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ABSTRACT.   R. Stanley, in an investigation of modular flats in geom-
etries  (Algebra   Universalis   1-2  (1971), 214—217), proved that the char-
acteristic polynomial  xW  of a modular flat x  divides the characteristic poly-
nomial  x(G) of a geometry  G.   In this paper we identify the quotient:
THEOREM.  // x  is a modular flat of G,   x(G)/x(x) = X(7^(G))/(\ - 1),
where  TX{G)  is the complete Brown truncation of G  by x.   (The lattice of
TX(G) consists of all flats containing x  and all flats disjoint from x, with
the induced order from   G.)   We give many characterizations of modular
flats in terms of their lattice properties as well as by means of a short-circuit
axiom and a modular version of the MacLane-Steinitz exchange axiom.
Modular flats are shown to have many of the useful properties of points and
distributive flats (separators) in addition to being much more prevalent.   The
theorem relating the chromatic polynomials of two graphs and the polynomial
of their vertex join across a common clique generalizes to geometries:   THEO-

REM.   Given geometries G and H,  if x  is a modular flat of G as well as
a subgeometry of H,   then there exists a geometry P = PX(G, H)  which is a
pushout in the category of injective strong maps and such that x(P) =
X(G)x(H)lx(x)-   The closed set structure, rank function, independent sets,
and lattice properties of P are characterized.   After proving a modular
extension theorem we give applications of our results to Crapo's single ele-
ment extension theorem, Crapo's join operation, chain groups, unimodular
geometries, transversal geometries, and graphs.

1. Introduction.  The purpose of this paper is to make an extensive study
of the concept of modularity in the theory of finite synthetic geometry. We
relate the concept of modularity with present trends of research in geometries
(most notably with representation of geometries and the critical problem of
Crapo and Rota [16]), and we show how the existence of a modular element
facilitates the computation of invariants and makes possible certain geometrical
constructions while simplifying others.
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2 TOM BRYLAWSKI

Historically, modularity has played an important role in the study of com-
binatorial geometries. In fact the present study of finite geometries rests on the
nineteenth century work on projective spaces, where all elements are modular and
apparently Birkhoff intended his notion of semimodularity [1] to be a general-
ization of modularity. It is interesting to note that while the more general idea
of a modular pair and the more specialized case of a distributive flat both re-
ceived more attention in [16] than modular flats, theorems involving modular
pairs can be considerably strengthened when one element of the pair is modular
and theorems involving distributive flats do not need to be weakened very much
to be applied to modular flats.  For example, while modular pairs x and y in-
duce an order-preserving monomorphism between the intervals  [x A y, x]   and
\y, x V y], the monomorphism becomes an isomorphism when x is modular
(3.4.4).  On the other hand, Propositions (3.11), (3.17), and (7.2) concerning
modularity compare favorably with their distributive counterparts.  Further, in
the study of special classes of geometries, like graphs, the special properties of
modular flats (e.g. cliques) have been noted with interest. Modularity plays an
implicit role in much of the current research on geometries.  In the ring which
Graves associates with a geometry [17], it is precisely the modular elements
which are not canceled by their complements.

However, it was not until R. Stanley made the remarkable discovery that
the characteristic polynomial of a modular flat divides the characteristic poly-
nomial of the geometry which contains it [22] that interest in modular flats
began in earnest.  It had been well known that the characteristic polynomial of
a geometry was a multiple of the polynomial of any of its distributive flats
(separators) as well as of the polynomial (X - 1) of a point; Stanley synthesized
these two facts and showed that this property which holds for separators and
points also holds for modular flats.  Our principal motivation arises from this
theorem of Stanley—what other properties shared by points and separators also
apply to more general modular flats?  One is tempted to make an analogy with
general topology where some properties of single points extend to compacta.

For example, Crapo in a series of lectures at Bowdoin College [15] sug-
gested as a research problem that one should find conditions sufficient for a
pushout to exist in the category of geometries and strong maps.  Such a pushout
from a subgeometry x to geometries G and H can be trivially constructed
when x is a separator of either G or H, and it was shown in [6] that push-
outs from points also exist. The generalization to modular flats then became the
sought for Theorem (5.3).    Example 5.4.3 shows that the modularity of x is not
necessarv for the existence of a pushout; but it is not surprising that the small-
est counterexample showing pushouts do not exist in general, (5.4.1), also involves
the simplest example of a nonmodular flat.
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MODULAR CONSTRUCTIONS 3

In §2 we give a survey of the basic definitions and properties of finite
combinatorial geometries needed in the remainder of the paper. The reader is
encouraged to use this section mainly for reference.  A more detailed account of
these basic properties [9] can be obtained by request from the author.

In §3 we explore modularity in various cryptomorphic contexts.  After
making an extensive study of the behavior of modular elements in a geometric
lattice, we show that the structure of the set of all modular elements in a
geometry is similar to that of (the order dual of) a geometry. (For example,
Greene's results [18] on Whitney number inequalities appear in an analogous
form in this context.)  Lemmas asserting that modularity is transitive and that
pairs of modular elements are closed under infimum are straightforward general-
izations of analogous distributivity theorems. We then show that taking minors
of geometries preserves modularity.  The "modular short-circuit axiom" follows
and bears a resemblance on the one hand to the general circuit elimination axiom
(when the modular flat in question is a point) and on the other hand to the fact
that separators partition the family of circuits. A modular flat is characterized
as a subset of a geometry in terms of the geometry's circuits, its independent
sets, and its closure operator.

Not only does modularity generalize distributivity, but it also interrelates
with it, so that a direct sum decomposition of a modular flat induces a decom-
position of the geometry. This implies, for example, that a line in a connected
binary geometry is modular if and only if it contains three points.  Also, if an
upper interval is separable, then its zero element is modular in the subgeometry
of one of its separators if and only if the other separator is modular in the
geometry.

In §4 we show how modularity can be characterized within certain special
subclasses of geometries—chain groups, unimodular chain groups, graphs, and
transversals.

In §5 we generalize our work on the category of pointed pregeometries
[6] and construct the generalized parallel connection of two geometries relative
to a common subgeometry which is modular in one of the geometries. This
construction can best be characterized in terms of its closed sets:  a subset is
closed in the generalized parallel connection if and only if its intersection with
each geometry is closed. This property is sufficient to ensure the existence of
a categorical pushout (direct sum in the category of pairs), but we also give an
example of a pushout which does not have this closed set structure and an ex-
ample of a geometry which has this closed set but is not a generalized parallel
connection. The rank function, closure operator, and independent sets of the
connection are then described, and we establish several commutativity properties
of connections which are smiilar to some categorical properties of pushouts.  As
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4 TOM BRYLAWSKI

an application of the theory of generalized parallel connections, we prove that
a single element extension of a modular flat induces a unique single element ex-
tension of the geometry; this generalizes the known result [16] that a pregeometry
has a canonically induced geometry. The existence of this unique extension implies
that one can tell from the structure of an upper interval whether or not a geometry
is a generalized parallel connection. The generalized parallel connection is shown
to be a special case of Crapo's join operation [13], [14], [15].

Two other constructions, the Brown truncation [5] and the complete
Brown truncation are easily characterized when the truncated flat is modular.
Finally, we relate our categorical work to the category of pregeometries and
weak maps, and we show that even in this richer category, pushouts do not exist
in general.

In §6 we describe an extension property for various classes of geometries,
proving that certain classes (graphs as well as unimodular, binary, and ternary
chain groups) have this extension property and some (transversals) do not. We
conjecture that all chain groups over finite fields have this property. The ex-
tension property guarantees in all the above cases that these classes are closed
under generalized parallel connections; we explicitly construct connections with-
in each class. We also suggest a method to extend the graphical notion of multi-
ple connectivity to more general geometries, and we show how the existence of
a modular flat affects this connectivity.

In our final section (§7), we give a new proof of Stanley's theorem on the
factorization of the characteristic polynomial of a geometry and provide a geo-
metrical interpretation of the quotient obtained. These results suggest the ex-
istence of a more general factorization induced by any flat; we hope to study
this problem in a later paper, since any such result would yield added insights
into the critical problem of Crapo and Rota [16].  Finally, we show that the
characteristic polynomial of a generalized parallel connection is equal to the
product of the polynomials associated with its two components divided by the
polynomial of their common subgeometry. This theorem is best seen as a gen-
eralization of the classical theorem on graph coloring involving the analogous
computation of the chromatic polynomial of the vertex join of two graphs across
a common clique.

The author wishes to thank the National Science Foundation for allowing
him to attend its 1971 summer conference on combinatorial theory, where he
originated some of these ideas, and for its grant which gave him the opportunity
to pursue them. He would also like to thank Dr. Richard Stanley for his helpful
comments, and the referee for pointing out the connections between the present
paper and Crapo's work on joins.
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MODULAR CONSTRUCTIONS 5

2.  Basic definitions.  This section surveys the relevant notions of the
underlying category for our work, G, the category of finite combinatorial geom-
etries and strong maps discussed in Crapo and Rota [16].

A finite pregeometry or matroid, G, is a finite set of points with a closure
operator /G(*) satisfying the exchange property:   For any points p, q G G and
any subset PQG, if p G PU {q} but p Ö P, then q G PU {p}. When con-
fusion might arise we denote by  {G} the points of G (without the closure
structure).  A geometry is a pregeometry in which the empty set and each point
is closed. The lattice, L, of closed sets or flats of a geometry is called a geo-
metric lattice and is characterized as a finite, semimodular, point lattice.  Flats
covering 0 in L are called atoms (which for a geometry may be identified
with the points) and flats covered by  1  are called coatoms or copoints.   There-
fore for a flat x and point p, p < x (in L) iff p G x  (in G).  A bond B
of G is the set complement of a copoint.  In such lattices, each lattice element
x is the supremum of atoms (points) and each has a well-defined rank, r(x),
equal to the length of any maximal chain from the 0 element (representing the
empty set) to x. The semimodular law for L states that, for all flats x, y G L,
r(x) + r(y) > r(x A y) 4- r(x V y). Flats x and y form a modular pair if the
latter inequality is an equality; x is a modular flat if it forms a modular pair
with every other flat. r(A), the rank of a set of points A CG, is defined as
r(A) in the associated geometric lattice.  Hence r(G), the rank of the geometry,
is r(l) in the lattice.

For any subset A, the cardinality of A, \A\ denotes the number of points
it contains; the corank of A is the nonnegative integer r(G) - r(A); and the
nullity of A is the nonnegative integer  \A\ - r(A). A set of points A QG
represents a spanning set for G if A = G.   A set of points A is independent
if r(>4)=L4|. Otherwise, r(/l) < HI and A is dependent.   An independent
spanning set is called a basis.

A strong map from a geometry G into # is a function /: {G} U {0} —►
{//} U {0} (where "0" stands for the empty set in G and H respectively)
such that /(0) = 0 and the inverse image of any cjosed set in H is closed in G.
Geometries G and H are isomorphic, denoted G—H, if there is a bijection
/, taking points of G onto H and closed sets of G onto H such that, for any
point p and closed set K, p G K iff f(p) G f(K).

A geometry on the point set  {G} can be uniquely determined by  C(G),
the family of minimal dependent sets or circuits of G. A family F  of subsets
is the circuit set for some pregeometry if no subset in  F properly contains an-
other and the subsets satisfy the circuit elimination property C*:  If Cx  and
C2 are two distinct elements of F and p GCX n C2 then the set difference
(Cj U C2) - {p} is dependent and contains an element C3 G F.   Further, C3
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6 TOM BRYLAWSKI

can be constructed so as to contain any specified point in Ct - C2.
G may also be uniquely determined from its set of bases,  8(G).  A family

F of incomparable subsets is the set of bases for some pregeometry if F satis-
fies the basis exchange axiom 8*:   For all Bx  and B2 in   F and pG5,  there
exists q GB2  such that (5, - {/?}) U {q} is also in  F.

The (Whitney) dual of G,  G, is the unique pregeometry on the same
point set with a set of bases consisting of base complements of G.  Hence B G
8(G) iff {G}- B G 8(G).

G is the direct sum of two geometries:  Gl @ G2 if the points of G,
{G}, and circuits of G, C(G), are the disjoint union  {G¡} U {G2} and
CiG^ U C(G2) respectively (equivalently  8(G) is the set cartesian product
8(Gj) x 8(G2)).  Gj  is then said to be a direct sum factor of G, and G is
termed separable with the flats Gj   and G2  in L as separators or distributive
flats.   If no such nontrivial direct sum decomposition exists, any two distinct
points of G are contained in a circuit and G is termed connected.  A one
point direct sum factor, p, is an isthmus and is in no circuits of G.

If p G G we define two derived geometries:the deletion,  G — p, on the
point set   {G} - {p} and the contraction whose geometric lattice is isomorphic to
the interval  \p, G].  If A Ç {G} - {p}, and A denotes its closure in G, then
the closure of A in G - p is defined as A - {p}. If D QG, the subgeometry
G - D is defined as a sequence of deletions by points in D. Similarly we define
the contraction  [x, G]   as a sequence of contractions. An arbitrary sequence of
contractions and deletions is called a minor.

An invariant is a function / defined on the class of all pregeometries such
that /(G) =f(H) if G—H. Examples of invariants used in this paper include
m(G), the Mobius function which is defined as p.(0, 1) evaluated on the geo-
metric lattice L associated with G; the characteristic polynomial,

X(G, X) = x(G)= Z K0,x)Xr^-rM;
x&G

and 0(G), the Crapo invariant which is explored in [12].

3. Properties of modular flats.
Definition 3.1. In a geometry G, two flats x and y form a modular

pair denoted M(x, y) if r(x) + r(y) = r(x A y) + r(x V y) where r is the rank
function of the associated geometric lattice. Note that modularity so defined is
a symmetric relation. Indeed it is the fact that this relation is symmetric and
corresponds to the general lattice theoretic definition (3.2.2) for semimodular
lattices, which is a principal result of [26]. A flat x is modular if M(x, y)
for all flats y of G.

Examples of modular flats of G include G, the empty set, any point,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODULAR CONSTRUCTIONS 7

and any separator. In fact we occasionally call a separator a distributive flat
since it satisfies the distributive law (u V y) A x = (u A x) V (y A x) for all
flats u whereas a modular flat satisfies this law for all «<* (3.3.2).  A geom-
etry is modular if all its flats are modular iff the geometry is the direct sum of
(perhaps degenerate) projective spaces [1].

Lemma 3.2. The following are equivalent for flats x and y in a geometric
lattice.

1. M(x,y).
2. (u V y) A x = « V (y A x) for all flats u<x.
3. y is a minimal relative complement of x in the interval [x A y, x My].

Proof.  This is Proposition (2.8) in [16].

Theorem 3.3.   The following are equivalent for a flat x in a geometric
lattice:

1. x is modular.
1'. For all flats y disjoint from x, r(y) + r(x) = r(x V y).
I". For all complements y of x, r(x) + r(y) = r(l).
2. For all flats u < x and all flats y (equivalently, 2', all complements

y of x), (u V y) A x = u V (y A x).
3. For all pairs of flats y < v (equivalently, 3', for all complements   v

of x and y < v), (y V x) A v = y V (x A v).
4. For all flats y   (equivalently, 4', for all complements y  of x),

[x A y, x] — \y, x V y]  (by the order homomorphism f(u) = u V y with in-
verse f~l(v) = v A x).

5. For all flats y of G, y is a minimal relative complement of x
(equivalently, x is a minimal relative complement of y) in the interval
[xAy.xVy].

5'. All complements of x are incomparable.
6. The flat x can never be v (equivalently, w) in a sublattice of the form:

<r•y
7. For all flats y and points pGx,(p\/y)Ax = pV (y A x).
8. For all pax, x — \p, x V p]   (by the inverse order homomorphisms

f(u) = u V p and f~x (v) = v A x) and further x V p is modular in the con-
traction  \p, 1].
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8 TOM BRYLAWSKI

Proof. (l)«(l')«(l")- Clearly (1) => (1') => (l"). To show (1") =*
(1), let y be any flat of G.  Further, let w be a minimal (modular) relative
complement of x V y in the interval \y, 1] ; let z be a minimal relative com-
plement of x A y in the interval [0, y] ; and let x  be a minimal relative com-
plement of y in the interval  [z, w].  Referring to the following diagram:

X a y

we have xAx'< (x Vy) Aw=y so that x A x' *Zy A x' = z, and x A x
<xAy. Therefore jc A x < z A (x A y) = 0.  Similarly x V x = 1. Thus
x   is a complement for x. .But whenever « is a minimal relative complement
of V,

r(u Vu)- r(u) = r(v) - r(v A u).

We thus obtain the equalities:

r(l) - r(x V y) = r(w) - r(y) = r(x') - r(z).

By hypothesis, r(l) - r(x) = r(x'), so that

r(x V >0 - r(x) = (r(l) - r(x)) - (r(l) - r(x Vy))

= r(x') - (r(x') - r(z)) = r(z) = r(y) - r(x A y).

(1) =* (2) => (2') =» (1").  By (3.2), (1) and (2) are equivalent to M(x, y)
for all flats y; while (2') and (1") are equivalent to M(x, y) for all comple-
ments v  of X.

(1) => (3) =» (3') => (1").  Similar to above using M(v, x).
(4)=>(1). Trivial.
(2), (3) =» (4). By (3) and the fact that y<v<yVx, /(T1^)) =

y V (x A v) = O V x) A v = u.  By (2) and the fact that x Ay <u<x,
rl(f(u)) = (uVy)Ax = uV (y Ax) = u.

(1)«(5). By (3.2) both are equivalent to M(x, y) (or M(y, x)) for all
y. Similarly, (l")«=*(5').

(5) <=» (6). (6) does not hold iff, in some interval  [z, u], v and w are
not minimal relative complements.

(2)«=» (7). Clearly (2) =*■ (7). Conversely, if u < x, we will prove (2) by
induction on the rank of u. If r(u) =1, u = p Gx and (7) holds. Assume we
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have proved (2) for all flats u < x of rank k > 1.  Let  {pl, • • •, pk+1}
be a basis for u, and let u =p2^• •• Vpfc+1. Then ti'<x and r(i/) = k.
Hence, using induction, we have

(«V^Ax^jV ••■Vpt+1V)-)Ax = (p1V («'Vv))Ax

= P1V((«'V^)Ax) = p1V (n'V(yAx))

= (PjV w')V(>Ax) = u V(yAx).

(8) => (1'). If 7 # 0 is any flat disjoint from x, then there is some
p Ö x such that y G [p, 1].  Hence r(x Vp) = r(x) + 1 ; (x V p) Vy =
xMy; and (xV p)A y =p since by the isomorphism in (8), f l((x Vp) A.y)
= (x V p)Aj> Ax=xA^ = 0, so that (xV p)Ay =/(0) = p. Using the
modularity of x V p in the second equality:

>■(*) + r(y) = K* V p) + r(y) - 1 = r((x V p) V >-) + r((x V p) A>>) - 1

= r(x Vj) + r(p)-l=r(jcV7).

(1'), (4) => (8). By (4), x ^ [p, x V p]. We will show that xVp forms
a modular pair with any relatively disjoint flat y in  [p, 1]   (i.e. any flat .y
such that y A (x V p) = p), which will then show x V p is modular in  [p, 1]
by (1'). But if y A (x V p) = p then j» A x = p A x = 0; so if r" denotes
the induced rank function in  \p, 1],

r"(x V p) + r"i» = r(x) + /•(» - 1 = r(x V /) - 1 = r"(x V y).
Special cases of the various conditions in (3.3) abound.  For example, the

following is a corollary of (3.3.1').

Corollary 3.4.  A hyperplane is modular if and only if it intersects every
line.

The following two propositions were suggested by R. Stanley. In fact (3.6)
appears in [22].

Proposition 3.5.   // x is modular in G and u is modular in the closed
subgeometry x, then u is modular in G.

Proof.  Let u, u   be complements in G.  Then since x is modular in
G and x > u,

r(x) + rift') = r(x V m') + r(x A «') = r(\) + r(x A u).

Further, since u is modular in x,

r(u) + r(x A u) = r(u V (x A «')) + r(u A x A u).

But u A x A u = u A u = 0; and, by the modularity of x, u V (x A u) =
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 TOM BRYLAWSKI

(u V «') A x = x. Therefore r(x) = r(u) + r(x A u') and r(u) + r(u) = r(u) +
(r(l) - r(x) + r(x A «')) = r(\) so we are done by (3.3.1").

Proposition 3.6. If x and z are modular flats, so is x A z.

Proof.  Noting that if u <x A z then u <x and u <z. If we use
(3.3.2) first for the modular flat x and then for z, we get for any flat y,

(u V y) A (x A z) = ((« V y) A x) A z = (u V (y A x)) A z

= «V((yAx)Az) = wV(vA(xA z)).

We mention in passing that many of our results yield as corollaries charac-
terizations of projective geometries.  For example, a geometry is modular iff
every hyperplane is modular (3.6) iff every hyperplane meets every line (3.4)
iff every line is modular (3.3.1") iff for some k G [2, n - 1]  every flat of
rank k is modular (3.6) iff for some k G [2, n - 1]   every flat of rank k
meets every flat of rank n - k + 1  (3.3.1"), a result of [27].

The following theorem suggests similarities with Greene's work on in-
equalities of Whitney numbers [18] as well as unexplored connections with
Dilworth completions of lower truncated geometries [16].

Theorem 3.7. In a geometry G:
1. The order dual L* of the infimum subsemilattice L generated by the

modular copoints forms a geometric lattice.
2. The number of modular copoints is less than or equal to the number

of atoms with equality if and only if G is modular.
The following two statements hold for the case when G contains a

modular copoint.  For a more general geometry we may get analogous results
by upper truncating the geometric lattice L of G to level k if G has a
modular flat of maximal rank k - 1.

3. The subset of modular elements M of G under the induced ordering
forms a geometric lattice if and only if G = M.

4. M* is a geometric lattice if and only if all the modular elements are
inflma of modular copoints.

Proof. (1) Clearly L* as constructed is a point lattice and since L is
formed by taking infima of modular copoints, if the rank of G is n then r*(x),
the rank of an ejement x in L*, is given by n - r(x). Further, by (3.6) all the
elements of L are modular in G. Hence

r*(x) + r*(y) = n - r(x) + n - r(y) = n - r(x A y) + « - r(x V y)

= r*(x V* y) + n - r(x V y),
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MODULAR CONSTRUCTIONS 11

where V* is the supremum operator in L*. But in G the L* infimum of x and
y, x A*y, is greater than or equal to x Vy (since this is the infimum in G*).
Hence n-r(xVy)>r*(x A*y) and L* is semimodular. Thus L* is geometric.

(2) If the 0 element of L constructed in (1) is x, then f(p) = p V x is a
surjection in G from the points P of G onto the atoms A of L. But A is the
set of copoints of L* while the points of L* are the modular copoints C of G.
Since (1) shows L* is geometric and in [18] it is shown that in a geometric lattice
the number of copoints is greater than or equal to the number of points, we have
\P\>\A\>\C\. Further, \P\ > \A \ unless x = 0G and all the atoms are infima of
modular copoints. Further (again by [18]) L4|>|C| unless L* (and hence L)
is modular. But in that case L is geometric (it is surely a point lattice) and there
is a rank preserving strong map from L into G which is bijective on points. Thus,
by (9.15)of [16],/,^G

(3) Since all the points are modular, (3) follows from (2) along with the
inequality on Whitney numbers of [18].

(4) As in the proof of (1), M* will be semimodular and so it will be geo-
metric if and only if it is a point lattice.

The following proposition parallels (3.3.8) for deletion, the dual operation
of contraction.

Proposition 3.8.  // x is a modular flat of G and p €x then x asa sub-
geometry of G - p is modular in the deletion and isomorphic to x asa subgeo-
metry of G Hence x is a modular flat of any subgeometry G which contains it.

Proof. The rank function r on subsets of a deletion (or subgeometry) is
the same as the rank function r on those subsets in G. Hence x is closed and
isomorphic to itself as a subgeometry both of G and G -p. Furthermore, for
any flat y disjoint from x in G — p,y=y oxy=yUp in G and in any case
is disjoint from x. Hence,

r'(x) + r'(y) = r(x) + r(y) = r(x) + r(y) = r(xVy)

= r(xUy)= r(x U y) = r'(x U y) = r'(x V y).

We are then done by (3.3.1 ').

Corollary 3.9. If x is a modular flat of G, then xWy as a subminor of
any minor \y,G- A] where (AUy)C\x = 0 is modular and isomorphic to x
as a subgeometry of G Further, if y <x, then \y, x] is modular in the contrac-
tion ]y, G].

Proof. The first statement follows from (3.3.8) and (3.8), while the sec-
ond is true since if (3.3.6) holds in G it holds in any interval.

Remarks 3.10. A set of points forms a distributive flat (separator) if and
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 TOM BRYLAWSKI

only if it contains all the circuits it intersects. More generally we will give a
circuit characterization of modular flats.

An alternate proof of the following theorem (3.11) can be given using the
fact that whenever x is a flat of a geometry G, and p G G - x, then x at
\p, x V p]   by the strong map f(u) = « V p if and only if for all circuits C
suchthat pGC and |C-x| = 2, the line C~x intersects x. All details
are left to the reader.

Theorem 3.11 (77ie modular short-circuit axiom). A nonempty set of
points S forms a modular flat of a geometry G if and only if for every circuit
C of G and pGC-S there isa qGS and circuit C" such that p G C' C
q U (C - S) (or, equivalently, that q U (C - S) is dependent).

Proof.  We first show that the final two conditions are equivalent. Clearly
if p G C' C q U (C - S), then q U (C - S) is dependent.  For the converse
we use induction on \C - S\. If \C - S\ = 1  they are obviously equivalent.
Assume they are equivalent for all circuits C such that \C - S\ < k and let
\C - S\ = k > 2. Then if q U (C - S) is dependent it must contain a circuit
C'. If p G C', we are done. Otherwise we use the circuit elimination axiom
with circuits C and C' relative to points pGC - C' and q' G C' - S Ç C'
U C (which is nonempty since C' QS would contradict the minimality of C).
Hence there is a circuit C" contained in CU C' - q   with p G C". But
C" - S contains C - S strictly and we are done by induction.

Under the conditions of the theorem, S must be a flat since it cannot
contain a broken circuit as it would then contain a one element broken circuit
which never happens in a geometry.

Let S be a modular flat and let C be a circuit of cardinality k. If
\C n S| = 0 or 1 or \C - S\ = 0 there is nothing to prove, so assume
\C n 5| = ky > 1  and  \C n S] = k2 > 0 and both sets are independent. Then

k = kl+k2= rfCrTS) + /-(C^S) = r(cTTs V C^S) + r(CT¡T A C^S)

= r((C n S) u (c- S)) + r(clTs n (TU) = k - 1 + r(cñln C^S).

But then   r(C C*S n C - S) = 1  so that C - S must intersect 5 in a point q.
Conversely, assume S is a flat x which is not modular. Hence by (3.3.1')

there is a flat y disjoint from S such that r(xV y)< r(x) + r(y). Let S'
be a basis (maximal independent subset) of S and A be a basis for y. Then
r(A U S') < \A\ + \S'\ = \A U S'\ so it contains a circuit C which must intersect
both A and S'. But if C were short-circuited in S we would arrive at the
contradiction q G C- S r)SCÄ~nS = xAy = 0.
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MODULAR CONSTRUCTIONS 13

Definition 3.12.   A comodular set of points S of a pregeometry G is
one such that S is a modular flat of the Whitney dual G.

Corollary 3.13. // the Whitney dual G happens to be a geometry,
then S QG is a comodular set if and only if for every copoint c which does
not contain G - S, there is a copoint c   such that c' - S~D c - S and
IS-c'Kl.

Proof.  This follows from (3.11) and the fact that copoints of G are
circuit complements in G.

Corollary 3.14. A two point set  {p, q} is a modular flat of a geometry
G if and only if p and q are in different direct sum components of G.

Proof.  If points p and q are in the same direct sum component of G
then there is a circuit C containing both of them (which, since G is a geom-
etry must contain another point p). But if S = {p, q] were a modular flat
then p   would be contained in a circuit contained in (C - {p, q}) U q   for
some qGS by (3.11). But this contradicts the minimality of C. Conversely,
if p and q are in different direct sum components, no circuit can contain both
of them and (3.11) is satisfied trivially.

Corollary 3.15. In a connected binary geometry G (see 4.1), a line is
modular if and only if it contains three points.

Proof.  There are no lines of four or more points; two point lines are
excluded by (3,14); and three point lines are modular by (3.8) since G is a
subgeometry of a binary projective geometry (all of whose lines have three points).

Corollary 3.16. A separable flat x is modular if and only if each -com-
ponent x¡ is modular in a separate component G¡ of G. In particular, modular
flats of connected geometries are connected.

Proof.  The circuit set of G, C(G) is the disjoint union of the circuit
sets Cj(G) of each component. Hence (3.11) is satisfied in G for x if and
only if it is satisfied for x n G¡ in G¡ for all i. Hence x is modular in G
if and only if x D G¡ is modular in G¡ for all direct sum components G¡.
Since a connected subgeometry S must be in a single connected component of
G we will be done when we show that in a connected geometry, every modular
flat must be connected.  But if Xj © x2 is a separable modular flat of a con-
nected geometry G, with Pj Gxj  and p2Gx2, then, by (3.14),  \py, p2}
is a modular flat of Xj © x2 and hence by (3.5) is a modular flat of G, con-
tradicting (3.14).

Theorem 3.17 (The modular exchange axiom). A subset S of a
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



14 TOM BRYLAWSKI

geometry G is a modular flat if and only if for all subsets AC G and points
p, if p G AUS but p &A then there is a qGS such that q G A U p(- A).

Proof. IfpGAUS-A then p completes a broken circuit B with
elements from A and S (where not all elements are from .4). But if S is a
modular flat, by (3.11) there is a circuit consisting of p, other elements of
A - S, and one element q of S, so that q G A Up. Further, q&A since
otherwise we could eliminate q and obtain that p would be in a circuit con-
tained in AU p.

Conversely, assume S obeys the modular exchange axiom.  Let C be a
circuit of G which intersects S and let p G C - S. Then, if A = (C - S) —
p, pGAUS since it completes the broken circuit C - p. But p Ö A since
AU p is a proper subset of C and hence is independent. Therefore by the
modular exchange axiom there is a qGS such that q G A Up. But this means
q completes a broken circuit B' contained in A U p = C - S so that q U
(C - S) is dependent and 5 is a modular flat by (3.11).

We have seen how modularity can be characterized directly by the rank
function, circuits, and the closure operator.  Of course any family of subsets
which gives a cryptomorphic characterization of a geometry may be used in
turn to distinguish its modular elements.  For. example, an easy corollary of
(3.11) gives a characterization in terms of independent sets:

Proposition 3.18. A set S is modular if and only if for all independent
subsets I CG - S, I U p is independent for all p G S if and only if I U f
is independent for all independent subsets f of S.

We conclude this section with a proposition relating modularity with
distributivity.

Proposition 3.19. In a geometry G if the interval [x, 1] is separable
with separators z and y, then z is a modular flat of G if and only if x is
a modular flat of the subgeometry y.

Proof.  Since z and y are separators of [x, 1], the subsets x, z - x,
and y - x partition the points of G.  Hence u A z = 0 iff u C y - x iff
u <_y and u A x = 0.  Further, if u <y and u V z = 1  then

y =y A (u \Jz) = uV (y A z)   (since y and z are separators of

[x, 1]   and hence a modular pair)
-iiVx

Conversely if u \' x = y then «Vz = «V(xVz) = (u Vx)Vz=jV z = l.
Hence « is a complement of z iff it is a relative complement of x in the sub-
geometey y, and the proposition follows from (3.3.5').
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MODULAR CONSTRUCTIONS 15

4. Modularity for classes of geometries.  In the previous section we
characterized modularity for geometries in general.  For a geometry with a par-
ticular representation (i.e. as a matrix, totally unimodular matrix, graph, or
transversal), modular flats can be characterized within the class as subsets with
certain properties. In §6 we will exploit some of these properties to make
constructions in the above classes.

4.1. Chain group (dependence) geometries.
Definition 4.1.1. A geometry G is a chain group or dependence geometry

over a field F if it can be represented as the columns of matrix M (denoted
G = D(M)) with dependence in G corresponding to linear dependence (over F)
of column vectors of M. We also say G is coordinatizable over F. If G can
be coordinatized over the two element field F2, G is termed binary, and if
G can be coordinatized over F3, G is termed ternary.

Clearly elementary row operations, and permutation and nonzero scalar
multiplication of columns leave the coordinatization invariant and we may de-
lete any zero rows.  Hence we may assume our matrix is of size r x n where
\G\ = n and r(G) = r, and that r of the columns (corresponding to any basis
of the geometry) form the identity submatrix.

Proposition 4.1.2. A subset of columns  {vlt ■ • ■ , vk] of a chain group
D(M) forms a modular flat x if and only if whenever  {vk+1, • • ■ , vm} in-
dependently extend x to a spanning set for G giving the coordinatization

(where M" -
Lo   i mA *   LoJ

represents the flat x,

and I is the (m - k) x (m - k) identity matrix)

then each column of Mx is a scalar multiple of some column of Mx.

Proof. By (3.11) x is modular if and only if for any minimally depen-
dent set of vectors C with v G C- Mx there exists v G M'x such that v is
linearly dependent on v U (C - M'x) - v.

Let C be a basic circuit relative to some basis for M"x along with
[vk+1, • • • , vm}, so we may assume

C= {u,, • • • , v.; vk+1, ■ • ■ , ty, v}   (!<k, j<m).

Then v n M2 must have nonzero entries only where vk+1, • • •, ty have non-
zero entries. Hence v will complete a circuit with exactly one element from
M'x along with vectors from  {üfc+1> • • •, uy} iff v n Mi is a nonzero scalar
multiple of a column of Mx and will complete a circuit disjoint from Mx iff
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uOJI/j =0. Hence the condition of the proposition for a particular choice of
{ufc+1, • • •, vm} is equivalent to (3.11) for any basic circuit relative to a basis
containing  {vk+1,' • ■ ,vm}. But for any circuit C of G and v G C - M'x,
C - v is independent and can be extended to such a basis.

Remarks 4.1.3. To get an idea of the above proposition we observe that
the conditions hold readily for the flats 0, G, separators ( in which case Mx =
0), and points (where Mx is a one by one submatrix).

Also, note the way the proposition is quantified (i.e. the condition must
hold for all  {vk+1, • • • vm} which extend a maximal independent subset of
M^ to a basis) so that for example

a   b   c   d   e   f

1    0    1 I 0 I 1    0

0    1    1

0   0   0

0    1

1    1

which coordinatizes the geometry

over any field of characteristic not equal to two obeys the conditions of the
proposition for x = [a, b, c} and basis extension d. However  {a, b, c} is not
modular.

4.2.  Unimodular geometries.
Definition 4.2.1. A geometry G is unimodular if it can be coordinatized

over any field. Tutte showed [24] that G is unimodular if and only if it can
be coordinatized over the rationals by a totally unimodular matrix M (a matrix
all of whose subdeterminants are 0,-1, or 1) in which case M serves to
coordinatize G over any field. A geometry so coordinatizable by a totally
unimodular matrix is called a unimodular chain group.

Lemma 4.2.2. Let M be a totally unimodular matrix which coordinatizes
a geometry G, let B be a basic set of column vectors of M, and let M1 be
a matrix which is obtained by performing elementary row reductions to M to
get the identity submatrix for its columns B.   Then M* is also totally uni-
modular and coordinatizes G.
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MODULAR CONSTRUCTIONS 17

Proof.   Elementary row operations cannot change the dependency of
the columns so that both M' and M coordinatize G.  Also, permutation and
scalar multiplication (by — 1) of rows cannot change the property of total
unimodularity. We will be done (by induction) if we can show that M' remains
totally unimodular after a sequence of elementary row operations consisting of
replacing r, by a,ri + r. (ay = 0, 1, - 1 ; i ¥= j) which transform the column vk
into a column such that mik = ± 1  and m-k = 0 for all / ¥= i.

But if D' is any square submatrix of M' intersecting row i then the
row operations cannot change the value of the determinant of D' and hence
it is 0,1, or — 1.  If D' does not intersect row / and intersects column k
then its determinant is zero (it has a zero column where it intersects column k).
Finally, if £>' intersects neither row i nor column k, we augment it by adding
that row and column forming D". Then as above, D" has the same determin-
ant in M as M'. But expanding the determinant of D" by cofactors relative
to column k we get det(D") = ± mikdet(D') - ± det(Z)') = 0, 1, or - 1.

Proposition 4.2.3. A subset of columns  {vt, • • • , vk} of a unimodular
chain group U(M) forms a modular flat x if and only if whenever  {vk+l,
'" , vm} extends a basis for x (unimodularly) to a basis for G giving the
coordinatization

~Mx  0 Mx
0     /  M2_

then each column of Ml is zero or ± some column of Mx.

Proof.  This follows directly from (4.1.2) and (4.2.2).
4.3. Graphic geometries.
Definition 4.3.1.   A geometry is graphic if its point-circuit incidence

relation is identical to the edge-circuit (edge-polygon) incidence relation of a
graph (the graph must then be of the "Michigan" type with no loops or multi-
ple edges).  Hence the geometry is separable if and only if the graph is discon-
nected or one-connected (with a cut point).  Every graph gives such a geometry,
while two graphs give isomorphic geometries if and only if they are two-iso-
morphic [25], i.e. one can be transformed into the other by separating and/or
joining sets of edges at a cut point; or by separating two sets of edges with two
vertices in common (a parallel connection) and reattaching the sets in the other
order. We use the notation e ~ [u, u']   to signify that edge e has vertices v
and v.

The following characterization is implicitly equivalent to the unproved
Theorem 3 of [22].
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18 TOM BRYLAWSKI

Proposition 4.3.2.   A connected subset of edges E of a graph G forms
a modular flat if and only if, for every pair of distinct vertices v, v' such that
there is a path between v and v   in E and another path between v and v'
which is vertex disjoint from E (except for v and v) then there is an edge
e GE such that e ~ [v, v'].

In particular every clique (i.e. complete subgraph) is modular.

Proof.  Assume E forms a modular flat and vertices v and v   are such
that there is a path P between v and v   in E and another path P' between
v and v   which is vertex disjoint from E (except for v and v).  Then P U
P forms a circuit and by (3.11) P' U e must contain a circuit for some e G
E.  Clearly this can only happen if e ~ [v, v'].

Conversely if E has the above property and C is a circuit intersecting
both E and G - E, let P be a path contained in C which is vertex dis-
joint from E (except for its end points v and v). Then since E is connected,
there is a path P Ç E from v to v. Hence PUP' is a circuit. Therefore
E contains an edge e ~ [v, v]   and (C - E) U [e] contains P U {e} which
is a circuit.

Thus (3.11) is satisfied.
4.4.  Transversal geometries.   A transversal geometry G(S) is one pre-

sented by a relation R C S x T (where every element of S is related to at
least one element of T and every pair is related to at least two elements).
Such geometries are  characterized in [10] as the subgeometries of free-sim-
plicial geometries.

The modular flats of transversal pregeometries  are characterized in [10]
using (3.11), (3.16), and (5.7) of the present paper.

5. Modular constructions.
Definition 5.1.   An injective pushout P of G and H relative to x

is a colimit [21] for the diagram

where the strong maps i'G and iH are non-rank-decreasing monomorphisms.
We may then identify x with its images in G and H respectively which are
subgeometries isomorphic to x by (9.15) of [16]. This is a pushout for the
category G of geometries and strong maps.

Injective pushouts have been known to exist for x equal to the empty
geometry [16] in which case it is the coproduct (direct sum); and for x equal
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to a point [6] in which case it is the parallel connection.  Crapo asked for gen-
eral criteria guaranteeing pushouts [15] and we will see in (5.3) that the mod-
ularity of x in either G or H is such a guarantee for an injective pushout.

If L is the rank two geometry (line) with the points (G - x) U (H - x)
W x then the obvious maps from G and H into L are strong, so that by the
unique existence of the colimit map P —► L, we see that the points of an in-
jective pushout when it exists can be identified with the point set (G - x)U
(H - x) U x so that it is a geometry even in the category of pregeometries
and strong maps.  Further, let   {0 = Xj, • • ■, xk = x) be a saturated chain of
closed sets in x; {0 = gt, • • •, g¡ = xf,---,gk=xG,gk+l,---,gn=G}be
such a chain in G; and  {0 = hx,- • •, h¡ = x1?, ■ ■ •, hk = x**, hk+1 ,••• ,
hm = H] a saturated chain in H. Then there can be no closed set y of P
such that y¡ £ y Ç\ yi+ j   in the chain of sets   {ylt ■■-, yn+m_k} where
y, = g, U ht for i G [1, *] ; y, = g¡ U hk for i G [k, n] ; and y,« G U hi+k_n
for iG[n,n + m - k]. Hence r(P) < r(G) + r(H) - r(x).  Let G and H
be geometries with a common subgeometry x.  The strong join J of G and H
relative to x is the geometry on the points (G - x)U (H - x)U x with closed
sets all subsets k  such that k n G is closed in G and k C\ H is closed in H,
if the above closed sets form a geometric closure system.  We remark that it is
equivalent to consider all kxU k2 U k3 where kx C G - x, k2 Ç x, and
k3 C H — x such that fcj U k2  is closed in G and k2 U k3  is closed in H.
Also these subsets include / and all intersections so we need only check that
they satisfy the exchange property.

Proposition 52.   If a strong join J exists for G and H relative to x,
it is the injective pushout and its rank is equal to r(G) + r(H) - r(x).

Proof.  We have constructed the maximal family of closed sets for a
geometry which completes the pushout diagram.  Hence by the remarks in (5.1)
it must be an injective pushout.  Further, the closed sets include the saturated
chain of (5.1) of length r(G) + r(H) - r(x).

Theorem 5.3.  // G and H are geometries where x is a modular flat of
G and a subgeometry of H respectively, then the strong join of G and H
exists, termed the generalized parallel connection, P = PX(G, H).

Proof.  We show that the closed sets of PX(G, H) specified by a strong
join form a geometric closure system.  It is clearly a closure system by the re-
marks preceding (5.2).

We must show that in the lattice of closed sets, L(P), for any closed set
k GP and p Ö k, k V p covers k.  By our construction k¡  covers k2 iff
fcj n G > k2 n G as closed sets of G, and kx C\H>k2 C\H. The only pair
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of closed sets, one from the G interval [k{ C\G, k2Ct G] and the other from
the H interval [kt (~)H, k2C\ H] which intersect x in the same set are the two
bottom elements and the two top elements respectively (note that either but not
both intervals could be trivial).

To simplify the notation, for any subset L of P, let LG, LH, and Lx de-
note the subsets LC\G, LC\H, and L C\x respectively. Note that L is closed
iff LG and LH both are in the respective subgeometries (and hence so is Lx
since x is closed in G). Also, V, VG, V^, and Vx denote the suprema operations
in the subgeometries P, G, H, and x respectively. We now derive an expression
for fcVp.

If p G G - x and (kG VG p)x = kx then clearly k' = (kG V p) u kH con-
tains kUp and has intersection kx with both G and H, while [kG, k'G] isa
two point interval, and [kH, k'H] is a one point interval. Hence k' covers k in
the lattice of closed sets of P. A similar argument holds if p G H - x and
(kH^HP)x=kx-

If p G G - x and (kG VG p)x>kx, let q G (kG VG p) - kx. Then
kG^G Q= kG ^G P so tnat kVP contains both k and q and hence contains kVq
while kVq contains kVp, so that kVp = kV q. A similar argument holds if
pGH -x and (kH VH p)x > kx. Without loss of generality we may then assume
that p is in x. Let y denote the flat of x (and hence of G) (kH \/H p)x. Then
we claim kVp = k' = (kG VG y) U (kH VH p). Surely (k Vp)H must be closed
in H and contain kH and p so that it must contain kH VH p. Hence k Vp con-
tains kHVHp and therefore contains y. But this means that (<Wp)G must con-
tain kG and y and so must contain kGVGy. Hence we have kVpDk'^kUp.
But k' is a closed set of P since by definition, y = (kH VH p)x and by modularity
of x in G and (3.3.2),

(y vgkG\ = (y vg*0) Aox-y VG K AGx^=y vc K~y-

It remains to show that k' covers ^:. Assume k' > k" >k. If qG (k" - k)
n H, then as above pGkVq so p G kHVHq and by exchange in H, kHVHq =
kH VH p so that k' = k". We may assume then that q G G - x. But then

qG(kGVGy)-kGcJ^JxG-kG

so that by the modular exchange axiom (3.17) there exists q such that

q'G(kG-Ü-q-G-kG)xCk"x -kxC(k"-k)C\H

and we are done as above.
Examples 5.4. Although every generalized parallel connection is a strong

join and every strong join is a pushout for our category 6, the following counter-
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examples show that converses to (5.2) and (5.3) are not in general true.

■ b

21

(0
\.

G

The above example shows that injective pushouts need not exist since the
pushout of G and H relative to x must be one the point set {p, q;a, b;a', b'}
and have rank at most r(G) + r(H) — r(x) = 4. However, referring to the above
diagram, if there were a strong map from P to F, {a, b, a'} would be closed in P;
while if there were a strong map from P to P, 0, {a\ {ab}, [a, b, a', b'}, and
{a, b, a, b', p, q} would all be closed so that P would have rank at least five. Hence

P cannot exist.

(2) >F

The above example shows that injective pushouts can exist which are not
strong joins. In P, {a, a'} is not closed although {a, a'}C\G = a is closed in G
while {a, a'}C\H = a is closed in H. However, if F is any geometry with strong
maps g and h into it, then letting

f(p) = g(p) = h(p),
f(q) = g(q) = h(q),

f(a) = g(a),

f(a) = h(a),

f is a strong map since aGpq because g is strong, while à Gpq because h is
strong so that {p, q, a, a'} would have rank two and no proper subset of {p, q, a, a'}
(except 0 and the points) could be closed.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TOM BRYLAWSKI

(3)

The above graphical example shows that while one may check that J is the
strong join of the graphs G= {a, b, w, x,y, z} and H= {a, b', w, x, y, z} relative
to the common closed subgraph {w, x, y, z}; this subgraph is modular in neither
G nor H by (4.3.2).

(4) In light of example (5.4.1) it seems an interesting problem to determine
if pushouts exist for the category P of geometries (or pregeometries) and injective
(weak) maps (i.e. injections on points such that preimages of independent sets are
independent). This problem is equivalent to determining if any colimit diagram
of (5.1) can be completed by a (pre)geometry F on the set of points (G - x) W
x U (H - x) such that if any other pregeometry P on the same set of points
completes the diagram, then every independent set of P is independent in F.

In (5.4.1), P (and in fact any geometry which completes the pushout
diagram) is a weak map image of F. However, the following example shows that
in general pushouts do not exist even in the category P.

q,x

r

Both G and H are isomorphic to P of (5.4.1). P is the rank four geometry
generated by the five connected planes {p, q, r, s}, {p, q, a, b}, (p, q, a', b'},
{r, s, a, b], and {r, s, a', b'\ No rank 5 geometry has this planar structure.

On the other hand, P is a rank 5 geometry which when truncated to rank
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4 (as pictured) is the same geometry as P with the additional dependence
{a, b, a', b'}. Both P and P have G and H as subgeometries and no weak map
exists between them. But clearly a weak pushout if it existed would necessarily
have the planar structure of P and the rank of P, hence none exists.

Proposition 5.5.   l.Ifk is closed in P = PX(G, H) then r(k) - rG(kG) +
'h&h) * rG^kx)- In Particular, r(P) = r(G) + r(H)- r(x).

2. If g CG and hÇH, then the closure of gUh in P, gUh, equals
-G

rr _- -JJ

(gG n x) u h u (QfG r\x)uhnx)ug.

3. rp(g Uh) = rH(h U(^nx)) + rG(gUx) - rG(x).
4. g U h is independent in P if and only if g is independent in G and h-x

is independent ofgdx in H.

Proof. (1) follows from the remarks in (5.1) and (5.2); and from the fact
that generalized parallel connections are strong joins.

To prove (2) we note that gUh must contain gG and hence g° Ox Çx
CH. Therefore, since it is closed in H it must contain

—^-H
h! = (gG n x) u h.

Hence it contains tí Hx Çx C G and hence must contain

- a -Gg = «gG nx)uhr\x)ug.
But g'nx = ((h'nx)V g)Ax = (tí nx) V (g Ax) = tí nx so that the subset
specified in (2) is closed.

(3) Let
—-H

u = (gGC\x)UhC\x

which is a closed subset of the subgeometry x and hence a flat of g containing
g Ax.  Therefore

r(g U h) = r(fü~h) = rH(h U (g° n x)) + rG(u Ug)- rG(u).

But in G,

r(uUg)-r(u) = r(uVg)-r(u)

= H(u Vf) A x) + r(g V u V x) - r(x)] - r(u)

(by the modularity of x in G)

= r(u) + r(gUx)- r(x) - r(u).
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Finally, in (4), h - x is independent of g n x in H if and only if

rH((grix)Uh) = rH(g nx)+ |ft-x|.

Hence r(gUh)= \gUh\= \g\ + \fi -x| if and only if

r„(A U (g n x)) + (rGG0 - rG(g n x))

= (rdrnx)+ lÄ-xl) + (\g\-r(gnx))

if and only if equality holds between each respective summand.
Definition 5.6. A single element extension as studied by Crapo [16] of a

geometry G by a point p is a geometry G' such that r(G') = r(G), and G = G' -
p. More generally, an extension of a geometry G is a sequence of single element
extensions (i.e. a geometry which contains G as a spanning subgeometry).

Proposition 5.7. If x isa modular flat of a geometry G and x is an ex-
tension of x then G' =PX(G, x) is the unique extension of G such that x' is a
flat of G' and G' - (x' - x) = G.  We call this special case the modular extension
of G by x.

Proof. G' =Px(G, x') is an extension of G by x' -x since it contains x'
as a flat, and G as a subgeometry which spans since r(G') = r(G) + r(x') - r(x) =
r(G). But any other extension G" would complete the pushout diagram and hence
there would be a bijective strong map from G' to G". But r(G) = r(G") = r(G')
and hence G' would be isomorphic to G" by (9.15) of [16].

Further, x' is modular in G' since if u were a flat disjoint from x it would
be closed and disjoint from x in G so that

rG,(x') + rG,(u) = rG(x) + rG(u) = rG(x V u) = rG(x U u)

= rG,(x U u) = rG,(x' U u) = rG.(x' V u).

Remarks 5.8. By (5.7) we note that any generalized series-parallel connec-
tion factors uniquely first as a modular extension and then as a generalized paral-
lel connection relative to a subset which is modular in G and a flat of H:

Px(G,H) = P_H(Px(G,xH),H).

We call the latter connection (when the subgeometry is closed in H) a
closed connection. For such closed connections, G, x, and H are all flats
of P.

We can now give a lattice characterization of closed connections.
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Proposition 5.9.   A geometry P is a closed connection of flats G and
H relative to aflat x if and only if [x, P] = [x, G] © [x, H]  and x is a
modular flat of the subgeometry G (equivalently, H is a modular flat of P).

More generally, a geometry P is equal to PX(G, H) iff x is a modular
flat of G and [x^, P] = [x, G] © [x", H].

Proof.  The fact that x is a modular flat in a subgeometry G if and
only if H is modular was proved in (3.19). Clearly the conditions are neces-
sary since  [x, P] = [x, G] © [x, H]  if and only if the points of P are
partitioned into those lying below G - x, x, and H - x respectively and a
set A containing x is closed iff A n G is closed in G and A n H is closed
in H. Such always happens in a closed connection while by definition x is
modular in G.

Conversely, assume the conditions of the proposition hold. We are given
that x is modular in G.  Also, for all flats y of P, y n G =y A G is a flat
of P as is y n H = y A H while (yAG)Ax=yAx = (yAH)Ax.   Hence
we need only to show that if yG is a flat of the subgeometry G and yH < H
such that yG A x =yH A x =yx then yG V yH =yG UyH.  Since G U H =
P we will be done if we show

(yGVyH)nG = (yGV yH)AG=yG    and    (yG\lyH)AH = yH.

But since H is modular,

(yG\/yH)AH = yHV(HAyG)=yHV(xAyG)=yHVyx=yH.

Further, (yG V yH) A G lies in the interval  \yG, G]. By the modularity of
x in G, A x is an isomorphism from  \yG, G]   to   \yx, x]. But

(CvGV^)AG)Ax = 0GV7//)Ax<0GV^)A// = ̂

so that (yG V yH) A x <yH A x =yx. Hence (yG V yH) A G meets x in
yx and has the same image under the isomorphism Ax as yG. Hence
(Vg V^//)A G=jG and so yG V yH =yG UyH.

The second part of the proposition then follows from the first part and

(5.8).

Proposition 5.10. In the generalized parallel connection PX(G, H), the
following hold:

1. H is a modular flat.
2. G and x are both subgeometries.
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3. G is a flat if and only if x is a flat if and only if the connection is
closed.

4. G is a modular flat if and only if x is a modular flat if and only if
x is a modular flat of H.

5. If G is connected, then P is connected if and only if H is connected
(and x ¥= 0).

6. // x is also a modular flat of H, then PX(H, G) = PX(G, H).
7. // x is also a modular flat of H and a subgeometry of F, then

PX(PX(G, H),F) = PX(G, PX(H, F)).
8. // G is a modular flat of G', then PX(G\ H)=PG(G\ PX(G, H)).

Proof.   The first statement follows from (5.8) where it was shown that
PX(G, H) = P_h(Px(G, x"), H). But the latter term is a closed connection with
x" modular in PX(G, x") so that we may apply (3.19) or (5.9).

(2) The closed sets of P when intersected with G are closed and every
closed set k of G can be realized as such an intersection of G with a closed
set of P, e.g. (k U (k n x/*) C\G = k.   Further x is a subgeometry of G
and hence of P.

(3) Each part is equivalent to the modular extension in (5.8) being trivial.
(4) By (3) we may assume the connection is closed in which case we

apply (1), (3.5), (3.6), and (3.19).
(5) If G is connected, then x must be connected by (3.16). Hence, if

H is separable, x" must lie in one of its components and any other component
will remain a separator of P. Conversely, assume G and H are both connected
and x =# 0 (if x = 0, PX(G, H) is the direct sum and hence separable). Then,
since G and H are both connected subgeometries, any separator which inter-
sects either must contain it. But G n H # 0, so no separator can intersect
GUH nontrivially.

(6) Trivial from the symmetry in the properties of (5.2).
(7) Both sides are well-defined since x is a modular flat of PX(G, H) by

(4). Also the point sets on both sides are given by GU HU F and the closed
sets by sets which are closed in the respective geometries when intersected with
G, H and F.

(8) The left-hand side is well-defined since x is a modular flat of G' by
(3.5).  Further, both sides are geometries on the points G' U H while a set is
closed on the left iff its intersections with G' and H are both closed.  But if
its intersection with G' is closed, so is its intersection with G (since G is a
flat of G') so that a set is closed on the left iff its intersections with G', G, and
H are all closed and hence iff its intersections with G' and PX(G, H) are both
closed iff it is closed in the right-hand side connection.
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Proposition 5.11. For all p G G - x, q GH - x, and s G x, the
following commutativity properties hold:

1. Px(G,H)-p = Px(G-p,H).
2. Px(G,H)-q=Px(G,H-q).
3. \p,Px(G,H)]^P[pxWp](\p,G],H).
4. // x is a flat in H,   [q, PX(G, H)] =* PX(G, [q, H] ).
5. [s, PX(G, H)] =-PlSiX]([s,G],[s,H]).

Proof. Both sides of (1) are defined on the point set (G - x - p) ü x
U H - x; x is modular in G - p by (3.8) and sets are closed in either side iff
their intersections with G — p and H are closed in the respective geometries.

Similarly, both sides of (2) are defined on the set of points G - x U x
U H - p - x and have closed sets exactly those whose intersections with G
and H - p are closed respectively.

The atoms on the left side of (3) correspond to lines of PX(G, H) cover-
ing p. Among these atoms there is an isomorphic copy of x by (3.3.8); an
isomorphic copy of H by (3.3.8) and (5.10.1); and the rest of the atoms cor-
respond to lines contained in G but not in x V p.   \p, x V p]   is modular in
[p, G]   by (3.3.8) and flats in both cases correspond to flats which contain p
and intersect both G and H in flats.

To prove (4) we note that in PX(G, [q, H] ) the subgeometry x corres-
ponds to the subgeometry arising from the image of x under the strong map
\Jq which one checks is isomorphic to x in H (and hence in PX(G,'H)). The
isomorphism between the two sides then follows noting that if all intersections
behave properly, then they also do for flats containing q.

(5)   [s, x]   is modular in [s, G]  by (3.9).  The isomorphism can then best
be seen by considering the interval  [s, P]   relative to (5.9).

Remarks 5.12 (The comap join of H. Crapo). The generalized parallel
connection is an instance of a more general construction of Crapo: the comap
join of two geometries [13].

In Crapo's work a function from a geometric lattice L(G) into a geo-
metric lattice L(H) is a comap if it is chain contracting (i.e. covering pairs
are preserved under one-one images) and it preserves meets of modular pairs.
Examples of comaps include composites of comaps; the natural imbedding of
a subgeometry G' C G (where L(G') is realized as the join subsemilattice of
L(G)); and the canonical retract of a geometry G onto a modular flat x,
c: L(G) —> [0, x]  where c(y) = x A y.   In fact it is the modularity of x
which makes the map c chain contracting (cf. 3.3.4 above).

If Cj  and c2 are comaps which both preserve 0, the comap join of
two geometries G and H across comaps c1: L(G)—► L(F) and c2: L(H)—>
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L(F) can be seen to consist of the geometry on the disjoint union  {G} U {H}
of the points (atoms) of G and H respectively whose rank function is given
for all g ç G, h C H by

r(gUh) = rG(g) - rF(Cl(gG)) + rH(h)

W
- rF(c2(hH)) + rF(Cl(gG) U c2(hH)).

If x is a modular flat of G and a subgeometry of H we have the co-
maps c2 ° Cj  and c3 where et'. L(G) —> [0,x]   is the canonical retract,
c2: ¿(x) —*■ L(H) is the natural imbedding of the subgeometry x into H, and
c3: L(H - x) —► L(H) is the natural imbedding of the subgeometry H - x
into H. Then since the rank function for subsets of H - x is identical in
L(H) and L(H - x), and the rank function for subsets of x is identical in
L(x), L(H), and L(G); if g C G, h C H, and g n x = h n x, (*) becomes:

r(gUh) = r(gU(h-(hn x))) = rG(g)- rQ(gG n x)

+ rH((g° n x) U (h-(hC\ x) H))
(**)

= rG(g U x) - rG(x) + rH((JG nx)U(h-(hn x)))

= rG(g U x) - rG(x) + rH((gG n x) U h),

using the facts that h n x Ç gG n x, rH(tí Uh) = rH(h' Uh) = rH(h' V h),
and the fact that x is modular in G.

But (**) is the same as (5.5.3) for the rank function of the generalized
parallel connection PX(G, H).

Many of the other properties proved for the generalized parallel connec-
tion hold more generally in the context of comap joins.  For example, (5.10.6),
(5.10.7), and (5.10.8) have join-theoretic analogs while [14] includes a com-
putation of the Tutte polynomial [7] across a join of graphs which reduces to
(7.13) below in our case.

In light of the categorical properties of the generalized parallel connection
it would seem fruitful to explore the join operation, and possibly resolve the
general question of when injective pushouts exist for weak or strong maps.

Another construction in which modularity plays a simplifying role is the
Brown truncation.

Definition 5.13.   For a flat x of a geometry G,  TX(G), the Brown
truncation of G relative to x is the geometry whose geometric lattice is given
by deleting from L(G) the "collar" of the principal order filter generated by x
(i.e. those flats y such that y is covered by x V y). This operator was defined
in [5] and is explored in [9]. The rank function, rT, for the remaining closed
sets in TX(G) is given by rT(y) = r(y) - 1 if y > x and rT(y) = r(y) if y >x.
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Further, the bases of TX(G) are those subsets B - p where B is a basis of
G and p GB n x.  The flat x in TX(G) is isomorphic to the upper rank one
truncation T(x) of x (as a flat of G). We let 7*(x) denote the upper rank
k truncation of x.

The complete Brown truncation of G relative to a flat x,  TX(G), is
equal to

T n-2      V n-3      (.■■■(.TX(G))---))

where r(x) = n and hence x is truncated n — 1  times (and becomes an att.n).
Geometrically, TX(G) corresponds to the extension of G by a flat put in gen-
eral position as a hyperplane of the subgeometry x followed by the contraction
of that hyperplane.

Proposition 5.14. Assume r(x)> 1 and x is a modular flat of G   Then
the following hold:

1. x is a modular flat of TX(G).
2. For all pGx,Tx(G)-p = TX(G - p), and  [p, TX(G)] «

^[p,xVp](tP' ^D- Also, p is an isthmus of G iff p is an isthmus ofTx(G).
3. TX(G) as a geometric lattice is isomorphic to the lattice formed by

the flats  {y\ y > x} U {y'\ y A x = 0} with the induced order from G.  Hence
G is isomorphic to a geometry whose flats are the subsets  {y}U {/ - x U q}
for all y n x = 0 and y D x.

Proof.   (1) In TX(G), if y >x, then rT(x) + rT(y) = (r(x) - 1) +
(r(y) - 1) = (r(x \/y) - 1) 4- (r(x A y) _ 1) = rT(x V y) + rT(x A y) (since
x V y and x A y are both greater than or equal to x).  On the other hand,
if y ^ x, then y V x does not cover y (since x is modular and has rank
greater than one) but y V x > x, hence vVx is a flat of TX(G). Also
(xA)i)Vx equals x which cannot cover x A y by the modularity of x, so
that x Ay is a flat of TX(G) but is not greater than or equal to x. Hence

rT(x) + rT(y) = (r(x) - I) + r(y)

= (r(x V y) - 1) + Kx r\y) = rT(x A y) + rT(x A y)

and x is modular in TX(G).
(2) We note that since r(x) > 1, ifpöx, xVp does not cover p

and hence p is a flat of TX(G). Then for all p Öx, if p is not an isthmus
of G there is a basis B which does not contain p.  If 5 intersects x, then
B - q (q G B C\ x) is a basis of TX(G) which does not contain p and p is
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not an isthmus of TX(G). If B n x = 0, and if B' is any basis which inter-
sects x but contains p, we may use the basis exchange axiom to find a new
basis (B' ~p)U q (q GB) which intersects x and does not contain p. Hence
p is not an isthmus of G. Conversely, if all bases of G contain p, so do all
bases of TX(G) and p is an isthmus of TX(G).

TX(G) - p and TX(G - p) are both geometries on the set  {G} - p whose
bases are those subsets B - q of G which do not contain p and with i;Sx
DB. Further  \p, TX(G)]  and r(p xVp]([p, G]) are the geometries associated
with the pregeometry whose bases are of the form B - q where q G B O x
and p GB.

(3) If r(x) = «, then the flats of TX(G) are those of G except those
y such that r(x V y) = r(y) + 1.  But if x is modular these are exactly those
flats such that r(x A j>) = r(x) — 1.  By (1) above, x is modular in this trunca-
tion; and when we truncate again, we remove those flats such that rT(x A y) =
rT(x) - 1, i.e. such that r(x A y) = r(x) — 2. Similarly, after the (n - l)st
truncation we have removed y if and only if r(x A y) = r(x) — k where k G
[1, n - 1], i.e.  1 <r(x A y)<n - 1.  But these are precisely all the flats
which intersect x but do not contain x.

6.  Extensions and connections for classes of geometries.  In this section
we explore an extension property consistent with a given representation of a
geometry (as a binary or ternary chain group, unimodular chain group, or graph).
We then show how such an extension property guarantees that a generalized
parallel connection of two geometries in a particular class can be constructed
within that class.

Definition 6.1.   For a class  K, a subgeometry x of a geometry G in
K has the extension property if whenever x   is a representation for x there
is a representation G' for G such that x' is the canonically induced repre-
sentation of x from G'.

If every pair (G, x) where x is a subgeometry of G in  K has the ex-
tension property, we say  K has the general extension property, while if every
pair (G, x) where x is a modular flat of G in  K has the extension property,
we say  K has the modular extension property.

Using the results of §4 we will assume in the following unless otherwise
stated that all graphical representations are (path) connected and all matrix
representations of G have r(G) rows.

The following examples show that chain groups and graphs do not have
the general extension property while transversal geometries do not even have the
modular extension property.

Examples 62.   1. The subgeometry  {a, b, c, d, e, f} of the geometry
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represented as a chain group over the integers (or rationals) by

a   b   c   d   e   f   x

10   0    12    11

M=    0    1    0    1    3    2    1

0   0    12    3    3   0

does not have the extension property since another representation for this sub-
geometry would be

a   b   c   d   e   f

M' =

10 0 12 3

0 10 13 2

0   0    12    3    3

while if this representation could be extended to a representation for G by
adjoining the column vector (xj, x2, x3) the Une abx would guarantee x3 =
0; the line cdx would guarantee Xj = x2 while the vector (a, a, 0) cannot
he on a line with ef. We may in fact extend the above arguments to the
matrices

M" =

"10 0 12 10 1

0 10 13 2 0 1

0 0 12 3 3 0 0

.0000001 1.

and M1 which now represents a flat of the geometry represented by M".
2. The question, however, of whether modular flats have the extension

property (6.8, 6.9) is open and should prove an interesting research problem.
Since graphical representations of geometries whose graph is three-connected

are unique, the flat {a, b}in the (planar) graph
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although representable graphically by two disconnected edges, must be adjacent
in any graphical representation of G.

3.  For transversal geometries, one readily checks that the (modular) point
a in the geometry represented by the relation

■■>

cannot have a representation

extended to a representation for R so that the modular extension property
does not hold for transversal geometries.

However, two important classes of geometries have the extension property
while another has the modular extension property.

Definition 6.3.   A chain group class K has the unique representation
property if all G G K and matrix representations Mx  and M2 (each with
r(G) rows) of G, then Mx  can be transformed into M2 by a series of oper-
ations consisting of elementary row operations and multiplying columns by
nonzero scalars. This is clearly an equivalence relation on matrices, denoted

Ml ~M2.

Proposition 6.4. A chain group class K with the unique representation
property has the extension property.

Proof.  Let A be a subgeometry of G G K. Assume a matrix M which
represents G has columns C which represent A. Then if Af is another matrix
which represents A, filling out M1 if necessary by adding zero rows we have
M1 ~ C by the unique representation property and we may perform these same
operations in M so that we obtain a new matrix representing G such that a
subset of its columns has the representation M'.

Proposition 65.   The class 8 of binary geometries has the unique repre-
sentation property and hence the extension property when represented over any
field.
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Proof.   This is Theorem 3.7 of [11].

Theorem 6.6. The classes of unimodular geometries, binary chain groups,
and ternary chain groups have the unique representation property and hence the
extension property.

Proof.  Geometries in all three classes were shown to have unique repre-
sentations in Theorem 3.2 of [11].

Proposition 6.7.   In a chain group, points and direct sum factors have
the extension property.

Proof.  In any matrix, points correspond to nonzero vectors and suitable
row operations can make any such vector into, for example, (1, 0, 0, • • • , 0).
Further, if G = x @y and Mx is any matrix representation for x while My
is any representation for y, then

M.(M>")Vo mJ
is a representation for G.

Conjecture 6.8.   Chain groups have the modular extension property.

Remarks 6.9.  To lend some insight into (6.8) we note that it holds for
those modular flats which are points or direct sum factors by (6.7) and for binary
and ternary chain groups by (6.6).

More generally, if a geometry G with a modular flat x is representable
by a matrix M, we may assume by employing row operations if necessary as
in (4.1.2) that

MK o m\

\° ' «J
where Mx represents the modular flat and (by suitable scalar multiplication of
columns) each column c.- of Mx  is zero or identical to a column c¡ of Mx.
Then, if Mx is another representation for x, the conjecture states that we may
construct a representation of G of the form

*\0    I M'J
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where the columns c'- of M\ will necessarily be zero if the corresponding
column of M1 was zero and will be identical to the column c'¡ of M'x if c, G
Ml  was identical to c¡ GMX.  Hence, the conjecture can be restated as saying
that a suitable M'2 can be found.

Another reason to be hopeful that chain groups enjoy the modular exten-
sion property is the following analogous theorem for graphs.

Theorem 6.10. Graphs have the modular extension property.

Proof. Let F be the subgraph representing a modular flat of a graph G
and let P be another graphical presentation of F. Then, by [25], F may be
transformed into P by separating and reconnecting F at cutpoints (*) or by
separating F at a two element cutset and reconnecting at the same two vertices
after reversing the orientation of one of the pieces (**). Under these conditions
F and P were termed two-isomorphic by Whitney.

But since cutpoints induce a direct sum decomposition of F, every cut-
point of F is a cutpoint of G by (3.16) so that any (*) operation of F may
be performed in G to get a new graph G' which is two-isomorphic to G and
contains F as a subgraph. We may thus assume that F and G are both two-
connected.

Now assume  {v, v'} is a two element cutset of F separating F into
vertex components Fj  and F2.  Let G¡ be all the vertices path connected to
a vertex in F{ - {v, v'} by a path disjoint from v and v'. Then no vertex in
G is path connected to a vertex in G2 by a path disjoint from v and v
since by (4.3.2) this would guarantee an edge e in F which connects Fl -
{v, v'} to F2 - {u, v'}. Hence  {v, v'} is a cutset in G and any (**) operation
of F can be extended to G.

Alternate proof.  We mention another proof as an illustration of some
of our previous theorems. We will show as above that if {u, u'} is a cutset of
F, it is a cutset of G and the rest of the proof will follow as above.  But if
[v, v'} is a cutset of F then adjoining the edge e to F between v and v
if necessary (in which case F U e is still a modular flat by 5.7) and then con-
tracting the edge e, [e, FU e]  remains modular by (3.9) but has as a cut-
point the identified vertex vv'. But (3.16) guarantees vv' is a cutpoint of
[e, G U e]   so that  {u, u'} is a cutset of G.

Remarks 6.11. The alternate proof above suggests an extension to geom-
etries of the graphical concept of multiple connectedness. If we define the
connectedness of a geometry c(G) recursively by c(G) = 0, if G is separable
or of rank one while otherwise

c(G) = min {c(\p, G U p] ), c([q, G] )}
p.q
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over all q G G and single element extensions of G by p we note that among
graphical geometries representable by (connected) graphs, then c(G) = k \ff G
is graphically (k + l)-connected.  We also have (by modifying (6.10) and using
(3.9) and (5.7)) that if G has a modular flat F of rank n and connectedness k<n-\,
then G has connectedness at most k.

Theorem 6.12.   Let G and H be geometries in a chain group  K.  Let
x be a modular flat of G, a subgeometry of H, and have the extension prop-
erty in either G or H (6.1). Hence we may assume

M   represents x,

M =        * I represents G, and
VMx  mA

L°      M2Í
\Mx K~\M' = I I represents H[o   mJ

Then the generalized parallel connection PX(G, H) is in  K with the represen-
tation

M(P) =

M2  0   0

Mi MxK

O    0   M2

Proof.  Clearly M(P) exhibits both G and H as subgeometries with
x as a modular flat of G.  But contracting by Mx we have the interval
[Mx, M(P)]   represented by the direct sum

p#2 ol

(with any zero column and any column which is a scalar multiple of another
column deleted) which represents  [Mx, M] © [Mx, M']. We are then done by

(5.9).

Corollary 6.13. // G and H are binary (respectively ternary) pregeom-
etries, so is PX(G, H) which is represented as in (6.12).

Proof. We apply (6.6) to (6.12).

Corollary 6.14. // G and H are in the chain group K and p is a
point forming the intersection of G and H, then the parallel connection
Pp(G, H) is also in  K.
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Proof.  We apply (6.7) to (6.12).
We remark that Conjecture 6.8, if true, would guarantee that any chain

group would be closed under the taking of generalized parallel connections.  A
consequence of (6.5) is that if x is binary, while G and H are in the chain
group  K, so is PX(G, H).

Theorem 6.15.  // G and H are two unimodular geometries with x a
modular flat of G and a subgeometry of H where using (6.6) we may assume
G is represented by the totally unimodular matrix

and H by

M

|o    / M2\

Lo   i M'A '
then the matrix

M(P) =

M2    I    0    0    0

M    0   Mx   0   M\
o   o   o   / m;

is totally unimodular and represents PX(G, H).

Proof.  That M(P) represents PX(G, H) over any field follows from
(6.12). That it is totally unimodular then follows since if any nonzero sub-
determinant D were divisible by a prime p (but not by a prime q) then the
column vectors C which determine D along with a maximal subset of basic
column vectors independent from C would be independent over GF(q) and
dependent over GF(p) contradicting the fact that M(P) represents PX(G, H)
over any field.

Research Problem 6.16.   A very important problem in the theory of
integer programming is the characterization of all totally unimodular matrices
U over the integers. It is well known that examples of such matrices include
the signed circuit incidence matrix of a directed graph (matrix of tensions) and
its dual (matrix of flows) [7], [24]. This class is closed under row-echelon
operations (4.2.2), orthogonality (matroid duality), and generalized parallel
connections (6.15).

For example, if we take the generalized parallel connection of the matrix
of flows of Ks and the matrix of tensions of K33 relative to a common
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three point line (which is a modular flat in both geometries by 3.15) we get a
direct-sum irreducible totally unimodular 6 by 16 matrix which is neither graphic
nor cographic (i.e. cannot be realized as either the matrix of tensions or flows
of a graph).

Is the class  U' consisting of all graphic and cographic matrices and closed
under duals, generalized parallel connections, and row-echelon operations iden-
tical with U?

Theorem 6.17.  Assume G and H are two graphical geometries with x
a modular flat of G and a subgeometry (subgraph) of H (where using (6.10)
we may assume x as a subgraph of G is graphically isomorphic to x as a
subgraph of H).   Then PX(G, H) is graphical, being representable by the graph
P formed from the (vertex and edge) identification of the subgraph x of G
with the subgraph x of H  Hence, the vertex set of P,   V(P), equals (V(G) —
V(x)) U (V(H) - V(x)) U V(x) and two vertices are adjacent in P iff they
were in G or H.

Proof.  G and H are subgraphs and hence subgeometries of P with
the subgraph x a modular flat of G.  Further, contraction of x corresponds
graphically to identifying the vertex set  V(x) to a common vertex v  (and
removing loops and multiple edges). This operation makes v a cutpoint, one-
connecting the graph G with  V(x) identified to v and H with  V(x) identi-
fied to H. We are then done by (5.9).

Examples 6.18.   The geometry K4, the geometry of contractions of the
complete four-graph, is representable as an affine geometry by the picture:

0)

where x = {a, b, c) is a modular flat. It is also representable by the totally
unimodular matrix:

(2)

a b c d e f

10 10 11

0 110 0 1

0  0 0   111
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and by the graph:

(3)

The geometry PX(K4, K4) can be represented in Euclidean three space by:

(4)

(the three-dimensional Desargues configuration), by the totally unimodular matrix:

(5)

d" e' f a b c d e f
'l 1 1 0 0 0 0 0 0
0 1 1 10 10 11
0 0 1 0 110 0 1

_0 0 0 0 0 0 111.

and by the (planar) graph:

(6)

(7) However, graphical planarity is not preserved since the graph G' =
PX(K4, PX(K4, K4)), although the generalized parallel connection of two planar
graphs, is not planar since the subgraph G' - x is the (nonplanar) complete
bipartite graph K3 3.

(8) The class of transversal geometries is also not closed under parallel
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connections since if G is the transversal geometry pictured (4.1.3) and H is a
three point line  {c, x, y} then PC(G, H) is not transversal since it has rank
four but no four element subset spans all its cyclic flats [10]. We remark that
Bixby had already noted that transversal pregeometries were not closed under
parallel connections [4].

7. The characteristic polynomial, modularity, and the critical problem.
In this section we show how the existence of a modular flat x induces a fac-
torization of the characteristic polynomial of a geometry   G: x(G, X) =
x(x, X)p(X), a result proved by Stanley in [22]. We give a geometric inter-
pretation of the quotient p(X) and then study the behavior of the character-
istic polynomial and its associated invariants—the Mobius function [20] and
Crapo's ß invariant [12]—under Brown truncation and generalized parallel con-
nection.  For appropriate classes of geometries these results can then be applied
to the critical exponent of a geometry for chain groups and the chromatic num-
ber for graphs.

Definition 7.1.   The Mobius function of a (geometric) lattice is defined
recursively for all flats x and y of G by p(x, y) = 0 if y 5e x, ¡x(x, x) = 1,
and p(x, y) — - ~Zx<z<yp.(x, z) if y > x. We then define p.(G) by p(0, G)
= ß(0, 1) in the geometric lattice. The characteristic polynomial of G, x(G) =
X(G, X), equals the sum over all flats y of G: Hß(0,y)Xr(-G'>~r(y\

Properties of the characteristic polynomial [5] include x(G, 0) = p(G),
X(G, 1) = 0 (so that x(G) is divisible by X - 1), x(G) - x(G - p)x(p) =
X(G - p)(X - 1) if p is an isthmus of G, and x(G) = x(G - p) - x(\p, G] )
if p is not an isthmus of G.

The Crapo ß invariant is given by

ß(G) = (- 1/(G) £  ju(0, x) r(x) =
xSG

Proposition 7.2 (Stanley).   // x is a modular flat of G then the
characteristic polynomial of x, x(x), divides x(G).

Proof. We use induction on the number of points contained in G but
not x,  \G - x|. If \G - x\ = 0 then G = x and hence x(G) = xOO- Assume
the proposition holds for all G' and x such that  \G' - x\ < k   and let
\G - x\ = k + 1 with p in G - x. If p is an isthmus of G then x(G) =
X(G - p)(X - 1).  Otherwise x(G) = x(G - p) - x(\p, G]). But by (3.9), x
in G is isomorphic to the modular flat x in G - p and the modular flat
\p,x\lp]  in  \p, G]   respectively.  But | \p, G] - \p, x V p] | < \(G - p) -x|
= k so that by induction  x(x) divides x(G - p) and x(\p> G]) so it di-
vides their difference as well as x(G - p)(X — 1).

dx
d\ \=i = \x':g, oí.
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Theorem 73.   1. // 71(G) represents the upper truncation of the geometry
G, then

X(T(G)) = Z ,40, y)(y(0)-r(y)-l _ j}
yEG;r(y)<KC)-l "■V"»™ >

Hence if x(G) = 2k'=0ck\k then

X(T(G)) = £ick\*->+c0.

2. If x is a modular flat with r(x) > 2, and if TX(G) represents the
Brown truncation of G relative to x (5.12), then

x(Tx(G)) = x(G)x(T(x))lx(x)

where x(T(x)) can be computed as above.

Proof.  Since T(G) has rank one less than G and since G and T(G)
agree up to level r(G) — 2, the coefficient of \k in x(G) and the coefficient
of X*-1  in x(T(G)) agree for all 1 < k < r(G) while the constant term of
X(T(G)) may be computed by the equations x(T(G), 1) = x(G, 1) = 0.

To prove the second statement we use induction on  \G - x\ noting that
if |G - x| = 0, then G = x,  TX(G) = T(G), and x(Tx(G)) = x(G)x(T(G))lx(G).
Assume the theorem holds for G' and x suchthat  |G'-x|<& and let
\G - x| = k + 1 with p in G - x. Then using the arguments of (5.14), (7.1),
and the induction hypothesis as in the proof of (7.2) we have if p is an isthmus
of G, it is an isthmus of TX(G) in which case

X(TX(G)) = x(Tx(G - p))(X - 1) = X(G-?fW) (X - 1) = «®^x X(x) X(x)

while if p is not an isthmus of G it is also not an isthmus of TX(G) and we
have

X(TX(G)) = x(Tx(G) -p) - x(\p, Tx(G)]) = X(T (G -p)) - x(T{pxsjp](\p, G]))

_ X(G - p)x(T(x))     x(\P, G] )x(T(\p, x V p] ))
X(x) X\PXV p]

= (X(G -p) - X(\P, G] ))x(T(x)) = x(Gjk(T(x)) ^
X(x) X(x)

We now give an explicit geometrical description of the polynomial obtained
when x(G) is divided by x(*)-
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Corollary 7.4.   // x is a modular flat of G, then the complete Brown
truncation has the characteristic polynomial x(Tx(G)) = x(G)(X - l)lx(x).
Hence the Stanley quotient x(G)lx(x) is equal to the characteristic polynomial
of the geometry formed from the flats of G containing x and those disjoint
from x, divided by X - 1.

Proof.  If r(x) = n, we apply (7.3.2) « — 1  times obtaining:

X(7T*(G)) = X(TTn_2(x)(TTn_3(x)( • • • (Tx(G)) • • •)))

_ X(r"-'(*)) . X(Tn~2(x))       x(T(x)) _ x(T"-1(x))x(G)
X(T"~2(x))   x(Tn~3(x)) XW Xto

But x(T"~1(x)) = X - 1  since Tn~l(x) is a rank one geometry.

Corollary 15 (Stanley).   // x is a modular copoint of G then
X(G) = x(*XX - k) where k=\G - x\.

Proof.  By (7.4), x(G) = x(Tx(G))x(x)l(\ - 1).  But since x is a modular
copoint, y is disjoint from x iff y = p G G - x. Hence TX(G) is isomorphic
to Lk+ j, the rank two geometry (Une) with fc+l = |G-x|-r-l points, and
one readily checks that x(Lk+1) = X2 - (k + 1)X + k = (X - k)(\ - 1).

Corollary 7.6 (Stanley). A supersolvable geometry is one with a sat-
urated chain  {x0 = 0, xl5 ■ • •, xn_v xn = G} of modular flats.  Such geom-
etries were introduced by Stanley in [22] and [23].   They form a class closed
under contractions, deletions by points in G — xn_l, and direct sums; and the
class contains, for example, the partition lattices, projective geometries, rank
one and rank two geometries, and the Dowling lattices.

If G is supersolvable, then x(G) = IT?=1(X - |x, - jci-_ a I).

Proof. This follows from (7.5) and the fact that  {x0, • • •, xk} is a
saturated chain in the (sub)geometry xk.

Lemma 7.7.   If P = PX(G, H) denotes the generalized parallel connection
of G and H relative to x (which is modular in P) then TX(G) =* fH(P).

Proof. H is a modular flat of P by (5.10.1). We then note that y is
a flat of P containing H iff y n G is a flat of G containing x and that y'
is a flat of P disjoint from // iff y' is a flat of G disjoint from x (5.2, 5.3).
We are then done by (5.14.3).

Theorem 7.8. The characteristic polynomial of the generalized parallel
connection may be computed by x(Px(G, H)) - x(G)x(H)lx(x)-

Proof.  Using (7.4) and (7.7) we obtain
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x(P)--^f^=^-rx(Tx(G)) X(H) x(G)(X - 1)
X-l      x(x)

Proposition 7.9. // x is a modular flat of G with characteristic poly-
nomial x(x, X) = Xk=lck\k, then for r(x) > 1,

(T (r^ _ KÇKZM _ M(G)(Cl + c0)
**mm    Kx)     "       70       •

Further

M(r*(G)) ~W) and M(^(G' ̂  - —¿xT '

and if x is connected then

* ß(x)

^{G))~m' and ß(px(-G'Ii))='W

Proof.  The equalities involving the Mobius function are evaluations at
X = 0 of the equations in (7.3.2), (7.4), and (7.8) respectively.

The formulas involving ß are the results of differentiating the equations
in (7.3.2), (7.4), and (7.8) and then evaluating at X = 1, noting that

X(G)
x(x)

.fXG)
ß(x)

by L'HôpitaPs rule since the latter exists when x is connected.  But if g/f =
g'lf, then (gh/f)' = g'h'lf.

Definition 7.10.   The critical exponent [16] of a geometry G of rank
n in the chain group of geometries coordinatizable over a finite field F is the
minimum integer c such that for an imbedding of G into Pn(F), the pro-
jective geometry of rank « over F, there exist c hyperplanes H{, ■ • ■, Hc
such that HX\C\ • • • n Hc n F = 0 This number is independent of the imbed-
ding and is also equal to the minimum number of linear functional f1, • • •, fc
in  V*(F) such that for all points p GG, there is an f¡ such that f.(p) ¥= 0.

We also have that x(G, \F\k) =0   for   ft * 0, 1, • • •    c - 1    and
X(G, \F\k) > 0 for k = c, c + 1, c + 2, • • • . This was shown in [16] and [7]
where it was further proved that if H is a subgeometry of G, then the critical
exponent of H is at most c.

Theorem 7.11. Assume x is a modular flat of a geometry G.   Then:
1. // TX(G) and G are both coordinatizable over the finite field F and
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r(x) > 1, then the critical exponent of TX(G) is at most that of the maximum
of the critical exponents of G and T(x).

2. If TX(G) and G are both coordinatizable, then the critical exponent
of TX(G) is less than or equal to the critical exponent of G.

3. If PX(G, H) is coordinatizable over F, then its critical exponent is
equal to the maximum of the critical exponents of G and H.

Proof. The first two stantements follow from (7.3.2) and (7.4) since if
X(G, |F|Cl)>0 and x(T(x), |Ff2) > 0 (where T(x) is coordinatizable since
it is a subgeometry of TX(G)) then x(*, IF|Cl) > 0 by (7.10) while |F|Cl -
1 > 0 so that x(Tx(G), |F|max(cl'C2)) > 0 and x(fx(G), \F\Cl) > 0.

Similarly we have if   X(G, |F|Cl) > 0   and   x(H, \F\°2) > 0   then
X(x, |F|Cl) > 0 by (7.10) so that x(Px(G, H), F|max(ci'c2>) > 0. Conversely,
the critical exponent of PX(G, H) is at least as large as the critical exponent of
either of its subgeometries G and H by (7.10).

Definition 7.12.   If G is a graph then the chromatic number of G,
c(G), is the minimum number of colors needed to color the vertices of G such
that no two adjacent vertices of G are assigned the same color. More general-
ly, the chromatic polynomial of G, c(G, X), is the number of ways we may assign
colors to the vertices of G subject to the above restriction. Then c(G, X) ■
Xfcx(G, X) (where k is the number of components of G) and c(G) is the
minimum positive integer such that x(G, c) > 0  [7]. Again, if H is a sub-
graph of G, then c(H) < c(G).

The proof of the following theorem mimics that of (7.11).

Theorem 7.13.  // G and H are connected graphs, then the chromatic
polynomial of their generalized parallel connection, c(Px(G, H), X), is equal
to c(G, X)c(//', X)/c(x, X), so that the chromatic number c(Px) of PX(G, H)
is equal to max(c(G), c(H)).
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