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Abstract. This paper presents some basic theorems giving the structure of cyclic codes of length n over the ring 
of integers modulo pa and over the p-adic numbers, where p is a prime not dividing n. An especially interesting 
example is the 2-adic cyclic code of length 7 with generator polynomial X 3 + ,~X 2 + (L - I)X -- l, where )~ 
satisfies ~2 _ k + 2 = 0. This is the 2-adic generalization of both the binary Hamming code and the quaternary 
octacode (the latter being equivalent to the Nordstrom-Robinson code). Other examples include the 2-adie Golay 
code of length 24 and the 3-adic Golay code of length 12. 

1. Introduction 

This paper was prompted by the following questions. It is known [14], [16] that the binary 
polynomial X 3 + X + 1 that generates the cyclic Hamming code of length 7 lifts to a 
polynomial X 3 + 2X 2 + X + 3 over Z4 that generates the octacode, equivalent to the 
binary nonlinear Nordstrom-Robinson code. What codes are obtained if we continue to lift 
this polynomial to Zs, Zt6 . . . . .  and even to the 2-adic integers Z2~ ? What is the general 
structure of cyclic codes over these rings? (So16 [23] had already suggested in 1988 that 
p-adic cyclic codes should be investigated.) 

The answer to the first question is given in Example 1 of Section 4, where we describe the 
"2-adic Hamming code" of length 7 in detail. This is in a certain sense the first interesting 
2-adic code. In Examples 2 and 4 we give 2-adic versions of the Golay code and more 
generally of extended quadratic residue codes of length 8m, where 8m - 1 is prime, and a 
3-adic version of the Golay code of length 12. Furthermore, this Hamming code and the two 
Golay codes (and more generally a large class of quadratic residue codes) are all MDS codes. 
In particular the 2-adic Golay code has minimal Hamming distance 13, even though every 
projection of it onto the integers modulo 2 a has minimal distance 8. Section 4 also gives 
p-adic generalizations for other classical families of codes, including BCH, Reed-Muller 
and quadratic residue codes. 

The answer to the second question is given in Theorems 5 and 6 of Section 3, which are 
the main theoretical results of this paper. It will be seen that modular and p-adic cyclic 
codes have a simple and elegant structure. 

Although cyclic codes over the integers modulo q have been discussed by a number of 
authors ([5], [6], [9], [12], [21]-[26]), these results seem to have been overlooked. 

The results in Section 3, although not at all obvious, are easily verified by the methods of 
commutative algebra or representation theory [ 13], [28], so we shall mostly not give proofs, 

As far as we know, this paper is the first to consider p-adic codes. (However, several 
authors ([2], [10], [20]) have studied "global" or complex-valued codes in connection with 
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the representation theory of P SL2(n) and other groups, and our p-adic codes are analogues 
of those complex codes.) For general background on p-adic numbers, see [3], [8], [15], 
[17]. 

2. Codes mod pa and p-adic Codes 

We use the symbol Zp, to denote the ring Z / p a Z  of integers modulo p", for any prime p 
and positive integer a, and Zp~ for the ring of p-adic integers. This slightly unconventional 
notation has the advantage of allowing us to use Zq (where q = pa, 1 < a < ~ )  to denote 
any one of these rings, and allows us to state our results in a uniform way. 

An element u 6 Zpo may be written uniquely as a finite sum 

u = uo + pu l  + p2u2 + . . .  + p a - l u a - l ,  

and any element of Zp~ as an infinite sum 

u = uo + pu l  + p2u2 + ..  �9 

where 0 < u i -< p - 1. The units in ZpO or Zp~. are precisely the u for which u0 r 0. Zpa 
has characteristic pa, and Zp~ has characteristic 0. 

The following definitions and remarks are straightforward generalizations of notions for 
Z4 codes given in [12] and [16]. 

= _ " of n-tuples from Zq is of course a Let ~q ~pa, where 1 < a < ec. The set Zq 
Zq-module, and by a linear code over Zq we mean any Zq sub-module of Zq. We equip 
Zq with the inner product v �9 w = v lw l  + �9 �9 �9 + v,,w,, evaluated in Zq, and define dual and 
self-dual codes in the usual way. 

A nonzero linear code C over ZpO, for a finite, has a generator matrix which after a 
suitable permutation of the coordinates can be written in the form 

G = 

I f  A01 A02 A 0 3  �9 ' �9 Ao,a-I Aoa 
p I  pA~2 pAl3 " "  pAl.a-1 pApa 
0 p2I  p2A23 . . .  p2A2.a_l pZA2a 

0 0 0 pa-r I a-I "" �9 p A a - l . a  

(1) 

where the columns are grouped into blocks of sizes ko, kl . . . . .  ko_~, ka, and the ki a r e  

nonnegative integers adding to n. This means that C consists of all codewords 

[v0 vl v2 . . .  Va-l]G, 

where each vi is a vector of length ki with components from Zp,-~, so that C contains pk 

codewords, where 

a-1 
k = Z ( a  - i)ki.  

i = 0  



MODULAR AND P-ADIC CYCLIC CODES 23 

We say that C has type I 

lkOpkl (p2)k2 . . .  (pa-l)k~ 1. (2) 

The zero code (containing only the zero codeword) has type l ~ It is easy to see that the 
code C with generator matrix (1) has a dual C • with generator matrix of the form 

I Boa Bo.a- t �9 �9 �9 B03 B02 Bol I -] 
pBla pBl.a-I "'" pB13 pB12 p l  Oo ~ J p2 B2~ . . . .  p2B2.~_t . . .  p2B23 p21 0 , 

a-1 pa-11 [- p Ba-l.a . . .  0 0 0 

(3) 

where the column blocks have the same sizes as in (1). The dual code therefore contains 
pks codewords, where 

a 

k• = Z iki, 
i=1  

and has type 

lk~p~ 1(p2)~_2 ...(pa-1)k,. (4) 

Also [C[]C • = pk+kl = pan, and (C• • = C. 
Similarly, a nonzero linear code C over Ze~ has a generator matrix which can be written 

in the form 

G _ 
I P'i l Pro~ pro~ . . .  pmOAo,b_ 1 pm~ b 

p'~I pm:A12 "" 

0 0 �9 �9 �9 p'~-~ I p"*b-~ Ab_l .b 

(5) 

where 0 < m o  < ml < .. "mh-l ,  for some integer b, the column blocks have sizes ko, 
kl . . . . .  kh and the ki are nonnegative integers adding to n. This means that C consists of  
all codewords 

[13o Vl /22 . . .  Vb]G, 

where each vi is a vector of length ki with components from Ze~. We say that C has type 

(p,,,o)kO(pm~ )k, . . .  (p,,~, , )kb_,. (6) 

Now the code contains infinitely many codewords (although it is still finitely generated). 
I f  m0 > 0 in (5), all the codewords are multiples of pmo, and (since Zp~ has characteristic 

0) we may divide the whole code by pmo. We shall therefore usually only consider codes 
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in which mo = 0. In this case the dual code has a generator matrix similar to (3), with type 

l k~ (p,,~ )~,_~ . . . (pm~,_~ )k~ , (7) 

and (C• l = C. (If m0 > 0 then ( C l )  • = p-m~  
The automorphism group Aut  (C) of a linear code C over Zq is defined to be the set of  all 

monomial matrices over Zq that preserve the code. Since it contains all scalar matrices uI ,  
where u is a unit in Zq, this group is infinite if q = p ~ .  We therefore define the projective 
automorphism group to be the quotient group A u t ( C ) / { u I  : u = unit}. 

A cyclic code C of  length n over Zq (q = pa, 1 < a < ~x~) is alinear code with the property 
that if (Co, cl . . . . .  c,,-1) r C then @1, c2 . . . . .  cn-1, Co) 6 C. We assume throughout that 
n and p are relatively prime. As usual we represent codewords by polynomials, so cyclic 
codes are precisely the ideals in the ring 

"7~ ~- ~ q [ X ] / ( X  n - -  l ) .  

3. Rings 

We now discuss the properties of the ring ~ and of certain Galois rings G R ( q ' ) .  
Let q = pa (1 < a < ~ ) ,  and let Jq(X) ~ Zp[X] be a monic primitive irreducible 

polynomial of degree m, so that rq (X) divides X n - 1 mod p, where n = p "  - 1. The 
following are straightforward generalizations of results given in [16], [19], [27]. There is 
a unique monic irreducible polynomial rra (X) ~ Zq [X] such that ~ra (X) ~ zq (X) mod p 
and 7r,(X) divides X" - l over Zq (see Theorem 1 below). 

Let ~ be a root of rra(X), so that ~n = 1. Then the Galois ring G R ( q " )  is by definition 
the ring Zq [~]. There are two canonical ways to represent the elements of  this ring. In the 
first representation, every element has a unique expansion 

u = UO -Jr- p u l  + p 2 u 2  q- " ' "  q- pa-lua-1 

(an infinite sum i f a  = e~), where ui ~ f f  = {0, 1, ~, ~2 . . . . .  Cn-l}. The map r : u ~ u0 
is given by 

r (u)  = u e", u r Zq[~], 

and satisfies 

Z'(/A1)) = "g(U)'~(/)), It, U C ~q[~] .  

In the second representation u is written as 

11--1 
u = ~ V r ~  r, Vr E~q .  
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The Frobenius map 4) from Zq[s e ] to Zq[~] takes 

a - 1  a - 1  

Z pr u,. to ~-~ r p P u r . 
r = 0  r=0  

Then q~ generates the Galois group of Zq [~'] over Zq, and ~b m is the identity map. 
The following theorem plays a central role in studying cyclic codes over Zq. It shows 

that the irreducible factors of X" - 1 over Zq are in one-to-one correspondence with the 
factors over Zp. 

THEOREM 1 Let q = pa, 1 < a < cxz. I f  h i ( X )  6 Ze[X] is a monic irreducible divisor 
o f  X" - 1 over Zp, then there is a unique monic irreducible polynomial ha(X)  E Zq[X] 
which divides X n - 1 over Zq and is congruent to hi (X)  mod p. 

Proof  This result can be obtained from Hensel's Lemma, but we prefer to sketch a 
constructive proof (by induction). 

For 1 _< r < ec, suppose hr(X)  C Zer[X] is a monic irreducible polynomial such that 
hr(X)  - h i ( X )  m o d p ,  and hr(X)  [ X n - 1 over Zpr. We will show that hr(X)  can be 
lifted uniquely to a monic irreducible polynomial hr+l (X) 6 Zpr+l IX] which divides X n - 1 
over Zp,+~. Then h ~ ( X )  is defined as the (p-adic) limit of  hr(X)  as r --~ ec. 

Let h ( X )  ~ Ztjr+, IX] be any lift of  hr(X),  say h(X)  = hr (X)  + y g ( X ) ,  and let oe be a 
root o f h r ( X )  and fi a corresponding root of  h(X), so that fl = ot + prO. Then 

ot n = l d- pr E, tip = (ot q- prO)P -= Ot p, 

fl"P = (l +prE)P = 1. 

Therefore the monic polynomial whose roots are the p-th powers of  the roots of  h ( X )  
divides X" - 1, and rood p" has the same roots as h,.(X), and so may be taken as h~+~ (X). 
This polynomial is irreducible since its roots form one orbit under the Frobenius map. To 
show that hr+l (X)  is unique, we argue as follows. Let h ( X )  and h ' (X)  be two different 
possibilities for hr+l (X), and let fi and y be zeros of  h and h'  respectively, with fl ----- ?" 
modp~,  say fl = g + prO. Then 3" = }'" = 1, tip = g p, hence ( f i /y )"  = ( f l /g )  p = 1. 

Since n and p are relatively prime, fl = y, and so h = h'. �9 

We now investigate the structure of ideals in 7~. The units in 7~ are precisely the elements 
n--1 

u = ~ urX r, u,. ~ Zq, such that at least one of  the Ur is a unit in Zq. We denote the natural 
r = 0  

map from 7r to Zp[X] / (X"  - 1) by/z.  
If  A is an ideal in ~ with generators f l ,  f2, . . . ,  we write ,,4 = (f l ,  f2 . . . .  ). The radical 

Rad(.A) of ..4 is the set of  all elements of "R,, some power of which is in ,A. The radical of  
the ideal {0} is called the radical of  7~, and denoted by Rad(Ts Then Rad(Tr = (p) if 
q = pa is finite, or (0) i fq  = p~ .  

The ring Zp~ is a principal ideal domain, hence Noetherian. This implies that Zpo[X] 
and T~ = Zp~[X]/(X '~ - I) are Noetherian for all 1 < a < cx). 7~ satisfies the descending 
chain condition if q = pa is finite (since then 7-4, is finite), but not if q = pW (we will see 
examples later). Hence every maximal ideal in 7"4 is prime, and if q is finite every prime 
ideal different from (0) and (1) is maximal ([28], pp. 150, 203). 
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It is well-known that the prime ideals in Z p [ X ] / ( X "  - 1) are (0), (1) and (7rl), where rrl 
is any monic irreducible divisor of X" - 1 over Zp. 

THEOREM 2 I f  q = pa is f ini te  the pr ime  ideals in 7~ are (0), (1) and (7ra, p),  where  ~ra is 
any monic  irreducible divisor o f  X n - 1 over  Zq. I f  q = p ~  there are in addition the pr ime  
(but nonmaximal)  ideals (rra). 

P r o o f  Let "4 be a prime ideal in 7Z different from (0) and (1). Then Ix(A) = (Tq), say, so 
A contains 7r a, where #(Tra) = Zrl. If  q is finite then p 6 "4, or else ~ / " 4  would contain 
zero divisors, so .4 D (7ra, p),  and it is easily seen that this ideal is maximal. If  q is infinite 
and p ~( ,4 then the only other possibility is A -- (7ra). �9 

Note that the ideal (p) is not prime, since it contains the product of  all the Zra--which is 
0 - - b u t  none of the Jr a themselves. 

It is also known that every ideal .4 in Z p [ X ] / ( X "  - 1) contains an idempotent el (say), 
such that "4 = (el) ([18], Chapter 8, Theorem 1; [13], w 

THEOREM 3 Ever), pr ime  ideal "4 = (rra, p)  in 7-r contains an idempotent  ea with e2a = ea, 

"4 = (ea, p).  Furthermore,  i f  q is infinite then every pr ime  ideal .4 = (7ra) has an 

idempotent  generator. 

P r o o f  We establish the first assertion by induction. Let (n'r, p)  be the projection of ,4 
onto Zpr [ X ] / ( X "  - 1), and suppose e r ~  (rrr, p) is an idernpotent with (er, p)  = (zrr, p).  
Then e 2 = er + prh  in Zp,+I[X] / (X  ~ - 1), for some h in • p r + l [ X ] / ( X  n - 1). If  we take 
er+l = er q- prO, then e~+12 _ e r + l  . =  pr(h  - 0(1 - 2er)), and er+ 1 is an idempotent in 
Z p r + ~ [ X ] / ( X " - 1 )  if we choose 0 = h ( i fp  = 2 )o r0  = h ( 1 - 2 e r )  - I  ( i fp  > 2). (Note that 
(1 - 2er) 2 = 1 + 4 p r h ,  so 1 - 2er is a unit.) It is easily verified that (e~+l, p)  = (rrr+l, p). 
By repeating this process we obtain an idempotent ea ~ -4 with (ea, p)  = (rra, p).  

To prove the second assertion, since Jr~ and (X" - 1)/rra are relatively prime, we can find 
h c Zp~ [X] such that 

h r r ~ - l = _ _ 0  rood ( X  " -  l ) / rc  a, 

so hJra(hzr a - 1) = 0 in T~, and hJr a is the desired idempotent. �9 

Next, every primary ideal is a power of a prime ideal. 

THEOREM 4 The pr imary  ideals in ~ are (0), (1), (Zra) and (rra, p i ) ,  where  zra is an 

irreducible divisor o f  X ~ - 1 over  Zq and 1 < i < a. 

We omit the proof. The key steps are (i) to show that if"4 = (rr~, p)  = (e~, p) is a prime 
ideal then 

A i  = (7ra ' p ) i  = (7.(0 , p i )  = (ea, p i ) ,  (8) 

for 1 < i < a, and (ii) to show that if B is a primary ideal whose associated prime ideal is 
.4 = (zra, p) then (by [28], p. 200, Ex. 2) there is an integer j such that "4J c / 3  c .4, and 
from this that/3 = .4i for some i. 
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Note that when q = pa is finite then (re,,, p)" = (Jra), and 

(zr~, p) D (7ra, p2) D . . -  D (zca, p~-l)  D (zra) 

is a finite descending sequence. When q = p~ ,  however, 

(7r~, p)  D (rre~, p2) D (zr~, p3) D . . .  D (7r~) 

is an infinite descending sequence of primary ideals, the first and last of which are prime. 
In this case we adopt the convention that (rr~, p ) ~  denotes (zr~). 

THEOREM 5 Let Zrfa i), i = 1 . . . . .  A, denote the distinct monic irreducible divisors of  X n - 1 
over Zq. Any ideal in 74 can be wtqtten in a unique way as 

A 
A = ]--I(zrJ), p)mi, (9) 

i=1 

where 0 < mi <_ a. N particular if  a is finite there are (a + 1) A distinct ideals. 

This is a consequence of Theorem 4 and the Lasker-Noether decomposition theorem 
([28], p. 209). The product symbol in (9) may also be replaced by an intersection symbol. 

THEOREM 6 I f  q = pa, 1 < a < ~ ,  any ideal in ~ has the folw~ 

(fo, p f l ,  p2 f2, . . . , pa-I  fa-1),  (10) 

where the fi  are div&ors of  X '~ - 1 satisfying 

fa- l  I f a -21" . "  fl  l fo. (11) 

I f  q = pcc, any ideal in 74 has the form 

(pm~ fo, pm~ f l  . . . . .  P"" ~ fb-1), (12) 

where 0 < m o  < ml < . . .  < mb_b for some b, and 

fb- l  l fb-2 "' '  { f ,  l fo. 

Proof This follows by expanding the product in (9) and using (8). [] 

COROLLARY Every ideal in 74 is principal. 

Proof (i) I f q  = pa, 1 < a < c~, then the ideal defined by (10) has the generator 

g = fo + Pfl + p2f2 + " "  + Pa - l f a - l .  

We prove this fora  = 2 and 3, leaving the general case to the reader. Let fo = (X n - 1)/fo, 
fi  = f i -1 / f i  for l < i < a. C a s e a  = 2: T h e n g  = f o + P f l ,  and (g) contains 



28 A.R. CALDERBANK AND N. J. A. SLOANE 

Pg = Pfo = p f l  f l  and fog ----- P f ,  fo, hence p f ,  (since fo and f have no common 
factors), hence fo. Case a = 3: Now g = fo +~Pfl + P2f2, and (g) contains p2g = 
p2f2fll~2, p fog = p2f2fof'2, and f o f g  p2f2fof l ,  hence p2f2 , hence fo + P f l .  So 
(g) = (fo + Pfl,  P2f2). Arguing as in case a = 2 it follows that (g) = (f0, P f l ,  P2f2). 

(b) Suppose q = p~.  Let g, be a generator for the principal ideal given by the projection of 
the ideal onto Z2~, for a = 1, 2 . . . . .  Since 7~ is compact in the p-adic metric, the sequence 
{ga} has a subsequence which converges to a limit g (say). Then g generates the ideal. 

Finally, although we have not made any use of this, it is worth noting that 7~ has a 
decomposition into a direct product of Galois rings: 

A 

Z p o [ X l / ( x  ~ - 1) ~ 1--1 zP~ i~)" 
i=1 

4. Generalizations of Classical Codes to •q 

Theorem 1 provides a mechanism for generalizing any class of cyclic codes from GF(p)  
to Zp, (for finite a) and even to the p-adic integers Zp~. For example we define a BCH 
code of length n over Zq (q = pa, 1 < a < oo) to be the cyclic code whose generator 
polynomial is obtained by lifting the generator polynomial for a BCH code over GF(p)  to 
Zq. The resulting polynomial has a string of consecutive roots in the appropriate Galois 
ring G F(qm). (For finite q this is essentially the same as Shankar's [22] definition of BCH 
codes over Zq.) The code has type 1 k, where k is the dimension of the BCH code over 
GF(p) .  One of the main unsolved questions here is to determine how the minimal Lee 
distance of these BCH codes varies as a --+ c~. (Similar questions can be asked about all 
the codes in this section.) We investigate the first nontrivial case of these BCH codes later 
in this section. 

We define Reed-Muller codes (since they are extended cyclic codes [1], [18]) and quad- 
ratic-residue codes over Zq in an analogous way. 

If C is a code of length n over Zq with generator matrix (1) or (5) and type (2) or (6), we 
define k by 

a - I  b-I  

k = Z ki (for (2)), Z ki (for (6)). 
i=0 i=0 

The usual argument ([18], Chapter 2) then gives the Singleton bound: 

d < n - k +  1, (13) 

where d is the minimal Hamming distance of the code. We say that C is maximal distance 
separable, or MDS, if equality holds in (13). Since codes over Zp,o have infinitely many 
codewords, it is better to use the equivalent definition (see [18], Chapter 11, Corollary 3) 
that a code is MDS if and only if every k columns of the generator matrix are linearly 
independent over Zq. 
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EXAMPLE 1 The 2-adic Hamming code of length 7. In the binary case, X n - 1 factors 
trivially over Zq, q = 2 a, 1 < a < ~ ,  for  n = i, 3 and 5. The first nontrivial factorization 
is fo r  n = 7, where it is easy 2 to f ind the 2-adic factorization 

X 7 -  1 = ( X -  I)(X 3 + X X  2 + ( X -  1 ) X - 1 ) ( X  3 - ( Z - 1 ) X  2 - Z X -  1), (14) 

where 

Z = 0 +  2 + 4  + 3 2 +  128 + 2 5 6  + - . .  (15) 

is a 2-adic number satisfying 

Z 2 -  Z +  2 = O. (16) 

The first 32 terms & the 2-adic expansion (15) o f  ;~ are 

011001011111 I 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0  . . . .  (17)  

There is no pattern to these digits. 

Then the 2-adic code of length 7 and type 14 with generator polynomial 

X 3+ ,kX 2 + ( L -  1 ) X -  1 

is the 2-adic lift of the familiar binary [7, 4] Hamming code. The generator polynomials 
for the versions of this code over Z2, Z4 . . . .  are: 

Z2 : x B + X + l  

Z4 : X 3 + 2 X z + X - 1  

Z8 : X 3 - 2 X  2 - 3 X - 1  

Z16 " X 3 -~ 6X 2 + 5X - 1 (18) 

Z32 : X 3 + 6 X  2 - 4 - 5 X -  1 

(The coefficients can be read off (15).) By appending a 1 to the generating vectors of these 
codes, we obtain a sequence 7-/2, 7-/4, 7-[8 . . . . .  7f~ of self-dual codes. In particular, 

0 1 2 3 4 5 6 

I Z Z - 1  - I  0 0 0 1 
0 l Z X - 1  - I  0 0 1 
O 0  1 2. X - 1  - 1  0 1 
0 0 0 1 X Z - I  - 1  1 

(19) 

is the generator matrix for a self-dual 2-adic code 7-/~ of length 8 and type 14 that we call 
the 2-adic Hamming code. This is in some sense the smallest interesting 2-adic code. 
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The Z2 version of this code, 7t2, is the [8, 4] Hamming code, and the Z4 version, ~4 ,  
is the octacode, studied in [11], [12], [14], [16], and equivalent to the binary nonlinear 
Nordstrom-Robinson code. 

The minimal Hamming and Lee distances of these codes are as follows: 

"~"~2 "7~4 7-/8 "~16 "1~32 "~64 " ' "  
Hamming 4 4 4 4 4 4 . . .  

Lee 4 6 8 12 14 18 . . .  

The minimal Hamming  distance of ~2a for 1 < a < eo is always 4, since the codeword 
obtained by multiplying any of the generators by 2 a-1 has Hamming weight 4. However it 
follows from Theorem 8 below that the 2-adic Hamming code 7-/~ has minimal Hamming 
distance 5, and is an MDS code. 

On the other hand the sequence of Lee distances of  these codes, 4, 6, 8, 12, 14, 18 . . . . .  
approaches infinity as a -+ ec. Unfortunately it appears that this sequence does not 
converge 2-adically, so one obvious definition of the minimal Lee distance of ~oo fails. 
Even the Lee weight of  the projections of the integer )~ onto Z2,, do not converge 2-adically 

oo 
as m --+ ~x~. For let L = ~ )~i 2i (the Li are given in (15), (18)), so the projection onto Zz,, 

i=0 
m - I  

is t~m = ~ )~i2 i, m > 1. The Lee weight of otto is w,~ = min{o~m, 2"  - Cgm}, and one can 
i=0 

show that 

W m = ( l  - -  2 ~ m _ l ) 0 t m - I  q- ~ m - 1  2 m - l ,  m > 2. 

This shows that {Wl, w2 . . . .  } = {0, 2, 2, 6, 6, 26 . . . .  } does not converge 2-adically. 
There are several other natural ways to define the minimal distance of this code, but none 

are completely satisfactory. This is a question that requires further investigation. 
The automorphism group of 7-/~ contains operations corresponding to x ~-~ x + 1, 

x w-~ 2x and x w-~ - 1 / x ,  namely the monomials 

(0, 1,2, 3, 4, 5, 6)(oc),  
(0)(1, 2, 4)(3, 6, 5)(ec) ,  
(0, co)(1, 6)(2, 3)(4, 5) & negate 0, 1, 2, 4, 

which generate the central product Z2.PSL2(7) ,  as well as all scalar matrices uI ,  u = unit 
in Z2~. Then the full projective automorphism group of 7-{~ is PSL2(7) ,  of order 168. 

EXAMPLE 2 The 2-adic Golay code of length 24. The binary Golay code can be lifted in a 
similar way. The factorization o f  X 23 - 1 over Z2~ is 

(1) (2) X X 23 - l = (X -- l)7r~ (X)sr~ ( ) ,  

where 

X 11 --~ vX 10 -~- (v - 3)X 9 - 4X 8 - (v + 3)X 7 

- ( 2 v  + 1 ) X  6 - (2v - 3)X 5 - (v - 4)X 4 q- 4 X  3 

+ ( v + 2 ) X  2 + ( v - 1 ) X - l ,  (20) 
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v = 0 + 2 + 8 + 3 2 + 6 4 +  128+ ..- (21) 

is a 2-adic number satisfying 

v 2 - v + 6 = 0, (22) 

and rc~ ) (X) is the reciprocal polynomial to 7r~ I (X). The first 32 terms in the 2-adic 
expansion (21) are 

0101011110010010110010000110000 . . . .  

Then the cyclic code generated by zr~ (X), extended by appending a 1 to the generators, 
is a self-dual 2-adic code ~ of length 24 and type 1J2, the 2-adic Golay code. The full 
projective automolphism group of G~ is P SL2(23). 

The projection on Z2 of G~ is the binary Golay code G2 of length 24 and minimal 
Hamming distance 8, and in fact every projection ~2 a of this code onto Z2a for finite a has 
minimal Hamming distance 8. However it follows from Theorem 8 that the 2-adic Golay 
code G~ has minimal Hamming distance 13, and is an MDS code. 

As in the previous example, the Z4 version of this code, G4, is especially interesting. 
Bonnecaze and Sold [7] have shown that by applying Construction A to this code, i.e. by 
taking all vectors in Z 24 which project onto G4 modulo 4, one obtains the Leech lattice. 
This is one of the simplest constructions known for this lattice (cf. [11]). 

EXAMPLE 3 The 3-adic Golay code of length 12. We lift the ternary Golay code in the 
same way, using the irreducible divisor 

X 5+OX 4 - X  3 + X  2+ ( 0 -  1 ) X -  1 

of X ll - 1 over Z3~, where 

0 = 0 + 3 + 9 + 2 . 2 7 + 2 . 8 1  + . . -  

is a 3-adic number satisfying 

0 2 -  0 + 3 = 0. (23) 

By appending a 1 m each generator we obtain a self-dual 3-adic code T~ of  length 12 and 
type 16, the 3-adic Golay code. This has minimal Hamming distance 7and is an MDS code. 
lts full projective automorphism group is P S Le(11). 

EXAMPLE 4 Binary quadratic residue codes. Examples 1 and 2 may be generalized as 
follows. Let n be a prime of the form 8m - 1, so that X" - l factorizes over Z2 into ( X - 
1)zr~J~(X)zr2 ~2)(X), where all the factors are irreducible, with a corresponding factorization 
(X (1) (2) - 1)7r~ (X)rc~ (X) over Z2~. Let Q and N denote the nonzero quadratic residues and 
nonresidues modulo n, and set 

fQ(x )  = x ' ,  f (x) = x' .  
icQ i~N 

Then as in the binary case there are two inequivalent 2-adic quadratic residue codes of 
length n. 
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THEOREM 7 The two quadratic residue codes of prime length n = 8m - 1 over Z2~ have 
(1) n generator polynomials yroo a d ( X - 1)yr~)(X), and idempotents 

~1 + fifQ(X) + VfN(X), 

where the coefficients oe, fi, Y are the 2-adic numbers 

n + l 1 +  1 -  
o e -  , f l - - - ,  y -  

2n 2n 2n 

for the first code, and 

n - 1  - 1  + ~-27 - 1  - vc-Z-n 
at--  , f l - -  , y =  

2n 2n 2n 

I - - i - ,  
for the second code. By appending ~/ ~-ff to each generator of the first code we obtain a 

self-dual code of length n + 1 and type 10'+~)/2. 

We omit the straightforward proof, which includes the verification that when n = 7 and 
23 the codes generated by n'~ ) (X) coincide with those constructed in Examples 1 and 2. 
The full projective automorphism group of the self-dual code of length n + 1 is PSL2(n).  

THEOREM 8 The self-dual extended quadratic residue code of length n + 1 described in 
Theorem 7 has minimal Hamming distance (n + 3)/2, and is an MDS code. 

Proof It follows from Blahut [4] that this code consists of all vectors (Co, ca . . . . .  cn-l, coo) 
g,,+l that satisfy 2 ~ 

~ - Z j  "-~__}. cj + c~ = 0, 
j = 0  

n-1  

c,, ~-Jq = 0, 
j = 0  

q 6 Q ,  

where ~ ----- e 2~ri/n. The usual Vandermonde argument then shows that this is an MDS code 
[] 

EXAMPLE 5 Cyclic codes of length 7 over g4 and g2~. As an illustration of the structure 
theorems of Section 3 (and also because one of them is the octacode) we enumerate the 
cyclic codes of length 7 over Z4. We factorize X 7 - 1 over Z4from (14), obtaining 

( X -  1)(X 3 + 2 X  + X -  I)(X 3 - X 2 + 2 X -  1) = fo f l f2  (24) 

(say). The nontrivial prime ideals are, from Theorem 2, 

P o = ( f o , 2 ) ,  P1 = ( f l , 2 ) ,  P z = ( f 2 , 2 ) ,  
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Table 1. Cyclic (and extended cyclic) codes of length 7 over ~4. Number 12 
is the octacode. 

# generators type ideal d(d*) 

1 0000000 (0) 1 ~ 0 = P~P~P~ -(-) 
2 2222222 (2) 21 .~ 2 (2ft/2) = PoP[P i 14 (16) 
3 2220200(0) 23 (2fi, fl) = P~P2P2 8(8) 
5 2022000 (2) 24 (2fl) = PoP2p2 6(8) 
7 2200000 (0) 26 (2fi~) = ,o2 PI P2 4(4) 
8 2000000 (2) 27 (2) = PoP1 P2 2(4) 
9 1000000 (1) 17 (1) = 1 1(2) 

lO 1300000 (0) 16 (fo) = p2 2(2) 
11 1300000 (0), 2000000 (0) 1621 (fo, 2) = PO 2(2) 
12 1213000 (1) 14 (fl) = p2 4(6) 
14 1213000 (1), 2000000 (0) 1423 (./'1,2) = PI 2(4) 
16 1132100 (0) 13 (fi~fl) = P2oP ~ 6(6) 
18 1132100 (0), 2000000 (0) 1324 (fi)fl, 2) = PoP1 2(4) 
20 1132100 (0), 2200000 (0) 1323 (fofl, 2fo) = PoPI 4(4) 
22 1132100 (0), 2022000 (2) 1321 (fofJ, 2.f~) = PoP~ 4(6) 
24 1111111 (l) 11 (.fif2) = PXP2 2 7(8) 
25 1111111 (1),2000000 (0) 1~26 (flf2,2) = PIP2 2(4) 
26 1111111 (1), 2022000 (0) 1123 (flfz, 2fl) = p2p2 6(8) 

and the other primaty ideals are 

po = ( f o ) ,  = i f , ) ,  /'22 = i f 2 ) .  

There are 27 codes, by Theorem 5, and they are displayed in Table 1 (except that we have 
omitted codes 4, 6 . . . . .  27, which are equivalent to codes 3, 5 . . . . .  26 under the symmetr 3, 
interchanging fl and f2). The fourth column gives the canonical forms for these codes as 
described in Theorems 5 and 6. 

In Examples  1--4 we extended the codes to length n + 1 by appending  a symbol  that 
made  them self-dual. For  the codes in Table 1 it is more appropriate to append a zero-sum 
check symbol.  The two extensions agree in the case of  the octacode, which is number  12. 

The second co lumn  gives representative generators for the cyclic code (with the extending 

symbol  in parentheses).  The last co lumn gives the min imal  Lee distance d of  the cyclic 
code (and the min imal  distance d* of  the extended code in parentheses).  

It is easy to extend this table to obtain a list of  all possible types of  cyclic codes over 
length n over Zq, q = p",  1 < a < oo, for any prime p such that X" - l factorizes modulo  

p into three irreducible factors, as in (24). It follows from Theorem 6 that there are 24 types 
of  such codes, namely  

(pmOgo) ' (pmOgo, pro,), 

where go 6 {fo, f l ,  f2, fof l ,  fof> flf2}, and 

(pro~ p " g j ) ,  (pro~ pro'g1, p"~),  
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where go ~ { fo f t ,  /'of9_, f l f2} ,  gl Igo, and 

0 ~ m 0 -< m!  < n'l 2. 

Similar  enumerations can be obtained for any n, once the factorization of X" - 1 is known. 
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Notes 

1. This definition of type differs from the one given in [ t2] ,  [ 16]. The present definition has the advantage that 
it applies also to p-adic codes. 

2. Guided by the factorizations rood 2 and rood 4, one guesses that X 6 + X 5 + . . .  + 1 = ( X 3 + ),X 2 + I~X - l ). 
reciprocal; hence/x = )~ - 1, Lz = )~ _ 2. 
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