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Abstract

Road transport electrification is essential for meeting the European Union’s goals of decarbonization and climate change. 

In this context, an Ultra-Fast Charging (UFC) system is deemed necessary to facilitate the massive penetration of Electric 

Vehicles (EVs) on the market; particularly as medium-long distance travels are concerned. Anyway, an ultra-fast charging 

infrastructure represents the most critical point as regards hardware technology, grid-related issues, and financial sustain-

ability. Thus far, this paper presents an impact analysis of a fast-charging station on the grid in terms of power consumption, 

obtained by the Monte Carlo simulation. Simulation results show that it is not economical convenient size the assumed ultra-

fast charging station for the maximum possible power also considering its high impact on the grid. In view of the results 

obtained from the impact analysis, the last part of the paper focuses on finding a method to reduce the power installed for 

the DC/DC stage while keeping the possibility for the electric vehicle to charge at their maximum power. To achieve this 

goal a modular approach is proposed. Finally, two different modular architectures are presented and compared. In both the 

solutions, the probability of having EVs charging at limited power is less than 5%.
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Abbreviations

EV  Electric Vehicle

PEV  Plug-in Electric Vehicle

BEV  Battery Electric Vehicle

UFC  Ultra-Fast Charging

BMS  Battery Management System

SoC  State-of-Charge

Pc  Charging Power

Ebat  Capacity of the Battery

Crate  Charging Rate

QC  Battery available capacity

Qn  Battery rated capacity

FdF  Frequency distribution Function

pdf  Probability density function

b  Weibull shape parameter

a  Weibull scale parameter

μ  Average value

σ  Standard deviation

1 Introduction

Road transport electrification is inevitable for meeting the 

European Union (EU) aims of decarbonization and climate 

change, since this sector is responsible for about 20% of 

CO2 emissions within the EU [1]. Electric Vehicles (EVs) 

running only on electricity have zero tailpipe emissions, 

but there are upstream emissions coming from manufactur-

ing cycle and from electricity generation [2]. Concerning 

the latter, it is clear that the use of relatively low-pollut-

ing energy sources for electricity generation will lead to a 

stronger well-to-wheel emissions advantage of EVs over 

similar conventional vehicles running on gasoline or diesel. 

Instead, in regions that depend heavily on coal for electric-

ity generation, EVs may not demonstrate a strong Well-to-

Wheel (WTW) emissions benefit, as shown in [3], where 

the region with the highest carbon intensity is Germany. 

For this reason, the introduction of EVs on the market and 

the installation of Renewable Energy Sources (RESs) are 

rising hand in hand. The degree of electrification together 

with the traffic conditions are two other important factors to 

consider in the WTW analysis [3, 4]. Eventually, from an 

analysis of independent life cycle assessment (LCA) studies 

[4–7], it is possible to conclude that a BEV over its lifetime 
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produces 50% less CO2 emissions than a standard EU car 

today (Fig. 1).

Electric cars are expected to account for 16% of the global 

car fleet in 2030, rising to 51% in 2040 and to 69% in 2050 

[8]. On one hand this electrification process will lead to a 

significant drop of the average GHG emissions; however, on 

the other hand, it will require the integration of vehicles into 

a reliable and affordable as well as easy-of-use infrastructure 

for the supply of energy [9].

Nowadays, slow charging is the most popular method 

of charging EVs, in fact is preferred by many car owners 

when they intend to stay for a long period at the destina-

tion such as at home overnight or at the job location during 

the working day [10, 11]. Slow charging points typically 

have power ratings that vary from 3 kW (1-phase) up to 

22 kW(3-phase) and hence required charging times which 

last usually between 3 h up to 11 h [12]. Nevertheless, slow 

charging methods can not satisfy the entire needs of the elec-

tric mobility field. Particularly, as medium and long-distance 

trips are concerned, an Ultra-Fast Charging (UFC) system 

is necessary for more widespread electric vehicle adoption 

[13]. In fact, the availability of a fast-charging infrastructure 

has demonstrated to be a crucial element that strongly and 

positively influences the driver’s behavior in terms of aver-

age distance traveled, reduction of range anxiety, and general 

higher confidence with EVs [14].

Nevertheless, such a charging system has to face a num-

ber of serious challenges. First of all, it requires high ini-

tial investment costs [15, 16], since its installation involves 

upgrades in the power infrastructure such as the introduction 

of new transmission and distribution lines. Although the cost 

of fast charging equipment is about 10 times higher than 

that of conventional chargers, its return on investment is, 

in many cases, faster; since it allows to serve more vehicles 

a day. Another key factor in the relatively poor presence of 

UFC systems is its impact on the voltage stability of the 

distribution network [17–19]. This system can cause, in 

fact, voltage fluctuations and flicker, which, however, can 

be almost completely mitigated with the use of both smart 

charging algorithms and on-site distributed energy resources 

[18]. Moreover, the charging capacity of the different elec-

tric vehicles up to now on the market varies in a wide range, 

making in this way, difficult the choice of the optimal size 

for such a charging system: if the UFC station is sized for 

the maximum charging power allowable by the EVs, then it 

will operate for most of the time at a lower rating leading in 

this way to poor efficiency values.

Thus far, this paper aims to quantify the effective impact 

of an ultra-fast charging station on the grid. Factors such as 

the differences among electric vehicle models, initial SOC, 

and different arriving times to the charging point are con-

sidered in the Monte Carlo simulation. Due to the low load 

factors, high initial costs, and low flexibility the concept 

and the advantages of a modular and reconfigurable charg-

ing station are introduced. This adaptability could result in 

a particularly important feature today as innovations and 

new materials continue to be introduced into EV battery 

and power-stage components [19, 20]; not to mention the 

differences that already exist between different typologies 

and models of EVs. Finally, two modular architectures are 

proposed and preliminary compared in this paper.

2  State of the Art

In this paragraph, the current state of the art of ultra-fast 

charging station for EVs is described.

Due to large power requirement, a UFC station needs a 

connection to the medium voltage MV network [21], indeed 

in [22] Sun et al. present that a DC fast charger connected to 

the MV grid can lower about 75% of the losses with respect 

to a charger of the same power connected to the 480 V grid. 

The grid medium voltage is then stepped down by an isolat-

ing Line Frequency (LF) transformer whose secondary will 

be converted in DC. The typology of transformer depends 

on the AC-DC converter chosen [23]. However, in recent 

years a lot of research is focusing on substituting the line-

frequency transformer with a Solid-State Transformer (SST) 

[24–28]. Such approach will enable the direct connection of 

the station to the MV line by providing step-down, rectifica-

tion and isolation functions in a single unit. The adoption of 

such technology will lead to a lighter, cheaper and more effi-

cient system. In fact, compared with traditional transformer, 

the SST presents some benefits such as the exploitation of 

a high-frequency transformer, a better fault current limiting 

capability, a lower cost and higher flexibility. Despite its 

advantages, some serious issues, in particular, in terms of 

reliability and protection devices could potentially limit the 

applicability of SSTs [26, 27].

Before establishing the AC-DC converter, the first deci-

sion to be made in the design of a UFC station is whether 

to follow a common AC or a common DC bus approach 
Fig. 1  WTW GHG emissions for different electricity production and 

degrees of electrification [3]
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as shown in Fig. 2. Nevertheless, this holds only in case 

of line frequency transformer, in fact if the SST is chosen 

as connection to the grid, a common DC bus configuration 

is the only possible solution, since the mentioned technol-

ogy covers the functionality of LF transformer and AC/DC 

conversion.

In an AC bus configuration, the secondary winding of the 

LF transformer is used to individually supply the charging 

columns. Therefore, with such an approach all the charging 

units have their own rectification stages connected to the AC 

bus. In [29] a EVs fast charging station integrated with an 

energy storage system is implemented following the AC-bus 

scheme. The main reason behind the authors’ choice is that 

the AC system is a well-integrated technology for which 

there are well-developed standards and technologies on the 

market. However, the DC bus approach is becoming the pre-

ferred solution because of its several advantages over the AC 

bus approach [30, 31]. First of all, a DC bus-based system 

allows a reduction of the number of components, since a 

common AC/DC converter is used. With fewer conversion 

stages an improvement of both the efficiency and the cost of 

the overall system is possible. For instance, in [32] authors 

estimate that in DC bus systems the conversion losses can 

be decreased from about 32% to less than 10% with respect 

to an AC bus architecture. Moreover, the absence of reac-

tive power allows an easier control, [16, 33]. With a DC bus 

architecture is also easier to integrate Renewable Energy 

Sources (RESs) and Energy Storage Systems (ESSs) that 

can be used to mitigate the negative impact of the UFCS on 

the distribution MV grid [30]. This fact must not be under-

estimated, as a matter of fact in [34] authors shown that fast 

charging stations can increase the peak demand by about 

9%, hence causing in addition to the voltage flickers also the 

drop of the bus voltages bellow the admissible limit (-0.95 

pu). The advantages of inserting ESSs and RESs is high-

lighted in different works. In [35], the authors proposed an 

energy management system for a fast-charging station (FCS) 

composed of two fast chargers of 48 kW, a battery energy 

storage system consisting in a 23.9 kWh Li-ion battery, and 

a PV system with a peak power of 119kWp. The results 

of this work show that with the designed configuration the 

FCS mainly operates in stand-alone mode, and hence almost 

completely canceling the impact on the grid. On the other 

hand, according to [26], the major issues of a common DC 

bus architecture are related to the protection and metering 

devices.

Since in a UFC station electric vehicles seek considerable 

level of energy in very short time intervals, the implemen-

tation of a bidirectional power flow is counterproductive 

[36]. In this context, if only unidirectional current flow is 

requested a three-level three-phase Vienna rectifier repre-

sents one of the most suitable candidates to perform the 

common AC/DC stage [16, 23] in a DC bus configuration. 

This topology, shown in Fig. 3, with a lower number of 

active switching devices compared to the other three-level 

converters, features a highly sinusoidal input current, low 

voltage stress in the devices, a high-power factor operation 

and a high reliability in case of malfunctioning, in fact, it is 

well protected in case of short circuit and it can even operate 

Fig. 2  Charging station architecture: a DC bus b AC bus Fig. 3  Vienna rectifier
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with the loss of one input phase [37]. Its major limitations 

are the need for dc-link capacitor voltage balancing and the 

limited reactive power control.

Another rectification stage becoming popular in fast 

charging station is the multilevel ac/dc converter [38, 39]. 

In particular the typologies of multilevel converters which 

seems to be more promising in the field of charging sta-

tion for EC are the cascade H-bridge (CHB) and the neutral 

point clamped (NPC). For instance, in [38], Rivera et al. 

propose a 3-level h-bridge (HB) converter rated as 690 V 

and 1.2 MW as the grid interface in a dc charging station; 

its configuration is shown in Fig. 4. The main points in 

favor of the proposal are the low THD values and the lack 

of unbalances issues both in the ac and dc sides; moreo-

ver, the converter achieves an output three-level waveform 

without any balancing requirements and without the use of 

clamping diodes, which instead are necessary in the (NPC) 

converter proposed as grid interface in [42]. The use of the 

NPC converter, depicted in Fig. 5, automatically leads to a 

bipolar DC-bus architecture, which offers as main advan-

tages high power capacity and better current performances, 

however it produces power imbalances between the positive 

and negative output bars [41]. In [40] a CHB converter is 

again proposed as ac/dc stage in a UFC station.

After the AC/DC stage, the DC/DC converter provides 

an interface to the EV battery. A requirement expressly 

demanded in IEC 61,851-23 [40] for multiport charging 

stations is the galvanic insulation between each individual 

output. The reason for this requirement is the need to con-

stantly monitor the insulation between the DC active parts 

(positive and negative pole) and the protective conductor 

or exposed conductive parts of the vehicle (which can be 

touched) in order to quickly detect a fault and disconnect the 

power supply. This aim can be achieved by using an isolated 

DC/DC converter.

Recently an isolated unidirectional DC/DC converter 

which is gaining ever more attention is the LLC resonant 

converter, whose scheme is reported in Fig. 6. The LLC 

converter presents many advantages over other resonant 

topologies [42, 43], such as: the ability to operate at Zero-

Voltage Switching (ZVS) or Zero-Current Switching (ZCS), 

a wide output voltage regulation, and very high efficiency. 

Moreover, its output filter consists only of a capacitor and 

not of an inductor and capacitor (LC) filter [16]. A more 

comprehensive description of this type of converter is pro-

vided in [24] and [44].

In [45] authors design a 50 kW phase-shift full-bridge 

(PSFB) converter used EV battery interface for fast charging 

application. This type of isolated dc/dc converter, shown in 

Fig. 7, is very common in high-power applications, this is 

due to its most desirable features such as high efficiency at 

high switching frequency attain through zero voltage switch-

ing, its simple design, and easy control method.

Fig. 4  Power circuit of the HB converter in [38]

Fig. 5  Three-level three-phase NPC converter

Fig. 6  LLC resonant converter

Fig. 7  Power circuit of a PSFB converter
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A more complete review of the isolated dc/dc converters 

suitable for fast charging stations can be found in [46].

All the reference papers cited in this section highlight 

the different studied aspects of fast charging stations. As 

can be seen, most of the research focuses on the following 

topics: FCSs connection to the grid, their internal operation 

and design, their impact on the grid, the importance of an 

integration with RESs and ESSs, and the different EMSs 

that can be used. However, few studies focused on the siz-

ing problem of a fast-charging station, as a matter of fact the 

power rate of the charger in all the reference papers is chosen 

a priori, without performing any investigation. As the name 

suggest, a UFCS aim to charge the EVs batteries as fast as 

possible. Therefore, the first aim of this work is to compute 

the maximum power absorbed by a UFC station composed 

of 10 charging ports, considering different aspects such as 

the different characteristics of today existing electric cars 

and their stochastic behavior.

3  Impact Analysis on the Distribution 
System by Monte Carlo Simulation

Ultra-Fast Charging requires a big amount of energy within 

limited intervals of time resulting in a very high-power den-

sity. This feature may pose undesirable issues on the national 

electric grid such as feeders and transformers overloading 

problems [28, 47], voltage drops [28, 48], and harmonic 

resonance risk [48]. Therefore, there is a need to investigate 

and model the impact on the grid of such a charging system. 

In this paragraph, the theoretical peak demand for electricity 

of a UFC station is carried out. More precisely, the power 

absorbed by the entire station is computed without going 

into the power delivered by each single charging pole.

3.1  Considered Key Factors

In the case of UFC station, the infrastructure is shared 

among different types of vehicles, which, having different 

charging profiles, require diverse charging strategies. More 

and more often it is possible to hear about very high power 

charger, able to provide 350 kW; nevertheless, as shown 

Fig. 8, only a few EVs nowadays allow a charging power 

higher than 100 kW; in fact, the charging time does not 

depend only on the output power of the charger but it is 

determined by the vehicle charging capability, which in turn 

depends on multiple factors.

The characteristics of the battery which influence the 

charging process, considered in this analysis, are listed 

below.

1)Capacity of the battery ( E
bat
) : The larger is the battery 

capacity of the vehicle the higher can be the allowed charg-

ing power [50]; in fact, according to (1), for a given value of 

injected power as the capacity of the battery becomes larger, 

the C
rate

 is reduced:

where Pc indicates the charging power and Ebat the bat-

tery capacity. The C
rate

 is the measure of the speed at which 

the battery is charged/discharged. High c-rates result in 

high aging rates. In fact, charging Li-ion batteries at a rate 

higher than 1C causes uneven heat generation inside the cell, 

mechanical pulverization of the electrode materials, and the 

occurrence of lithium plating reaction [50–53]. Therefore, 

the manufacturers have to deal with all these restrictions 

and set their limits through the Battery Management System 

(BMS), which will drive the charging process according to 

(1)C
rate

=

P
c

E
bat

Fig. 8  Charging profiles of different EVs a as a function of %SoC 

[49], b as a function of time
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the proper charging profile and the allowed maximum charg-

ing rate of that specific vehicle [54].

2) State-of-Charge ( SoC) : The SoC of a cell, expressed in 

(2), is defined as the percentage of currently available capac-

ity ( Qc ) to its rated capacity ( Qn ) [55], and its value ranges 

between 0% up to 100%.

In general, the charging speed is strongly influenced by 

this factor. In fact, as the battery approaches a SoC around 

60–70%; the charging rate stars to drop quickly [56, 57]. 

Therefore, fast charging above 70–80% of the battery is not 

very useful.

3) Another external factor that can have a significant 

influence on charge speed is the temperature of the battery 

[58–60]. A battery works optimally if the temperature is 

not too high and not too low and in practice, this is usually 

between 15 and 35 ° [61]. Nevertheless, such a factor is not 

considered in this study.

To consider in the analysis the above-mentioned features, 

which influence the charging process, a fleet of seven differ-

ent electric vehicles, chosen among the top-selling models 

in 2018 and 2019, has been assumed in this study. The main 

characteristics of the chosen BEV models are reported in 

Table 1.

Figure 8a shows the charging profiles of the chosen mod-

els. Such trends are computed in optimal conditions, which 

means at ambient temperature and with new batteries. The 

charging profile Pc(%SoC) of each vehicle has been discre-

tized and then plot as a function of time ( Δt) , according to 

the (3). Finally, Fig. 8b reports the obtained discrete trends.

At the end of each charging process, an interval lasting 

3 min in which the charging power is nil has been intro-

duced. This interval aims to reproduce and incorporate 

(2)%SoC =
Qc

Qn

⋅ 100

(3)Δt =
Pc ⋅ ΔSoC(%)

E
bat

the time needed: to pay the recharge, to disconnect the full 

charged vehicle, to connect, validate, and to start charging 

the new connected one. In almost all the trends, the charging 

profile stops when the vehicle battery reaches 90% of SoC.

The assumed station is composed of ten charging poles 

each one able to provide 175 kW, for an overall maximum 

power of 1.75 MW. The theoretical maximum peak is then 

found assuming that ten vehicles, casually chosen among the 

seven models previously introduced, simultaneously occupy 

the ten poles. Once the vehicle is selected, its instantaneous 

charging power is randomly picked among the values in the 

corresponding charging profiles. This last passage aims to 

replicate the different arrival times to the station.

3.2  Analysis and Discussion of Results

In this way, 100.000 different scenarios are simulated. The 

number of bins is set according Sturge’s rule in (4) and 

rounds up to 18.

where k represents the number of bins and N is the number 

of observations.

Then, it is possible to define the relative frequency of 

each event as the ratio between the number of occurrences 

of that value and all the results of possible scenarios. The 

Frequency density Function (FdF) of the overall power 

simultaneously absorbed by 10 e-vehicles is reported in 

Fig. 9. The FdF is fitted with a normal distribution and 

with a Weibull one, whose expression are reported respec-

tively in (5) and (6).

(4)k = 1 + 3.322 log10 N = 17, 67

Table 1  Features chosen BEVs

BEV model Declared 

autonomy (km)

Battery capac-

ity (kWh)

Battery 

technol-

ogy

Tesla Model 3 LR 530 75 Li-ion

BMW i3 260 42.2 Li-ion

Tesla Model S LR 417 75 Li-ion

Nissan Leaf 305 40 Li-ion

Renault Zoe 395 52 Li-ion

Audi E-tron 400 95 Li-ion

Hyundai Kona 482 64 Li-ion
Fig. 9  Charging station power probability density function
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The Weibull probability density distribution is expressed 

as:

where b is the shape parameter and a scale parameter. Par-

ticularly, in this study, these two parameters, which define 

the Weibull distribution, result respectively about 720 and 

5.43.

Instead the expression of the normal probability density 

function (pdf) is:

where µ is the mean and � the standard deviation. The mean 

of such distribution is computed thorough (7) and results 

about 667 kW, as a consequence of the central limit theorem. 

Therefore, the results are strongly influenced by the models 

chosen to form the fleet, in other words this is a consequence 

of the influence of the battery capacity and SoC.

where x
i
 is the value of the power absorbed in the i-th instant 

and N is the number of different instants/scenarios consid-

ered, in this case 100,000.

The standard deviation is instead computed through (8) 

and results about 130 kW.

From such results, it is possible to conclude that by con-

sidering a UFC station able to provide a maximum power 

of 1 MW is possible to satisfy more than 97.6% of probable 

scenarios. It is important make clear that the found peak 

demand does not represent any particular moment of the 

day, but it is a theoretical peak used to give a first size of an 

UFC station; moreover, the power conversion efficiency has 

not been considered.

4  Modular and Flexible Design Proposal

Given the results reported in the previous section, it may 

be concluded that to size the considered charging sta-

tion, composed of 10 charging ports, for an overall power 

higher than 1 MW it is not economical convenient, also 

considering its high impact on the grid. Therefore, now 

(5)

f (x|a, b)

=
b

a

(
x

a

)b−1

e−(x∕a)b

(6)

f (x��, �)

=
1

�

√
2�

e
−(x−�)2

2�2

(7)� =

∑N

i=0
x

i

N

(8)� =

�

∑N

i=0
(x

i
− �)2

N

the attention moves to find a method to reduce the total 

power installed for the DC/DC converters while keeping 

the possibility for the EVs to charge at maximum power.

To achieve this objective a modular design is here pro-

posed. According to such an approach, the DC/DC stage 

is composed of identical modules working in parallel con-

figurations. These modules as shown in Fig. 15a are input 

parallel connected to a common DC bus bar, instead their 

outputs can be paralleled in different ways thanks to the 

presence of smart power switching devices. The different 

configurations of modules can be used to feed individual 

EV batteries, thus leading to the capability of simultane-

ously charging several electric vehicles at different power 

levels. Given the choice of the common DC bus, as previ-

ously mentioned, different types of RESs and ESSs can be 

easily integrated into the station design; however, in this 

work only the design of the chargers is addressed.

This modular and reconfigurable approach offers many 

advantages:

1.It simplifies the maintenance and replacement proce-

dure [62]. The modules can be added and removed without 

compromising the functioning of the overall system.

2.It increases the flexibility for future expansions and 

future power requirements [63, 64]. In fact, in the next 

years, more vehicles are expected to become capable 

of charging at high speeds [65] and this approach gives 

the possibility to easily scale up the power installed any 

wanted time with minimized processes [66]. This will 

allow the UFC stations of today to be compatible with 

tomorrow’s requirements, minimizing and spreading the 

total cost of ownership and the initial investment over the 

years.

3.It allows much better use of the installed capacity 

[55]. As shown in Fig. 10, for a given value of installed 

power, the modular approach allows better management, 

enabling in fact to fully satisfy a higher number of simulta-

neous charging processes requiring different power values.

4.It enhances high efficiencies at low load. The vehi-

cle characteristics and consequently their power charging 

requirements may differ considerably among the models 

and the different levels of SoC, for this reason, the convert-

ers of a conventional UFC station are sized for the maxi-

mum power, but they operate most of the time at a lower 

rating resulting in low light-load efficiencies. A modular 

architecture aims to improve this feature since it enables a 

more split use of the installed power.



1978 Journal of Electrical Engineering & Technology (2021) 16:1971–1984

1 3

5  The design of the cooling system 
is simpli�ed in the case of modular 
architecture and the overall system 
reliability increases.

In literature different types of modular charger and station 

have been analyzed [67, 68]. In [67], indeed, a modular 

converter topology for EV fast charging, shown in Fig. 11, 

has been proposed. The charger proposed is a 50 kW rapid 

charger which consists of four 12.5 kW modules paral-

leled connected both at the input and output. Based on 

the power required by the EV battery a certain number of 

converters is activated for the charging process. The major 

strength of this design is the optimization of the overall 

system efficiency and power density. However, in this case 

all the modules include the rectification stage resulting in 

higher costs with respect to the modularization of the dc/

dc part only. Moreover, in this type of design, the split of 

the power is allowed only for the corresponding charging 

port and the modules cannot be shared with the other ports 

within the charging station.

In Fig. 12 the modular onboard charger presented in [68] 

is depicted. The logic behind and the design is very simi-

lar to the converter proposed in [67], with the difference 

that this one is installed onboard. Precisely, the onboard 

charger is composed by three 3.3 kW modules paralleled 

connected. Hence the output power of the charger can be 

enlarged to achieve higher charging rate by paralleling more 

modules, up to a maximum power of about 10 kW. As the 

approach described in [67], also this system aims to increase 

the efficiency at light load operation and to improve charger 

redundancy.

A reconfigurable, but not modular, charging network is 

then presented in [69]. As shown in Fig. 13, this charging 

network bases its operation on controllable switches, simi-

larly to the architectures that will be proposed in this paper. 

However, the reconfiguration of the network in [69] aims 

only to achieve the best charging pattern of the connected 

EVs to minimize the charging cost. In fact, the EVs parked 

at the station are all connected to a single charger, but they 

Fig. 10  Example of modular charging station

Fig. 11  Block-diagram of the converter proposed in [67]

Fig. 12  Modular onboard charger [68]

Fig. 13  reconfigurable DC charging network in [69]
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are filled one at a time, following the optimized charging 

schedule dictated by the energy management system (EMS).

Finally, in [70] a fast-charging system based on a modular 

reconfigurable architecture is presented. In Fig. 14, the block 

diagram of the switching scheme proposed for the charging 

station is fully depicted. Each of the 15 kW modules is com-

posed of a three-phase voltage source rectifier (VSR) and an 

isolated full-bridge dc/dc converter.

The modules are input paralleled connected, instead the 

outputs can be parallel, or series connected to achieve higher 

charging current in the first case and to be compatible with 

EVs with higher battery voltages such as electric buses and 

trucks in the second configuration case. Particularly, the 

automatic power distribution unit shown in Fig. 14 allows all 

these configurations. Nevertheless, this unit allows only the 

output series/paralleled connection of maximum 2 modules, 

leading in this way to a maximum charging power of 30 kW.

5.1  Proposed Architectures

The paper proposes and analyzes two basic architectures. 

In both cases, the UFC station is composed of 10 charging 

ports and 20 50 kW modules. The modules are imagined to 

be in a common shelter with assumed disposal of 10 per row. 

In both the architectures the modules located in the lower 

row are fixedly connected to the corresponding output DC 

bus bar which in turn is connected to a single charging port. 

Therefore, these modules are dedicated only to the charg-

ing of the vehicle connected to that corresponding charg-

ing column. Instead, the modules positioned in the upper 

line are shared according to the possibilities allowed by the 

commutators.

The first architecture analyzed (1ST), whose part of the 

main scheme is reported in Fig. 15a, presents 20 commuta-

tors (S1–S20), two for each module placed in the upper row. 

Figure 15b, instead, highlights the out modules connections 

and the switched disposition; for the sake of simplicity, 

through a single-line diagram.

The decision flowchart of this first proposed configuration 

is fully depicted in Fig. 16, by taking as example an electric 

Fig. 14  Switching scheme block diagram used in [70]

Fig. 15  First proposed modular architecture block diagram: a com-

plete station and b modules outputs connection

Fig. 16  Decisional flowchart first architecture
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vehicle connected at the charging port 2 as represented in 

Fig. 15a.

From Fig. 16 It is possible to conclude that, in this first 

configuration, the modules in the upper line can be shared 

until reaching a maximum power of 150 kW for a given 

charging port. If one upper module is connected to the adja-

cent port, it means that the vehicle connected to the corre-

sponding column is charging with a speed of maximum of 

50 kW, because for the upper module the vehicle connected 

to the corresponding charging port takes precedence over the 

other vehicles connected to the adjacent ports. Therefore, 

a maximum power of 100 kW is always guaranteed to the 

vehicles.

The second architecture (2ND) is composed of 20 mod-

ules distributed on 10 columns as well. The connection to 

the electrical grid, which means the input connection to the 

modules is the same as Fig. 15a. Instead, in Fig. 17 is rep-

resented the connection of the output of the DC/DC mod-

ules and hence the configuration of the power switches. As 

Fig. 15b for the first case, only 6 modules over 20 and 3 

charging ports over 10 are illustrated to make the represen-

tation clearer. If in the first proposed architecture, the up 

module can be shared only with the next charging port in 

terms of the order; instead, in the second architecture (2ND), 

the up module can be used by both the adjacent charging 

columns.

Therefore, the decisional flowchart for this configuration, 

shown in Fig. 18, will have more steps. By taking as example 

always the connection to the charging port 2 (the dc busbar 

n2), the additional step consists in checking the availability 

of both the up adjacent modules in case the vehicle requires 

a charging power higher than 100 kW. Moreover, the pres-

ence of an extra switch for each charging point, and hence 10 

extra switches with respect to the first architecture, for a total 

of 30 in the UFC station considered, allows the connected 

vehicles to charge a possible maximum power of 200 kW.

The two architectures are then compared, and the out-

comes are reported in Fig. 19.

The first proposed architecture has only 20 commuta-

tors, but it allows a fewer number of configurations result-

ing in this way in lower costs but also a higher probability 

for the BEVs to be charged at limited power compared to 

the allowed one. On the other hand, by increasing the num-

ber of commutators, which is increased to 30 in the second 

proposed architecture, more configurations can be covered, 

so that the probability of charging EVs with limited power 

decreases from the 4.1% of the first architecture to 2.1%. 

The probability is only for those EVs that have charging 

profiles that allow power values greater than 50 kW; in fact, 

the lower module is not shared and hence a charging power 
Fig. 17  Second proposed architecture modules output connection 

block diagram

Fig. 18  Decisional flowchart second architecture
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of 50 kW is always guaranteed. It can also be concluded 

from Fig. 19 that in both architectures the percentage of 

EVs charging at limited power is less than 5%. In the second 

architecture, the number of shared modules increases as a 

result of the higher number of possible configurations, so 

the probability of having unused modules decreases from 

49 to 47%.

6  Conclusions

This paper focuses on the design of an ultra-fast charging 

station for electric vehicles. A probabilistic method for esti-

mating the total absorbed power of the station is presented. 

The power requirement is calculated taking into account 

factors such as the simultaneity in the connection and the 

different charging profiles, and hence characteristics, of the 

BEVs currently on the market. The result underlines that by 

dimensioning the overall station with a capacity of about 

two-thirds of the maximum power, more than 97% of the 

possible scenarios can still be covered, thus reducing the 

impact on the network and the necessary initial investment.

A reduction in the overall power of the UFC station auto-

matically leads to a reduction in the power installed for the 

DC/DC converters. Therefore, in the second part of this 

paper, a new modular approach, for reducing the installed 

power for the chargers, while maintaining the possibility 

of charging all the electric vehicle models at the maximum 

speed allowed by their charging curve, is investigated. In 

the proposed modular approach, the DC/DC stage of the 

UFC station, containing 10 charging points, consists of 20 

identical 50 kW modules that can be shared between adja-

cent charging ports depending on the possibilities allowed 

by the power switches configuration. Two different switches 

configurations have been proposed. From the results 

obtained by the comparison of the two, it can be concluded 

that the second architecture, with more switches, has a better 

performance in terms of power-sharing; in fact, only 2.1% 

of the possibility for an EV to charge with limited power. 

However, both the proposals allow a greater flexibility in 

charging vehicles of different sizes, and they also increase 

the converter’s utilization rate and thus the efficiency of the 

entire charging system.

For the characteristics of the electric cars currently on the 

market it has been demonstrated that, in both the cases, the 

probability of charging EVs with limited power is less than 

0.05. However, in the future, the maximum charging power 

allowed by the EVs is likely to increase; for this reason, the 

next steps of this research will focus mainly on finding other 

suitable architectures and on the comparison of the results. 

Finally, since in this work the size of the modules (50 kW) 

has been selected without a proper investigation, then in 

future steps will also focus on finding the optimal size of 

the modules which composes the station will be address.
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