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Abstract

Coordination services like ZooKeeper, etcd, Doozer,
and Consul are increasingly used by distributed appli-
cations for consistent, reliable, and high-speed coordina-
tion. When applications execute in multiple geographic
regions, coordination service deployments trade-off be-
tween performance, (achieved by using independent ser-
vices in separate regions), and consistency.

We present a system design for modular composition
of services that addresses this trade-off. We implement
ZooNet, a prototype of this concept over ZooKeeper.
ZooNet allows users to compose multiple instances of
the service in a consistent fashion, facilitating applica-
tions that execute in multiple regions. In ZooNet, clients
that access only local data suffer no performance penalty
compared to working with a standard single ZooKeeper.
Clients that use remote and local ZooKeepers show up
to 7x performance improvement compared to consistent
solutions available today.

1 Introduction

Many applications nowadays rely on coordination ser-
vices such as ZooKeeper [28], etcd [9], Chubby [24],
Doozer [8], and Consul [5]. A coordination service facil-
itates maintaining shared state in a consistent and fault-
tolerant manner. Such services are commonly used for
inter-process coordination (e.g., global locks and leader
election), service discovery, configuration and metadata
storage, and more.

When applications span multiple data centers, one is
faced with a choice between sacrificing performance,
as occurs in a cross data center deployment, and for-
going consistency by running coordination services in-
dependently in the different data centers. For many
applications, the need for consistency outweighs its
cost. For example, Akamai [40] and Facebook [41]
use strongly-consistent globally distributed coordination

services (Facebook’s Zeus is an enhanced version of
ZooKeeper) for storing configuration files; dependencies
among configuration files mandate that multiple users
reading such files get consistent versions in order for
the system to operate properly. Other examples include
global service discovery [4], storage of access-control
lists [1] and more.

In this work we leverage the observation that, never-
theless, such workloads tend to be highly partitionable.
For example, configuration files of user or email accounts
for users in Asia will rarely be accessed outside Asia. Yet
currently, systems that wish to ensure consistency in the
rare cases of remote access, (like [40, 41]), globally se-
rialize all updates, requiring multiple cross data center
messages.

To understand the challenge in providing consistency
with less coordination, consider the architecture and se-
mantics of an individual coordination service. Each
coordination service is typically replicated for high-
availability, and clients submit requests to one of the
replicas. Usually, update requests are serialized via a
quorum-based protocol such as Paxos [32], Zab [29] or
Raft [37]. Reads are served locally by any of the replicas
and hence can be somewhat stale but nevertheless repre-
sent a valid snapshot. This design entails the typical se-
mantics of coordination services [5, 9, 28] – atomic (lin-
earizable [27]) updates and sequentially-consistent [31]
reads. Although such weaker read semantics enable fast
local reads, this property makes coordination services
non-composable: correct coordination services may fail
to provide consistency when combined. In other words, a
workload accessing multiple consistent coordination ser-
vices may not be consistent, as we illustrate in Section 2.
This shifts the burden of providing consistency back to
the application, beating the purpose of using coordina-
tion services in the first place.

In Section 3 we present a system design for modular
composition of coordination services, which addresses
this challenge. We propose deploying a single coor-
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dination service instance in each data center, which is
shared among many applications. Each application par-
titions its data among one or more coordination service
instances to maximize operation locality. Distinct co-
ordination service instances, either within a data center
or geo-distributed, are then composed in a manner that
guarantees global consistency. Consistency is achieved
on the client side by judiciously adding synchronization
requests. The overhead incurred by a client due to such
requests depends on the frequency with which that client
issues read requests to different coordination services. In
particular, clients that use a single coordination service
do not pay any price.

In Section 4 we present ZooNet, a prototype imple-
mentation of our modular composition for ZooKeeper.
ZooNet implements a client-side library that enables
composing multiple ZooKeeper ensembles, (i.e., service
instances), in a consistent fashion, facilitating data shar-
ing across geographical regions. Each application us-
ing the library may compose ZooKeeper ensembles ac-
cording to its own requirements, independently of other
applications. Even though our algorithm requires only
client-side changes, we tackle an additional issue, spe-
cific to ZooKeeper – we modify ZooKeeper to provide
better isolation among clients. While not strictly es-
sential for composition, this boosts performance of both
stand-alone and composed ZooKeeper ensembles by up
to 10x. This modification has been contributed back
to ZooKeeper [21] and is planned to be released in
ZooKeeper 3.6.

In Section 5 we evaluate ZooNet. Our experiments
show that under high load and high spatial or tempo-
ral locality, ZooNet achieves the same performance as
an inconsistent deployment of independent ZooKeep-
ers (modified for better isolation). This means that
our support for consistency comes at a low perfor-
mance overhead. In addition, ZooNet shows up to
7.5x performance improvement compared to a consistent
ZooKeeper deployment (the “recommended” way to de-
ploy ZooKeeper across data centers [13]).

We discuss related work in Section 6, and conclude the
paper, and discuss future directions in Section 7.

In summary, this paper makes the following contribu-
tions:

• A system design for composition of coordination
services that maintains their semantics.

• A significant improvement to ZooKeeper’s server-
side isolation and concurrency.

• ZooNet – a client-side library to compose multiple
ZooKeepers.

2 Background

We discuss the service and semantics offered by coordi-
nation services in Section 2.1, and then proceed to dis-
cuss possible ways to deploy them in a geo-distributed
setting in Section 2.2.

2.1 Coordination Services

Coordination services are used for maintaining shared
state in a consistent and fault-tolerant manner. Fault tol-
erance is achieved using replication, which is usually
done by running a quorum-based state-machine replica-
tion protocol such as Paxos [32] or its variants [29, 37].

In Paxos, the history of state updates is managed by a
set of servers called acceptors, s.t. every update is voted
on by a quorum (majority) of acceptors. One acceptor
serves as leader and manages the voting process. In ad-
dition to acceptors, Paxos has learners (called observers
in ZooKeeper and proxies in Consul), which are light-
weight services that do not participate in voting and get
notified of updates after the quorum accepts them. In the
context of this paper, acceptors are also (voting) learners,
i.e., they learn the outcomes of votes.

Coordination services are typically built on top of an
underlying key-value store and offer read and update
(read-modify-write) operations. The updates are lin-
earizable, i.e., all acceptors and learners see the same
sequence of updates and this order conforms to the real-
time order of the updates. The read operations are se-
quentially consistent, which is a weaker notion similar to
linearizability in that an equivalent sequential execution
must exist, but it must only preserve the program order of
each individual client and not the global real-time order.
A client can thus read a stale value that has already been
overwritten by another client. These weaker semantics
are chosen in order to allow a single learner or acceptor
to serve reads locally. This motivates using learners in
remote data centers – they offer fast local reads without
paying the cost of cross data center voting.

As an aside, we note that some coordination service
implementations offer their clients an asynchronous API.
This is a client-side abstraction that improves perfor-
mance by masking network delays. At the server-side,
each client’s requests are handled sequentially, and so the
interaction is well-formed, corresponding to the standard
correctness definitions of linearizability and sequential
consistency.

Unfortunately, these semantics of linearizable updates
and sequentially consistent reads are not composable,
i.e., a composition of such services does not satisfy the
same semantics. This means that the clients cannot pre-
dict the composed system’s behavior. As an example,
consider two clients that perform operations concurrently
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as we depict in Figure 1. Client 1 updates object x man-
aged by coordination service s1, and then reads an old
version of object y, which is managed by service s2.
Client 2 updates y and then reads an old version of x.
While the semantics are preserved at both s1 and s2 (re-
call that reads don’t have to return the latest value), the
resulting execution violates the service semantics since
there is no equivalent sequential execution: the update
of y by client 2 must be serialized after the read of y by
client 1 (otherwise the read should have returned 3 and
not 0), but then the read of x by client 2 appears after
the update of x by client 1 and therefore should have re-
turned 5.

Figure 1: Inconsistent composition of two coordination
services holding objects x and y: each object is consistent
by itself, but there is no equivalent sequential execution.

2.2 Cross Data Center Deployment
When coordination is required across multiple data cen-
ters over WAN, system architects currently have three
main deployment alternatives. In this section we discuss
these alternatives with respect to their performance, con-
sistency, and availability in case of partitions. A sum-
mary of our comparison is given in Table 1.

Alternative 1 – Single Coordination Service A co-
ordination service can be deployed over multiple geo-
graphical regions by placing its acceptors in different lo-
cations (as done, e.g., in Facebook’s Zeus [41] or Aka-
mai’s ACMS [40]), as we depict in Figure 2a. Using a
single coordination service for all operations guarantees
consistency.

This setting achieves the best availability since no sin-
gle failure of a data center takes down all acceptors. But
in order to provide availability following a loss or discon-
nection of any single data center, more than two locations
are needed, which is not common.

With this approach, voting on each update is done
across WAN, which hampers latency and wastes WAN
bandwidth, (usually an expensive and contended re-
source). In addition, performance is sensitive to place-
ment of the leader and acceptors, which is frequently
far from optimal [39]. On the other hand, reads can be
served locally in each partition.

Alternative 2 – Learners A second option is to de-
ploy all of the acceptors in one data center and learn-

ers in others, as we depict in Figure 2b. In fact, this
architecture was one of the main motivations for offer-
ing learners (observers) in ZooKeeper [13]. As opposed
to acceptors, a learner does not participate in the voting
process and it only receives the updates from the leader
once they are committed. Thus, cross data center con-
sistency is preserved without running costly voting over
WAN. Often, alternatives 1 and 2 are combined, such as
in Spanner [25], Megastore [22] and Zeus [41].

The update throughput in this deployment is limited
by the throughput of one coordination service, and the
update latency in remote data centers is greatly affected
by the distance between the learners and the leader. In
addition, in this approach we have a single point of fail-
ure, i.e., if the acceptors’ data center fails or a network
partition occurs, remote learners are only able to serve
read requests.

Alternative 3 – Multiple Coordination Services In
the third approach data is partitioned among several inde-
pendent coordination services, usually one per data cen-
ter or region, each potentially accompanied by learners in
remote locations, as depicted in Figure 2c. In this case,
each coordination service processes only updates for its
own data partition and if applications in different regions
need to access unrelated items they can do so indepen-
dently and in parallel, which leads to high throughput.
Moreover, if one cluster fails all other locations are un-
affected. Due to these benefits, multiple production sys-
tems [4, 11, 18] follow this general pattern. The disad-
vantage of this design is that it does not guarantee the co-
ordination service’s consistency semantics, as explained
in Section 2.1.

3 Design for Composition

In Section 3.1 we describe our design approach and our
client-side algorithm for modular composition of coordi-
nation services while maintaining consistency. In Sec-
tion 3.2 we discuss the properties of our design, namely
correctness (a formal proof is given in an online Techni-
cal Report [33]), performance, and availability.

3.1 Modular Composition of Services

Our design is based on multiple coordination services (as
depicted in Figure 2c), to which we add client-side logic
that enforces consistency.

Our solution achieves consistency by injecting sync re-
quests, which are non-mutating update operations. If the
coordination service itself does not natively support such
operations, they can be implemented using an update re-
quest addressed to a dummy object.
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Alternative Performance
Updates Reads

Correctness Availability during partitions
Updates Reads

Single Service Very slow Fast Yes In majority Everywhere

Learners Slow Fast Yes In acceptors Everywhere

Multiple Services Fast Fast No Local Everywhere

Modular Composition Fast Fast Yes Local Local

Table 1: Comparison of different alternatives for coordination service deployments across data centers. The first three
alternatives are depicted in Figure 2. Our design alternative, modular composition, is detailed in Section 3.

(a) Single Service – Coordination service acceptors are de-
ployed in all data centers, no single point of failure.

(b) Learners – Coordination service acceptors are deployed
in one data center and learners in all other data centers.

(c) Multiple Services – A single coordination service is deployed in each data center
and a learner is deployed in every other data center.

Figure 2: Different alternatives for coordination service deployment across data centers.

The client-side logic is implemented as a layer in the
coordination service client library, which receives the se-
quential stream of client requests before they are sent to
the coordination service. It is a state machine that se-
lectively injects sync requests prior to some of the reads.
Intuitively, this is done to bound the staleness of ensuing
reads. In Algorithm 1, we give a pseudo-code for this
layer at a client accessing multiple coordination services,
each of which has a unique identifier.

An injected sync and ensuing read may be composed
into a single operation, which we call synced read. A
synced read can be implemented by buffering the local
read request, sending a sync (or non-mutating update)
to the server, and serving the read immediately upon re-
ceipt of a commit for the sync request. Some coordi-
nation services natively support such synced reads, e.g.,
Consul calls them consistent reads [6]. If all reads are
synced the execution is linearizable. Our algorithm only
makes some of the reads synced to achieve coordination

service’s semantics with minimal synchronization over-
head.

Since each coordination service orders requests inde-
pendently, concurrent processing of a client’s updates at
two coordination services may inverse their order. To
avoid such re-ordering (as required, e.g., by ZooKeeper’s
FIFO program order guarantee), we refrain from asyn-
chronously issuing updates to a new coordination service
before responses to earlier requests arrive. Rather, we
buffer requests whenever we identify a new coordination
service target for as long as there are pending requests
to other coordination services. This approach also guar-
antees that coordination service failures do not introduce
gaps in the execution sequence of asynchronous requests.

3.2 Modular Composition Properties
We now discuss the properties of our modular composi-
tion design.
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Algorithm 1 Modular composition, client-side logic.
1: lastService ← nil // Last service this client accessed

2: numOutstanding ←0 // #outstanding requests to lastService

3: onUpdate(targetService, req)
4: if targetService �= lastService then
5: // Wait until all requests to previous service complete

6: wait until numOutstanding = 0
7: lastService ← targetService
8: numOutstanding++
9: send req to targetService

10: onRead(targetService, req)
11: if targetService �= lastService then
12: // Wait until all requests to previous service complete

13: wait until numOutstanding = 0
14: lastService ← targetService
15: numOutstanding++
16: // Send sync before read

17: send sync to targetService
18: numOutstanding++
19: send req to targetService

20: onResponse(req)
21: numOutstanding−−

3.2.1 Correctness

The main problem in composing coordination services is
that reads might read “from the past”, causing clients to
see updates of different coordination services in a differ-
ent order, as depicted in Figure 1. Our algorithm adds
sync operations in order to make ensuing reads “read
from the present”, i.e., read at least from the sync point.
We do this every time a client’s read request accesses a
different coordination service than the previous request.
Subsequent reads from the same coordination service
are naturally ordered after the first, and so no additional
syncs are needed.

In Figure 3 we depict the same operations as in Fig-
ure 1 with sync operations added according to our algo-
rithm. As before, client 1 updates object x residing in
service s1 and then reads y from service s2. Right be-
fore the read, the algorithm interjects a sync to s2. Sim-
ilarly, client 2 updates y on s2, followed by a sync and a
read from s1. Since s2 guarantees update linearizability
and client 1’s sync starts after client 2’s update of y com-
pletes, reads made by client 1 after the sync will retrieve
the new state, in this case 3. Client 2’s sync, on the other
hand, is concurrent with client 1’s update of x, and there-
fore may be ordered either before or after the update. In
this case, we know that it is ordered before the update,
since client 2’s read returns 0. In other words, there exists
an equivalent sequential execution that consists of client
2’s requests followed by client 1’s requests, and this ex-

ecution preserves linearizability of updates (and syncs)
and sequential consistency of read requests, as required
by the coordination service’s semantics. See [33] for a
formal discussion.

Figure 3: Consistent modular composition of two coor-
dination services holding objects x and y (as in Figure 1):
adding syncs prior to reads on new coordination services
ensures that there is an equivalent sequential execution.

3.2.2 Performance

By running multiple independent coordination services,
the modular composition can potentially process requests
at a rate as high as the sum of the individual throughputs.
However, sync requests take up part of this bandwidth,
so the net throughput gain depends on the frequency with
which syncs are sent.

The number of syncs corresponds to the temporal lo-
cality of the workload, since sync is added only when the
accessed coordination service changes.

Read latency is low (accessing a local acceptor or
learner) when the read does not necessitate a sync, and
is otherwise equal to the latency of an update.

3.2.3 Availability

Following failures or partitions, each local coordination
service (where a quorum of acceptors remains available
and connected) can readily process update and read re-
quests submitted by local clients. However, this may not
be the case for remote client requests: If a learner in data
center A loses connectivity with its coordination service
in data center B, sync requests submitted to the learner
by clients in A will fail and these clients will be unable
to access the coordination service.

Some coordination services support state that corre-
sponds to active client sessions, e.g., an ephemeral node
in ZooKeeper is automatically deleted once its creator’s
session terminates. Currently, we do not support com-
position semantics for such session-based state: clients
initiate a separate session with each service instance they
use, and if their session with one ZooKeeper ensemble
expires (e.g., due to a network partition) they may still
access data from other ZooKeepers. Later, if the session
is re-instated they may fail to see their previous session-
based state, violating consistency. A possible extension
addressing this problem could be to maintain a single vir-
tual session for each client, corresponding to the com-
posed service, and to invalidate it together with all the
client’s sessions if one of its sessions terminates.
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4 ZooNet

We implement ZooNet, a modular composition of
ZooKeepers. Though in principle, modular composition
requires only client-side support, we identified a design
issue in ZooKeeper that makes remote learner (observer)
deployments slow due to poor isolation among clients.
Since remote learners are instrumental to our solution,
we address this issue in the ZooKeeper server, as detailed
in Section 4.1. We then discuss our client-side code in
Section 4.2.

4.1 Server-Side Isolation

The original ZooKeeper implementation stalls reads
when there are concurrent updates by other clients. Gen-
erally speaking, reads wait until an update is served even
when the semantics do not require it. In Section 4.1.1 we
describe this problem in more detail and in Section 4.1.2
we present our solution, which we have made available
as a patch to ZooKeeper [21] and has been recently com-
mitted to ZooKeeper’s main repository.

4.1.1 ZooKeeper’s Commit Processor

ZooKeeper servers consist of several components that
process requests in a pipeline. When an update request
arrives to a ZooKeeper server from a client, the server
forwards the update to the leader and places the request
in a local queue until it hears from the leader that vot-
ing on the update is complete (i.e., the leader has com-
mitted the request). Only at that point the update can
be applied to the local server state. A component called
commit processor is responsible for matching incoming
client requests with commit responses received from the
leader, while maintaining the order of operations submit-
ted by each client.

In the original implementation of the commit proces-
sor, (up to ZooKeeper version 3.5.1-alpha), clients are
not isolated from each other: once some update request
reaches the head of the request stream, all pending re-
quests by all clients connected to this server stall until
a commit message for the head request arrives from the
leader. This means that there is a period, whose dura-
tion depends on the round-trip latency between the server
and the leader plus the latency of quorum voting, during
which all requests are stalled. While the commit proces-
sor must maintain the order of operations submitted by
each client, enforcing order among updates of different
clients is the task of the leader. Hence, blocking requests
of other clients in this situation, only because they were
unlucky enough to connect via the same server, is redun-
dant.

In a geo-distributed deployment, this approach
severely hampers performance as it does not allow read
operations to proceed concurrently with long-distance
concurrent updates. In the context of modular compo-
sition, it means that syncs hamper read-intensive work-
loads, i.e., learners cannot serve reads locally concur-
rently with syncs and updates.

4.1.2 Commit Processor Isolation

We modified ZooKeeper’s commit processor to keep a
separate queue of pending requests per client. Incom-
ing reads for which there is no preceding pending update
by the same client, (i.e., an update for which a commit
message has not yet been received), are not blocked. In-
stead, they are forwarded directly to the next stage of the
pipeline, which responds to the client based on the cur-
rent server state.

Read requests of clients with pending updates are en-
queued in the order of arrival in the appropriate queue.
For each client, whenever the head of the queue is either
a committed update or a read, the request is forwarded to
the next stage of the server pipeline. Updates are marked
committed according to the order of commit messages
received from the leader (the linearization order). For
more details, see our ZooKeeper Jira [21].

4.2 The ZooNet Client

We prototyped the ZooNet client as a wrapper for
ZooKeeper’s Java client library. It allows clients to es-
tablish sessions with multiple ZooKeeper ensembles and
maintains these connections. Users specify the target
ZooKeeper ensemble for every operation as a znode path
prefix. Our library strips this prefix and forwards the op-
eration to the appropriate ZooKeeper, converting some
of the reads to synced reads in accordance with Algo-
rithm 1. Our sync operation performs a dummy update;
we do so because ZooKeeper’s sync is not a linearizable
update [28]. The client wrapper consists of roughly 150
lines of documented code.

5 Evaluation

We now evaluate our modular composition concept us-
ing the ZooNet prototype. In Section 5.1 we describe
the environment in which we conduct our experiments.
Section 5.2 evaluates our server-side modification to
ZooKeeper, whereas Section 5.3 evaluates the cost of the
synchronization introduced by ZooNet’s client. Finally,
Section 5.4 compares ZooNet to a single ZooKeeper en-
semble configured to ensure consistency using remote
learners (Figure 2b).
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5.1 Environment and Configurations
We conduct our experiments on Google Compute En-
gine [10] in two data centers, DC1 in eastern US (South
Carolina) and DC2 in central US (Iowa). In each
data center we allocate five servers: three for a local
ZooKeeper ensemble, one for a learner connected to the
remote data center, and one for simulating clients (we
run 30 request-generating client threads in each data cen-
ter). Each server is allocated a standard 4 CPU machine
with 4 virtual CPUs and 15 GB of memory. DC1 servers
are allocated on a 2.3 GHz Intel Xeon E5 v3 (Haswell)
platform, while DC2 servers are allocated on a 2.5GHz
Intel Xeon E5 v2 (Ivy Bridge). Each server has two stan-
dard persistent disks. The Compute Engine does not pro-
vide us with information about available network band-
width between the servers. We use the latest version of
ZooKeeper to date, version 3.5.1-alpha.

We benchmark throughput when the system is satu-
rated and configured as in ZooKeeper’s original evalua-
tion (Section 5.1 in [28]). We configure the servers to
log requests to one disk while taking snapshots on an-
other. Each client thread has at most 200 outstanding
requests at a time. Each request consists of a read or an
update of 1KB of data. The operation type and target co-
ordination service are selected according to the workload
specification in each experiment.

5.2 Server-Side Isolation
In this section we evaluate our server-side modification
given in Section 4.1. We study the learner’s throughput
with and without our change. Recall that the learner (ob-
server in ZooKeeper terminology) serves as a fast local
read cache for distant clients, and also forwards update
requests to the leader.

We experiment with a single ZooKeeper ensemble
running three acceptors in DC1 and an observer in DC2.
Figure 4 compares the learner’s throughput with and
without our modification, for a varying percentage of
reads in the workload. DC1 clients have the same work-
load as DC2 clients.

Our results show that for read-intensive workloads that
include some updates, ZooNet’s learner gets up to around
4x higher throughput by allowing concurrency between
reads and updates of different clients, and there is 30% up
to 60% reduction in the tail latency. In a read-only work-
load, ZooNet does not improve the throughput or the la-
tency, because ZooKeeper does not stall any requests.
In write-intensive workloads, reads are often blocked by
preceding pending updates by the same client, so few
reads can benefit from our increased parallelism.

Our Jira [21] provides additional evaluation (con-
ducted on Emulab [43]) in which we show that the
throughput speedup for local clients can be up to 10x in a

single data center deployment of ZooKeeper. Moreover,
ZooNet significantly reduces read and write latency in
mixed workloads in which the write percentage is below
30 (for reads, we get up to 96% improvement, and for
writes up to 89%).

Figure 4: Improved server-side isolation. Learner’s
throughput as a function of the percentage of reads.

5.3 The Cost of Consistency
ZooNet is a composition of independent ZooKeepers,
as depicted in Figure 2c, with added sync requests. In
this section we evaluate the cost of the added syncs by
comparing our algorithm to two alternatives: (1) Sync-
All, where all reads are executed as synced reads, and
(2) Never-Sync, in which clients never perform synced
reads.

Never-Sync in not sequentially consistent (as illus-
trated in Figure 1). It thus corresponds to the fastest but
inconsistent ZooKeeper deployment (Figure 2c), with
ZooKeeper patched to improve isolation. At the other ex-
treme, by changing all reads to be synced, Sync-All guar-
antees linearizability for all operations, including reads.
ZooNet provides a useful middle ground (supported by
most coordination services in the single-data center set-
ting), which satisfies sequential consistency for all oper-
ations and linearizability for updates.

As a sanity check, we study in Section 5.3.1 a fully
partitionable workload with clients accessing only local
data in each data center. In Section 5.3.2 we have DC1
clients perform only local operations, and DC2 clients
perform both local and remote operations.

5.3.1 Local Workload

In Figure 5 we depict the saturation throughput of DC1
(solid lines) and DC2 (dashed lines) with the three alter-
natives.

ZooNet’s throughput is identical to that of Never-Sync
in all workloads, at both data centers. This is because
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ZooNet sends sync requests only due to changes in the
targeted ZooKeeper, which do not occur in this scenario.
Sync-All has the same write-only throughput (leftmost
data point). But as the rate of reads increases, Sync-
All performs more synced reads, resulting in a signif-
icant performance degradation (up to 6x for read-only
workloads). This is because a read can be served locally
by any acceptor (or learner), whereas each synced read,
similarly to an update, involves communication with the
leader and a quorum.

The read-only throughput of ZooNet and Never-Sync
is lower than we expect: since in this scenario the three
acceptors in each data center are dedicated to read re-
quests, we would expect the throughput to be 3x that of
a single learner (reported in Figure 4). We hypothesize
that the throughput is lower in this case due to a network
bottleneck.

Figure 5: Saturated ZooNet throughput at two data cen-
ters with local operations only. In this sanity check we
see that the performance of Never-Sync is identical to
ZooNet’s performance when no syncs are needed.

5.3.2 Remote Data Center Access

When clients access remote data, synced reads kick-in
and affect performance. We now evaluate the cost of
synced reads as a function of workload locality. We de-
fine two workload parameters: local operations, which
represents spatial locality, namely the percentage of re-
quests that clients address to their local data center, and
burst, which represents the temporal locality of the tar-
get ZooKeeper. For simplicity, we consider a fixed burst
size, where the client sends burst requests to the same
ZooKeeper and then chooses a new target ZooKeeper ac-
cording to the local operations ratio. Note that a burst
size of 1 represents the worst-case scenario for ZooNet,
while with high burst sizes, the cost of adding syncs is
minimized.

Our design is optimized for partitionable workloads
where spatial locality is high by definition since clients

rarely access data in remote partitions. In ZooKeeper,
another factor significantly contributes to temporal local-
ity: ZooKeeper limits the size of each data object (called
znode) to 1MB, which causes applications to express
stored state using many znodes, organized in a hierar-
chical manner. ZooKeeper intentionally provides a min-
imalistic API, so programs wishing to access stored state
(e.g., read the contents of a directory or sub-tree) usu-
ally need to make multiple read requests to ZooKeeper,
effectively resulting in a high burst size.

In Figure 6 we compare ZooNet to Sync-All and
Never-Sync with different burst sizes where we vary the
local operations ratio of DC2 clients. DC1 clients per-
form 100% local operations. We select three read ra-
tios for this comparison: a write-intensive workload in
which 50% of the requests are updates (left column), a
read-intensive workload in which 90% of the requests are
reads (middle column), and a read-only workload (right
column). DC1 clients and DC2 clients have the same
read ratio in each test.

Results show that in a workload with large bursts of 25
or 50 (bottom two rows), the addition of sync requests
has virtually no effect on throughput, which is identi-
cal to that of Never-Sync except in read-intensive work-
loads, where with a burst of 25 there is a slight through-
put degradation when the workload is less than 80% lo-
cal.

When there is no temporal locality (burst of 1, top
row), the added syncs induce a high performance cost in
scenarios with low spatial locality, since they effectively
modify the workload to become write-intensive. In case
most accesses are local, ZooNet seldom adds syncs, and
so it performs as well as Never-Sync regardless of the
burst size.

All in all, ZooNet incurs a noticeable synchronization
cost only if the workload shows no locality whatsoever,
neither temporal nor spatial. Either type of locality miti-
gates this cost.

5.4 Comparing ZooNet with ZooKeeper

We compare ZooNet with the fastest cross data center de-
ployment of ZooKeeper that is also consistent, i.e., a sin-
gle ZooKeeper ensemble where all acceptors are in DC1
and a learner is located in DC2 (Figure 2b). The sin-
gle coordination service deployment (Figure 2a) is less
efficient since: (1) acceptors participate in the voting
along with serving clients (or, alternatively, more servers
need to be deployed as learners as in [41]); and (2) the
voting is done over WAN (see [13] for more details).
We patch ZooKeeper with the improvement described in
Section 4.1 and set the burst size to 50 in order to focus
the current discussion on the impact that data locality has
on performance.
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Figure 6: Throughput of ZooNet, Never-Sync and Sync-All. Only DC2 clients perform remote operations.

We measure aggregate client throughput and latency in
DC1 and DC2 with ZooKeeper and ZooNet, varying the
workload’s read ratio and the fraction of local operations
of the clients in DC2. We first run a test where all oper-
ations of clients in DC1 are local. Figure 7a shows the
throughput speedup of ZooNet over ZooKeeper at DC1
clients, and Figure 7b shows the throughput speedup for
DC2 clients.

Our results show that in write-intensive workloads,
DC2 clients get up to 7x higher throughput and up to
92% reduction in latency. This is due to the locality of
update requests in ZooNet, compared to the ZooKeeper
deployment in which each update request of a DC2 client
is forwarded to DC1. The peak throughput saturates at
the update rate that a single leader can handle. Beyond
that saturation point, it is preferable to send update op-

erations to a remote DC rather than have them handled
locally, which leads to a decrease in total throughput.

In read-intensive workloads (90% – 99% reads), DC2
clients also get a higher throughput with ZooNet (4x to
2x), and up to 90% reduction in latency. This is due to
the fact that in ZooKeeper, a single learner can handle a
lower update throughput than three acceptors. In read-
only workloads, the added acceptors have less impact on
throughput; we assume that this is due to a network bot-
tleneck as observed in our sanity check above (Figure 5).

In addition, we see that DC1 clients are almost unaf-
fected by DC2 clients in read-intensive workloads. This
is due to the fact that with both ZooKeeper and ZooNet,
reads issued by clients in DC2 are handled locally in
DC2. The added synced reads add negligible load to the
acceptors in DC1 due to the high burst size and locality
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of requests (nevertheless, they do cause the throughput
speedup to drop slightly below 1 when there is low local-
ity). With a write-intensive workload, DC1 clients have
a 1.7x throughput speedup when DC2 clients perform no
remote operations. This is because remote updates of
DC2 clients in ZooKeeper add to the load of acceptors in
DC1, whereas in ZooNet some of these updates are local
and processed by acceptors in DC2.

Finally, we examine a scenario where clients in both
locations perform remote operations. Figure 8a shows
the throughput speedup of ZooNet over ZooKeeper
achieved at DC1 clients, and Figure 8b shows the
throughput speedup of DC2 clients. All clients have the
same locality ratio. Each curve corresponds to a different
percentage of reads.

There are two differences between the results in Fig-
ure 8 and Figure 7. First, up to a local operations ra-
tio of 75%, DC1 clients suffer from performance degra-
dation in read-intensive workloads. This is because in
the ZooKeeper deployment, all the requests of DC1
clients are served locally, whereas ZooNet serves many
of them remotely. This re-emphasizes the observation
that ZooNet is most appropriate for scenarios that exhibit
locality, and is not optimal otherwise.

Second, the DC1 leader is less loaded when DC1
clients also perform remote updates (Figure 8). This
mostly affects write-intensive scenarios (top blue curve),
in which the leaders at both data centers share the update
load, leading to higher throughput for all clients. Indeed,
this yields higher throughput speedup when locality is
low (leftmost data point in Figures 8a and 8b compared
to Figures 7a and 7b, respectively). As locality increases
to 70%–80%, the DC2 leader becomes more loaded due
to DC2s updates, making the throughput speedup in Fig-
ures 7b and Figure 8b almost the same, until with 100%
local updates (rightmost data point), the scenarios are
identical and so is the throughput speedup.

6 Related Work

Coordination services such as ZooKeeper [28],
Chubby [24], etcd [9], and Consul [5] are exten-
sively used in industry. Many companies deploying
these services run applications in multiple data cen-
ters. But questions on how to use coordination
services in a mutli-data center setting arise very fre-
quently [4, 11, 15, 16, 17], and it is now clear that the
designers of coordination services must address this
use-case from the outset.

In what follows we first describe the current deploy-
ment options in Section 6.1 followed by a discussion
of previously proposed composition methods in Sec-
tion 6.2.

A large body of work, e.g., [30, 34, 35], focuses
on improving the efficiency of coordination services.
Our work is orthogonal – it allows combining multi-
ple instances to achieve a single system abstraction with
the same semantics, while only paying for coordination
when it is needed.

6.1 Multi-Data Center Deployment

In Section 2 we listed three prevalent strategies for de-
ploying coordination services across multiple data cen-
ters: a single coordination service where acceptors are
placed in multiple data centers, a single coordination ser-
vice where acceptors run in one data center, or multiple
coordination services. The choice among these options
corresponds to the tradeoff system architects make along
three axes: consistency, availability, and performance (a
common interpretation of the CAP theorem [7]). Some
are willing to sacrifice update speed for consistency
and high-availability in the presence of data center fail-
ures [22, 25, 40, 41]. Others prefer to trade-off fault-
tolerance for update speed [13], while others prioritize
update speed over consistency [4, 11]. In this work we
mitigate this tradeoff, and offer a fourth deployment op-
tion whose performance and availability are close to that
of the third (inconsistent) option, without sacrificing con-
sistency.

Some systems combine more than one of the deploy-
ment alternatives described in Section 2. For example,
Vitess [20] deploys multiple local ZooKeeper ensembles
(as in Figure 2c) in addition to a single global ensemble
(as in Figure 2a). The global ensemble is used to store
global data that doesn’t change very often and needs to
survive a data center failure. A similar proposal has been
made in the context of SmartStack, Airbnb’s service dis-
covery system [12]. ZooNet can be used as-is to combine
the local and global ensembles in a consistent manner.

Multiple studies [38, 44] showed that configuration er-
rors and in particular inconsistencies are a major source
of failure for Internet services. To prevent inconsis-
tencies, configuration stores often use strongly consis-
tent coordination services. ACMS [40] is Akamai’s dis-
tributed configuration store, which, similarly to Face-
book’s Zeus [41], is based on a single instance of a
strongly consistent coordination protocol. Our design of-
fers a scalable alternative where, assuming that the stored
information is highly partitionable, updates rarely go
through WAN and can execute with low latency and com-
pletely independently in the different partitions, while all
reads (even of data stored remotely) remain local. We
demonstrate that the amortized cost of sync messages
is low for such read-heavy systems (in both ACMS and
Zeus the reported rate of updates is only hundreds per
hour).
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(a) Throughput speedup of DC1 clients. (b) Throughput speedup of DC2 clients.

Figure 7: Throughput speedup (ZooNet/ZooKeeper). DC1 clients perform only local operations. The percentage of
read operations is identical for DC1 clients and DC2 clients.

(a) Throughput speedup of DC1 clients. (b) Throughput speedup of DC2 clients.

Figure 8: Throughput speedup (ZooNet/ZooKeeper). DC1 clients an DC2 clients have the same local operations ratio
as well as read operations percentage.

6.2 Composition Methods

Consul [5], ZooFence [26] and Volery [23] are coordina-
tion services designed with the multi-data center deploy-
ment in mind. They provide linearizable updates and ei-
ther linearizable or sequentially consistent reads. Gener-
ally, these systems follow the multiple coordination ser-
vices methodology (Figure 2c) – each coordination ser-
vice is responsible for part of the data, and requests are
forwarded to the appropriate coordination service (or to
a local proxy). As explained in Section 2, when the for-
warded operations are sequentially-consistent reads, this
method does not preserve the single coordination ser-
vice’s semantics. We believe that, as in ZooKeeper, this
issue can be rectified using our modular composition ap-
proach.

ZooFence [26] orchestrates multiple instances of
ZooKeeper using a client-side library in addition to a
routing layer consisting of replicated queues and execu-
tors. Intuitively, it manages local and cross-data cen-
ter partitions using data replication. Any operation (in-

cluding reads) accessing replicated data must go through
ZooFence’s routing layer. This prevents reads from ex-
ecuting locally, forfeiting a major benefit of replication.
In contrast, ZooNet uses learners, (which natively exist
in most coordination services in the form or proxies or
observers), for data replication. This allows local reads,
and does not require orchestration of multiple ZooKeeper
instances as in ZooFence.

Volery [23] is an application that implements
ZooKeeper’s API, and which consists of partitions, each
of which is an instance of a state machine replication al-
gorithm. Unlike ZooKeeper, all of Volery operations are
linearizable (i.e., including reads). In Volery, the differ-
ent partitions must communicate among themselves in
order to maintain consistency, unlike ZooNet’s design
in which the burden of maintaining consistency among
ZooKeepers is placed only on clients. In addition, when
compared to ZooKeeper, Volery shows degredated per-
formance in case of a single partition, while ZooNet
is identical to ZooKeeper if no remote operations are
needed.
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In distributed database systems, composing multiple
partitions is usually done with protocols such as two-
phase commit (e.g., as in [25]). In contrast, all coordina-
tion services we are familiar with are built on key-value
stores, and expose simpler non-transactional updates and
reads supporting non-ACID semantics.

Server-side solutions were also proposed for coordina-
tion services composition [14] but were never fully im-
plemented due to their complexity, the intrusive changes
they require from the underlying system, as well as the
proposed relaxation of coordination service’s semantics
required to make them work. In this paper we show
that composing such services does not require expensive
server-side locking and commit protocols among parti-
tions, but rather can be done using a simple modification
of the client-side library and can guarantee the standard
coordination service semantics.

7 Conclusions and Future Work

Coordination services provide consistent and highly
available functionality to applications, relieving them
of implementing common (but subtle) distributed algo-
rithms on their own. Yet today, when applications are
deployed in multiple data centers, system architects are
forced to choose between consistency and performance.
In this paper we now shown that this does not have to be
the case. Our modular composition approach maintains
the performance and simplicity of deploying independent
coordination services in each data center, and yet does
not forfeit consistency.

We demonstrated that the simplicity of our technique
makes it easy to use with existing coordination services,
such as ZooKeeper – it does not require changes to the
underlying system, and existing clients may continue to
work with an individual coordination service without any
changes (even if our client library is used, such applica-
tions will not incur any overhead). Moreover, the cost for
applications requiring consistent multi-data center coor-
dination is low for workloads that exhibit high spatial or
temporal locality.

In this work we have focused on the advantages of
our composition design in wide-area deployments. It
is possible to leverage the same design for deployments
within the data center boundaries that currently suffer
from lack of sharing among coordination services. In-
deed, a typical data center today runs a multitude of
coordination service backend services. For example, it
may include: Apache Kafka message queues [2], backed
by ZooKeeper and used in several applications; Swarm
[19], a Docker [36] clustering system running an etcd
backend; Apache Solr search platform [3] with an em-
bedded ZooKeeper instance; and Apache Storm clusters
[42], each using a dedicated ZooKeeper instance. Thus,

installations end up running many independent coordi-
nation service instances, which need to be independently
provisioned and maintained. This has a number of draw-
backs: (1) it does not support cross-application sharing;
(2) it is resource-wasteful, and (3) it complicates system
administration. Our modular composition approach can
potentially remedy these short comings.

Our composition algorithm supports individual query
and update operations. It can natively support transac-
tions (e.g., ZooKeeper’s multi operation) involving data
in single service instance. An interesting future direction
could be to support transactions involving multiple ser-
vice instances. This is especially challenging in the face
of possible client and service failures, if all cross-service
coordination is to remain at the client side.
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