively analyzed. Firstly, we focus on some holistic properties of the whole cascade. For

example, the insensitiveness to changes in the concentration of the input (ligand): using a

modular approach and characteristic curves, one can elegantly show that this key property is

due to the saturation of the ERK module. Furthermore, thorough simulation studies revealed

that the I/O behavior of many modules was similar. This allowed to replace the complex

modules with those which, yet simpler, behave similarly from a dynamic point of view, lead-

ing to a reduction of the model as a whole. However, these methods might not be applicable

to all models, as there may exist models that cannot be decomposed into retroactive-free

modules, and thus the reduced modules can not substitute perfectly the original one if the

analyzed units are not completely free of retroactive effects. Furthermore, this approach is
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rather heuristic, since it is case-dependent and requires a certain expertise from the analyzer

(e.g. for finding out a suitable reduced structure), and its applicability to other systems is an

open question.

Nevertheless, it can be expected that, as models grow in size and detail, model reduction

will be more demanded and, thus, new methods for model reduction should be developed,

tailored to the idiosyncrasy of signal transduction systems.



Summary

Two characteristic properties of biochemical (in particular signaling) networks are their com-

plexity and their inherent modularity. The main idea of this work is to take advantage of the

latter to facilitate to unravel the former. To apply such a modular approach the following

tasks must be performed:

1. decompose the signaling network of interest into sensible modules,

2. analyze the modules thoroughly, and

3. rewire the modules (eventually substituted by a simplified version) into the network

and analyze the network.

In this thesis, several proposals to perform these steps have been presented:

First, in Chapter 3 a novel criterion for the decomposition of networks considering the

concept of absence of retroactivity (i.e., unidirectional connection) was defined, and subse-

quently implemented into an algorithm. This allows to take a model (e.g. in SBML format)

’blindly’ (i.e., without a priori knowledge about it) and untangle it into subunits so that

the number of retroactive connections among the modules are minimized. Furthermore, this

information can be automatically used in ProMoT to generate a modularly-structured model.

Thus, this approach not only provides insights into the structure of the model under study,

but, thanks to ProMoT’s inherent modularity, also provides a unique framework for a mod-

ular approach: one takes a ’flat’ (non-modularized) model, decompose it into sensible sub-

units, and can create models of the modules for the analysis. The method was demonstrated

by decomposing several models of high difficulty, either due to their size (Section 3.4.3) or

high level of entanglement (Section 3.4.4).

This method follows a sort of ’top-down’ approach: consider a network and try to unravel

its modular properties. An inverse, ’bottom-up’ perspective could also be revealing: con-

sider the molecular architecture of signaling systems with regard to the modularity. Recently,

important modeling efforts have been made that consider protein domains as the building

blocks of signaling processes (as is the case from a molecular perspective).A rigorous de-

scription leads to a combinatorial explosion of the number of states. However, recent work

has demonstrated that this complexity can be significantly reduced without loss of exactitude

125
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if a domain-oriented approach is used. Moreover, applying this method, signal transduction

networks show a modular structure where each module corresponds to a molecular domain

and is connected in a unidirectional manner.Since the possible events taking place at a single

domain are discrete, the number of possible modules is limited. Therefore, one can develop

a construction kit of motifs, so that most signal transduction networks can be set up as an

aggregation of those elements, as explained in Chapter 4. These results provide thus a per-

spective to modularity complementary to that introduced in Chapter 3.

Regarding the second point (analysis of motifs), the construction kit defined in Chapter 4

was thoroughly analyzed in Chapter 5 with regard to their multistability, monotony and in-

put/output transfer behavior. First, multistability was addressed, because it is essential not

only from a system-theoretical point of view, but also from a biological one, as it is required

for essential processes such as differentiation or life/death decision-making. Therefore, the

identification of biochemical motifs related to multistationarity can provide important in-

sights into the rationale behind signal processing.

Thereby several theoretical methods (bifurcation analysis, identification of positive feed-

back loops, Chemical Reaction Network Theory and a new method recently developed), were

used and subsequently compared. The analysis shows that, apart from double-step activation

motifs including a distributive mechanism, only those motifs involving an autocatalytic reac-

tion can show multistationarity. Furthermore, statistical analyses of an extensive number of

bifurcation plots reveals that it might not be robust at the single-motif level, since the range

of protein concentrations compatible with multistability is relatively narrow and of the same

order of the natural fluctuation of the concentrations of proteins in cells of mammals, yeast,

and bacteria.

As a second property, the monotony was addressed. Monotone systems are well behaved

in a mathematical sense, what facilitates enormously the analysis of systems set up as com-

bination of them. Remarkably, all motifs but one proofed to be monotone. Furthermore, all

systems have a monotone characteristic curve. These results suggest that the main source

of complexity in biochemical systems are the entanglement of motifs, rather than the single

motifs themselves.

Finally, encouraged by these results, the equivalence between simple linear systems and

biochemical units was explored. While the former can only approximate the behavior of the

latter under extreme conditions (e.g. very weak input), the combination of a non-linear mono-

tone characteristic curve and a linear dynamical system (a so-called Hammerstein module)

proofed to approximate relatively well the biochemical systems and provide insight into their

properties and the importance of the different kinetic parameters on them.

The results from Chapter 5 provide thus a first step towards a catalog of fully characterized

signaling modules. Furthermore, these results can be seen as a proof of principle for the

methods used there.
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As far as the third point (rewiring and subsequent analysis) is concerned, the rationale is

that, thanks to the knowledge won in the second step, one can concentrate on the emergent

properties resulting from the influences among the modules. Therefore, whenever possible,

one should simplify the description of the single modules to be able to tackle large signaling

networks. Based on a strong simplification (replacement of each motif by a Boolean state),

a new analysis framework was developed, and the abilities of the tools CellNetAnalyzer and

ProMoT were extended, to set up and analyze models of large signaling networks. Even

though this methodology requires a strong simplification of the reality, it allows to gain

holistic insights into large networks. To illustrate its applicability, a large, curated model of

T-cell signaling was set up and subsequently analyzed224. This model is, to the best of our

knowledge, the largest of its sort up to date, and comprises as many as 94 compounds and

123 interactions among them.

In Chapter 7, the emergent of new dynamic behavior was addressed with kinetic models.

First the effects on the steady state and dynamic behavior of concatenating motifs (and even-

tually embedding them in a loop) was explored using the well-known MAPK cascade as an

example.

Later, a minimalist model was outlined to explain a specific non-trivial dynamic behavior

in the T-cell induced MAPK cascade in Section 7.1.2. This simplest model (which comprises

the minimal number of elements required to explain a set of data) was not only able to

explain the observed behavior, but also to provide insights into the design of the mechanisms

responsible for it. However, a large, detailed model product of a bottom-up approach was not

able to explain this data. These results illustrate the problems of parameter estimation and

model discrimination and advocates for the use of simple models at least as a first approach

to a particular question.

Finally, the properties of the model describing the EGF-induced MAPK cascade of Schoe-

berl et al., which had been decomposed in Chapter 3, are analyzed. A modular perspective

elegantly shows that it is the last module (ERK) which is responsible for the insensitiveness

of the model to differences in the input, a characteristic of this system, among other insights.

These results provide a proof of principle of the application of the modular methodology to

an already-defined model.

In summary, the methods presented here contribute to the different steps required for a

modular approach. This work does certainly not answer all questions, but it provides an ini-

tial framework towards an analysis based upon a modular rationale. Different aspects could

be further investigated. An important issue would be to facilitate the work-flow between

the different steps. It would be for example useful to have methods to (semi)automatically

convert models defined using a kinetic approach into Boolean ones and vice versa. ProMoT

seems to be a suitable candidate to integrate the different aspects. The potential advantages

of a modular perspective grow with the system under consideration. Here, systems of certain
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size have been used as case studies. The examples were chosen as a compromise of com-

plexity, relevance, and available information. In the future, however, larger systems should

be tackled and successively integrated, with the ultimative goal to consider a whole cell, a

whole organ, and, eventually, the whole human organism.



Bibliography

[1] D. R. Alessi, et al. Characterization of a 3-phosphoinositide-dependent protein kinase

which phosphorylates and activates protein kinase Balpha. Curr Biol, 7:261–269,

1997.

[2] U. Alon, M. G. Surette, N. Barkai, S. Leibler. Robustness in bacterial chemotaxis.

Nature, 397, January 1999.

[3] G. Altan-Bonnet, R. N. N. Germain. Modeling T cell antigen discrimination based on

feedback control of digital ERK responses. PLoS Biol, 3(11), October 2005.

[4] G. Altan-Bonnet, R. N. N. Germain. Modeling t cell antigen discrimination based on

feedback control of digital erk responses. PLoS Biol, 3(11), October 2005.

[5] K. Anderson, C. Kane. Ca/calmodulin-dependent protein kinase iv and calcium sig-

naling. Biometals, 11(4):331 – 343, 1998.

[6] K. E. Anderson, J. Coadwell, L. R. Stephens, P. T. Hawkins. Translocation of PDK-1

to the plasma membrane is important in allowing PDK-1 to activate protein kinase B.

Curr Biol, 8:684–691, 1998.

[7] D. Angeli, J. Ferrell, E. Sontag. Detection of multistability, bifurcations, and hys-

teresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci.

U.S.A., 101(7):1822–1827, 2004.

[8] M. Arnaud, et al. Interaction of the tyrosine phosphatase SHP-2 with Gab2 regu-

lates Rho-dependent activation of the c-fos serum response element by interleukin-2.

Biochem J, 382:545–556, 2004.

[9] R. Arnold, et al. Activation of hematopoietic progenitor kinase 1 involves relocation,

autophosphorylation, and transphosphorylation by protein kinase D1. Mol Cell Biol,

25:2364–2383, 2005.

[10] A. Asthagiri, D. Lauffenburger. Bioengineering models of cell signaling. Annu. Rev.

Biomed. Eng., 2:31–53, 2000.

129



130 Chapter 7 Bibliography

[11] A. Asthagiri, D. Lauffenburger. A computational study of feedback effects on signal

dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol.

Prog., 17(2):227–239, 2001.

[12] A. August, B. Dupont. CD28 of T lymphocytes associates with phosphatidylinositol

3-kinase. Int Immunol, 6:769–774, 1994.

[13] P. Bak, K. Sneppen. Punctuated equilibrium and criticality in a simple model of evo-

lution. Physical Review Letters, 71:4083–4086, dec 1993.

[14] A.-L. Barabasi, Z. N. Oltvai. Network biology: understanding the cell’s functional

organization. Nat Rev Genet, 5(2):101–113, Feb 2004.

[15] V. Batagelj, A. Mrvar. Pajek - analysis and visualization of large networks. Lect.

Notes Comput. Sci., 2265:477–478, 2002.

[16] A. Becskei, B. Sraphin, L. Serrano. Positive feedback in eukaryotic gene networks:

cell differentiation by graded to binary response conversion. EMBO J, 20(10):2528–

2535, May 2001.

[17] K. Behrendt, K. Mauch. Verfahren und analyseeinrichtung zum identifizieren von

wirkorten in einem signalnetzwerk. Patentanmeldung, 2003.

[18] S. G. Benjamini E, Coico R. Immunology-A short course. Wiley-Liss, 2000.

[19] M. Bentires-Alj, et al. A role for the scaffolding adapter GAB2 in breast cancer. Nat

Med, 12:114–121, 2006.

[20] U. Bhalla, R. Iyengar. Emergent properties of networks of biological signaling path-

ways. Science, 283(5400):381–387, January 1999.

[21] B. Binder, R. Heinrich. Interrelations between dynamical properties and structural

characteristics of signal transduction networks. Genome Informatics Serie, 15(1):13–

23, 2004.

[22] T. G. Bivona, et al. Phospholipase cgamma activates ras on the golgi apparatus by

means of rasgrp1. Nature, 424(6949):694–698, August 2003.

[23] M. L. Blinov, J. R. Faeder, B. Goldstein, W. S. Hlavacek. Bionetgen: software for rule-

based modeling of signal transduction based on the interactions of molecular domains.

Bioinformatics, 20(17):3289–3291, 2004.
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Appendix
A.1 Textual Definition of the Motifs

A.1.1 Mass-action-law-based description
For the sake of completeness, a detailed description of the motifs defined in Chapter 4 and investigated

in Chapter 5 is give here. First, the description of the motifs used in Section 5.1 will be presented.

The enzymatic reactions in the motifs are described using mass-action-law kinetics. The resulting

reactions are presented in the following tables.

C2s C2n C2p

A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1

A∗ +E2

k4

k5

⇋A∗E2

k6

⇀A+E2 A∗ +E2

k4

k5

⇋A∗E2

k6

⇀A+E2 A∗ +E2

k4

k5

⇋A∗E2

k6

⇀A+E2

A∗ +A∗ k7

k8

⇋A∗A∗ k9

⇀A+A∗ A+A∗ k7

k8

⇋AA∗ k9

⇀A∗ +A∗

B1 C2B1 C2B2

A+E1

k1

k2

⇋AE1

k3

⇀Ap +E1 A+E1

k1

k2

⇋AE1

k3

⇀Ap +E1

A+B
k1

k2

⇋AB Ap +E2

k4

k5

⇋ApE2

k6

⇀A+E2 Ap +E2

k4

k5

⇋ApE2

k6

⇀A+E2

Ap +B
k7

k8

⇋ApB Ap +B
k7

k8

⇋ApB

Ap +C
k9

k10

⇋ ApC

C3dd C3di C3d p

A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1

A∗ +E2

k4

k5

⇋A∗E2

k6

⇀A+E2 A∗ +E2

k4

k5

⇋A∗E2

k6

⇀A+E2 A∗∗ +E2

k4

k5

⇋A∗∗E2

k6

⇀A+E2

A∗ +E1

k7

k8

⇋AE1

k9

⇀A∗∗ +E1 A∗ +E1

k7

k8

⇋AE1

k9

⇀A∗∗ +E1 A∗ +E1

k7

k8

⇋AE4

k9

⇀A∗∗ +E1

A∗∗ +E2

k10

k11

⇋ A∗∗E2

k12

⇀ A∗ +E2 A∗∗ +E3

k10

k11

⇋ A∗∗E3

k12

⇀ A∗ +E3

C3ii C3sr C3sr(cont)

A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A∗ +A∗ k7

k8

⇋A∗A∗ k9

⇀A∗∗ +A∗

A∗ +E2

k4

k5

⇋A∗E2

k6

⇀A+E2 A∗ +E3

k4

k5

⇋A∗E3

k6

⇀A+E3 A∗∗ +E2

k10

k11

⇋ A∗∗E2

k12

⇀ A∗ +E2

A∗ +E4

k7

k8

⇋AE4

k9

⇀A∗∗ +E4 A∗ +A∗∗ k7

k8

⇋A∗A∗∗ k9

⇀A∗∗ +A∗∗

A∗∗ +E3

k10

k11

⇋ A∗∗E3

k12

⇀ A∗ +E3

C2C2 C3C2 C3C2(cont)

A+E1

k1

k2

⇋AE1

k3

⇀A∗ +E1 A+E1

k1

k2

⇋AE1

k3

⇀A∗+E1 B∗ +E2

k7

k8

⇋B∗E2

k9

⇀B+E2

A∗ +B
k4

k5

⇋A∗B
k6

⇀A+B∗ A∗∗ +B
k4

k5

⇋A∗∗B
k6

⇀A+B∗ A∗ +E2

k10

k11

⇋ A∗E1

k12

⇀ A∗∗ +E1

B∗ +E2

k7

k8

⇋B∗E2

k9

⇀B+E2
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A.1.2 Quasi-steady-state description

In Section 5.2, the description is simplified using the quasi-steady-state assumption, which leads to
description of the reactions in the form of Michaelis-Menten kinetics235 if there is no competition
for enzymes; otherwise (e.g. for C3dd), a different expression arises88. Additionally, the conservation
relationship for the total amount of concentration is considered. In Section 5.3, in addition, the equa-
tions are normalized with respect to the total concentration and one time constant, reducing thus the
number of parameters. The simplifications were explained in Sections 5.2.2 and 5.3; here the result-
ing equations of the rest are summarized. For a detailed explanation the reader is referred to Gayer88.
Note that the parameter names do not correspond to those of Section A.1.1.

C2s C2n

Ȧ∗ =
E1 · (1−A∗)

Km1 +(1−A∗)
− E2 · k−1 ·A∗

Km−1 +A∗ Ȧ∗ =
E1 · (1−A∗)

Km1 +(1−A∗)
− (E2 +A∗) · k−1 ·A∗

Km−1 +A∗

C2p B1 ‡‡

Ȧ∗ =
(E1 +A∗) · (1−A∗)

Km1 +(1−A∗)
− E2 · k−1 ·A∗

Km−1 +A∗ ȦB = (1−AB) · (1−AB)− k2 ·AB

C2B1

Ȧ∗ =
E1 · (1−A∗)

Km1 +(1−A∗)
− E2 · k−1 ·A∗

Km−1 +A∗ − k3(1−AB) ·A∗ + k3r ·AB

ȦB = k3 (A∗−AB)(1−AB)− k3r ·AB

C2B2

Ȧ∗ =
E1 · (1−A∗)

Km1 +(1−A∗)
− E2 · k−1 ·A∗

Km−1 +A∗ − k3(1−AB) ·A∗ + k3r ·AB+ k4(1−AC)A∗− k4r ·AC

ȦB = k3 (A∗−AB−AC)(1−AB)− k3r ·AB, ȦB = k4 (A∗−AB−AC)(1−AB)− k4r ·AC

C3dd

Ȧ = − E1 ·A
Km1 +A+ Km1

Km2
(1−A−A∗∗)

+
E2 · k−1 · (1−A−A∗∗)

Km−1 +(1−A−A∗∗)+
Km−1

Km−2
A

˙A∗∗ = − E2 · k−2 ·A∗∗

Km−2 +A∗∗ +
Km−2

Km−1
(1−A−A∗∗)

+
k2E1 · (1−A−A∗∗)

Km2 +(1−A−A∗∗)+ Km2
Km1

A

C3di

Ȧ = − E1 ·A
Km1 +A+ Km1

Km2
(1−A−A∗∗)

+
E2 · k−1 · (1−A−A∗∗)
Km−1 +(1−A−A∗∗)

˙A∗∗ = −E2 · k−2 ·A∗∗

Km−2 +A∗∗ +
k2E3 · (1−A−A∗∗)

Km2 +(1−A−A∗∗)+ Km2
Km1

A

C3d p

Ȧ = − E1 ·A
Km1 +A+ Km1

Km2
(1−A−A∗∗)

+
E2 · k−1 · (A∗∗)
Km−1 +(A∗∗)

˙A∗∗ = −E2 · k−1 ·A∗∗

Km−1 +A∗∗ +
k2E1 · (1−A−A∗∗)

Km2 +(1−A−A∗∗)+ Km2
Km1

A)

C3ii

Ȧ = − E1 ·A
Km1 +A

+
E4 · k−1 · (1−A−A∗∗)
Km−1 +(1−A−A∗∗)

, ˙A∗∗ = −E2 · k−2 ·A∗∗

Km−2 +A∗∗ +
k2E3 (1−A−A∗∗)

Km2 +(1−A−A∗∗)
C3sr

Ȧ = − E1 ·A
Km1 +A

+
E3 · k−1 · (1−A−A∗∗)
Km−1 +(1−A−A∗∗)

, ˙A∗∗ = −E2 · k−2 ·A∗∗

Km−2 +A∗∗ +
(1−A) · k2(1−A−A∗∗)

Km2 +(1−A−A∗∗)
C2C2

Ȧ∗ =
E1 · (1−A∗)

Km1 +(1−A∗)
− k3 ·A∗B, Ḃ∗ =

E2 · (1−B∗)
Km2 +(1−B∗)

+ k4 ·A∗B

C3C2

Ȧ∗ =
E1 · (1−A∗)

Km1 +(1−A∗)
− k3 ·A∗B, Ḃ∗ =

E2 · (1−B∗)
Km2 +(1−B∗)

+ k4 ·A∗B

˙A∗∗ = −E2 · k−2 ·A∗∗

Km−2 +A∗∗ +
(1−A) · k2E1 · (1−A−A∗∗)

Km2 +(1−A−A∗∗)
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A.2 Histograms for the Distribution of ∆AT

This histogram plot the distribution of the parameters ∆AT
, ∆E1T

, and ∆E1T
as defined in Equations 5.1,

5.2, and 5.3, respectively, for the motifs showing multistationarity. See Section 5.1 for more details.

(a) C2p (b) C3dd (c) C3di (d) C3sr

Figure A.1: Distribution of ∆AT
for C2p, C3dd, C3di, and C3sr.

(a) C2p (b) C3dd (c) C3di (d) C3sr

Figure A.2: Distribution of ∆E2T
for C2p, C3dd, C3di, and C3sr.

(a) C2p (b) C3dd (c) C3di

Figure A.3: Distribution of ∆E1T
for C2b and C3a, and C3di.
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A.3 Proof of Monotone Characteristic Curve of the

Motif C3dp
Let us exemplify the fact that the non-monotone motifs of Chapter 5 have a monotone characteristic

curve with the motif C3dp (see Figure 4.5(e)). Note that a similar analysis was performed in Sec-

tion 7.1.2. Its differential equations (see Section A.1.2) are of the form of Equation 3.2, ~̇c = f (~c,~u,~p).
For the sake of compactness, we shall rename A∗ and A∗∗ c1 and c2 , respectively. Since c depends on

u, in the steady state it holds

0 = f (~css,u) = f (~css(u),u). (A.30)

Deriving with respect to u and applying the chain rule, since~css depends on u, we obtain

0 =
∂ f (~css(u),u)

∂c

∂c

∂u
+

∂ f (~css(u),u)

∂u
= J · cu + fu → cu = −J−1 fu (A.31)

with J = ∂ f

∂c
, cu = ∂c

∂u
, and fu = ∂ f

∂u
. Since

J−1 =
−1

J22 J12 − J21 J11

(
J22 −J12

−J21 J11

)
=

−1

(−) · (−)− (+) · (−)

(
− −(−)

−(+) −

)
=

(
− +
− −

)
,

it follows from Equation A.31

cu =

(
∂css

1

∂u
∂css

2

∂u

)
= −

(
− +
− −

)(
+
0

)
=

(
+
+

)
, (A.32)

Which means that both characteristic curves css
1 (u) and css

1 (u) are monotone. Similar arguments can

be applied to C2C2 and C3C2.
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A.4 ProMoT Code of the Domain-oriented Library
Here, the architecture behind the ProMoT library for a domain-oriented modeling presented in Sec-

tion 4.3 will be succinctly described.

New storages, based on the previous multi-storages of the ProMoT libraries were developed. The

simplest unit is a module describing a domain with 2 possible states (see Fig. A.4), which we shall use

to illustrate the implementation. There is one differential equation for the balance of the percentage

of the domain in one of the states (e.g. degree of occupation), st_2 ; the other state st_1 is computed

algebraically (1-st_2). This allows a minimal realization in terms of differential equations.

cot

st_1=1−st_2
d(st_2)/dt=

cf2.r

cf1.r

cf1

(=c_2)
cf2.c

(=c_1)
cf1.c

cf2.r/cot.c

cf2

(define-module

:class "storage-mult-2st"

:super-classes ("multistage-storage")

:properties (("abstract" :value "no")) :icon "icons/1bs-2st"

:terminals

(("cot" :is-a "term-concentration-in":geometry-side "top" :geometry-position "0.5")

("cf1" :is-a "term-storage-flux" :geometry-side "right" :geometry-position "0.25"

:variables (("c" :is-eq-to "parent.c_1")))

("cf2" :is-a "term-storage-flux" :geometry-side "right" :geometry-position "0.75"

:variables (("c" :is-eq-to "parent.c_2"))))

:variables

(("c_1" :is-a "var-state-concentration-out" :report "all")

("c_2" :is-a "var-state-concentration-out" :report "all")

("st_2 :is-a "var-state-fraction" )

:equations

(("bal_st2" :relation ":diff<t> st_2 == cf2.r/cot.c")

("out1" :relation "c_1 == (1-st_2)*cot.c")

("out2" :relation "c_2 == st_2*cot.c")))

Figure A.4: Implementation in ProMoT of a domain with 2 possible states. The figure represent an

scheme of the module, and the accompanying text the corresponding mdl code.

The module computes the standard concentrations as a product of the state and the total concen-

tration (cot.c, see Figure A.4), and sends them via the terminals to the environment. Analogously,

the modules receives ’normal’ reaction rates, which are transformed into the variables required for

the balance of st_2. Thus, these modules are compatible with the rest of elements of the library. The

same concept applies to domains with 3, 4, etc. states.

Different domains can be combined to give rise to a molecule with different binding sites (see

Figure A.5). The key point is that all the domains have a common total concentration.

A more complex situation arises when the motifs are not independent. In that case, an exact, full re-

duction is not possible48. However, still a certain reduction can be achieved and the resulting modules

are hierarchically structured48;221, what facilitates an implementation in ProMoT. We shall illustrate

it here using the most common case, where one domain D1 of a molecule M binds an adaptor A,

influencing the phosphorylation at another domain D2. This case corresponds to Figure 4.1(d), where

the third domain can be decoupled -and thus ignore for this analysis- since it is independent. The

microstates are thus governed by the reactions

M00

k1

k−1

⇋ MA0

k2

k−2

⇋ MAP (A.33)

M00

k∗2

k−2

⇋ M0P

k1

k−1

⇋ MAP (A.34)

We shall consider, for the sake of simplicity, first order kinetics and an enzyme E responsible for

the phosphorylation of D2.The influence of D1 on D2 is encoded by the different activity for the

phosphorylation (k2 and (k∗2 = k2(1 + α)). There are 4 microstates (M00, MA0, M0P, and MAP ) and

1 conservation relationship. Thus, there are 3 independent ODEs. Defining MAT = MA0 + MAP and
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cf11

cf12

cot

bs1.cot

bs2.cot

cf23

cf22

cf21
c c

(define-module

:class "storage-mult-2bs-23st"

:super-classes ("storage-mult-2bs")

:properties (("abstract" :value "no"))

:icon "icons/2bs-23st" :geometry-width "258" :geometry-height "306"

:terminals

(("cf11" :is-eq-to "bs1.cf1" :geometry-side "right" :geometry-position "0.18")

("cf12" :is-eq-to "bs1.cf2" :geometry-side "right" :geometry-position "0.32")

("cf21" :is-eq-to "bs2.cf1" :geometry-side "right" :geometry-position "0.62")

("cf22" :is-eq-to "bs2.cf2" :geometry-side "right" :geometry-position "0.75")

("cf23" :is-eq-to "bs2.cf3" :geometry-side "right" :geometry-position "0.88")

("cot" :is-eq-to "adapter_conc.in"

:geometry-side "top" :geometry-position "0.47"))

:modules

(("adapter_conc" :is-a "adapter-conc" :geometry-x "59" :geometry-y "59")

("bs1" :is-a "storage-mult-2st" :geometry-x "104" :geometry-y "99")

("bs2" :is-a "storage-mult-3st" :geometry-x "108" :geometry-y "221"))

:links

(("adapter_concout_bs1cot" :terminals("adapter_conc.out""bs1.cot""bs2.cot"))))

Figure A.5: Implementation in ProMoT of a molecule with 2 domains, with 2 and 3 possible

states, respectively. The figure represent an scheme of the module, and the accompanying text

the corresponding mdl code.

MPT = M0P +MAP, and considering the total amount of M MT = M00 +M0P +MA0 +MAP constant,

one obtains

dMAT

dt
(MAT ) =

dMA0

dt
+

MAP

dt
= k1 ·A ·MT − k−1 ·AAT (A.35)

dMPT

dt
(MPT ,MAP,MAT ) =

MA0

dt
+

MAP

dt
= k2 ·E · (MT −MPT ) − k−2 ·AAT +α · (MAT −MAP).(A.36)

For α=0, ṀPT (MPT ) = k2 ·E · (MT −MPT ) − k−2 ·AAT and one can thus model the domains sepa-

rately. If α 6= 0, however, an additional state ABP must be considered. This is included in the module

describing the reactions of the dependent domain D2, see Figure A.6.

M
AT

M
AT

M
AP

r2

r1

output

m0

m

e

a0

a

adapter_flux
apb

cf2co

cf2co0

r1r2

a

b

input

inputabound inputbfree

output

Figure A.6: Implementation in ProMoT of a case of two non-independent domains. The left figure

schematically shows the structure of the ODE system, and the right side the actual implemen-

tation. The domain D1 is modeled as a normal B1 module (see Sections 4.2 and 4.3), and D2 as

a modified version of C2s with an additional state.
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A.5 Experimental Validation of the Predictions of the

Logical Model of T-cell Activation
The in vitro experiments performed to test the simulation results of th logical model describing the

TCR-induced Signaling Network (Section 6.3) are depicted here224. They were performed by the

colleagues at the Institute of Immunology, University of Magdeburg.

αCD28
αTCR αTCR

αCD28

A

0  2´ 5´ 2´  5´ 2´  5´

αTCRαTCR
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0  2´  5´ 2´  5´ 2´  5´

αTCR

αCD4

αTCR

Wildtype Fyn-KO 

B
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      - Ly Wortm.
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IB:p-PKB

IB:p-ERK1/2
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IB:p-ZAP70
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C αTCR αTCR
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Figure A.7: In vitro analysis of model predictions. A, Activation of ERK and JNK upon CD28,

TCR (CD3) or TCR+CD28 stimulation in mouse splenic T cells. B, Activation of ERK and

PKB upon TCR, TCR+CD4 and TCR+CD28 stimulation in Fyn-deficient and heterozygous

splenic mouse T cells. C, Inhibition of PI3K with both Ly 294002 and Wortmannin blocks the

phosphorylation of PKB, ERK and JNK but not ZAP-70 in human T cells. As a control, total

concentration of ZAP70 (A) or β-actin (B,C) was used.

IB:p-PKB

IB:p-ERK1/2

IB:p-JNK

IB:p-ZAP70

ΙΒ: control

0' 1'10'20' 0' 1' 10'20' 0'1'10' 20'

      - Ly Wortm.
αCD28 αCD28 αCD28

Figure A.8: In vitro analysis of PI3K inhibitors on CD28 signaling. Inhibition of PI3K with both Ly

294002 and Wortmannin blocks the phosphorylation of PKB, but not of JNK in human T-cells

upon CD28 activation. β-actin was included as the loading control.
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Figure A.9: In vitro analysis of Src kinase inhibition. Inhibition of Src-Kinases (Lck and Fyn) with

PP2 blocks TCR-induced but not CD28-induced PKB and JNK activation in human T-cells,

therefore we concluded that CD28 signaling is not strictly Src kinase dependent. The effect

was compared with PI3K inhibition via Wortmannin (ccf. Figure A.8. 2C and Figure A.8),

which blocks the phosphorylation of PKB but not of JNK. β-actin was included as the loading

control.

Materials and Methods Immunoblotting. Human or mouse T-cells were purified using an Au-

toMACS magnetic isolation system according to the manufacturer’s instructions (Miltenyi). Mouse

T-cells were stimulated with 10 µg/ml of biotinylated CD3ε (a subunit of the TCR) antibody (145-

2C11, BD Biosciences), 10 µg/ml of biotinylated CD28 antibody (37.51, BD Biosciences), CD3 plus

CD28 mAbs or with CD3 plus 10 µg/ml of biotinylated CD4 (GK1.5, BD Biosciences) followed by

crosslinking with 25 µg/ml of streptavidin (Dianova) at 37°C for the indicated periods of time. Human

T-cells were stimulated with CD3ε mAb MEM92 (IgM, kindly provided by Dr. V. Horejsi, Prague,

Czech Republic) or with CD3 plus CD28 mAbs (248.23.2). Cells were lysed in buffer containing

1% NP-40, 1% laurylmaltoside (N-dodecyl β-D-maltoside), 50 mM Tris pH 7.5, 140 mM NaCl,

10mM EDTA, 10 mM NaF, 1 mM PMSF, 1 mM Na3VO4. Proteins were separated by SDS/PAGE,

transferred onto membranes, and blotted with the following antibodies: anti-phosphotyrosine (4G10),

anti-ERK1/2 (pT202/pT204), anti-JNK (pT183/pY185), anti-phospho-Akt (S473)(all from Cell Sig-

naling), anti-ZAP70 (pTyr 319, Cell Signaling), anti-ZAP70 (cloneZ24820, Transduction Labora-

tories) or against β-Actin (Sigma). Where PI3K and src-kinase inhibitors were used, T-cells were

treated with 100nM Wortmannin (Calbiochem) or 10µM PP2 (Calbiochem) for 30 min at 37°C prior

to stimulation.
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A.6 Detailed Description of the Logical Model of T-cell

Activation
The following tables provide a comprenhensive documentation of the logical model of T-cell activa-

tion described and analyzed in Section 6.

Table A.1: List of compounds in the logical T-cell model. Model name corresponds to the name

in Fig. 6.5 and the Table A.2. Common abbreviations are those usually used in the literature,

while name is the whole name. Type classifies the molecules, if applies, as follows: K =Kinase,

T=Transcription Factor, P = Phosphatase, A =Adaptor Protein, R = Receptor, G= GTP-ase. In

the case where two pools of a molecule were considered, a’reservoir’ was included which was

required for both pools. This allows to perform a simultaneous knock-out of both pools.

Nr Model

Name

Common

abbreviation

Name Type

1 abl Abl Abelson protein tyrosine kinase K

2 akap79 Akap79 A kinase (PRKA) anchor protein 79 A

3 ap1 Ap1 v-jun sarcoma virus 17 oncogene homology T

4 bad Bad BCL2-antagonist of cell death

5 Bcat ?-catenin Catenin (cadherin-associated protein) beta 1

6 bcl10 BCL10 B-cell CLL/lymphoma 10

7 bclxl BCL2L1 BCL2-like 1

8 ca CA, Ca2+ Calcium

9 cabin1 Cabin1, CAIN Calcineurin-binding protein

10 calcin Calcineurin Calcineurin P

11 calpr1 Csp1 Calcipressin 1

12 cam CaM Calmodulin

13 camk2 Camk2,CamKII calcium/calmodulin-dependent protein kinase

(CaM kinase) II

K

14 camk4 CamK4, CamKIV calcium/calmodulin-dependent protein kinase IV K

15 card11a CARD11 +

CARMA1 + BCL10

Complex of CARD11, CARMA1, and BCL10,

which is their fully active form (see Fig. 1)

16 card11 CARMA1, CARD11 caspase recruitment domain family, member 11

17 cblb Cbl-b Cas-Br-M (murine) ecotropic retroviral transform-

ing sequence b

18 ccblp1 c-Cbl Casitase B-lineage lymphoma proto-oncogene

(ZAP70-dependent pool)

A

19 ccblp2 c-Cbl Casitase B-lineage lymphoma proto-oncogene

(Fyn-dependent pool)

A

20 ccblr c-Cbl Casitase B-lineage lymphoma proto-oncogene

(Reservoir, see legend)

A

21 cd28 CD28 CD28 antigen (Tp44) R

22 cd45 CD45, PTPRC protein tyrosine phosphatase, receptor type, C P

23 cd4 CD4, p55 CD4 antigen (p55) R

24 cdc42 CDC42, BB1 cell division cycle 42 (GTP binding protein, 25kDa) G

25 cre Cre cAMP responsive element binding protein 1

26 creb CREB, CREB1 cAMP responsive element T

27 csk Csk c-src tyrosine kinase K
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Nr Model

Name

Common

abbreviation

Name Type

28 cyc1 Cyc1 cytochrome c-1

29 dag DAG Diacylglycerol

30 dgk DGK diacylglycerol kinase K

31 erk ERK, MAPK1 Extracellular signal-regulated kinases, mitogen-

activated protein kinase 1

K

32 fkhr FOXO1, fkhr forkhead box O1A T

33 fos Fos, FRA FOS-like antigen

34 fyn Fyn FYN oncogene related to SRC, FGR, YES K

35 gab2 Gab2 GRB2-associated binding protein 2 A

36 gadd45 GADD45A growth arrest and DNA-damage-inducible, alpha

37 gads GRAP-2, GADS,

P38

GRB2-related adaptor protein 2 A

38 gap GAP GTPase-activating protein

39 grb2 Grb2 growth factor receptor-bound protein 2

40 sos Sos1 Son of sevenless homolog 1

41 gsk3 GSK3 glycogen synthase kinase 3 K

42 hpk1 HPK1, MAP4K1 Hematopoietic progenitor kinase 1, mitogen-

activated protein kinase kinase kinase kinase 1

K

43 ikb IκB Inhibitor protein IκB

44 ikkab IκKA + IκKB inhibitor of kappa light polypeptide gene enhancer

in B-cells, kinase alpha and kinase beta

45 ikkg IκKG inhibitor of kappa light polypeptide gene enhancer

in B-cells, kinase gamma

46 ip3 IP3K inositol 1,4,5-trisphosphate K

47 itk ITK IL2-inducible T-cell kinase K

48 jnk JNK, SAPK,

MAPK8

mitogen-activated protein kinase 8 K

49 jun JUN, ap1 v-jun sarcoma virus 17 oncogene homolog T

50 lat LAT linker for activation of T cells A

51 lckp1 Lck lymphocyte-specific protein tyrosine kinase ( CD4-

dependent pool)

K

52 lckp2 Lck lymphocyte-specific protein tyrosine kinase

(CD28/TCR-dependent pool)

K

53 lckr Lck lymphocyte-specific protein tyrosine kinase (Reser-

voir, see legend)

K

54 malt1 MALT1 mucosa associated lymphoid tissue lymphoma

translocation gene 1

55 mek MEK, MAP2K,

MAPKK

mitogen-activated protein kinase kinase K

56 mekk1 MEKK1, MAP3K1,

MAPKKK1

mitogen-activated protein kinase kinase kinase K

57 mkk4 MKK4, MAP2K4,

MAPKK4

mitogen-activated protein kinase kinase 4 K

58 mlk3 MLK3, MAP3K11 mitogen-activated protein kinase kinase kinase 11 K

59 nfat NFATC1, NFATC2,

NFATC3

nuclear factor of activated T-cells, cytoplasmic,

calcineurin-dependent 1

T
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Nr Model

Name

Common

abbreviation

Name Type

60 nfkb NfκB nuclear factor of kappa light polypeptide gene en-

hancer in B-cells 1, 2

T

61 p21c P21Cip1, Cdkn1a,

p21

cyclin-dependent kinase inhibitor 1A (p21, Cip1)

62 p27k CDKN1B, p27Kip1 cyclin-dependent kinase inhibitor 1B (p27, Kip1)

63 p38 P38, MAPK14 mitogen-activated protein kinase 14 K

64 p70s RPS6KB1, p70s6k ribosomal protein S6 kinase, 70kDa, polypeptide 1 K

65 pag PAG1 phosphoprotein associated with glycosphingolipid

microdomains 1

A

66 pdk1 PDPK1, PDK1 3-phosphoinositide dependent protein kinase-1 K

67 pi3k PI3K, PIK3CA phosphoinositide-3-kinase, catalytic, alpha

polypeptide

K

68 pip3 PIP3 Phosphatidylinositol (3,4,5)-trisphosphate

69 pkb PKB, AKT1 v-akt murine thymoma viral oncogene homolog 1 K

70 pkcth Prkcq, PKC-γ protein kinase C, theta K

71 plcga Active form of

PLCγ1, PLC-

gamma-1

phospholipase C, gamma 1

72 plcgb PLCG1, PLC-γ-1

bound to LAT (but

not active, see plcga)

phospholipase C, gamma 1

73 pten PTEN phosphatase and tensin homolog (mutated in multi-

ple advanced cancers 1)

P

74 rac1p1 RAC1, p21-Rac1,

MIG5

ras-related C3 botulinum toxin substrate 1 (rho fam-

ily, small GTP binding protein Rac1) (Vav-1 depen-

dent pool)

G

75 rac1p2 RAC1, p21-Rac1,

MIG5

ras-related C3 botulinum toxin substrate 1 (rho fam-

ily, small GTP binding protein Rac1) (Vav-3 depen-

dent pool)

G

76 rac1r RAC1, p21-Rac1,

MIG5

ras-related C3 botulinum toxin substrate 1 (rho fam-

ily, small GTP binding protein Rac1) (Reservoir,

see footnote)

G

77 raf RAF1 v-raf-1 murine leukemia viral oncogene homolog 1 K

78 ras Ras Ras G

79 rasgrp RasGRP1 Ras guanyl releasing protein 1

80 rlk TXK, RLK, TKL TXK tyrosine kinase K

81 rsk RPS6KA1, RSK ribosomal protein S6 kinase, 90kDa, polypeptide 1 K

82 Sh3bp2 3BP2, SH3BP2 SH3-domain binding protein 2 A

83 ship1 INPP5D, SHIP1 inositol polyphosphate-5-phosphatase, 145kDa P

84 shp1 Shp1, PTPN6 protein tyrosine phosphatase, non-receptor type 6 P

85 shp2 SHP2, PTPN11 protein tyrosine phosphatase, non-receptor type 11

(Noonan syndrome 1)

P

86 slp76 LCP2, SLP76 lymphocyte cytosolic protein 2 (SH2 domain con-

taining leukocyte protein of 76kDa)

A

87 sre Sre Serum responsive element

88 tcrb TCR T-cell Receptor (bound to ligand) R
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Nr Model

Name

Common

abbreviation

Name Type

89 tcrlig PMHC, Ab Ligand of T cell receptor (peptide-MHC complex

or antibody)

R

90 tcrp TCR T-cell Receptor phosphorylated R

91 vav1 VAV1 Vav 1 oncogene

92 vav3 VAV3 Vav 3 oncogene

93 X - Non-identified kinase involved in CD28-mediated

signaling (see main text)

K

94 zap70 ZAP70 zeta-chain (TCR) associated protein kinase 70kDa K
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Table A.2: List of reactions (hyperarcs) of the logical T-cell signaling model. Exclamation mark (’!’)

denotes a logical NOT and dots within the equations indicate AND operations. The names of

the substances in the explanations are those used in the model and Fig. 6.5; the biological names

are displayed in the Table A.1. In the case where two pools of a molecule were considered

(e.g. lckp1 and lckp2), a’reservoir’ (lckr) was included which was required for both pools.

This allows to perform a simultaneous knock-out of both pools acting on the reservoir (see

Figure 6.5).

Nr Reaction τ Documentation

1 → cd28 1 Binding of ligand or antibody to cd28 is an input of the model.

2 → cd4 1 Binding of ligand or antibody to cd4 is an input of the model.

3 → tcrlig 1 Binding of ligand or antibody to the tcr is an input of the

model.

4 !bad → bclxl 1 bad inhibits bclxl282;287.

5 !cabin1 · !calpr1 · !akap79

· cam → calcin

1 cam binds to and activates calcineurin (calcin), while cabin1,

calpr1, akap79 inhibit calcin130;171;219.

6 !camk4 → cabin1 1 camk4 regulates via phosphorylation nuclear export of

Cabin1194.

7 card11a · pkcth → ikkg 1 The complex card11+bcl10 +malt1 is required for ikkg activa-

tion104;258;269. Phosphorylation, probably via pkcth138, is also

required.

8 !ccblp1 · tcrlig → tcrb 1 Binding of ligand activates the tcr, while active ccbl

ubiquinates it, thus leading to tcr degradation118.

9 !ccblp1 · tcrp · abl →
zap70

1 abl phosphorylates and thus activates zap70289 once it is

bound to the tcr. Active ccbl can degrade zap70.

10 !cd28 → cblb 2 cd28 induces cblb ubiquitination and degradation288 after the

early events thus, τ=2.

11 !dgk · plcga → dag 1 The active form of plc γ 1 (plcga) splits pip2 into diacylglyc-

erol (dag) and ip3 (see hyperarc 83)118. Active dgks degrade

dag into phosphatic acid261.

12 !erk · lckp1 → shp1 2 lck phosphorylates shp1 leading to its activation which allows

it to dephosphorylate and thus deactivate lck. erk phosphory-

lates lck at p59, protecting it from shp1’s effect4;246. Since

shp1 activation comes some time after lck activation, it takes

place at τ=2.

13 !gab2 · zap70 gads →
slp76

1 slp76 associates with lat via gads114;260. gab2 competes for

binding, and thus inhibits binding of slp76 to gads279;280.

14 !gsk3 → bcat 1 Gsk3 inhibits bcat159.

15 !gsk3 → cyc1 1 Gsk3 inhibits cyc1159.

16 !ikb → nfkb 1 nfkb is retained in the cytoplasm by tight binding to the in-

hibitory protein ikb118.

17 !ikkab → ikb 1 ikb is phosphorylated by ikkab, leading to its ubiquination and

subsequent degradation118;146.

18 ikkg · camk2 → ikkab 1 Both the regulatory molecule ikkg and phosphorylation prob-

ably (but not only) via camk2 are required for the activation

of the kinase subunits ikkalpha and beta (ikkab)104;258;269.

19 !pkb → bad 1 pkb inhibits bad101.

20 !pkb → fkhr 1 pkb inhibits fkhr101.

21 !pkb → gsk3 1 pkb inhibits gsk3101;159.
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Nr Reaction τ Documentation

22 !pkb → p21c 1 pkb inhibits p21c101;159.

23 !pkb → p27k 1 pkb inhibits p27k101;159.

24 !gadd45 · zap70 → p38 1 gadd45 inhibits the zap70 mediated activation of p38225.

25 !shp1 · cd45 · cd4 · !csk ·
lckr → lckp1

1 Full activation of the cd4-bound pool (there is also a tcr-

dependent pool, see hyperarc 62/64 and legend) of lck re-

quires dephosphorylation of the negative regulatory site (by

cd45, and in absence of csk, which phosphorylates it) and au-

tophosphorylation of the positive regulatory site, which cd4-

bound lck can perform upon cd4 crosslinking193.

26 !tcrb → pag 1 upon ligand binding to the tcr, pag is dephosphorylated by an

unidentified phosphatase (probably cd45)53.

27 ap1 → 1 the transcription factor ap1 is an output of the model.

28 bcat → 1 bcat is an output of the model.

29 bclxl → 1 bclx is an output of the model.

30 ca → cam 1 calcium binds to calmodulin and this complex to cal-

cineurin79.

31 calcin → nfat 1 calcineurin dephosphorylates nfat leading to nuclear translo-

cation and activation of nfat118;146;166.

32 cam → camk4 1 camk2 activation is dependent on calmodulin (cam)5.

33 ccblr · fyn → ccblp2 2 Upon Fyn phosphorylation, ccbl can inhibit plcg213. This is

one out of 2 mechanisms ccbl is involved in, and we call it

ccblp2 (pool 2, see legend). Since ccbl mediated inhibition is

slower than the early events, τ=2.

34 ccblr · zap70 → ccblp1 2 ccbl binds to activated (and thus phosphorylated) zap70, lead-

ing to the ubiquination and subsequent degradation of zap70

and tcr207. This is one out of 2 mechanisms ccbl is involved in,

and we call it ccblp1 (pool 1, see legend). Since ccbl mediated

degradation has to be slower than the early events, τ=2.

35 x → vav1 1 CD28 stimulation leads to Vav1 activation105;175, a process

mediated by a yet unidentified kinase (see hyperarc 48).

36 cdc42 → mekk1 1 The GTP bound cdc42 (and rac1, see hyperarc 87) is able to

bind mekk171; CD28 activates mekk1 in a cdc42 mediated

manner128.

37 cre → 1 cre is an output of the model.

38 creb → cre 1 The creb protein is a transcription factor that binds to cre ati-

vating the related genes146.

39 cyc1 → 1 cyc1 is an output of the model, and is involved in cell cycle

regulation146.

40 dag → rasgrp 1 dag causes the cytoplasmic rasgrp1 to move to the golgi,

where it can act on Golgi associated-ras22;59. Even though

pkcth phosphorylates rasgrp at t184,218 we did not include

connection pkcth → rasgrp1 since this effect is not specific

to pkcth, but general to other pkcs (less well-characterized in

T cells and therefore not included in the model); inclusion of

this effect would make this step strictly dependent on pkcth,

which is not the case.

41 dag · vav1 · pdk1 → pkcth 1 Activation of pkcth requires binding to dag, phosphorylation

by pdk1155, and vav1267.
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42 erk → fos 1 erk phosphorylates fos118.

43 erk → rsk 1 erk activates rsk via phosphorylation84.

44 fkhr → 1 The transcription factor fkhr is an output of the model.

45 fos · jun → ap1 1 Binding of jun with fos leads to the formation of ap1118;146.

46 fyn → abl 1 abl kinases are activated following tcr stimulation via a Src

kinase (lck or fyn, see hyperarc 59)289.

47 fyn → pag 2 fyn phosphorylates pag53, leading to the binding of csk. This

process takes place 3-5 min after tcr activation, and thus it

belongs to the time scale τ=2262.

48 cd28 → x 1 Vav1 activation requires cd28 activation175 and is mediated

by an non-identified kinase x (see hyperarcs 35 and 63).

49 gab2 → shp2 1 Gab2 recruits shp28.

50 gads · lat · zap70 → gab2 2 zap70 phosphorylates gab2 upon binding to lat and

gads279;280. This process must take place after the early events

to allow signal propagation, thus τ=2.

51 grb2 · lat · zap70 → gab2 2 zap70 phosphorylates gab2 upon binding to lat and

grb2279;280. This process must take place after the early events

to allow signal propagation, thus τ=2.

52 hpk1 → mekk1 1 hpk1 binds and phosphorylates mekk1116.

53 hpk1 → mlk3 1 hpk1 binds and phosphorylates mlk3259.

54 ip3 → ca 1 Binding of ip3 to the ip3 receptor in the endoplasmatic retic-

ulum leads to the release of calcium35.

55 jnk → jun 1 jnk phosphorylates jun146.

56 lat → grb2 1 grb2 (which in turn binds sos) can bind to phosphorylated

lat160 114.

57 lat → hpk1 1 hpk1 binds to lat and is recruited to the lipid raftss161.

58 lat → plcgb 1 plcgamma binds to lat114;260.

59 lckp1 → abl 1 abl kinases are activated following tcr stimulation via a Src

kinase (lck or fyn, see hyperarc 46)289.

60 lckp1 → rlk 1 lck phosphorylates rlk leading to its activation238.

61 lckp1 · cd45 → fyn 1 lck activates fyn81, a process where the dephosphorylation of

the negative regulatory site of fyn by cd45 is also required.

62 lckp2 · !cblb → pi3k 1 pi3k is dependent on the Src kinase lck for activation57. Ad-

ditionally, cblb promotes pi3k ubiquination70.

63 x · !cblb → pi3k 1 pi3k is also activated upon CD2812;90 via an non-determined

kinase x (see hyperarc 48). Even though Lck has been pro-

posed to be involved in this process91;113;117;268, our exper-

iments show that, at least for primary human T-cells, PI3K

activation is not strictly Src kinase dependent (see Fig. A.8).

A reasonable candidate would be a Tec kinase, but since it is

not experimentally verified, we keep an undetermined x.

64 lckr · tcrb → lckp2 1 The activation of pi3k is determined by a second pool of lck

(lckp2) (see legend) which can be activated by tcr activa-

tion189.

65 malt1 · card11 · bcl10 →
card11a

1 The binding of malt1 to card11 and bcl10 forms the active

card11 complex86;164;258;265.

66 mek → erk 1 mek phosphorylates erk leading to erk activation118;146.

67 mekk1 → jnk 1 mekk1 activates jnk54.
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68 mekk1 → mkk4 1 mekk1 is able to phosphorylate MKK4 leading to its activa-

tion281.

69 mekk1 → p38 1 mekk1 leads to p38 activation99.

70 mkk4 → jnk 1 MKK 4 activates jnk54;58.

71 mlk3 → mkk4 1 mlk3 phosphorylates mkk4259.

72 nfkb → 1 nfkb is an output of the model.

73 p21c → 1 p21cip is an output of the model controlling the cell cycle.

74 p27k → 1 p27kip is an output of the model controlling the cell cycle.

75 p38 → 1 p38 is an output of the model.

76 p70s → 1 p70s is an output of the model.

77 pag → csk 1 Phosphorylation of pag allows csk to bind it and then act on

lck114;160.

78 pdk1 → p70s 1 pkd1 phosphorylates p70s leading to its activation110;202.

79 pdk1 → pkb 1 pdk1 phosphorylates pkb leading to its activation1;6;150.

80 pi3k · !ship1 · !pten →
pip3

1 pi3k leads to the production of pip3, while ship1 and pten

inhibit this process188;206.

81 pip3 → pdk1 1 pip3 is required for pdk1 activation180.

82 pip3 · zap70 · slp76 → itk 1 When phosphorylated, slp76 can bind to itk; additional

binding to pip3 and phosphorylation via zap70 activates

itk50;118;260.

83 plcga → ip3 1 Active plcga splits pip2 into ip3 and diacylglycerol (dag,see

hyperarc 11)118;260.

84 plcgb · !ccblp2 · slp76 ·
zap70 · vav1 · itk → plcga

1 Once bound to phosphorylated lat, plcgb is activated by the

combined action of vav and itk (or rlk, see hyperarc 85)50.

Additionally, binding to slp76 (phosphorylated by zap70) is

required to establish and stabilize the complex. Activated ccbl

degrades plcga213.

85 plcgb · !ccblp2 · zap70 ·
vav1 · slp76 · rlk → plcga

1 Once bound to phosphorylated lat, plcgb is activated by the

combined action of vav and rlk (or itk, see hyperarc 84)50.

Additionally, binding to slp76 (phosphorylated by zap70) is

required to establish and stabilize the complex. Activated ccbl

degrades plcga213.

86 rac1p1 → mlk3 1 Rac1p1 activates mlk3255.

87 rac1p2 → mekk1 1 GTP-bound Rac1p2 is able to bind mekk171, and active

mekk1 leads to JNK activation128;179.

88 rac1p2 → sre 1 Vav3-dependent Rac1 is able to activate Sre via SRF109.

89 rac1r · vav1 → rac1p1 1 Downregulation of Vav1 but not Vav3 affects IL-2 production

in T cells284 via the rac1-mediated jnk pathway. Since rac1

mediates this process, we defined a vav1-dependent pool of

rac1 (see hyperarc 90 and legend).

90 rac1r · vav3 → rac1p2 1 Downregulation of Vav3 but not Vav1 affects Sre activ-

ity284. Since rac1 mediates this process, we defined a vav3-

dependent pool of rac1 (see hyperarc 89 and legend)

91 raf → mek 1 Raf phosphorylates mek leading to mek activation83.

92 ras → raf 1 Ras mediates raf localization to the membrane, and conse-

quently, raf is activated146.

93 rsk → creb 1 Rsk phosphorylates creb increasing its activity84.
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94 sh3bp2 → vav3 1 sh3bp2 binds vav3 via an sh2 domain, leading to its activa-

tion284.

95 sos · !gap · rasgrp → ras 1 Bound to lat via grb2, sos catalyzes the exchange of GTP for

GDP in the cellular-membrane-located ras, while rasgrp1 cat-

alyzes the exchange of GTP for GDP in golgi-located ras59.

In turn gap catalyzes the conversion GTP to GDP and thus

deactivates ras89.

96 sre → 1 Sre is an output of the model.

97 tcrb → dgk 1 dgks get activated after tcr activation in yet an unclear man-

ner, we therefore make it dependent on activation of the tcr.

Since dag must be produced in the early events, we assign it a

τ=2126.

98 tcrb · fyn → tcrp 1 Upon ligand binding to the tcr, active fyn can phosphorylate

the tcr80.

99 tcrb · lckp1 → tcrp 1 The co-localization of tcr with cd4 mediated by peptide-MHC

or antibody crosslinking results in an increased local concen-

tration of lck around the tcr leading to phosphorylation of

ITAMs81.

100 tcrb · lckr → fyn 1 A fraction of fyn is bound to the tcr, and tcr crosslinking leads

to fyn auotophosphorylation and activation80. Since lck is re-

quired in the development for having capable fyn285, lckr (ex-

istence of lck in the cell) is required as well.

101 zap70 → lat 1 zap70 phosphorylates lat at different sites118.

102 zap70 · lat → sh3bp2 1 sh3bp2 binds to phosphorylated lat upon phosphorylation by

zap70205.

103 zap70 · sh3bp2 → vav1 1 zap70 phosphorylates vav1284 which together with binding of

vav1 to sh3bp2205, leads to vav1 activation.

104 → card11 1 Regulation of card11 is not clear, thus we set an external input

to it. Default value is 1.

105 → gadd45 1 Regulation of gadd45 is not clear, thus we set an external input

to it. Default value is 1.

106 → gap 1 GTP activating proteins (gaps) are important regulators of ras

activation but their own regulation is not clear31. Therefore

they are included in the model with an external input.

107 → lckr 1 Input to the system (presence of Lck in the cell). Default value

is 1.

108 cam → camk2 1 cam (calmodulin) activates calmodulin-dependent kinase II

(camk2)120.

109 grb2 → sos 1 sos binds to grb2 and thus get recruited to the membrane via

lat30.

110 lat → gads 1 gads can bind to phosphorylated lat114;260.

111 cdc42 → sre 1 cdc42 is able to activate Sre via SRF109.

112 nfat → 1 nfat is an output of the model.

113 shp2 → 1 shp2 is an output of the model.

114 → cd45 1 Regulation of cd45 is not clear, thus we set an external input

to it. Default value is 1.

115 → pten 1 Regulation of pten is not clear, thus we set an external input.

Default value is 0.
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116 → bcl10 1 Regulation of bcl10 is not clear, thus we set an external input

to it. Default value is 1.

117 → ccblr 1 Input to the system (presence of ccbl in the cell). Default value

is 1.

118 → cdc42 1 Regulation of cdc42 is not clear, thus we set an external input

to it. Default value is 0.

119 → malt1 1 Regulation of malt1 is not clear, thus we set an external input

to it. Default value is 1.

120 → rac1r 1 Input to the system (presence of rac1 in the cell). Default value

is 1.

121 → ship1 1 Regulation of ship1 is not clear, thus we set an external input.

Default value is 0.

122 → akap79 1 Regulation of akap79 is not clear, thus we set an external input

to it. Default value is 0.

123 → calpr1 1 Regulation of calpr1 is not clear, thus we set an external input

to it. Default value is 0.
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A.7 Description of the model for the TCR-induced

MAPK and fit of experimental data

A.7.1 Minimal model
The model is defined as follows, implemented in the Matlab Systems Biology Toolbox232:

********** MODEL NAME

FeedbGenExtMult

********** MODEL STATES

d/dt(x1) = r1 x1(0) = 0.000000

d/dt(x2) = r2 x2(0) = 0.000000

d/dt(x3) = r3 x3(0) = 0.000000

d/dt(x4) = r4 x4(0) = 0.000000

********** MODEL PARAMETERS

Switch=1 Input = 1

x10 = 1 k1 = 1 km1 = 1 n1 = 1 k1r = 1 km1r= 1 n1r = 1

x20=1 k2 = 1 km2 = 1 n2 = 1 k2r = 1 km2r= 1 n2r = 1

kmco = 1 nco = 1 kf1 = 0 kf2 = 0 kf4 = 0

x30 = 1 k3 = 1 km3 = 1 n3 = 1 k3r = 1 km3r= 1 n3r = 1

x40 = 1 k4 = 1 km4 = 1 n4 = 1 k4r = 1 km4r= 1 n4r = 1

********** MODEL VARIABLES

Su1 = (x10-x1 -kf1*x2 ) Su1r = x1

Su2 = (x20-x2) Su2r = x2

Coup = power(x1 ,nco)

Su3 = (x30-x3) Su3r = x3

Su4 = (x40-x4) Su4r = x4

********** MODEL REACTIONS

r1 = ((1+Switch*Input) /(1+kf2*x2 ))*HillF(Su1 ,k1,km1,n1)-HillF(Su1r ,k1r,km1r,n1r)

r2 = Coup *HillF(Su2 ,k2,km2,n2)-HillF(Su2r ,k2r,km2r,n2r)

r3 = (x1 /(1+kf4*x4 ))*HillF(Su3 ,k3,km3,n3)-HillF(Su3r ,k3r,km3r,n3r)

r4 = x3 *HillF(Su4 ,k4,km4,n4)-HillF(Su4r ,k4r,km4r,n4r)

********** MODEL FUNCTIONS

HillF(Su,ka,km,n) = ka*power(Su,n)/(power(km,n)+power(Su,n))

The model was fitted to the experimental data depicted in Figure 7.3. It should be noted that the exper-

imental points in the objective function were not weighted with the inverse of the Standard Error of

the Mean but rather, for t=10 and 30 minutes were given a 2 and 5-fold weight, respectively, to impose

the model to fit preferentially the long-time data, which is the characteristic for the qualitative behav-

ior. Since the concentration and parameters are normed, the intervals for the parameter estimation

were set to 105 − 10−5 for the enzymatic activities, 103 − 10−3 for the Michaelis-Menten constants

and 10−10−1 for the Hill coefficients. These ranges are large enough to provide the system sufficient

flexibility to fit the data and, at the same time, narrow enough to avoid too different parameter values,

which would be impossible de facto due to physical limitations such as diffusion coefficients, etc.

Narrower limits were tested which provided qualitatively similar results but worse fits of the data.

Different methods, all wrapped around the Matlab Systems Biology Toolbox232, were successive

applied:

1. Simmulated Annealing

2. Simplex

3. Eolutionary algorithm215;249 based on the ideas of Rechenberg211 (2 times, each time 10 par-

ents, 30 children, and 5000 generations)

4. Simplex

The following results were obtained, which provide the fits plotted in Figure 7.6(b).
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A.7.2 Extended model
The model is defined as follows, implemented in the Matlab Systems Biology Toolbox232:

********** MODEL NAME

FeedbGenExtMultPosFInt

********** MODEL STATES

d/dt(x1) = r1 x1(0) = 0.000000

d/dt(x2) = r2 x2(0) = 0.000000

d/dt(x2i)= r2i x3(0) = 0.000000

d/dt(x3) = r3 x1(0) = 0.000000

d/dt(x4) = r4 x5(0) = 0.000000

********** MODEL PARAMETERS

Switch=1 Input = 1

x10 = 1 k1 = 1 km1 = 1 n1 = 1 k1r = 1 km1r= 1 n1r = 1

x20=1 k2 = 1 km2 = 0.3 n2 = 1 k2r = 60 km2r= 0.1 n2r = 1 kpf=220

kmco = 0 nco = 1 kf1 = 0 kf2 = 0 kf4 = 0

k2i = 1 km2i = 1 n2i = 1 CoD=1 For=1

x30 = 1 k3 = 1 km3 = 1 n3 = 1 k3r = 1 km3r= 1 n3r = 1

x40 = 1 k4 = 1 km4 = 1 n4 = 1 k4r = 1 km4r= 1 n4r = 1

********** MODEL VARIABLES

Su1 = (x10-x1 -kf1*x2i ) Su1r = x1

Su2 = (x20-x2) Su2r = x2

Coup = (power(x1 ,nco)/(1+kmco*power(x1 ,nco)))

Su2i = x1

Su3 = (x30-x3) Su3r = x3

Su4 = (x40-x4) Su4r = x4

********** MODEL REACTIONS

r1 = ((1+Switch*Input) /(1+kf2*x2i ))*HillF(Su1 ,k1,km1,n1)-HillF(Su1r ,k1r,km1r,n1r)

r2 = (40*Coup +kpf*x2)*HillF(Su2 ,k2,km2,n2)-HillF(Su2r ,k2r,km2r,n2r)

r2i= (CoD+x2) *HillF(Su2i ,k2i,km2i,n2i)-For

r3 = (x1 /(1+kf4*x4 ))*HillF(Su3 ,k3,km3,n3)-HillF(Su3r ,k3r,km3r,n3r)

r4 = x3 *HillF(Su4 ,k4,km4,n4)-HillF(Su4r ,k4r,km4r,n4r)

********** MODEL FUNCTIONS

HillF(Su,ka,km,n) = ka*power(Su,n)/(power(km,n)+power(Su,n))

The model was fitted to the experimental data depicted in Figure 7.3. The same considerations of the

minimal model (Section A.7.1) with respect to the Standard Error of the Mean, optimization methods

applied, and ranges for the parameters apply here. Furthermore, and to drive the system to produce

the desired steady state behavior, an additional, fictive point at t=1000 minutes, with the same values

for all concentrations as for t=30 minutes (the latest available), was added. The resulting parameters

provide the fits plotted in Figure 7.14(b) and and the switch behavior of Figure 7.13(b).
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List of Symbols and Abbreviations

τ Signaling time of a certain response, as defined by Heinrich et al.106, page 67

τ0.9 Signaling time of a certain response, as defined by Saez-Rodriguez et al.222, page 67

θ Signal duration of a certain response, as defined by Heinrich et al.106, page 67

~p Vector of parameters of a dynamical system, page 18

~u Vector of inputs of a dynamical system, page 18

J Jacobian of a ODE system, page 29

N stoichiometric matrix, page 20

NC product of the stoichiometric matrix by its transpose multiplied by (-1) N(−N)T , page 32

R Retroactivity matrix, page 28

S Signal amplitude of a certain response, as defined by Heinrich et al.106, page 67

T Time constant of a temporally lagged element of first order (PT1), page 64

CNA CellNetAnalyzer144, page 85

CRNT Feinberg’s Chemical Reaction Network Theory, page 55

EGF Epidermal Growth Factor, page 7

EGFR Epidermal Growth Factor Receptor, page 7

I/O Input/Output, page 61

IG Interaction graph, page 79

LIH Logical interaction hypergraph, page 81

MAPK Mitogen-Activated Protein Kinase, page 8

MIS Minimal Intervention Set, page 84

molec/cell Number of molecules per cell, page 119

nM nano-mol/liter, page 118

ODE ordinary differential equation, page 18

OT-1 Transgenic mouse genetically modified to express the T-cell Receptor specific for oval-

bumin112, page 10

ProMoT Process Modeling Tool95, page 32

SBML Systems Biology Markup Language, page 40

Note that the abbreviations of the molecules in the T-cell model are listed in Table A.1
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Index

Absence of retroactivity, 19

Adjacency matrix, 17

APC, 100, 116, 117

CNA, 92

CRNT, 55

Dependency matrix, 83

EGF, 7

EGFR, 7

eigenvalue, 31

Epidermal Growth Factor, 2, 3

Fyn, 11

input/output, 53, 122

Interaction graph, 79

Jacobian, 29, 54

Lck, 11

Logical interaction hypergraph, 81

macro-state, 44

MAPK, 8

micro-state, 43, 44

Monotone, 105

nullcline, 112

observable system, 45

ODE, 18

OT-1, 10, 100

ProMoT, 3, 32, 49, 55, 82, 85–87, 89, 92, 96

Retroactivity matrix, 28

SBML, 40

streptamer, 10

tetramer, 10

ultrasensitive, 66, 98, 99
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