
RESEARCH

Modular co-organization of functional

connectivity and scale-free dynamics in the

human brain

Alexander Zhigalov1,2,3∗, Gabriele Arnulfo1,4, Lino Nobili5, Satu Palva1, and J. Matias Palva1

1Neuroscience Center, University of Helsinki, Finland
2BioMag laboratory, HUS Medical Imaging Center, Helsinki University Central Hospital, Finland

3Department of Computer Science, University of Helsinki, Finland
4Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Italy

5Claudio Munari Epilepsy Surgery Centre, Niguarda Hospital, Italy

Keywords: Scale-free dynamics, Functional connectome, Modular networks, Neuronal avalanches,

Long-range temporal correlations

ABSTRACT

Scale-free neuronal dynamics and interareal correlations are emergent characteristics of

spontaneous brain activity. How such dynamics and the anatomical patterns of neuronal

connectivity are mutually related in brain networks has, however, remained unclear. We

addressed this relationship by quantifying the network colocalization of scale-free neuronal

activity—both neuronal avalanches and long-range temporal correlations (LRTCs)—and

functional connectivity (FC) by means of intracranial and noninvasive human resting-state

electrophysiological recordings. We found frequency-specific colocalization of scale-free

dynamics and FC so that the interareal couplings of LRTCs and the propagation of neuronal

avalanches were most pronounced in the predominant pathways of FC. Several control

analyses and the frequency specificity of network colocalization showed that the results were

not trivial by-products of either brain dynamics or our analysis approach. Crucially, scale-free

neuronal dynamics and connectivity also had colocalized modular structures at multiple

levels of network organization, suggesting that modules of FC would be endowed with

partially independent dynamic states. These findings thus suggest that FC and scale-free

dynamics—hence, putatively, neuronal criticality as well—coemerge in a hierarchically

modular structure in which the modules are characterized by dense connectivity, avalanche

propagation, and shared dynamic states.

AUTHOR SUMMARY

The framework of criticality has been suggested to explain the scale-free dynamics of

neuronal activity in complex interaction networks. However, the in vivo relationship between

scale-free dynamics and functional connectivity (FC) has remained unclear. We used human

intracranial and noninvasive electrophysiological measurements to map scale-free dynamics

and connectivity. We found that the propagation of fast activity avalanches and the interareal

coupling of slow, long-range temporal correlations—two key forms of scale-free neuronal

dynamics—were nontrivially colocalized with the strongest functional connections. Most

importantly, scale-free dynamics and FC exhibited similar modular network structures. FC

and scale-free dynamics, and possibly also neuronal criticality, appear to co-emerge in a

modular architecture in which the modules are characterized internally by shared dynamic

states, avalanche propagation, and dense functional connectivity.
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Co-localization of cortical connectivity and scale-free dynamics

The human connectome is a comprehensive map of how brain regions are mutually con-

nected and is fundamentally important for understanding neuronal communication and brain

dynamics in both health and disease (Fornito, Zalesky, & Breakspear, 2015). Although func-

tional connectivity (FC) in the human brain was initially characterized as a stationary networkFunctional connectivity:
Defined as the correlation between
neurophysiological time series

(Raichle, 2009), recent empirical (Zalesky, Fornito, Cocchi, Gollo, & Breakspear, 2014) and

theoretical (Deco, Jirsa, & McIntosh, 2013) studies have complemented this view by revealing

considerable connectivity pattern fluctuations that are systematic beyond simply represent-

ing noise in weak stationary connectivity (Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015;

Mitra, Snyder, Blazey, & Raichle, 2015). Such dynamic connectivity has been observed at a

range of temporal scales from milliseconds to minutes (Larson-Prior et al., 2013). It has, nev-

ertheless, remained unclear how these static and dynamic patterns of FC are related to the

actual dynamical states of the brain and to the statistical patterns of activity propagation asso-

ciated with this scale-free dynamics (Kopell, Gritton, Whittington, & Kramer, 2014).Scale-free dynamics:
Any fractally self-similar—that is,
power-law scaled—dynamics of a
system

The ubiquity of scale-free dynamics in neuronal activity suggests that neuronal systems

could operate at a critical state (Chialvo, 2010). Critical neuronal dynamics are char-

acterized, for instance, by the power-law scaling of neuronal activity avalanches at fastNeuronal avalanche:
A cascade of neuronal activity with
power-law size and lifetime
distributions

(10−3 to 10−1 s) timescales (Beggs & Plenz, 2003), as well as by power-law long-range

temporal correlations (LRTCs) in neuronal fluctuations at slow (101 to 103 s) timescales

Long-range temporal correlations:
Functional correlations characterized
by power-law decay of the
autocorrelation function

(Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001). However, the hierarchically mod-

ular rather than homogeneous structural connectivity of the brain may expand our concept

of criticality from the system operating near a critical point into the system operating in an

Criticality:
The state of a dynamical system at a
boundary between two qualitatively
different types of dynamics

extended critical region or, more specifically, in a Griffiths phase (Hilgetag & Hutt, 2014;

Moretti & Munoz, 2013). On the other hand, it is important to note that several kinds of

noncritical processes are also associated with power-law LRTCs; hence, observations of scale-

free dynamics do not, per se, indicate criticality (see, e.g., E. J. Friedman & Landsberg, 2013;

Schwab, Nemenman, & Mehta, 2014).

Whether scale-free brain dynamics and/or neuronal criticality are related to FC has re-

ceived attention only recently (Ciuciu, Abry, & He, 2014). Avalanche-like large-amplitude

propagating patterns in BOLD signals have a connectivity structure similar to that of FC

(Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 2012). In the same vein, slow amplitude fluc-

tuations of neuronal oscillations are characterized by both LRTCs (Linkenkaer-Hansen et al.,Neuronal oscillations:
Transiently rhythmic neuronal
population activities

2001) and long-range interareal correlations with neuroanatomical structures similar to those

of fMRI resting-state networks (Brookes et al., 2011). Hence, these converging, albeit indi-

Resting-state:
An experimental paradigm in which
the participant does not receive any
stimulation or task

rect, relationships suggest that critical dynamics and the functional connectome could be

linked, but in a manner that hitherto has been unclear. Recent computational-modeling

studies have further elucidated this link by suggesting, on the one hand, that the modu-

lar network architecture of resting-state FC emerges specifically when the system is poised

at a critical state (Haimovici, Tagliazucchi, Balenzuela, & Chialvo, 2013) and, on the other,

that avalanches in a modular system propagate preferentially within connectivity modules

(Russo, Herrmann, & de Arcangelis, 2014).

We advance here two hypotheses. First, we posit that neuronal avalanches propagate pref-

erentially along the predominant pathways of FC and within the modules of the functional

connectome. Second, we suggest that these modules are also endowed with partially inde-

pendent dynamic states, which are reflected in stronger interareal correlations of LRTC ex-

ponents within the modules than between them. To test these hypotheses, we assessed the

relationship between scale-free dynamics and FC by using intracranial stereotactic electroen-

cephalography (SEEG) and magnetoencephalography (MEG). To ensure that the hypotheses

SEEG:
An invasive, presurgical technique in
which local field potentials are
recorded intracerebrally to identify
the areas where epileptic seizures
originate
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Co-localization of cortical connectivity and scale-free dynamics

were testable, we also performed several lines of control analyses to establish that the indices

of dynamics and connectivity could be estimated independently. We characterized scale-free

dynamics by connectomes of avalanche propagation patterns and interareal correlations in the

LRTC scaling exponents, and compared the connection strengths andmodular organizations in

these connectomes with those in connectomes of FC measured by the phase synchronization

(Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011) and amplitude correlations

(Brookes, Woolrich, & Barnes, 2012) of ongoing neuronal oscillations. We show that both

neural dynamics and FC have, in a frequency-specific and nontrivial manner, similar con-

stellations of strongest connections and shared modular structures, which provides empirical

evidence that neuronal connectivity and scale-free dynamics are intimately linked.

RESULTS

In our MEG and SEEG data, a neuronal avalanche was defined as a set of suprathreshold

peaks in waves of broadband (1–120 Hz) ongoing activity occurring in consecutive time bins

(Figure 1A). The statistical properties of avalanches can be described by the distributions of

their sizes—that is, the total numbers of peaks in each avalanche—and lifetimes—that is,

the durations of the avalanches. In this study we used time bin widths of 8 and 16 ms for

the MEG and SEEG data, respectively, and thresholds of two, three, and four standard devia-

tions (SDs) to characterize the propagation of neuronal avalanches in different scaling regimes

(Zhigalov, Arnulfo, Nobili, Palva, & Palva, 2015). To evaluate the overall statistical nature of

these avalanches, we first assessed the goodness of fit between the size distribution data and

a truncated power-law model by computing the Kolmogorov–Smirnov distance (DKS). The

largest DKS for the different thresholds was 0.04 (p > 0.85) suggesting that the distributions

were approximated well by the truncated power-law function (Figure 1B). The scaling ex-

ponents of the avalanche sizes were estimated using the maximum-likelihood approach (see

Materials and Methods). We found similar mean power-law scaling exponents in the MEG and

SEEG data, with values close to 1.5 at the three-SD threshold (Figure 1C). We also assessed

the avalanche branching ratios at different thresholds and observed values close to 1 at three

SDs in both the MEG and SEEG data. The scaling exponent of 1.5 and branching ratio of 1

(Figure 1C) correspond to a critical branching process and are well in line with a body of priorCritical branching:
A stochastic process characterized by
a nearly constant mean population
size—that is, without dying out or
explosive growth

observations on neuronal avalanche dynamics (D. Plenz, 2012).

To corroborate the truncated power-law fitting of the distributions of avalanche sizes, we

applied a likelihood ratio test to compare the truncated power-law model with an exponential

model. The results showed that the truncated power-law model outperformed the exponential

model (p < 0.001, log-likelihood ratio test) for all subjects and thresholds.

The distributions of the avalanche lifetimes were biased by the numbers of samples and

were less robust than the size distributions in individual subjects. To assess the lifetime

distributions, we thus concatenated avalanches across subjects. Consistent with the prior

experimental and theoretical literature, the power-law exponents of the avalanche lifetimes

were near 2 at the three-SD threshold, where a size distribution exponent of 1.5 was found

(Zhigalov, Arnulfo, Nobili, Palva, & Palva, 2017, Figure S1).

Finally, we assessed the scaling function for the shapes of the neuronal avalanches

(Figure 1D), by averaging avalanches within ranges of lifetimes (Figure 1D, upper panel) and

then rescaling the functions by normalizing the lifetimes (Figure 1D, lower panel). At rescaling,

a collapse of the avalanche shapes was observed, which is again well in line with previous

studies (Beggs & Timme, 2012; N. Friedman et al., 2012) and further supports the hypothesis

that the neuronal avalanches observed here arose from a critical process.

Network Neuroscience 145

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/NETN_a_00008 by guest on 04 August 2022



Co-localization of cortical connectivity and scale-free dynamics

Figure 1. Power-law scaling neuronal activity avalanches reveal signatures of critical dynamics.
(A)We used a parcellation (top panel) comprising 219 neuroanatomically labeled cortical parcels in
an individual cortical anatomy as the basis for all analyses. Neuronal avalanches were detected
in multichannel MEG (colored lines in middle panel; for simplicity, only the MEG data are plotted
in this figure) and SEEG recordings, where avalanches (black bars at bottom) were defined as sets of
uninterrupted time bins containing one or more suprathreshold peaks (black dots). The avalanche
time series—that is, the numbers of events per time bin—are depicted with the black bars. The first
and second time bins used in the avalanche propagation connectome are marked with blue and
orange dots, respectively. (B) Example of avalanche size distributions for the different thresholds
and a time bin width of 8 ms in the MEG data. The distributions are approximated well by trun-
cated power laws for the thresholds of two (red line), three (green line), and four (blue line) SDs.
In contrast, the avalanche sizes for surrogate data follow an exponential distribution (gray line).
(C) Mean power-law scaling exponents and branching ratios for the three thresholds (error bars in-
dicate the standard deviations for each mean) in the MEG data. (D) Avalanches exhibit a universal
scaling function, a hallmark of a critical process; graphs show the average shapes of the neuronal
avalanches associated with different lifetimes (upper panel) and the collapse after normalization
of the lifetimes (lower panel). (E) MEG group-level neuronal avalanche propagation connectomes
represent the probabilities of avalanche propagation (color scale) from each parcel to each other
parcel for the threshold of three SDs.

We characterized the spatial-propagation patterns of neuronal avalanches by compiling a

connectome of the empirical probabilities with which the activity peaks of the cortical parcels

in the first time bin were followed by activity peaks of the parcels in the second time bin

(Figure 1E and Zhigalov et al., 2017, Figure S2; see Materials and Methods).

Construction of Functional Connectivity and LRTC Connectomes

We hypothesized that the neuronal avalanches observed in MEG and SEEG (Figure 2A) would

propagate preferentially between brain areas coupled by FC. To test this hypothesis, we mea-

sured electrophysiological FC by means of the pairwise phase synchronization and amplitude

correlations (Figures 2B and 2C) of narrow-band neuronal oscillations. Furthermore, to assess

the interareal relationships of scale-free dynamics per se—that is, to measure how local
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Co-localization of cortical connectivity and scale-free dynamics

Figure 2. Avalanche propagation and the connectomes of interareal relationships in local LRTCs
have overall structures similar to those of the functional connectomes of phase synchroniza-
tion and amplitude correlations in both MEG and SEEG. (A) Avalanche propagation connec-
tomes represent the probabilities (color scale) of avalanche propagation from parcel to parcel.
(B) Phase-synchronization-based functional connectome at 16 Hz (color scale, showing mean
weighted phase-lag indices). (C) Amplitude-correlation-based functional connectome at 16 Hz
(color scale, showing mean Pearson correlation coefficients of the orthogonalized amplitude time
series). (D) Connectome of interareal correlations in the local LRTCs at 16 Hz (color scale, showing
Pearson correlation coefficients across subjects). The top and bottom panels represent the MEG and
SEEG connectomes, respectively. Gray areas in the adjacency matrices (bottom panels) indicate
parcel–parcel connections not sampled in the present SEEG subject cohort.

dynamical states were correlated among all cortical regions—we obtained LRTC connectomes

(Figure 2D) by correlating across subjects the LRTC scaling exponents of orthogonalized am-

plitude time series for all pairs of parcels. The LRTC exponents are proportional to the system’s

proximity to the critical point (Poil, Hardstone, Mansvelder, & Linkenkaer-Hansen, 2012), and

hence, if brains behaved like a “single” near-critical system, this connectome should be uni-

form. However, already a visual inspection of the LRTC connectome (see Figure 2D) showed

that, like the other connectomes, it was highly nonhomogeneous, and although many brain

areas were significantly correlated in both MEG (r > 0.54, p < 0.05, Pearson’s correlation test)

and SEEG (r > 0.39, p < 0.05, Pearson’s correlation test), also a considerable fraction of re-

gions were below these nominal significance thresholds. Hence, at least among some subsets

of cortical areas, the local dynamics were only weakly correlated.

Avalanche Propagation Has Connectivity Patterns Similar to Those of FC

To test the hypothesis of colocalized avalanche propagation pathways and FC, we first mea-

sured the connection-level similarity—that is, the edge similarity—of avalanche propagation

with phase synchronization and amplitude correlations by means of the Pearson correlations

of these connectomes (see Materials and Methods). For phase-correlation-based FC, the re-

sults showed that the edge similarity was highly significant (well above the 99.9% confidence

intervals of the surrogate data, corresponding to uncorrected p < 0.001) between avalanche

propagation at three SDs and phase synchronization. This relationship was found in a limited

range of frequencies around the α and β bands (i.e., 8–14 Hz and 15–30 Hz, respectively;

Figure 3A, green lines), with peaks at around 16 Hz in MEG and at around 32 Hz in SEEG.

The similarity between phase correlations and avalanche propagation at both two and four

Network Neuroscience 147

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/NETN_a_00008 by guest on 04 August 2022



Co-localization of cortical connectivity and scale-free dynamics

SDs was much weaker (p < 0.001, Wilcoxon test) in both the α and β bands than at three

SDs, and significant only at four SDs in the β band (Figure 3A, blue lines) in MEG. The edge

similarity between avalanche propagation and the phase connectomes was also highly signif-

icant in SEEG (Figure 3A), but the differences between thresholds were not significant in SEEG

(p > 0.26, Wilcoxon test).

Similar to the phase-correlation FC, amplitude-correlation-based FC was also significantly

correlated with avalanche propagation at three SDs for frequencies up to ~30 Hz in MEG and

up to ~60 Hz in SEEG (Figure 3B, green lines). The spectral profiles of these similarities were,

however, distinct from those for phase FC in extending to the lowest frequencies (4−8 Hz),

Figure 3. Avalanche propagation and functional connectivity (both phase and amplitude FC) are
colocalized in both MEG and SEEG. (A, B) The colocalization of broadband avalanche propaga-
tion at two (red line), three (green line), and four (blue line) SDs and of the narrow-band phase-
synchronization (A) or amplitude-correlation (B) connectomes was measured with edge similarity
(see Materials and Methods) for each frequency band in the MEG (top panels) and SEEG (bottom
panels) data. The gray-shaded areas indicate the surrogate-data-derived (see Materials andMethods)
confidence interval of 99.9%, corresponding to a significance criterion of p < 0.001.
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Co-localization of cortical connectivity and scale-free dynamics

even clearly peaking at 8 Hz (in MEG). This suggests that the amplitudes but not the phase

couplings of 4- to 8-Hz oscillations are associated with the propagation pathways of broad-

band avalanches. The similarity was again significantly greater for avalanche propagation at

three SDs than at two or four SDs (Figure 3B) across the entire range of frequencies in MEG

(p < 0.001, Wilcoxon test), whereas these differences in SEEG were not significant. These data

thus suggest that neuronal avalanches indeed propagate preferentially between brain areas that

are coupled by phase synchronization and/or amplitude correlations.

Avalanche Propagation Is Phenomenologically Distinct and Analysis-Wise Separable From Phase

Synchronization and Amplitude Correlations

To corroborate that the avalanche propagation and phase or amplitude connectomes can be

estimated independently, and hence to ensure that the hypotheses tested above were falsifi-

able, we performed two types of control analyses (see Materials and Methods). In the first

approach, we deleted from the narrow-band data all data segments in which the broadband

amplitude exceeded the avalanche detection threshold—that is, all data used in the avalanche

analyses—and recomputed the phase and amplitude connectomes. Evaluation of their simi-

larity with the original avalanche propagation connectome revealed high similarity that was

not significantly different from what we had obtained with the uncut data (p > 0.99, KS test;

Figure 4A, solid lines). Reversing this analysis, we estimated the phase-synchronization and

amplitude-correlation connectomes by only using the suprathreshold data. Here, the simi-

larity of the suprathreshold functional connectomes with the original avalanche propagation

connectome (Figure 4A, dashed lines) was at chance level. These analyses thus show that the

similarity of FC and avalanche propagation does not arise from temporally colocalized time

windows in the data: avalanches neither bias the quantification of FC nor are trivially produced

by concurrent FC.

To corroborate these insights, in the second approach, we swapped all the time windows of

suprathreshold avalanche segments between random parcel pairs, and thereby systematically

reordered the avalanche propagation connectome. We then refiltered the data and recomput-

ing the phase-synchronization and amplitude-correlation connectomes. Their similarity with

the original avalanche propagation connectome did not decrease significantly much below

the original values (p > 0.99, KS test; Figure 4B, solid lines). On the other hand, the reordered

avalanche propagation connectome was uncorrelated with the functional connectomes esti-

mated from the same reordered data (Figure 4B, dashed lines). Although this result was not

surprising, in the sense that the original correlation of FC and avalanches was broken by re-

organizing the avalanches, this analysis confirmed the first one and showed conclusively that

the bias that the avalanche segments impose on FC estimates from the same data is negligible,

and hence that the avalanches and FC can be estimated independently.

These data, together with the prior findings of (i) avalanche–FC correlations being dis-

tinct for amplitude and for phase FC; (ii) avalanche–FC correlations being spectrally limited,

whereas FC is not (see below and in Figure 6); and (iii) avalanches at two SDs not being more

similar to FC than at three SDs, thus strongly suggest that the broadband avalanches are neuro-

physiologically and phenomenologically distinct from the multitude of phase-/amplitude-

coupled narrow-band oscillations.

Interareal Correlations in LRTCs Are Similar to Those of FC

We then assessed how the interareal relationships in local LRTCs were correlated with the

patterns of FC. To this end, we first estimated the edge similarity between the LRTC and
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Co-localization of cortical connectivity and scale-free dynamics

Figure 4. Avalanche propagation is phenomenologically distinct and analysis-wise separable from
both phase synchronization and amplitude correlations. (A) Edge similarity of the avalanche con-
nectome at three SDs with the phase-synchronization (left panel) and amplitude-correlation (right
panel) connectomes estimated for subthreshold (solid lines) and suprathreshold (dashed line) seg-
ments. The result that the subthreshold similarity (solid lines) is close to the original similarity
between avalanche propagation at three SDs and FC (dotted lines; see Figures 3A and 3B) shows
that the avalanche segments in the data are irrelevant to the estimation of FC. The suprathreshold
similarity (dashed lines) being well inside the 99.9% confidence limits (gray areas) indicates that FC
during the avalanche segments does not have a structure similar to that of avalanche propagation.
(B) Edge similarity of the avalanche connectome at three SDs with the phase-synchronization (left
panel) and amplitude-correlation (right panel) connectomes (solid lines), estimated from data in
which all suprathreshold segments were swapped across random pairs of parcels prior to estimation
of the phase/amplitude connectomes. The result that this similarity is again close to the original
similarity estimates (dotted lines) indicates that the avalanches have a negligible contribution to the
FC estimates. When the reorganized avalanches were detected from the same data (dashed lines),
their similarity was well below the confidence limits (gray area).
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Co-localization of cortical connectivity and scale-free dynamics

Figure 5. LRTC and functional connectivity (both phase and amplitude FC) are colocalized in
both the MEG and SEEG data. (A, B) The colocalization of the LRTC and narrow-band phase-
synchronization (A) and amplitude-correlation (B) connectomes was measured with edge similarity
(see Materials and Methods) for each frequency band in the MEG (top panel) and SEEG (bottom
panel) data. (C) Edge similarity between avalanche propagation at two (red lines), three (green
lines), and four (blue lines) SDs and the LRTC connectomes. (D) Edge similarity between the phase
and amplitude connectomes. The gray-shaded areas indicate the surrogate-data-derived (see Ma-
terials and Methods) confidence interval of 99.9%, corresponding to a significance criterion of
p < 0.001.

phase/amplitude connectomes and found robustly significant, but again band-limited, sim-

ilarities (Figures 5A and 5B) with spectral profiles akin to those found for avalanche prop-

agation (see Figures 3A and 3B). Finally, the comparison of avalanche propagation at three

SDs with the LRTC connectomes also revealed significant similarity in both the MEG and the

SEEG data (Figure 5C). The similarity was significantly larger for the avalanche propagation

at three than at two and four SDs in the MEG data (p < 0.001, Wilcoxon test). Moreover,

the phase-synchronization and amplitude-correlation connectomes were clearly correlated in

both MEG and SEEG (Figure 5D), with 16 and 32 Hz as the modal frequencies, respectively.

Throughout these similarity estimates, and also in the mutual correlation of phase and ampli-

tude FC, the frequency band of significant correlations extended to ~60 Hz in SEEG and only to

~30 Hz in MEG, which is likely attributable to the approximately millimeter versus approx-

imately centimeter spatial scales across which SEEG and MEG measure coherent neuronal

population activity.

These findings together thus show that scale-free brain dynamics, including both power-

law-scaled, millisecond-range activity avalanches and LRTCs spanning hundreds of seconds,

are intimately linked with the architecture of FC in human cortex.

LRTCs of Phase Synchrony Show Strong Similarity to FC

The findings so far converged on the idea that two facets of critical dynamics, avalanche prop-

agation and interareal coupling of local LRTCs, were colocalized with phase- and amplitude-

correlation-based functional connectivity. To corroborate this finding with an independent

index of critical dynamics, we estimated LRTCs in the momentary dynamics of phase
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synchrony with phase detrended fluctuation analysis (DFA; Botcharova, Farmer, & Berthouze,

2014) between all pairs of cortical parcels in the MEG data. The adjacency matrices of the

phase DFA LRTC scaling exponents were thus directly comparable with those of FC. We found

phase DFA and FC to be highly significantly similar for both phase and amplitude FC (well

above the 99.9% confidence intervals) in the α and β frequency bands and to have profiles

similar to those of the avalanche propagation and functional connectomes (Figure 3). These

observations show that temporal correlations and spatiotemporal interactions are linked at

different timescales, which consolidates the prior findings (see Figures 4 and 5) and overall

suggests that the underlying system is poised at criticality.

Alpha–Beta-Range Oscillations Form a Cortical Core for the Dynamics–Connectivity Association

The association of scale-free dynamics and FC was found in a relatively narrow frequency

range around the α and β frequency bands. Does this reflect a “special” and nontrivial emer-

gent phenomenon or a trivial “by-product” of the scale-free dynamics being automatically

associated with connectivity?

To address this question, we asked whether either FC or LRTCs were correspondingly more

prevalent in this α/β range than in the surrounding bands. We first assessed the connection

strengths of the phase-, amplitude-, and LRTC-correlation connectomes across the frequency

range. For the phase and amplitude connectomes, the mean correlation strengths exhibited

subtle peaks, at 9 Hz in MEG and at 7 Hz in SEEG, but overall they decreased monotonically as

a function of frequency (Figures 6A and 6B) and remained well above the 99.9% confidence

limits of the corresponding surrogate values throughout the studied frequency range. Both

phase- and amplitude-based forms of FC thus appear robust for frequencies between 4 and

128 Hz. Similar averaging of the local LRTC scaling exponents (Figure 6C) showed that the

LRTCs also peaked at around 10 Hz in MEG and at 8 Hz in SEEG, but again were well above

Figure 6. Highly significant FC and LRTCs are observed throughout the analyzed frequency range.
(A, B) Mean connection strengths (blue lines) of the phase (A) and amplitude (B) connectomes as a
function of frequency in theMEG (top panels) and SEEG (bottompanels) data. Gray lines indicate the
corresponding mean values for the surrogate data, and the gray-shaded areas show the confidence
limits of 99.9%. (C) LRTC scaling exponents (blue lines) averaged across all parcels peak at 10 Hz
in the MEG (top panel) and at 8 Hz in the SEEG (bottom panel) data, respectively. (D) Mean con-
nection strengths (blue lines) of the LRTC connectome as a function of frequency in the MEG (top
panel) and the SEEG (bottom panel) data.
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the surrogate confidence limits from 4 to 128 Hz. Significant scale-free dynamics are thus not

unique to any single frequency band. In the same vein, the interareal correlations of LRTC

exponents were essentially constant and highly significant across the studied frequency range

(Figure 6D). Hence, just as FC was a salient characteristic of all frequency bands, also scale-

free dynamics and the interareal structure of LRTCs characterized the 8- to 32-Hz range over

whichmost of the salient dynamics–FC coupling was found, as well as the 4- to 8-Hz and 32- to

128-Hz ranges over which the dynamics–FC correlations were much weaker or insignificant.

Together with the previous analyses (see Figure 5), these results thus show that significant

FC and scale-free dynamics in the human brain can be mutually coupled or uncoupled in

a frequency-dependent manner, which indicates that this coupling is nontrivial and neither

automatic nor epiphenomenal.

Figure 7. Neuronal criticality and functional connectivity (FC) have similar modular structures
in the MEG data. (A) The colocalization of the modular structures in the connectomes was as-
sessed with a subgraph similarity measure (see Materials and Methods). The modular structure of
the avalanche propagation connectome at three SDs was highly significantly similar to the modular
structures of the phase and amplitude connectomes from about 4 to 40 Hz. (B) The spectral pro-
files of subgraph similarity between LRTC and the phase/amplitude connectomes are comparable
to those of the avalanche propagation connectome. (C) Subgraph similarity between the avalanche
propagation connectome at three SDs and the LRTC connectome. (D) Subgraph similarity between
the phase and amplitude connectomes. The shaded areas in all graphs indicate the 99.9% con-
fidence intervals. (E, F) A large fraction of parcels have similar subgraph assignments among the
avalanche propagation, phase, amplitude, and LRTC connectomes; hence, these connectomes ex-
hibit similar modular structures at both 10 and 20 Hz. Lavender, green, blue, yellow, cyan, and
red colors indicate the subgraph identities. The inflated brains illustrate the color codes for the
parcels scale. (G, H) Neuroanatomical visualization of matching subgraphs (functional modules)
in the avalanche propagation connectome and the phase, amplitude, and LRTC connectomes at
10 and 20 Hz, respectively. The circle and square symbols indicate correspondences between the
subgraphs in the plane (E, F) and neuroanatomical (G, H) representations.
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Shared Modular Structures of Avalanche Propagation, LRTCs, and Functional Connectivity

The similarity between avalanche propagation pathways, interareal correlations of LRTCs, and

functional connectomes indicated a significant connection-level colocalization of these net-

works. We addressed next whether scale-free dynamics and FC had similar modular structures

in the MEG data. The SEEG data were excluded from this analysis because their sparse spatial

coverage did not allow for robust detection of the functional modules.

We identified network modules, subgraphs, by using agglomerative hierarchical clustering

of the connectomes of scale-free dynamics and FC (see Figure 2), and then measured the simi-

larity of these modular structures by quantifying the overlap among the subgraph assignments

(see Materials and Methods). The results showed that the modular structures of both avalanche

propagation at three SDs (Figure 7A) and the interareal correlations of LRTCs (Figure 7B) had

highly significant subgraph similarities with both phase- and amplitude-based FC. This colo-

calization of network modules was found in a limited frequency range up to 40 Hz, with the

greatest values again being between 8 and 30 Hz (Figures 7A and 7B). For completeness, we

also measured the subgraph similarity between avalanche propagation at three SDs and LRTCs

(Figure 7C), as well as between the levels of phase and amplitude FC (Figure 7D), and found

that both were robust in the 8- to 32-Hz range. In this frequency range, scale-free dynamics

and FC thus had both internally and mutually shared modular structures.

To identify the cortical regions that composed the shared functional modules in these con-

nectomes, we used consensus mapping of the parcel-subgraph neighborhoods obtained with

the hierarchical clustering (see Materials and Methods). This analysis showed that the most

consistently shared modules were localized to sensorimotor, visual, temporal, and prefrontal

areas (ps < 0.05, permutation test; see the cyan, blue, green, and red modules, respectively, in

Figures 7E– 7H).

DISCUSSION

Criticality governs the spatiotemporal dynamics of numerous natural and artificial sys-

tems composed of large numbers of nonlinearly interacting elements. At the critical

operating point, the system exhibits long-range correlations with power-law decay con-

currently across all temporal and spatial scales (Bak, Tang, & Wiesenfeld, 1988; Chialvo,

2010). Brains have been proposed to operate near the critical point (Beggs & Plenz, 2003;

Linkenkaer-Hansen et al., 2001) or in an extended critical region (Hilgetag & Hutt, 2014;

Moretti & Munoz, 2013), which has fundamental implications for neurophysiological phe-

nomena and neuronal information processing across the scales from neurons to brain sys-

tems. Neuronal criticality has primarily been operationalized with two hallmark phenomena,

millisecond-range neuronal avalanches (D. Plenz, 2012) and long-range temporal correlations

spanning hundreds of seconds (Linkenkaer-Hansen et al., 2001), although power-law char-

acteristics have also been reported for several other forms of spatiotemporal brain dynamics

(Kitzbichler, Smith, Christensen, & Bullmore, 2009). Conversely, although scale-free dynam-

ics are an indisputable characteristic of brain activity, whether they arise from criticality or

other mechanisms has remained a matter of debate (Touboul & Destexhe, 2010).

Much of our understanding of spatiotemporal brain dynamics has arisen from studies of

hemodynamic and electrophysiological FC, which have shown that hierarchically modular ar-

chitectures of neuronal interactions govern both resting-state brain activity (Mitra et al., 2015)

and ongoing activity during task performance (de Pasquale et al., 2012). It is theoretically

conceivable and predicted by computational models (Haimovici et al., 2013) that neuronal

Network Neuroscience 154

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/NETN_a_00008 by guest on 04 August 2022



Co-localization of cortical connectivity and scale-free dynamics

criticality and FC—concurrent, yet distinct and dissociable, network phenomena—would be

related. However, very few prior experimental studies have aimed at elucidating this relation-

ship (Pajevic & Plenz, 2009; Rubinov, Sporns, Thivierge, & Breakspear, 2011).

In this study, we sought to bridge this gap by quantifying the interareal relationships

of scale-free dynamics and FC. Toward this end, we used both meso- and macro-scale

electrophysiological recordings of human resting-state brain activity, with invasive SEEG

(Arnulfo, Hirvonen, Nobili, Palva, & Palva, 2015) and noninvasive MEG (S. Palva & Palva,

2012), respectively. We first found that at the level of the strongest connections, avalanche

propagation was well colocalized with both phase-synchronization-based and amplitude-

correlation-based FC. To investigate how these interactions were coupled with scale-free

dynamics, we estimated the interareal correlations of local LRTCs and found that these cor-

relations were also colocalized with both avalanche propagation and FC. Scale-free neuronal

dynamics and FC thus have a shared backbone of interareal relationships.

Both functional (Gallos, Makse, & Sigman, 2012; Meunier, Lambiotte, & Bullmore, 2010)

and structural (Hagmann et al., 2008) connectivity have hierarchically modular network or-

ganizations. As the second step in this study, we assessed the modularity in our estimates

of critical dynamics and found that both the propagation of neuronal avalanches and the in-

terareal correlations of LRTCs exhibited modular structures, and that these structures were

neuroanatomically similar to those of FC. This strongly suggests that neuronal communities

characterized by strong internal phase synchronization and amplitude correlations are also

characterized by preferentially internal avalanche propagation and correlated local LRTCs.

Beyond linking scale-free dynamics and connectivity, this finding also indicates that the brain

can be envisioned as a constellation of mutually coupled and hierarchically organized mod-

ules distributed to distinct neuroanatomical substrates and to different frequency bands, rather

than as a homogeneous critical-state system.

Overall, these observations strongly suggest that FC and scale-free neuronal dynamics, and

hence, putatively, neuronal criticality as well, are intimately related, which opens new avenues

for studies aiming to understand the physiological interactions between these phenomena.

Spatial Domains of Scale-Free Dynamics Revealed by Interareal LRTC Relationships

Neuronal criticality is often considered in the context of models or physical systems that have

a relatively homogeneous spatial structure of their interacting elements (N. Friedman et al.,

2012; D. Plenz & Thiagarajan, 2007). In contrast, human brains have a markedly nonhomo-

geneous and hierarchically modular large-scale structure (Gallos et al., 2012; Meunier et al.,

2010), which theoretically has a major influence on the emergence of criticality in neuronal ac-

tivity, by transforming the system from having a critical point into exhibiting a critical regime—

that is, a Griffith’s phase (Hilgetag & Hutt, 2014; Moretti & Munoz, 2013). One key implica-

tion of modular structural connectivity is that it could allow for topologically distant modules

of the network to have semi-independent dynamics. In this study, the finding that the interareal

relationships of LRTC scaling exponents were clearly nonhomogeneous provides evidence for

this theory and opens the possibility that different brain systems could have distinct operating

points (or regimes).

We found also that both the interareal relationships and modular structures of neuronal

avalanches and LRTCs had colocalized neuroanatomical bases. This finding complements

prior studies that have shown that scale-free dynamics observed at the meso- and macro-

scales with SEEG and MEG, respectively, are phenomenologically very similar (Zhigalov et al.,
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2015) and that the avalanche and LRTC scaling exponents are corrected at both spatial scales

(J. M. Palva et al., 2013).

Frequency Specificity in the Dynamics–Connectivity Association

The connectivity patterns of oscillations in and around the α (8–14 Hz) and β (15–30 Hz)

bands have been suggested to provide a “cortical core” (de Pasquale et al., 2012) or “hubs”

(Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012) for neuronal integration and resting-state

network dynamics. We found here that the strongest similarities between scale-free dynamics

and FC were observed specifically in this frequency range. Likewise, the similarity between

neuronal avalanches and LRTC was also maximal in this frequency range, and an even stronger

similarity was found for both interareal phase synchronization and amplitude correlations (see

Figure 5D). The α and β oscillations in the resting state thus appear to be central for both

neuronal integration and the connectivity–dynamics association. Importantly, the lack of such

association at the lower frequencies (4–7 Hz) was not explained by a lack of FC or by ev-

idence for power-law scale-free dynamics therein, because highly significant FC as well as

LRTCs were observed in this frequency range (see Figure 6). This shows that the association of

FC and scale-free dynamics is neither trivial nor automatic in brain dynamics, but rather is a

unique dynamic property of a subset of frequency bands in ongoing brain activity.

Possible Confounders

Two sources of circularity could theoretically confound our analyses of the similarities between

broadband avalanche propagation and narrow-band phase synchronization or amplitude cor-

relations. As a conceptual confound, one may argue that the broadband avalanche events

and the narrow-band oscillations actually reflect the dynamics of a single underlying neuronal

process, which would lead to artificial or trivial colocalization of their connectomes. As a

technical confound, the estimates of narrow-band FC could be biased by the putatively large-

amplitude avalanche events, and conversely, the avalanche detection might pick upmomentar-

ily large-amplitude oscillations because both phenomena were estimated from the same data.

Such “technical” cross-bias in the estimators of avalanche propagation and FC could render

the estimators mutually and artificially correlated by design. However, control analyses (see

Figure 4) showed that (i) the rare avalanche-like events in ongoing brain activity have a negli-

gible impact on estimates of FC, and (ii) both avalanche propagation and FC can be estimated

independently of each other. Thus, no technical circularity prevented our testing the hypothe-

sized relationship between avalanches and connectivity. Moreover, because (iii) narrow-band

FC during the avalanches was uncorrelated with the avalanche propagation estimated from

the same data, the propagating broadband avalanche events appear to be distinct neurophys-

iological phenomena from the interareal phase or amplitude couplings of narrow-band oscil-

lations. Finally, the finding that the avalanche propagation patterns detected at two SDs were

less similar to FC than were those detected at three SDs constitutes strong evidence that the

avalanche–connectivity relationship is not a trivial by-product of avalanches simply reflecting

phase-lagged connectivity, because if this were the case, the two-SD avalanches should be

closer in similarity to the FC estimates (which effectively correspond to the “0-SD” data) than

the avalanches at three SDs.

Clinical Implications

Several lines of evidence have shown that abnormalities in neuronal scaling laws are

biomarkers of a number of brain diseases. In major depressive disorder, the LRTC scaling

exponents for central/frontal theta oscillations are lower than those among healthy controls,
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whereas posterior α oscillations exhibit no abnormalities (Linkenkaer-Hansen et al., 2005). In

schizophrenia, the LRTC scaling exponents are suppressed in both the α and β bands over

parietotemporal areas (Nikulin, Jonsson, & Brismar, 2012). Similarly, in autism spectrum disor-

ders (Lai et al., 2010) and Alzheimer’s disease (Montez et al., 2009), lower-than-normal LRTC

scaling exponents are a robust characteristic. Conversely, in epileptic patients, the epilepto-

genic zone exhibits greater β-band LRTC exponents than do the surrounding cortical regions

(Monto, Vanhatalo, Holmes, & Palva, 2007). These findings are well in line with our discovery

that different brain systems are capable of operating concurrently in distinct dynamic regimes.

The intriguing, and possibly functionally essential, implication is that abnormal dynamics

affecting only specific brain systems and/or frequency bands could be predictive of corre-

sponding pathological states and mental symptoms. Neuroanatomical specificity in critical

dynamics is also salient in the relationship between healthy neuronal and behavioral fluc-

tuations, in which neuronal criticality only in well-delineated brain systems is predictive of

behavioral scaling laws (J. M. Palva et al., 2013). Future studies should thus examine the pos-

sibility of modulating cortically well-localized dynamics noninvasively—for example, by using

neurofeedback (Ros et al., 2016; Zhigalov, Kaplan, & Palva, 2016).

MATERIALS AND METHODS

Data Acquisition and Preprocessing

Weanalyzed resting-state invasive stereotactic-electroencephalography (SEEG) recordings from

a cohort of 27 epileptic patients (18 males, nine females; ages 16–21 years) and noninvasive

magnetoencephalography (MEG) data recorded from 14 healthy subjects (seven males, seven

females; ages 18–27 years).

Resting-state SEEG was collected for 10 min with eyes closed and without external distur-

bance using a 192-channel SEEG amplifier system (NIHON-KOHDEN NEUROFAX-110) at a

sampling rate of 1 kHz. The number of electrode contacts along each penetrating shaft varied

from eight to 15. These contacts were 2 mm long and 0.8 mm thick and had an intercontact

distance of 1.5 mm (DIXI medical, Besancon, France). The anatomical positions and amounts

of electrodes varied according to surgical requirements (Cardinale et al., 2013). We excluded

from further analyses all contacts that were located within the epileptic focus or that exhibited

epileptiform activity such as interictal spikes (Zhigalov et al., 2015). The MEG data were col-

lected in a resting-state condition for 10 min while the subjects looked at a fixation point on the

monitor screen. We recorded 306-channel (204 planar gradiometers and 102 magnetometers)

MEG (Elekta Neuromag Ltd.) at a sampling rate of 600 Hz.

The SEEG study was approved by the Ethics Committee of the Niguarda “Ca’ Granda” Hos-

pital, and the MEG study was approved by the Ethics Committee of Helsinki University Central

Hospital. The subjects gave written informed consent for participation in research studies

and for publication of the data. The studies were performed according to the Declaration of

Helsinki.

SEEG and MEG Preprocessing

The location of each SEEG electrode contact was extracted with submillimeter accuracy from

postimplant cone-beam computerized tomography scans (Arnulfo, Narizzano, Cardinale, Fato,

& Palva, 2015) and was subsequently coregistered to the Freesurfer (http://surfer.nmr.

mgh.harvard.edu/) geometrical space. We used a “closest-white-matter” referencing scheme

for the SEEG, in which electrode contacts in gray matter were referenced to the closest
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contacts in the underlying white matter (Arnulfo, Narizzano, et al., 2015). The MEG data were

corrected for extracranial noise and for cardiac and eye blink artifacts by using the signal

space separation method (Taulu, Simola, & Kajola, 2005) and independent-component anal-

ysis (Bell & Sejnowski, 1995), respectively. For cortical surface reconstructions, T1-weighted

anatomical images were recorded with a 1.5-T magnetic resonance imaging (MRI) scanner

(Siemens). The FreeSurfer software was used for automatic volumetric segmentation of the

MRI data, surface reconstruction, flattening, and cortical parcellation. The MNE software

(www.martinos.org/mne/) was used to create three-layer boundary element conductivity mod-

els and cortically constrained source models with fixed-orientation dipoles, and for comput-

ing the forward and inverse operators (Hamalainen & Ilmoniemi, 1994). The MEG sensor time

series were filtered in multiple frequency bands using a broadband finite impulse response

filter and Morlet’s wavelets. The filtered time series were inverse-transformed and collapsed

into time series of 219 cortical parcels derived from the individual MRI scans (Daducci et al.,

2012) by applying collapsing operators that maximized individual reconstruction accuracy

(Korhonen, Palva, & Palva, 2014).

Phase-Synchronization and Amplitude-Correlation Connectomes

To eliminate artificial interactions caused directly by volume conduction and signal mixing,

we used linear-mixing-insensitive metrics for assessing interareal phase and amplitude inter-

actions. Prior to the analyses, the time series were filtered using a bank of 31 Morlet’s wavelets

with logarithmically spaced central frequencies ranging from 4 to 120 Hz. The phase syn-

chronization between each pair of cortical parcels (MEG) or electrode contacts (SEEG) was

estimated by the weighted phase lag index q (Vinck et al., 2011), as it is implemented in the

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011):

q=

(
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where Pxy is the imaginary part of the cross-spectral density
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and x and y are time series containing N samples; E[·] is the expectation operator, and im()

denotes the imaginary part of a complex number.

The amplitude–amplitude correlations were assessed with the Pearson correlation coeffi-

cient. The narrow-band time series were orthogonalized for each pair of cortical parcels or

electrode contacts by using linear regression (Brookes et al., 2012), and the correlation coef-

ficient, r, was computed for the amplitude envelopes of the orthogonalized time series,
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where AX, AY and AX|Y, AY|X are the amplitude envelopes of the original and orthogonalized

time series, respectively; µ denotes the mean; and σ is the standard deviation.
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The orthogonalization was defined as

Y|X = Y − X
(

X+Y
)

, (4)

where X and Y are the narrow-band time series, and X+ denotes the pseudo-inverse of X. The

orthogonalization X|Y is done similarly (Brookes et al., 2012).

Neuronal Avalanche Propagation Connectome

The neuronal avalanche propagation connectome was constructed by utilizing the concept

of critical branching processes (Zapperi, Baekgaard Lauritsen, & Stanley, 1995), in which the

activity in successive time bins propagates from one active group of neurons to another in an

avalanche (Beggs & Plenz, 2003). Neuronal avalanches were detected in broadband-filtered

(1–120Hz), source-reconstructed MEG and SEEG time series that were normalized by subtract-

ing the mean and dividing by the standard deviation. The time series were then transformed

into binary point processes by detecting suprathreshold peaks above threshold T (Zhigalov et al.,

2015). These binary sequences (or sequences of events) were converted into avalanche time

series by summing the events across the channels in time bins ∆t. A neuronal avalanche is

defined as a cluster of events in successive time bins, where the beginning and end of the

avalanche are defined by single time bins with no events (Figure 1A). The avalanche size dis-

tributions are typically fit well by a power law or a truncated power law, depending on the

parameters T and ∆t (Beggs & Plenz, 2003; Zhigalov et al., 2015). Using these avalanche

data, we defined the avalanche propagation connectome to be constructed by the empirical

probability with which suprathreshold peaks of neuronal activity would “transits” from the

subset of channels in the first time bin to the subset of channels in the second time bin of each

avalanche (Figures 1A and 1E). There are several approaches to assessing the network struc-

ture of activity propagation patterns using all time bins of an avalanche (Leleu & Aihara, 2015;

Pajevic & Plenz, 2009). However, we assessed the propagation pathways by using only the first

two bins of each avalanche (Beggs & Plenz, 2003) in order to sample the “source” and “target”

parcels in the least ambiguous manner, because later bins might contain peaks that had orig-

inated from nonsuccessive bins. The avalanche propagation connectome was constructed for

each subject separately from suprathreshold peaks of neuronal activity detected for the thresh-

olds of two, three, and four SDs and a constant time bin width of 8 or 16 ms in MEG or SEEG,

respectively (Figure 1B). The different time bin widths for MEG and SEEG were necessary to

attain comparable scaling exponents of the neuronal avalanche sizes (Zhigalov et al., 2015).

Goodness of fit was assessed by computing the Kolmogorov–Smirnov (KS) distance between

the cumulative distribution functions (CDF) of the data and of a truncated power-law model

(Klaus, Yu, & Plenz, 2011),

DKS = max |CDFdata − CDFmodel | . (5)

The corresponding p-value was estimated as follows:

p = exp

⎛

⎝−2

((

√

N2 / 2N + 0.12 +
0.11

√

N2 / 2N

)

DKS

)2
⎞

⎠ , (6)

where N denotes the number of samples.

The scaling exponents were estimated using the maximum likelihood method

(Clauset, Shalizi, & Newman, 2009). Statistical comparison between the truncated power-law

and exponential models has been done by applying the log-likelihood ratio test (Clauset et al.,
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2009; Klaus et al., 2011). A truncated power-law model is considered to outperform an ex-

ponential model if the log-likelihood ratio is positive and the difference between the model

likelihoods is significant (p < 0.05). The probability functions of the truncated power-law and

exponential distributions are expressed as

pt (s) =Ct s−αe−λs, (7)

pe (s) =Cee
−λs, (8)

where p(s) denotes the probability of observing an avalanche of size s, Ct and Ce are normal-

ization constants, and α and λ are the parameters of the power-law and exponential functions,

respectively.

The log-likelihood ratio between the two distributions is defined as

LLR(s) = l(α, λ|s)− l({λ}|s), (9)

where l() denotes the log-likelihood functions, and α and λ are the parameters of the models.

The p-value for the LLR test is defined as follows:

p = erfc

( |LLR|√
2πσ2

)

, (10)

where σ2= 1
n

n

∑
i= 1

[(l ({α,λ} | si)− l({α,λ}|s)/n)− (l ({λ} | si)− l({λ}|s)/n)]2.

LRTC Connectomes

We used detrended fluctuation analysis (DFA) to assess the scaling exponents of the long-

range temporal correlations (LRTCs; Linkenkaer-Hansen et al., 2001; J. M. Palva et al., 2013;

Peng, Havlin, Stanley, & Goldberger, 1995). In DFA, the time series X is normalized to a zero

mean and integrated over the samples, Y(k)= ∑
k
i= 1 (X (i)− 〈X〉), then segmented into time

windows of various sizes τ. Each segment of the integrated data is locally fitted to a linear

function Uτ , and the mean-squared residual F(τ) is computed,

F(τ) =

√

√

√

√

1

N

N

∑
k= 1

[Yτ (k)− Uτ(k)]
2, (11)

where N is the number of samples in segment τ.

The scaling exponent η is defined as the coefficient of the linear regression of the function

F(τ) plotted in double logarithmic coordinates. The optimal fitting range, in terms of the

linearity of the slope, was limited to 3–300 s for the present dataset.

The LRTC connectome was computed for the amplitude envelopes of the wavelet-filtered

time series using the Pearson correlation coefficient at the group level between the exponents

of each cortical parcel i (ηi) and j (η#
j ), where η#

j was assessed with the time series of parcel j

orthogonalized to the parcel i (Brookes et al., 2012),

Aij =

E

[

(

ηi − µηi

)

(

η#
j − µη#

j

)]

σηi
ση#

j

. (12)
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As in the estimation of amplitude–amplitude correlations, orthogonalization was used to

eliminate the pairwise effects of linear signal mixing on the LRTC estimates, and hence to allow

for assessment of the relationship between local cortical scaling exponents without artificial

coupling of these regions (Blythe, Haufe, Muller, & Nikulin, 2014).

Surrogates

To assess the statistical significance of the results, we generated comparable surrogate data

and applied the analyses above to these data. The surrogate time series were derived from the

original ones so that the signal of each channel was circularly shifted by a random number of

samples (Zhigalov et al., 2015). This approach provides more accurate statistical inference for

neuronal avalanches than does the conventional phase-shuffling method (Prichard & Theiler,

1994). The circular shift breaks spatial correlations but essentially fully preserves the tempo-

ral autocorrelation structure. For SEEG, the surrogate data were obtained by circular-shifting

the white-matter-referenced gray-matter recordings and used as is. For MEG, the surrogate

data were obtained by first circular-shifting the original source-reconstructed MEG parcel

time series and then forward and re-inverse modeling these data (Korhonen et al., 2014).

This approach is essentially equivalent to the one proposed by Shahbazi and colleagues

(Shahbazi, Ewald, Ziehe, & Nolte, 2010) and accurately reconstructed the net residual signal

mixing present after the MEG measurement (forward modeling) and after the partial separation

of the original cortical sources achieved by source modeling (inverse modeling).

Control Analyses for the Avalanche Propagation Connectome

To assess whether the avalanche propagation and phase-synchronization or amplitude-

correlation connectomes can be estimated independently, we performed several lines of

control simulations. We assessed the impacts of suprathreshold events—that is, neuronal

avalanches—on FC in MEG using two approaches. In the first approach (see Figure 4A), we

deleted all suprathreshold data segments above three SDs and recomputed the phase and am-

plitude connectomes (see Figure 4A, solid lines). This deletion was carried out separately for

each parcel pair in these connectomes by using logical disjunction (i.e., the OR operation)

of the avalanche segments in these parcels. We also recomputed the phase and amplitude

connectomes for the complement of these data—that is, by using only the suprathreshold seg-

ments (see Figure 4A, dashed lines). The suprathreshold, subthreshold, and original functional

phase/amplitude connectomes were compared with the avalanche propagation connectome

using the edge similarity index (Eq. 14 below). Any statistical difference between the edge

similarities at multiple frequencies was assessed with the KS test.

In the second approach (see Figure 4B), we swapped all time windows of the suprathresh-

old avalanche segments above three SDs between randomly assigned parcel pairs. This opera-

tion thus randomly reordered the avalanche propagation connectome. Because the segments

were only partially overlapping between the parcel time series, we again used disjunction

to combine avalanche segments within the pairs of parcels. After the segment swaps, the

time series were refiltered to account for the filter-related temporal spreading of the large-

amplitude avalanche events. Using these data, we then recomputed the phase and amplitude

connectomes and assessed their edge similarity with the original avalanche connectome (see

Figure 4B, solid lines). To assess how independently the avalanches and FC can be measured,

we also reanalyzed the avalanche propagation patterns from these data and compared this

swapped avalanche propagation connectome with the swapped phase and amplitude connec-

tomes using the edge similarity index (see Figure 4B, dashed lines).
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Estimation of the Branching Ratio

The branching ratio (p) was estimated by computing the ratio of the number of events in

the second time bin to the number of events in the first time bin of a neuronal avalanche

(Beggs & Plenz, 2003; Shriki et al., 2013).

p =
1

N ∑
N

i= 1

n
(2)
i

n
(1)
i

, (13)

where n
(1)
i and n

(2)
i are the numbers of events in the first and second time bins of the ith

avalanche, respectively; N is the total number of avalanches.

Phase DFA

In addition to classical avalanche and amplitude LRTC measures, we characterized crit-

icality in the LRTCs with moment-to-moment fluctuations of interareal phase synchrony

(Botcharova et al., 2014). The phase time series between pairs of cortical parcels (MEG) or con-

tacts (SEEG) were extracted from the complex-valued narrow-band-filtered data (4–120 Hz).

DFA (see the LRTC Connectome section above) was applied to the first time derivatives of the

phase differences. The resulting connectome represented the LRTC scaling exponents of phase

synchrony between each pair of cortical parcels.

Control Analysis for the LRTC Connectome

To assess whether the connection strengths (connectome values) have a specific frequency

profile that might explain the profile of connectome similarity, we estimated the connection

strengths for the phase, amplitude, and LRTC connectomes for the entire range of frequencies

(4–120 Hz). The connection strengths were estimated as a mean for the connectome (adja-

cency matrix) for each frequency (see Figure 6).

Edge and Subgraph Similarity Indices

The edge similarity index was defined as the Pearson correlation between two adjacency ma-

trices (connectomes),

he =
E [(A − µA) (B − µB)]

σAσB
, (14)

where A and B are inflated adjacency matrices (column vectors).

The modular structure of the connectomes was detected using agglomerative hierarchical

clustering (Bellec, Rosa-Neto, Lyttelton, Benali, & Evans, 2010). The number of clusters per

hemisphere, K = 7, provided a reasonable division of the connectomes into functional mod-

ules. As a result of clustering, each cortical parcel n (N = 219) was associated with a unique

subgraph (or cluster) identity (In ∈ [1, K]). The subgraph similarity index was defined as the

Jaccard similarity coefficient between matched subgraph identities,

hs=
IA ∩ IB

IA ∪ IB
, (15)

where IA and IB are the vectors of cluster identifies computed for the A and B adjacency

matrices, respectively.

Network Neuroscience 162

Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/NETN_a_00008 by guest on 04 August 2022



Co-localization of cortical connectivity and scale-free dynamics

Consensus Mapping of Subgraph Identities

Consensus mapping was applied to assess the shared subgraphs of the connectomes. The

subgraph identities (see the previous section) of all four connectomes at a certain frequency

(e.g., 10 Hz; see Figures 7E and 7G) were iteratively reordered to maximize overlap between

the subgraphs. To do this, the vectors of subgraph identities of size [N × 1] were transformed

into binary arrays of size [N × K], where N is the number of parcels (N = 219) and K is the

number of subgraph identities (K = 7). Nonzero items of the array represented associations

between a parcel (row) and its subgraph identity (column), so that each row contained only one

nonzero item. The binary arrays of subgraph identities were assessed for all four connectomes.

The columns of these arrays were iteratively reordered to maximize the sum of the element-

wise product between the four arrays. The reordered binary arrays were then wrapped back to

the subgraph identity vectors and visualized (e.g., Figures 7E and 7G).
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