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ABSTRACT

Discriminating between computer-generated images (CGIs)

and photographic images (PIs) is not a new problem in dig-

ital image forensics. However, with advances in rendering

techniques supported by strong hardware and in genera-

tive adversarial networks, CGIs are becoming indistinguish-

able from PIs in both human and computer perception. This

means that malicious actors can use CGIs for spoo�ng facial

authentication systems, impersonating other people, and cre-

ating fake news to be spread on social networks. Themethods

developed for discriminating between CGIs and PIs quickly

become outdated and must be regularly enhanced to be able

to reduce these attack surfaces. Leveraging recent advances

in deep convolutional networks, we have built a modular

CGI–PI discriminator with a customized VGG-19 network

as the feature extractor, statistical convolutional neural net-

works as the feature transformers, and a discriminator. We

also devised a probabilistic patch aggregation strategy to deal

∗Also with The University of Edinburgh.
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‡Also with SOKENDAI (The Graduate University for Advanced Studies).
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with high-resolution images. This proposed method outper-

formed a state-of-the-art method and achieved accuracy up

to 100%.
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1 INTRODUCTION

Despite the many bene�ts of computer-generated images

(CGIs), for example in gaming, virtual reality, and 3D anima-

tion, they can also be used for malicious purposes. Videos

generated for creating fake news to gain political advan-

tages, create chaos, or damage reputations can easily spread

uncontrollably in social networks. From the Digital Emily

Project in 2010 [1] to the Face2Face Project in 2016 [34] and

the Synthesizing Obama Project in 2017 [32], the require-

ments for performing a spoo�ng attack have been greatly

simpli�ed, from obtaining 3D scanning information captured

https://doi.org/10.1145/3230833.3230863
https://doi.org/10.1145/3230833.3230863
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by sophisticated devices (which is unrealistic for most at-

tackers) to only needing RGB videos (which can be easily

obtained online), and now to generating spoo�ng video in

real time. Approaches like Face2Face can be used to break

challenge-response tests in facial authentication systems or

to impersonate people in teleconferences. Moreover, recent

advances in generative adversarial networks (GANs) [13]

have overcome the size-limit problem, enabling realistic fa-

cial images to be generated in unprecedented high-de�nition

quality (1024 × 1024) [17]. These developments have raised

alarms in forensics research as well as in security and privacy

areas. Discriminating between such high-quality computer-

generated multimedia and their natural counterparts, espe-

cially in the case of images, is a continuous competition

between the attacker side and the defender side.

Statistical properties obtained from transformed images

(e.g., from wavelet transform or di�erential operators) have

been widely used to distinguish CGIs from photographic im-

ages (PIs) [3, 4, 20, 22, 37, 38] andwere recently demonstrated

to be the best features for discrimination by Rahmouni et

al. [27]. They also demonstrated that applying automatic fea-

ture extraction using a convolutional neural network (CNN)

can substantially improve classi�cation compared with using

handcrafted features.

In addition, the pre-trained VGG networks proposed by

the Visual Geometry Group at the University of Oxford [30]

(VGG-16 and VGG-19) have been widely used in areas out-

side their originally intended scope as image classi�cation

networks, such as for perceptual loss in the style transfer

problem and for the super-resolution problem [16, 19]. Fur-

thermore, these VGG networks were trained using a large-

scale dataset [29], whichmaximizes the generalization ability

of a CNN.

In the research reported here, we leveraged the generaliza-

tion ability of the VGG-19 network, combined with statistical

properties applicable to CNNs, to build a modular CGI–PI

classi�er. To deal with high-resolution images while mini-

mizing computational cost, we use a probabilistic patch ag-

gregation strategy that reduces V-RAM usage and shortens

classi�cation time.

2 RELATED WORK

Previously reported approaches to distinguishing CGIs from

PIs can be classi�ed into four groups.

(1) Using wavelet/wavelet-like transformations or di�er-

ential images

(2) Using the intrinsic properties of image acquisition de-

vices

(3) Using texture information

(4) Using statistical analysis (independently or jointlywith

other methods)

Early research on digital image forensics by Farid and

Lyu [11, 22] suggested that statistics on the �rst- and higher-

order wavelets can be used to classify CGIs and PIs. Wang

and Moulin [36] improved on this approach by using fea-

tures extracted from characteristic functions of wavelet his-

tograms. Chen et al. [3] suggested that a genetic algorithm

could help in selecting an optimal feature set from the sta-

tistical moments of the characteristic functions of an image

and its wavelet subbands. Li et al. [20] used second-order

di�erence statistics while Wu et al. [37] extracted features

from histograms of di�erence images.

To detect CGI–PI splicing, Conotter and Cordin [5] ex-

ploited both wavelet-based features and noise residual statis-

tics. For the same problem, Chen and Ke [4] proposed using

a hybrid classi�er taking as input the pattern noise statistics

and histogram features of �rst- and second-order di�erence

images.

Work on distinguishing between CGIs and PIs includes

work focused on identifying the footprints of image acquisi-

tion devices. Khanna et al. [18] took advantage of the residual

pattern noise caused by both CCD (charged coupled device)

and CMOS (complementary metal oxide semiconductor) sen-

sors inside digital cameras or scanners. Dirik et al. [8] focused

on traces of demosaicing and chromatic aberration in color

�lter arrays (CFAs), as did Gallagher and Chen [12]. Peng

et al. [25] also targeted CFAs and identi�ed the e�ect of

their interpolation on the local correlation of photo response

non-uniformity noise.

Ng et al. [24] proposed a fusion classi�cation system us-

ing the geometry (object model, light, post-processing), the

wavelet, and the cartoon features. Fan et al. [10] clari�ed the

limitations of using wavelets and made use of contour infor-

mation. Zhang et al. [38] extracted the statistical properties

of local edge patches in digital images. Also using statistical

analysis, Li et al. [21] explored the use of uniform gray-scale

invariant local binary patterns. Tan et al. [33] improved pre-

vious work by using the local ternary count based on local

ternary patterns. In other work, Peng et al. [26] proposed

using multi-fractal and regression analysis.

Recently, Rahmouni et al. [27] demonstrated that using

statistics is the best approach to solving this forensic prob-

lem and that applying a CNN substantially improves the

performance of traditional statistical-based methods. To the

best of our knowledge, the method of Rahmouni et al. is

state-of-the-art, with the highest accuracy for distinguishing

between CGIs and PIs.
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Figure 1: Overview of modular CNN discriminator.

3 NETWORK ARCHITECTURE

3.1 Overview

Our modular CNN for discriminating between CGIs and

PIs includes three modules, as illustrated in Figure 1. Un-

like recent work [27], we do not train the whole network

end-to-end. The biggest problem with CNNs is the need to

use a large-scale and diverse-content training dataset in or-

der to achieve the best generalization. The dataset used by

Rahmouni et al. [27] is relatively large but is less diverse

in content than the ILSVRC15 dataset [29]. Unfortunately,

the ILSVRC15 dataset was designed for visual recognition,

not digital image forensics research. However, CNNs have

the ability to transfer learning, so the knowledge gained

from solving one problem can be used to solve a di�erent

but related problem. Therefore, we used one of the winners

of the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) – the pre-trained VGG-19 network, as the feature

extractor module. It is important to note that we did not �ne

tune the feature extractor in the training process.

Although recent work [27, 37] has shown that statistical

properties obtained from transformed images are the best fea-

tures for CGI–PI discrimination, the features extracted from

the pre-trained VGG-19 network were designed for visual

recognition. Therefore, we constructed feature transformer

modules to transform the output extracted by the feature ex-

tractor into statistical features. The number of convolutional

layers in the transformers must be limited to prevent them

from extracting semantic information, but there must be a

su�cient number of such layers to be able to extract good

statistical information.

The �nal module is a classi�er. For this module, we se-

lected the machine learning algorithm among state-of-the-

art ones that has the best classi�cation results.

3.2 Feature Extractor

Johnson et al. [16] suggested that the results obtained from

some activation layers of the pre-trained VGG-16 network

can be used to calculate the feature reconstruction loss and

the style reconstruction loss, which are used for both the

style transfer problem and the image super-resolution prob-

lem. Ledig et al. [19] argued that, in the case of feature recon-

struction loss, using output from a deeper activation layer of

the pre-trained VGG-19 network results in better perceptual

quality than that with Johnson et al.’s approach. Therefore,

there is no standard guideline for the utilization of the VGG

network family. In the case of digital forensics, we hypothe-

sized that features in lower layers have more discriminating

power than ones from higher levels, which mostly contain

semantic information. Moreover, instead of using the output

of the recti�ed linear units (ReLUs) [23], for which negative

values are omitted, we extracted output immediately after

the convolutional layers.
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Figure 2: Detailed design of feature extractor and its

connections with feature transformers and classi�er.

To verify this hypothesis, we performed an experiment us-

ing the patches dataset proposed by Rahmouni et al. [27] and

the pre-trained VGG-19 network. We extracted the outputs

after �ve convolutional layers located immediately before the

max-pooling layers as shown in Figure 2. For the �ve settings

given in Table 1, the combination of layers 1, 2, and 3 gave the

highest classi�cation accuracy. These results indicate that

using only one layer does not produce the highest accuracy.

However, if semantic layers were included, the classi�cation

performance would be a�ected by this irrelevant informa-

tion. Therefore, we chose outputs from layers 1, 2, and 3 in

Figure 2 (conv1_2, conv2_2, and conv3_4, respectively) as

features to be extracted by the feature extractor.
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Table 1: Accuracies for TrainingUsing PatchesDataset

for Five Settings.

Setting Accuracy (%)

1 95.40

1 + 2 97.60

1 + 2 + 3 97.70

1 + 2 + 3 + 4 96.50

1 + 2 + 3 + 4 + 5 96.10

3.3 Feature Transformers

The role of the feature transformers is to transform features

encoded by the pre-trained VGG-19 network into statistical

properties that can be used to distinguish CGIs from PIs.

Because there are three feature transformer modules, it is

necessary to minimize their depths. Moreover, a deep feature

transformer may produce unnecessary semantic informa-

tion, which could negatively a�ect the network. However, a

shallow network has a limited ability to transform the fea-

tures. Therefore, we used two convolutional layers with 3×3

kernels and a stride of 1. We integrated batch normalization

layers [15] into the transformers to regularize their train-

ing processes. Following the batch normalization layers are

the ReLU activation layers. We attached a statistical pool-

ing layer at the end of the modules to extract the statistical

properties. The three feature transformers share the same

architecture, as illustrated in Figure 3.

128 6464

128 64128

128 64256

384 512

features extracted by VGG network

ReLU

dropout

depth64  128 256

384  512

k3s1 convolution

batch normalization

output

linear

statistical pooling

softmax

Figure 3: Detailed settings of feature transformers and

classi�er.

We built the statistical pooling layer following Rahmouni

et al.’s approach [27]. However, we assumed that �nding the

maximum and minimum of each �lter was not necessary

and that these actions would consume computational power,

especially when performing back propagation in the training

phase. Therefore, we calculate only the mean and variance

of each �lter, which are important in statistics and also are

di�erentiable.

• Mean:

µk =
1

H ×W

H
∑

i=1

W
∑

j=1

Iki j

.

• Variance:

σ
2

k =
1

H ×W − 1

H
∑

i=1

W
∑

j=1

(Iki j − µk )
2

.

The k represents the layer index, H andW are respectively

the height and width of the �lter, and I is a two-dimensional

�lter array.

3.4 Classi�er

Feed-forwardmultilayer networks, or multilayer perceptrons

(MLPs), [28] are widely used to build classi�ers in CNNs be-

cause of their di�erentiable property. However, there are

other strong classi�cation algorithms that have been widely

used such as Fisher’s linear discriminant analysis (LDA) al-

gorithm [9] and the support vector machine (SVM) algo-

rithm [6]. Therefore, we �rst use an MLP to build the classi-

�er to train the feature transformers (as well as to train the

classi�er itself). After the training, the feature transformers

are kept �xed, and the classi�er is trained using the LDA and

SVM classi�cation algorithms. The learning curves of these

algorithm are plotted in Figure 4. The proposed network

converged very quickly in the few �rst epochs. The MLP

algorithm had high accuracy but was less stable than the

LDA and SVM algorithms. Since the LDA algorithm usually

has higher accuracy than the SVM one, we evaluated only

MLP and LDA classi�ers, as described in section 5.

In more detail, two properties are extracted by each sta-

tistical pooling �lter: the mean µi and the variance σi . Each

pooling layer has 64 �lters. Since there are three feature

extractor modules, the classi�er receives a 384-dimension

vector. For the MLP algorithm, we used two hidden layers

and one dropout layer [31] in between (with a dropout rate

of one-third to avoid over-�tting). A classi�er using the MLP

algorithm is illustrated in Figure 3. For the LDA and SVM

classi�ers, we used the LinearDiscriminantAnalysis and SVC

module of the scikit-learn library. 1

To choose the best weights for the feature transformers

and the classi�er, we begin from epoch 20 and use the one

with the highest score in the validation set. Although the

1http://scikit-learn.org/
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Figure 4: Learning curves of MLP, LDA, and SVM clas-

si�ers on Patch-100-Full validation set described in

section 5.1

.

proposed network converged very quickly, it is better to

use a longer training time to optimize its weights before

harvesting.

4 PATCH AGGREGATION

Using a CNN with large-scale input requires a large amount

of GPU memory. One possible solution is to split the input

into patches, perform classi�cation, and aggregate the re-

sults [27]. Although this approach can also detect local CGI

inlay in large PI images (or vice-versa), it has high computa-

tional cost, especially when dealing with very large images.

For instance, an image 4900 × 3200 pixels in size would re-

quire 1568 patches if the patch size was 100×100 pixels. This

would result in 1568 classi�cation calculations.

To reduce the number of calculations, we devised an ap-

proach using a probability sampling method that randomly

selects a portion of the patches, performs classi�cation using

the selected patches, calculates the average of the predicted

probabilities, and uses it as the �nal decision. Two patch

selection strategies are illustrated in Figure 5. For some �xed

number of patches (e.g., 10, 25, or 50), we could integrate

them into one batch and feed that batch into the network

instead of feeding each patch separately into the network,

thereby shortening the computation time.

Let

• ypred be the predicted label of input image I , which is

either 0 (PI) or 1 (CGI).

• W be the set of patcheswi extracted from the full-size

image I , |W | = N (patches).

• p(wi ) = D(wi ) be the probability of patch wi being

classi�ed by the proposed network D as CGI.

The probability of I being classi�ed as CGI is calculated

using

p(I ) =
1

N

N
∑

i=1

p(wi ). (1)

Hence, the predicted label of I is

ypred =

{

1, if p(I ) > 0.5

0, otherwise.
(2)

5 EVALUATION

5.1 Datasets

For the image datasets, we began with the one recently con-

structed by Rahmouni et al. [27]. Its CGI part contains 1800

high-resolution (around 1920 × 1080 pixels) screenshots in

JPEG format from �ve photo-realistic video games. The PI

part is taken from the RAISE dataset [7], includes 1800 very

high-resolution JPEG images (around 4900 × 3200) directly

converted from RAW format. Both parts cover many kinds

of indoor and outdoor environments. Sample images from

this dataset are shown in Figure 6.

We made one major change to this dataset. We contend

that the reduced-size images created by cropping high-resolution

images to 650 × 650 are not appropriate for our purposes

because their quality is still good. In reality, many images

and videos have low quality, and a malicious person could

additionally apply transformation to the CGIs, for exam-

ple, scaling them to produce lower quality, to disguise the

attack. Therefore, instead of cropping, we resized each high-

resolution image to 360p resolution using a bilinear interpo-

lation algorithm. This increased the diversity in quality of

images used for evaluation.

In addition to using a patch size of 100× 100, we also used

a patch size of 256 × 256 for the high-resolution images to

reduce the number of patches. This larger patch size could

be used with large-memory GPUs. Moreover, a larger patch

size should contain more valuable information, and with the

size is the power of 2, we could reduce the e�ect of JPEG

artifacts. In addition, we also extracted 100 × 100 patches

from the reduced-size images. The datasets derived from the

original one are summarized in Table 2.

We trained each discriminator on the training sets of the

patch datasets. The valid. sets were used to validate the train-

ing process. After training, the discriminators were tested on

the testing sets of both patch datasets and their correspond-

ing Full-Size or Reduced-Size ones. Moreover, as described

in section 5.3, we also tested the discriminators which were

trained using the Patch-100-Full dataset on the Reduced-Size

dataset to check whether this training strategy is capable of

generalization.
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Figure 5: Patch selection strategies: Selecting all patches (left) vs. random sampling (right).

Figure 6: Sample images from dataset constructed by Rahmouni et al. [27]. Images on the left are PIs and those

on the right are CGIs.

Table 2: Datasets Used for Evaluation.

Name No. for training No. for valid. No. for testing Image size

Full-Size 2,520 360 720 High-resolution

Patch-100-Full 40,000 1,000 2,000 100 × 100

Patch-256-Full 40,000 1,000 2,000 256 × 256

Reduced-Size 2,520 360 720 360p

Patch-100-Reduced 40,000 1,000 2,000 100 × 100

5.2 Testing on High-Resolution Images

For testing on high-resolution images, we trained our pro-

posed method and Rahmouni et al.’s one [27] on the Patch-

100-Full and the Patch-256-Full datasets. We then evaluated

them on both the corresponding patch dataset and the Full-

Size one. The proposed method was also tested for several

patch aggregation strategies, as presented in Table 3. For

the 100 × 100 patch size, it was su�cient to sample only 50

patches to obtain performance equivalent to that of evaluat-

ing all patches on the Full-Size dataset. When the sampling

process avoided some confused areas in the images, sampling

only 10 256× 256 patches outperformed sampling 25 patches
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or evaluating all patches, achieving an accuracy of 100%.

Otherwise, the accuracy was slightly lower (e.g., 99.72%).

Our proposed method substantially outperformed Rah-

mouni et al.’s method [27] on both the Patch-100-Full and

Patch-256-Full datasets. It also had the highest results on the

Full-Size dataset, reaching 100%. A comparison of accuracy

between Rahmouni et al.’s method [27] and the proposed

method is shown in Table 4. Comparing the original 100×100

patch size with the 256 × 256 one shows that increasing the

patch size improves the accuracy of Rahmouni et al.’s method.

Moreover, use of the MLP classi�er rather than the LDA one

in the proposed method resulted in higher accuracy for both

the Reduced- and Full-Size datasets. The ROC curves for

the Patch-100-Full and Full-Size dataset discriminators are

plotted in Figures 7 and 8.
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Figure 7: ROC curves of discriminators tested on

Patch-100-Full dataset. Proposed method used MLP

classi�er.

5.3 Dealing with Low-Resolution Images

In reality, many videos on social networks such as YouTube,

Facebook, and Vimeo have 360p quality. Attackers can take

advantage of this to produce low-resolution videos (and im-

ages) that are more di�cult to detect. The results shown

in Table 5 highlight this problem for discriminators trained

on the Patch-100-Full dataset. Their performance substan-

tially decreased to the random-selection level. To solve this

problem, we mixed the Patch-100-Full and the Patch-100-

Reduced datasets to form the Patch-100-Mixed dataset. We

then retrained the discriminators on this new dataset and

evaluated them on the Patch-100-Reduced & Reduced-Size

datasets and Patch-100-Full & Full-Size datasets.
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Figure 8: ROC curves of discriminators tested on Full-

Size dataset. Proposed method used MLP classi�er.

The results in Table 5 show that both discriminators had

better performance on the Patch-100-Reduced and the Reduced-

Size datasets. However, their performance on the Patch-100-

Full and the Full-Size datasets was slightly lower than with

the previous scheme for high-resolution datasets. The dif-

ference in performance between the proposed method and

Rahmouni et al.’s was also substantially greater. The results

also demonstrated the advantage of choosing among state-

of-the-art classi�ers to �nd the best one; i.e., use of the LDA

classi�er resulted in higher accuracy when the Patch-100-

Mixed dataset was used. The ROC curves for the Reduced-

Size and Full-Size dataset discriminators after being retrained

are shown in Figures 9 and 10.

5.4 Detecting Image Splicing

In an experiment, we used the discriminators to detect image

splicing. Along with the normal way of dividing the test

input into 100 × 100 patches, we also used an overlapping

patch strategy. The probability of splicing for each area is

the average of the probabilities of all patches to which the

area belongs. Although this strategy has a higher calculation

cost, it produces smoother output than the non-overlapping

one. Example images are shown in Figure 11; the input sizes

were 1800×1200 and 1200×800 pixels. Our proposed method

(both overlapped and non-overlapped patches) outperformed

Rahmouni et al.’s one [27]. Although our method did not

�awlessly separate all the splices and had a few minor false

positives, it could detect their relative positions. Rahmouni

et al.’s one, on the other hand, failed to detect the splice in

the �rst image and was confused in the second image.
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Table 3: Accuracy for Several Patch Aggregation Strategies on Full-Size Dataset. The Random Sampling Strategy

Was Evaluated Three Times.

Classi�er MLP LDA

Patch size No. of patches 1 2 3 Avg. 1 2 3 Avg.

100

×

100

10 99.31 99.72 99.86 99.63 99.86 99.31 99.72 99.63

50 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86

100 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86

All 99.86 99.86

256

×

256

5 99.72 99.44 99.72 99.63 99.44 99.03 99.58 99.35

10 100.00 99.72 100.00 99.91 99.86 99.58 99.72 99.72

25 99.86 99.86 99.86 99.86 99.72 99.72 99.72 99.72

All 99.86 99.72

Table 4: Comparison of Accuracy between Rahmouni et al.’s Method [27] and Proposed Method.

Method Patch-100-Full Patch-256-Full Full-Size

Rahmouni et al. - 100 [27] 86.10 × 96.94

Rahmouni et al. - 256 [27] × 93.95 98.75

Proposed method - MLP - 100 96.55 × 99.86

Proposed method - LDA - 100 96.40 × 99.86

Proposed method - MLP - 256 × 98.70 99.72 - 100.00

Proposed method - LDA - 256 × 98.70 99.58 - 99.86

Table 5: Accuracy of Classi�ers Trained on Patch-100-Full Dataset (Old) or on Patch-100-Mixed Dataset (New). For

Simplicity, Proposed Method Used All-Patch Strategy.

Method Patch-100-Reduced Reduced-Size Patch-100-Full Full-Size

Rahmouni et al. (old) [27] 51.50 50.97 86.10 96.94

Proposed method - MLP (old) 52.55 51.81 96.55 99.86

Proposed method - LDA (old) 52.35 51.53 96.40 99.86

Rahmouni et al. (new) [27] 60.45 79.72 81.20 95.00

Proposed method - MLP (new) 88.60 96.67 93.40 97.64

Proposed method - LDA (new) 89.95 97.92 94.80 98.89

6 SUMMARY AND FUTUREWORK

The proposed modular CGI–PI discriminator uses the VGG-

19 network as the feature extractor, statistical convolutional

neural networks as the feature transformers, and the ma-

chine learning algorithm among state-of-the-art ones that

has the best classi�cation results as a discriminator. It out-

performed a state-of-the-art CGI–PI discriminator. The pro-

posed random sampling strategy used for patch aggregation

was demonstrated to be e�ective for large images. Testing

showed that using only high-resolution images for training

is not su�cient to counter real-world attacks.

Our top priority now is to use ensemble adversarial train-

ing [35] to counter adversarial machine learning attacks [14].

This kind of attack is becoming more common and is very

e�ective against machine-learning-based discriminators. A

promising candidate to replace patch aggregation for deal-

ing with high-resolution images is the attention-based ap-

proach [2]. We also plan to adapt the proposed discriminator

to enable it to work with videos, not simply extracting data

frame-by-frame and performing classi�cation to reduce com-

putational time.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Numbers

JP16H06302 and 18H04120.

REFERENCES
[1] Oleg Alexander, Mike Rogers, William Lambeth, Jen-Yuan Chiang,

Wan-Chun Ma, Chuan-Chang Wang, and Paul Debevec. 2010. The

digital emily project: Achieving a photorealistic digital actor. IEEE

Computer Graphics and Applications 30, 4 (2010), 20–31.



Modular CNN for Discriminating between CGIs and PIs ARES 2018, August 27–30, 2018, Hamburg, Germany

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
s
it
iv
e
R
a
te

Proposed method (AUC = 1.00)

Rahmouni et al. (AUC = 0.90)

Figure 9: ROC curves of retrained discriminators

tested onReduced-Size dataset. Proposedmethodused

LDA classi�er.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru
e
P
o
s
it
iv
e
R
a
te

Proposed method (AUC = 1.00)

Rahmouni et al. (AUC = 0.99)

Figure 10: ROC curves of retrained discriminators

tested on Full-Size dataset. Proposed method used

LDA classi�er.

[2] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. 2015. Multiple

object recognition with visual attention. In International Conference

on Learning Representations (ICLR).

[3] Wen Chen, Yun Q Shi, Guorong Xuan, and Wei Su. 2008. Computer

graphics identi�cation using genetic algorithm. In International Con-

ference on Pattern Recognition. IEEE, 1–4.

[4] Zhenwei Chen and Yongzhen Ke. 2012. A Novel Photographic and

Computer Graphic Composites Detection Method. In National Confer-

ence on Information Technology and Computer Science. Atlantis Press.

[5] Valentina Conotter and Lorenzo Cordin. 2011. Detecting photographic

and computer generated composites. In Image Processing: Algorithms

and Systems IX, Vol. 7870. International Society for Optics and Photon-

ics, 78700A.

[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks.

Machine learning 20, 3 (1995), 273–297.

[7] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conotter, and

Giulia Boato. 2015. Raise: A raw images dataset for digital image

forensics. In Multimedia Systems Conference (MMSys). ACM, 219–224.

[8] Ahmet Emir Dirik, Sevinc Bayram, Husrev T Sencar, and Nasir Memon.

2007. New features to identify computer generated images. In Interna-

tional Conference on Image Processing (ICIP), Vol. 4. IEEE, IV–433.

[9] Richard O Duda, Peter E Hart, David G Stork, et al. 1973. Pattern

classi�cation. Vol. 2. Wiley New York.

[10] Shaojing Fan, Rangding Wang, Yongping Zhang, and Ke Guo. 2012.

Classifying computer generated graphics and natural images based on

image contour information. Journal of Information & Computational

Science 9, 10 (2012), 2877–2895.

[11] Hany Farid and Siwei Lyu. 2003. Higher-order wavelet statistics and

their application to digital forensics. In Computer Vision and Pattern

Recognition Workshop, Vol. 8. IEEE, 94–94.

[12] Andrew C Gallagher and Tsuhan Chen. 2008. Image authentication

by detecting traces of demosaicing. In Computer Vision and Pattern

Recognition Workshops. IEEE, 1–8.

[13] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.

Generative adversarial nets. In Advances in neural information process-

ing systems (NIPS). 2672–2680.

[14] LingHuang, AnthonyD Joseph, Blaine Nelson, Benjamin IP Rubinstein,

and JD Tygar. 2011. Adversarial machine learning. In Workshop on

Security and arti�cial intelligence. ACM, 43–58.

[15] Sergey Io�e and Christian Szegedy. 2015. Batch normalization: Accel-

erating deep network training by reducing internal covariate shift. In

International conference on machine learning (ICML). 448–456.

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual

losses for real-time style transfer and super-resolution. In European

Conference on Computer Vision. Springer, 694–711.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Pro-

gressive growing of GANs for improved quality, stability, and variation.

In International Conference on Learning Representations (ICLR).

[18] Nitin Khanna, George T-C Chiu, Jan P Allebach, and Edward J Delp.

2008. Forensic techniques for classifying scanner, computer generated

and digital camera images. In International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 1653–1656.

[19] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew

Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Jo-

hannes Totz, Zehan Wang, et al. 2016. Photo-realistic single image

super-resolution using a generative adversarial network. Computing

Research Repository (CoRR) (2016).

[20] Wenxiang Li, Tao Zhang, Ergong Zheng, and Xijian Ping. 2010. Identi-

fying photorealistic computer graphics using second-order di�erence

statistics. In International Conference on Fuzzy Systems and Knowledge

Discovery (FSKD), Vol. 5. IEEE, 2316–2319.

[21] Zhaohong Li, Jingyu Ye, and Yun Qing Shi. 2013. Distinguishing

computer graphics from photographic images using local binary pat-

terns. In International Workshop on Digital Forensics and Watermarking

(IWDW). Springer, 228–241.

[22] Siwei Lyu and Hany Farid. 2005. How realistic is photorealistic? IEEE

Transactions on Signal Processing 53, 2 (2005), 845–850.



ARES 2018, August 27–30, 2018, Hamburg, Germany H. Nguyen et al.

Original Rahmouni et al. Non-overlapped Overlapped

Figure 11: Three examples of splice detection. Patches detected as CGI are in red; those detected as PI are in blue.

The color intensities illustrate the probabilities of classes.

[23] Vinod Nair and Geo�rey E Hinton. 2010. Recti�ed linear units improve

restricted boltzmann machines. In International conference on machine

learning (ICML). 807–814.

[24] Tian-Tsong Ng and Shih-Fu Chang. 2006. An online system for clas-

sifying computer graphics images from natural photographs. In Se-

curity, Steganography, and Watermarking of Multimedia Contents VIII,

Vol. 6072. International Society for Optics and Photonics, 607211.

[25] Fei Peng and Die-lan Zhou. 2014. Discriminating natural images and

computer generated graphics based on the impact of CFA interpolation

on the correlation of PRNU. Digital Investigation 11, 2 (2014), 111–119.

[26] Fei Peng, Die-lan Zhou, Min Long, and Xing-ming Sun. 2017. Discrim-

ination of natural images and computer generated graphics based on

multi-fractal and regression analysis. AEU-International Journal of

Electronics and Communications 71 (2017), 72–81.

[27] Nicolas Rahmouni, Vincent Nozick, Junichi Yamagishi, and Isao

Echizen. 2017. Distinguishing Computer Graphics from Natural Im-

ages Using Convolution Neural Networks. InWorkshop on Information

Forensics and Security (WIFS). IEEE.

[28] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley,

and Bruce W Suter. 1990. The multilayer perceptron as an approxima-

tion to a Bayes optimal discriminant function. IEEE Transactions on

Neural Networks 1, 4 (1990), 296–298.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet

Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV) 115, 3 (2015), 211–252.

[30] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolu-

tional networks for large-scale image recognition. In International

Conference on Learning Representations (ICLR).

[31] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever,

and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent

neural networks from over�tting. The Journal of Machine Learning

Research 15, 1 (2014), 1929–1958.

[32] Supasorn Suwajanakorn, Steven M Seitz, and Ira Kemelmacher-

Shlizerman. 2017. Synthesizing obama: learning lip sync from audio.

ACM Transactions on Graphics (TOG) 36, 4 (2017), 95.

[33] DQ Tan, XJ Shen, J Qin, and HP Chen. 2016. Detecting computer

generated images based on local ternary count. Pattern Recognition

and Image Analysis 26, 4 (2016), 720–725.

[34] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt,

and Matthias Nießner. 2016. Face2Face: Real-time face capture and

reenactment of RGB videos. In Computer Vision and Pattern Recognition

(CVPR). IEEE, 2387–2395.

[35] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and

Patrick McDaniel. 2018. Ensemble adversarial training: Attacks and de-

fenses. In International Conference on Learning Representations (ICLR).

[36] Ying Wang and Pierre Moulin. 2006. On discrimination between

photorealistic and photographic images. In International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Vol. 2. IEEE, II–II.

[37] Ruoyu Wu, Xiaolong Li, and Bin Yang. 2011. Identifying computer

generated graphics via histogram features. In International Conference

on Image Processing (ICIP). IEEE, 1933–1936.

[38] Rong Zhang, Rang-Ding Wang, and Tian-Tsong Ng. 2011. Distinguish-

ing photographic images and photorealistic computer graphics using

visual vocabulary on local image edges. In International Workshop on

Digital Forensics and Watermarking (IWDW). Springer, 292–305.


	Abstract
	1 Introduction
	2 Related Work
	3 Network Architecture
	3.1 Overview
	3.2 Feature Extractor
	3.3 Feature Transformers
	3.4 Classifier

	4 Patch Aggregation
	5 Evaluation
	5.1 Datasets
	5.2 Testing on High-Resolution Images
	5.3 Dealing with Low-Resolution Images
	5.4 Detecting Image Splicing

	6 Summary and Future Work
	Acknowledgments
	References

