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Brain networks are increasingly understood as one of a large class of information processing 

systems that share important organizational principles in common, including the property 

of a modular community structure. A module is topologically defined as a subset of highly 

inter-connected nodes which are relatively sparsely connected to nodes in other modules. In 

brain networks, topological modules are often made up of anatomically neighboring and/or 

functionally related cortical regions, and inter-modular connections tend to be relatively long 

distance. Moreover, brain networks and many other complex systems demonstrate the property 

of hierarchical modularity, or modularity on several topological scales: within each module 

there will be a set of sub-modules, and within each sub-module a set of sub-sub-modules, 

etc. There are several general advantages to modular and hierarchically modular network 

organization, including greater robustness, adaptivity, and evolvability of network function. In 

this context, we review some of the mathematical concepts available for quantitative analysis 

of (hierarchical) modularity in brain networks and we summarize some of the recent work 

investigating modularity of structural and functional brain networks derived from analysis of 

human neuroimaging data.
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INTRODUCTION

Many biological, social, and technological sys-

tems, comprised of multiple elements inter-

acting with each other, can be represented as 

networks. A network viewpoint emphasizes that 

the behavior of a complex system is shaped by the 

interactions among its constituents (Newman, 

2003) and offers the possibility to analyze sys-

tems of a very different nature within a unify-

ing mathematical framework. The identification 

of common topological properties across many 

superficially different systems corroborates the 

hypothesis that their evolution has been driven 

by universal selection criteria, such as high effi-

ciency of information transfer for low physical 

connection cost (Bullmore and Sporns, 2009; 

Sporns, 2010).

The brain can be seen as a network of inter-

connected components whose architecture sup-

ports the emergence of adaptive behavior and 

cognition.

The application of complex network tools 

to neuroscience and neuroimaging datasets has 

recently led to major advances in understanding 

the way the brain works at a system level. Several 

recent reviews (Bassett and Bullmore, 2006; 

Reijneveld et al., 2007; Bullmore and Sporns, 2009; 

He and Evans, 2010; Rubinov and Sporns, 2010; 

Wang et al., 2010; Bullmore and Bassett, 2010) 

have focused on the data analytic methods that 
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can be used to extract complex networks from 

structural and functional neuroimaging datasets 

and to quantify their topological organization.

Complex network theory provides a math-

ematical framework to identify generic organi-

zational principles behind the architecture of 

nervous systems. Several aspects of brain network 

organization are typical also of a wide range of 

non-neural or non-biological complex networks. 

For example, brains share several properties such 

as small-worldness, over-representation of hub 

nodes, and modularity, with many other complex 

networks (Stam, 2004; Achard et al., 2006; Achard 

and Bullmore, 2007; He et al., 2007; Bassett et al., 

2008). The small-world property is characterized 

by a relatively short minimum path length on 

average between all pairs of nodes in the network 

(sometimes also described as a short diameter of 

the network), together with a high clustering 

coefficient or transitivity (Watts and Strogatz, 

1998). Highly clustered physical networks thus 

have a regular, lattice-like organization which is 

dominated by short distance connections and 

is highly economical on wiring costs. The exist-

ence of a relatively few long-distance topological 

short-cuts reduces path length, and increases glo-

bal efficiency of information processing in brain 

networks, at the expense of more than minimal 

wiring costs (Kaiser and Hilgetag, 2006; Bassett 

et al., 2010).

Although small-worldness summarizes key 

properties of complex networks at global (diam-

eter) and local (triangle) levels of topological 

description, it does not provide any information 

about the intermediate scale of network organi-

zation, which is more completely described by 

the community structure or modularity of the 

network. The modules of a complex network, 

also called communities, are subsets of nodes 

that are densely connected to other nodes in the 

same module but sparsely connected to nodes in 

other modules. Because nodes within the same 

module are densely intra-connected, the number 

of triangular motifs in a modular network is larger 

than in a random graph of the same size and con-

nection density, while the existence of a few links 

between nodes in different modules plays the role 

of topological short-cuts in a small-world formu-

lation of network architecture. Modular systems 

thus naturally tend to be small-world networks, 

with high clustering and short path length (Pan 

and Sinha, 2009), although the converse is not 

always true: some small-world networks, such as 

the original Watts–Strogatz model, are not modu-

lar (Figure 1).

In many systems it seems that modularity 

does not exist only at a single organizational 

scale, but rather that each module can be fur-

ther partitioned into a set of sub-modules, and 

within each sub-module there may be sub-sub-

modules, etc. In other words, many systems have 

the fractal property of hierarchical modularity, 

multi-scale modularity or “russian doll” modular-

ity (Figure 2). In biological systems like the brain, 

self-similarity is statistical rather than exact so the 

modular community structure brain networks 

is approximately (not perfectly) invariant over a 

finite number of hierarchical levels.

Here, we discuss different aspects of modu-

larity and hierarchical modularity in relation to 

brain networks generated from neuroscience and 

neuroimaging data. We first detail the advantages 

theoretically provided by a modular topology and 

review the recognized importance of modular-

ity in models of brain, mind, and information 

processing systems generally. We then focus on 

mathematical tools, drawn mainly from graph 

theory, that can be used to measure and visual-

ize the modular organization of complex systems, 

and review their recent application to functional 

and structural brain networks.

WHY ARE BRAIN NETWORKS EXPECTED TO 

BE MODULAR?

For many years, researchers have been fascinated by 

the ubiquity of modularity and hierarchical mod-

ularity across social, technological, and biological 

systems, and have searched for dynamic, adaptive, 

or economical constraints informing the evolution 

of networks toward a modular architecture. One 

of the earliest and most influential ideas was for-

mulated by Simon (1962, 1995) who argued that 

a “nearly decomposable” system built of multiple, 

sparsely inter-connected modules allows faster 

adaptation or evolution of the system in response 

to changing environmental conditions. Modular 

systems can evolve by change in one module at a 

time, or by duplication and mutation of modules, 

without risking loss of function in modules that 

are already well adapted. Well-adapted modules 

thus represent stable intermediate states such that 

further evolution of other modules does not jeop-

ardize function of the entire system. This robust-

ness represents a major advantage for any system 

evolving under changing or competitive selection 

criteria, and this may explain the widespread prev-

alence of modular architectures across a very wide 

range of information processing systems. In his 

original article, Simon illustrated his idea by an 

intuitive parable about two watchmakers, called 

Hora and Tempus:

“The watches the men made consisted of about 

1,000 parts each. Tempus had so constructed 

Modularity

A topologically modular or nearly-

decomposable network can be broken 

down into component modules, each of 

which comprises a number of nodes 

that are densely intra-connected to each 

other but sparsely inter-connected to 

nodes in other modules.

Path length

A path is a series of edges connecting 

two nodes in a graph. The path length is 

the number of edges in a path. Out of 

all possible paths between two nodes, 

the shortest path length corresponds to 

the path made up of the fewest edges. 

Path length is inversely related to the 

efficiency of information transfer in a 

network (Latora and Marchiori, 2001).

Clustering

A high clustering coefficient means that 

the nearest neighbors of a given node 

have a high probability to be connected 

with each other to form the topological 

motif of a triangle. Small-world 

networks have higher clustering, but 

approximately equivalent path length, 

compared to a random network.

Graph

A graph is a mathematical object, 

composed of a set of nodes, and a set of 

edges between pairs of the nodes. In a 

graphical model of a brain network, the 

nodes represent (sub)cortical regions or 

neurons, and the edges represent 

anatomical or functional connections. 

Edges can be weighted or unweighted, 

directed or undirected, and are often 

defined by thresholding a continuous 

measure of association between nodes.

Fractal

A fractal object shows approximately 

the same organization over multiple 

scales of measurement, so-called scale 

invariance or self-similarity. For 

biological fractals like the brain, 

self-similarity between scales is 

statistical or approximate rather than 

exactly perfect as it can be for 

mathematical fractals like the Sierpinski 

triangle (Bullmore et al., 2009). 

Hierarchical modularity (modules-

within-modules) is fractal or 

statistically self-similar in the sense that 

roughly the same kind of community 

structure is expressed repeatedly at 

different hierarchical levels or 

topological scales of the network.
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Watts-Strogatz Modular HierarchicalA B C

FIGURE 1 | Modular systems are small-world but not all small-world 

systems are modular. Many complex systems can be represented as graphs 

where the nodes correspond to the constitutive elements (people, websites, 

neurons, etc), and the links or edges to some type of interaction between nodes 

(friendships, hyper-links, synapses, etc.). The use of networks across disciplines 

allows for the formulation of generic organization principles, such as the 

small-world property. The small-world property is defined as the combination of 

high clustering and short path length and has originally been illustrated by the 

Watts–Strogatz model (A). Complex networks also have a tendency to exhibit a 

modular topology, where links are concentrated within modules (B). Another key 

type of organization is hierarchical or multi-scale modularity (C), where modules 

themselves are modular, thus leading to a nested or fractal topological hierarchy.
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FIGURE 2 | Many information processing networks have a fractal 

community structure of modules-within-modules. Dendrograms displaying 

significant modular and sub-modular structure for (A) a very large-scale 

integrated circuit, (B) Caenorhabditis elegans, (C) the human anatomical 

network estimated using MRI data on 259 normal volunteers, and (D) the 

human cortical network estimated using diffusion spectrum imaging (DSI) data 

on an independent sample of five volunteers. The modularity, m, at each level 

was estimated using the method of Blondel et al. (2008). The insets 

demonstrate hierarchical modularity in terms of the co-classification matrix of 

each system. Reproduced with permission from Bassett et al. (2010).
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his that if he had one partly assembled and had 

to put it down – to answer the phone say – it 

 immediately fell to pieces and had to be reassem-

bled from the elements. The better the custom-

ers liked his watches, the more they phoned him, 

and the more difficult it became for him to find 

enough uninterrupted time to finish a watch. The 

watches that Hora made were no less complex 

than those of Tempus. But he had designed them 

so that he could put together subassemblies of 

about ten elements each. Ten of these subassem-

blies, again, could be put together into a larger 

subassembly; and a system of ten of the latter sub-

assemblies constituted the whole watch. Hence, 

when Hora had to put down a partly assembled 

watch in order to answer the phone, he lost only 

a small part of his work, and he assembled his 

watches in only a fraction of the man-hours it 

took Tempus.” (Simon, 1962, p. 470)

The implication is that a system with a hierar-

chically modular design will be more rapidly 

and robustly assembled. This idea has since been 

developed more rigorously to identify several evo-

lutionary and computational mechanisms which 

are likely to favor the emergence of modularity in 

information processing systems:

•฀ Modular฀networks฀have฀the฀property฀of฀small-
worldness which is advantageous for nervous 

system design because the high clustering 

of connections between nodes in the same 

module will favor locally segregated processing 

(with low wiring cost) of specialized functions 

such as visual motion detection, while the 

short path length will support globally integra-

ted processing of more generic functions such 

as working memory (Sporns et al., 2004).

•฀ Modular฀network฀topology฀is฀associated฀with฀
a rich non-linear dynamical behavior that 

has been described in various ways. Modular 

networks tend to produce time-scale sepa-

ration, i.e., fast intra-modular processes 

and slow inter-modular processes (Pan and 

Sinha, 2009), or high dynamical complexity 

(Sporns et al., 2000) due to the coexistence 

of both segregated and integrated activity 

(Shanahan, 2008; Pan et al., 2010), or tran-

sient “chimera” states (Shanahan, 2010) 

where synchronization and de-synchroniza-

tion coexist across the network. The presence 

of modules allows some neuronal activity to 

remain locally encapsulated and to main-

tain dynamical balance (Kaiser et al., 2007; 

Kaiser and Hilgetag, 2010), i.e., dynamical 

activity is maintained between the extremes 

of rapidly dying out and invading the whole 

network. Hierarchical modularity specifically 

also enhances dynamical reconnectability 

(Robinson et al., 2009), as marginally stable 

networks can be combined or divided while 

preserving stability. Other benefits of a hie-

rarchically modular organization include an 

enhanced stability of echo state networks 

(Jarvis et al., 2010), and dynamical re-con-

nectivity between different transient dyna-

mic behaviors (Müller-Linow et al., 2008; 

Hütt and Lesne, 2009).

•฀ Plausible฀ mechanisms฀ for฀ brain฀ network฀
development are associated with the forma-

tion of modules. This is the case in dyna-

mical systems where network structure and 

function coevolve (Gross and Blasius, 2008). 

Models with adaptive rewiring, such as cou-

pled maps with variable coupling strength 

(Rubinov et al., 2009), typically incorporate 

a reinforcement of links between synchro-

nized units and a pruning of links between 

asynchronized ones. This feedback between 

structure and dynamics, similar to synaptic 

plasticity in neuronal dynamics, naturally 

drives the emergence of inhomogeneities and 

modules in networks.

•฀ Another฀ possible฀ explanation฀ for฀ the฀ origin฀
of modular networks is their optimality at 

performing tasks in a changing environment 

(Kashtan and Alon, 2005). In situations where 

different goals share basic sub-problems, evo-

lutionary pressure produces networks where 

modules specialize in these sub-problems 

and where rapid adaptation to each of the 

different goals is enhanced. This mechanism 

intuitively describes the natural selection of 

organisms evolving in a environment where 

a certain set of basic functions are required 

and where a combination of these “building 

functions” is needed to solve complex tasks.

In addition to these general arguments in favor of 

a modular topology for any economical, adaptive, 

dynamic system there are also a number of other 

more specifically neuroscientific reasons to expect 

brain networks to be topologically modular. For 

example, in the developmental formation of the 

nervous system, regular, sometimes metameric, 

patterns of genetic co-expression can be used to 

identify modules of spatially localized cells that 

will share the same developmental fate, maturing 

to adulthood as a specialized ensemble of cells 

relatively sparsely connected to cells derived 

from different histogenetic modules (Redies and 

Puelles, 2001).

There is massive evidence for anatomical 

localization of some specialized functions in adult 

brain. Early studies of anatomical connectivity 
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are more abundant within communities than 

would be expected on the basis of chance, but 

other quality functions have also been proposed, 

such as the information-theoretic map equation 

of Rosvall and Bergstrom (2008). Once a qual-

ity function has been specified, the network is 

partitioned heuristically to maximize the chosen 

quality function. Modularity can be optimized 

without the need to specify a priori either the 

number or size of the modules.

As most of the algorithms used for modular-

ity analysis will produce a modular decomposi-

tion on random networks (Guimerà et al., 2004), 

it is always necessary to compare the results 

obtained from analysis of a brain network with 

the modularity of appropriate “null model” net-

works, such as classical Erdös–Renyí graphs, or 

randomly rewired versions of the observed brain 

networks (Bullmore and Bassett, 2010). Statistical 

approaches for handling modularity measure-

ments on several different individual networks 

(Meunier et al., 2009a), or for comparing modu-

larity between two or more groups of networks 

(Alexander-Bloch et al., 2010), have been intro-

duced. Alternative and related approaches have 

been developed for modular decomposition, such 

as the concept of stability which is based on the 

persistence of information flows within modules 

over time (Delvenne et al., 2010). However, there is 

much active methodological development ongo-

ing for analysis of modular brain networks and 

this area is likely to advance further in future. In 

particular, we expect that there will be increasing 

interest in how the modularity of brain networks 

– a topological property – relates to their physical 

instantiation or embedding in space – a geometri-

cal property. In such systems, spatial constraints 

are known to have a strong effect on connectivity, 

mainly because of the greater cost associated with 

longer-distance links. Preponderance of short-

ranged interactions has significant consequences 

for the modular organization of the brain as 

topological modules tend to be spatially compact 

and to correspond to anatomically neighboring 

regions. A better understanding of the principles 

shaping neuronal organization thus requires 

future research on the effect of spatial constraints 

on brain connectivity and the development of 

appropriately weighted network metrics to fully 

explore the trade-offs between connection cost 

and topological efficiency that have been selected 

in formation of brain networks.

THE COMMUNITY ROLE OF NETWORK NODES

Once an optimally modular partition has been 

found, it is possible to assign roles to the indi-

vidual nodes which characterize their significance 

between major cortical and subcortical regions 

identified clustering of anatomically and/or func-

tionally related brain regions (Sporns, 2010). 

Several multivariate methods based on hierar-

chical clustering, principal component analysis 

(PCA) or independent component analysis (ICA) 

have confirmed that functional neuroimaging 

data, recorded “at rest” or during performance of 

an experimentally controlled task, can generally 

be decomposed into sub-systems of functionally 

connected brain regions (Salvador et al., 2005; 

Calhoun et al., 2008; Van den Heuvel et al., 2008; 

Smith et al., 2009).

In the psychological literature, the central 

principle of phrenology or faculty psychology 

has been that mental function can be some-

how sub-divided into part-functions or mental 

modules (Fodor, 1983). Modular processes, like 

color vision, have been described as automatic, 

effortless, informationally encapsulated, and ana-

tomically localized (Zeki and Bartels, 1998). More 

consciously effortful tasks, like working memory, 

have been proposed to demand access to a more 

globally integrated processing system – a work-

space of synchronized neurons oscillating coher-

ently over large physical distances across the whole 

brain (Varela et al., 2001; Buzsáki and Draguhn, 

2004). The emergence of workspace architectures 

due to conscious effort is therefore expected to 

“break modularity” of neurocognitive systems 

(Dehaene et al., 1998). In short, there are strong 

prior reasons to believe that brain networks are 

formed and function as modular systems.

MEASURING MODULARITY

The last few years have witnessed a major interdis-

ciplinary effort to develop community detection 

methods, namely methods for uncovering in an 

automated way the modules and sub-modules 

that may be present in networks, and for quan-

tifying how modular the network is. Literally 

hundreds of methods have been proposed (Porter 

et al., 2009; Fortunato, 2010), differing in their 

time complexity and their notion of what a com-

munity is. For instance, certain methods aim at 

uncovering non-overlapping communities while 

others allow for overlaps, such that nodes have 

the possibility to belong to several communities 

(Palla et al., 2005). Partitioning is a popular class 

of community detection methods which involves 

finding an optimum partition of the nodes into 

communities, i.e. each node is assigned to one 

and only one community. At the core of parti-

tioning methods, there is a mathematical quantity 

defining what is thought to be a good partition. 

The widely used modularity metric defined by 

Newman and Girvan (2004) measures if links 

Heuristics

Finding the optimally modular 

community structure in a network, 

according to some quantitative 

definition of modularity, cannot be 

solved exactly for large networks. 

Heuristics or heuristic algorithms thus 

have to be used to find approximate 

solutions in non-prohibitive computing 

times.
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vincial, connector and kinless hubs. Connector 

nodes are naturally of special importance for 

communication between modules.

HIERARCHICAL MODULARITY

Modularity optimization has been shown to pro-

duce useful and relevant partitions in a number 

of systems (Newman, 2006). Unfortunately, it has 

also been shown to suffer from several limitations, 

partly because it produces one single partition, 

which is not satisfactory when dealing with multi-

scale systems. Different methods have been pro-

posed to go beyond modularity optimization 

(Lambiotte, 2010). A first set of methods searches 

for local maxima of the modularity landscape in 

order to uncover partitions at different resolutions 

(Sales-Pardo et al., 2007; Blondel et al., 2008). 

Another class of methods introduces multi-scale 

quality functions, where a resolution parameter 

is incorporated to tune the characteristic size of 

the modules and thus to uncover modules at the 

intrinsic scale of  organization of the system, i.e., 

for intra- and inter-modular transfer of informa-

tion (Guimerà and Amaral, 2005). The node roles 

are defined by two parameters. The participation 

coefficient of a given node is the proportion of 

edges linking it to nodes in other modules. If a 

node has zero or only a few inter-modular con-

nections, it is classified as a provincial (or periph-

eral) node; if its participation coefficient is high, 

indicating a substantial proportion of inter-

modular edges, it is classified as a connector node 

(Figure 3). The second parameter is a measure 

of the intra- modular connectivity of the node, 

namely a Z-score of its intra-modular degree 

when compared to the degrees of other nodes in 

the same module. If the degree of a node is higher 

than that of other nodes in the same module, it is 

called a hub; otherwise, a non-hub. In the origi-

nal definition, Guimerà and Amaral (2005) define 

seven different node roles, depending on specific 

cut-off values of the participation coefficient and 

intra-modular degree: ultra-peripheral, periph-

eral, connector and kinless non-hubs, and pro-
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FIGURE 3 | Age-related effects on modularity and topological roles of cortical 

regions in brain functional networks. Upper panel: intra-modular degree versus 

participation coefficient for each of the regional nodes in major posterior, central, 

and frontal modules of fMRI networks in younger (A) and older (B) participants. 

Connector nodes have large participation coefficients. Lower panel: topological 

representation of the average young (C) and older (D) brain networks with 

connector nodes located in a central ring to highlight their key role in inter-modular 

connectivity. Reproduced with permission from Meunier et al. (2009b).

Connector nodes

In a modular system, some nodes may 

have a special role to play in mediating 

the relatively sparse connections 

between different modules. In brain 

networks, cortical regions (e.g., 

precuneus) with greater inter-modular 

connectivity are called connector nodes 

in contrast to other regions (e.g., 

calcarine cortex) which are called 

provincial nodes because they may have 

high connectivity but almost exclusively 

with other nodes in the same module.



Meunier et al. Modularity of brain networks

Frontiers in Neuroscience www.frontiersin.org December 2010 | Volume 4 | Article 200 | 7

anatomical network was constructed and parti-

tioned. The results show a community structure 

reproducing some functionally localized areas, 

such as visual, auditory/language, central (soma-

tosensorimotor), and superior parietal modules. 

Hagmann et al. (2008) used DTI to uncover a 

structural core of human anatomical networks. 

The modules in this network included unilaterally 

localized areas, such as posterior and frontal lat-

eralized modules, as well as bilateral medial pari-

etal areas and bilateral occipital areas. They define 

the “structural core of the network” as regions 

mostly localized in the medial part of the brain, 

and involving cingulate cortex and precuneus.

MODULARITY IN FUNCTIONAL BRAIN 

NETWORKS

The modular organization of the brain functional 

network in rats was analyzed on the basis of fMRI 

data, and the influence of pharmacological chal-

lenge on the modular structure of functional 

resting-state networks was investigated (Schwarz 

et al., 2009), using techniques introduced by 

Guimerà and Amaral (2005).

Three different studies used very similar 

methodologies to study the modular partitions 

of resting-state fMRI networks in humans (Fair 

et al., 2009; He et al., 2009; Meunier et al., 2009b) 

(Figure 3). Two of these studies investigated the 

influence of normal aging on the modular struc-

ture: Meunier et al. (2009b) focused on the adult 

period (healthy controls from 25- to 65-years 

old); whereas Fair et al. (2009) focused on ado-

lescence and early adulthood (healthy controls 

from 7- to 31-years old). He et al. (2009) stud-

ied a population of healthy young adults (21- to 

25-years old).

Two of the studies (He et al., 2009; Meunier 

et al., 2009b) used similar algorithms and cortical 

parcellation templates to study modular decom-

position, and showed consistent results for the 

young adult age range (20–25 years) included in 

both samples. Both studies reported posterior 

(occipital) and central (sensorimotor) modules, 

as well as a default-mode module comprising pre-

cuneus, cingulate, and medial prefrontal cortex. 

Valencia et al. (2009) looked at modular organiza-

tion in human resting-state networks, this time at 

the voxel level. They showed a similar organization 

at a finer grain, including visual, central-auditory, 

default-mode, and subcortical modules.

In keeping with this degree of consistency 

between studies, there is evidence for reliability 

of modular decomposition across a range of net-

works – from sparsely to more densely connected 

graphs – obtained from the same neuroimaging 

data by applying different thresholds to define 

not at a scale imposed by the method. The most 

popular multi-scale quality function is the spin-

glass modularity (Reichardt and Bornholdt, 2004) 

whose optimization reveals modules of different 

characteristic sizes when its resolution parameter 

is adjusted.

The detection of hierarchies in networks is 

an active field of research where a broad range 

of techniques is currently being developed. In 

addition to generalizations of modularity, let 

us also mention methods aiming at uncovering 

hierarchies made of overlapping communities 

by partitioning the links of the network (Evans 

and Lambiotte, 2009; Ahn et al., 2010), as well as 

methods based on the likelihood of hierarchical 

random graphs to have generated the system in 

question (Clauset et al., 2008).

MODULARITY OF ANATOMICAL BRAIN 

NETWORKS

Several articles studying modular organization 

at the anatomical level are based on publically 

available databases of cat or macaque whole brain 

anatomical connectivity, obtained by fiber trac-

ing and described by Hilgetag et al. (2000). Using 

these data on brain anatomical networks, Hilgetag 

et al. (2000) applied an algorithm looking at par-

titions, with a quality function aiming at maxi-

mizing the number of intra-modular edges and 

minimizing the number of inter-modular edges. 

They obtained a partition consisting of four sub-

networks, that were classified as visual, auditory, 

somatosensorimotor, and frontolimbic. Zhou 

et al. (2006) used a modularity metric (Newman 

and Girvan, 2004) to quantify the optimality of 

this partition. By simulating dynamics using the 

anatomical networks, they showed that different 

dynamics correspond to a hierarchy of modular 

organization, and provided new insight about the 

relation between structure and function in brain 

networks. Sporns et al. (2007) were interested in 

finding the nodes playing the roles of hub regions 

in these mammalian anatomical networks. Hubs 

were defined using several of the many possible 

criteria, including node roles. Based on the same 

dataset, Zamora-Lopez et al. (2010) showed the 

existence of a hierarchy between the different 

modules: using the notion of betweenness cen-

trality (Freeman, 1979), they showed that the 

most central nodes of each module constitute a 

“super-module,” hierarchically on top of the low-

level modules.

Modularity in human anatomical networks 

has been established by Chen et al. (2008). Using 

correlations across subjects between thickness of 

gray matter in different cortical regions defined 

by a previously parcellated template image, an 
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reported that resting state fMRI datasets can be 

decomposed into a hierarchy of modular com-

munities of functionally related brain regions.

Bassett et al. (2010) measured hierarchical 

modularity of the cellular connectome of the 

nematode Caenorhabditis elegans and compared 

this nervous system to whole brain anatomical 

networks in human MRI and DTI data. They 

showed that human and nematode networks 

both demonstrated clear evidence of hierarchi-

cal modularity. This organization was also found 

in the wiring diagram of a high-performance 

computer chip (or very large-scale integrated 

circuit). It was argued that hierarchical modu-

larity is expressed consistently across such dif-

ferent information processing systems because 

it represents an economical wiring diagram for 

embedding topologically complex systems in a 

relatively low-dimensional physical space.

FUTURE QUESTIONS

One important general problem for the future will 

be to understand more directly how the topological 

modularity of large-scale brain networks is related 

to other aspects of modularity, namely the physi-

cal, developmental, pathological, or psychological 

aspects of the modularity of nervous systems.

The physical geometry of the brain’s modu-

larity remains to be elucidated completely. Brain 

regions belonging to the same topological module 

are also often neighbors in anatomical space; or, 

to put it another way, the constituent nodes of 

topological modules are often anatomically co-lo-

calized in the brain (Figure 4). This arrangement 

seems likely to be advantageous in terms of mini-

mizing the connection distance or wiring cost of 

intra-modular edges. It also implies that inter-

modular connections are likely to be relatively 

long distance and expensive in terms of wiring 

cost. There is some evidence that (hierarchical) 

modular networks represent an economical way 

of embedding topologically complex systems in 

relatively low-dimensional physical space (Bassett 

et al., 2010). However, further work is needed to 

understand the modularity of brain systems in 

relation to their anatomical embedding as spatial 

networks (Barthélemy, 2010).

A related issue concerns the growth of a modu-

lar adult brain network: is this developmentally 

determined in some way by histogenetic modules 

of the embryonic brain? This could be regarded 

as further characterization of genetically driven 

developmental changes in modularity – so-

called modularization – that have already been 

 suggested by early studies of normal human 

brain network maturation and aging (Fair et al., 

2009; Meunier et al., 2009b). Moreover, normal 

binary graphs from a continuous association 

matrix (Bullmore and Bassett, 2010). Meunier 

et al. (2009a) used a stability analysis to assess 

the reproducibility of the results when apply-

ing different thresholds to compute adjacency 

matrices. They showed that as long as the result-

ing networks were sparse, the similarity between 

modular decompositions obtained for different 

thresholds was very high. He et al. (2009) showed 

the results of modular decomposition for differ-

ent thresholds, and once again, for a range of 

thresholds leading to sparse networks, the modu-

lar decompositions were almost the same.

In several of these articles, node roles have 

been defined to characterize the different func-

tions played by nodes with respect to a given 

modular partition. Even if using somewhat ad 

hoc definitions for the different node roles, all the 

different studies, both in structural and functional 

neuroimaging (Chen et al., 2008; Meunier et al., 

2009a,b; He et al., 2009; Valencia et al., 2009) 

are quite consistent. It appears that most of the 

connector nodes (i.e., nodes joining modules 

together) are located at the junctions between 

anatomically segregated cortices (occipito-pa-

rietal, occipito-temporal, parieto-central, and 

fronto-central junctions), and are often in regions 

of multimodal association cortex; whereas the 

provincial hubs (i.e., nodes mostly linked with 

nodes of the same modules) are located within 

functionally specialized areas of cortex (primary 

or unimodal association areas).

Human brain functional networks obtained 

from EEG/MEG sensor recordings have also been 

shown to have small-world and modular proper-

ties. Chavez et al. (2010) have shown that EEG 

networks show differences in modular organi-

zation between healthy controls and epileptic 

patients.

HIERARCHICAL MODULARITY IN BRAIN 

NETWORKS

Meunier et al. (2009a) studied the hierarchical 

organization of human fMRI networks using the 

greedy method of Blondel et al. (2008) (Figure 4). 

At the highest level of the hierarchy, where there 

were fewer and larger modules, occipital, central 

and default-mode modules were again indenti-

fied. However, at lower levels of the hierarchy, 

each of these major modules was decomposed 

into a set of sub-modules (or sub-sub-modules). 

For example, the central module was decomposed 

into lateral and medial sub-modules. The pos-

terior module could only be decomposed into 

a few sub-modules, whereas a fronto-temporal 

module could be decomposed into several small 

sub-modules. Ferrarini et al. (2009) have also 
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important to explore how topological modular-

ity of large-scale brain networks might be related 

to concepts of psychological modularity. For 

example, Fodor (1983) built on prior ideas from 

phrenology and faculty psychology to argue that 

some, relatively low-level, cognitive, or perceptual 

processes – such as visual perception of motion 

– can be described as psychologically modular 

because they are domain-specific, informationally 

encapsulated, fast, automatic, and anatomically 

localized. Whereas relatively high-level, inte-

grated, effortful, and conscious cognitive proc-

esses have often been linked to an anatomically 

 processes of modularization might be disrupted 

in the pathogenesis of neuropsychiatric disor-

ders such as autism or schizophrenia, supporting 

abnormal modularity of brain network organiza-

tion as a diagnostic biomarker. In support of this 

expectation, some evidence for dysmodularity, 

or abnormal modular organization, has already 

been reported in the brain functional networks 

of patients with childhood-onset schizophrenia 

(Alexander-Bloch et al., 2010).

Since one of the fundamental drivers of 

human cognitive neuroscience is to understand 

the brain basis for mental functions, it will also be 

Central module Medial occipital moduleParieto−frontal module

Fronto−temporal moduleLateral occipital module

A

C

B

FIGURE 4 | Hierarchical modularity of a human brain functional network. 

(A) Cortical surface mapping of the community structure of the network at the 

highest level of modularity; (B) anatomical representation of the connectivity 

between nodes in color-coded modules. The brain is viewed from the left side 

with the frontal cortex on the left of the panel and occipital cortex on the right. 

Intra-modular edges are colored differently for each module; inter-modular edges 

are drawn in black; (C) sub-modular decomposition of the five largest modules 

(shown centrally) illustrates, for example, that the medial occipital module has 

no major sub-modules whereas the fronto-temporal module has many 

sub-modules. Reproduced with permission from Meunier et al. (2009a).
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