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Abstract. The main objective of this paper is to analyze the geometry of the modular diagonal
quotient surface ZN,ε = ∆ε\(X(N) × X(N)) which classifies pairs of elliptic curves E1 and E2

together with an isomorphism of “determinant ε” between their associated modular representations
mod N . In particular, we calculate some of the numerical invariants of its minimal desingulariza-
tion Z̃N,ε such as its Betti and Chern numbers and determine its place in the Enriques-Kodaira
classification table.

Introduction

Let X(N) = Γ(N)\H∗ denote the modular curve of level N which admits the group GN =
Sl2(Z/NZ)/{±1} as a subgroup of its automorphism group. Then GN × GN acts on the
product surface YN = X(N) × X(N), and hence so does the “graph subgroup” ∆ε =
{(g, αε(g)) : g ∈ GN} associated to the automorphism αε ∈ Aut(G) which is defined by
conjugation by the element Qε =

(ε 0
0 1

)
∈ Gl2(Z/NZ). We propose to call the resulting

quotient surface ZN,ε = ∆α\Y a (twisted) modular diagonal quotient surface; it is a special
case of the general diagonal quotient surfaces studied in [10].

The modular diagonal quotient surfaces occur naturally as the compactifications of the
(coarse) moduli spaces associated to certain moduli problems, as will be explained below.
Furthermore, there is a close analogy between these surfaces and the Hilbert modular
surfaces studied by Hirzebruch and others (cf. van der Geer[3]).

Since ∆ε has finitely many fixed points on YN , the quotient surfaces ZN,ε have finitely
many isolated quotient singularities which may be described explicitly (cf. Theorem 2.1 and
Corollary 2.4 below); in particular, we have:

Theorem 1 If N ≥ 5, the modular diagonal quotient surface ZN,ε has precisely r0+r1+r∞
singularities, where r0 = h(−4N2) and r1 = h(−3N2) are certain class numbers of binary
quadratic forms, and r∞ =

∑
1<d|N φ(d)φ(Nd ) denotes the number of cusps of X1(N). All

are cyclic quotient singularities.
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The above theorem is an easy consequence of the general results of [10], once certain
local invariants have been calculated; this is done in section 1. In the same way we can
determine some of the numerical invariants of its minimal desingularization Z̃ε (cf. Theorem
2.6):

Theorem 2 The desingularization Z̃N,ε of the modular diagonal quotient surface ZN,ε
is a regular surface whose geometric genus pg,ε and Chern numbers K2

ε = c2
1(Z̃N,ε) and

χtop,ε = c2(Z̃N,ε) are given by

pg,ε =
m(N − 12)

144N
+
φ(N)

8
+
r0

8
+

2r1

9
− s1,1,ε

9
+
r∞
3

+
L∞,ε
12
− R∞,ε

12
− 1,

K2
ε =

m(N − 12)
18N

+ φ(N)− s1,1,ε

3
+ 3r∞ −R∞,ε,

χtop,ε =
m(N − 12)

36N
+
φ(N)

2
+

3r0

2
+

8r1

3
− s1,1,ε + r∞ + L∞,ε,

provided that N ≥ 5. Here, m = |GN |, and r0, r1 and r∞ are as in Theorem 1. In addition,
s1,1,ε = 1

2r1 if 3 6 |N , and s1,1,ε = 1
2(1+(−3

ε ))r1, if 3|N , and L∞,ε and R∞,ε are certain sums
involving the lengths of the finite continued fraction expansions of N

q , where 0 < q < N .

It is, however, much more difficult to determine the Kodaira dimension κ of Z̃N,ε since
there does not seem to be an easy method for computing it (cf. the discussion of [10], section
4.) Nevertheless, it turns out rather surprisingly that κ and even the type of the surface
Z̃N,ε is completely characterized by its geometric genus (cf. Theorem 2.11):

Theorem 3 The Kodaira dimension of the modular diagonal quotient surface is given by

κ(Z̃N,ε) = min(2, pg,ε − 1).

Despite the simplicity of the result, its proof is not so direct, for we succeded in proving
it only as a consequence of the following much more precise result. To state it, we adopt the
convention that we view ε as an element of the quotient group (Z/NZ)×/((Z/NZ)×)2: this
is permissible because if ε′ ≡ εd2 (mod N), then αε′ and αε differ by an inner automorphism
of G, and so the resulting surfaces are isomorphic.

Theorem 4 a) Z̃N,ε is a rational surface if and only if pg(Z̃N,ε) = 0, and this is the case
precisely for N ≤ 5 or for (N, ε) = (6, 1), (7, 1) or (8, 1).

b) Z̃N,ε is a (blown-up) elliptic K3-surface if and only if pg(Z̃N,ε) = 1, i.e. if and only
if (N, ε) = (6, 5), (7, 3), (8, 3), (8, 5), (9, 1) or (12, 1).

c) Z̃N,ε is a (blown-up) elliptic surface with κ = 1 if and only if pg(Z̃N,ε) = 2. This is
the case for (N, ε) = (8, 7), (9, 2), (10, 1), (10, 3) or (11, 1).

d) Z̃N,ε is a surface of general type if and only if pg(Z̃N,ε) ≥ 3, or equivalently, if N ≥ 13
or if (N, ε) = (11, 2), (12, 5), (12, 7) or (12, 11).

It is interesting to observe that almost all of Theorem 4 follows relatively easily from
the general criteria of [10], with the exception of the two cases (N, ε) = (10, 3) and (11, 1)
which require a more detailed analysis (cf. Proposition 2.14).
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As was already mentioned above, the modular diagonal quotient surfaces ZN,ε have a
natural modular interpretation. Indeed, by using the well-known modular interpretation of
X ′(N) = Γ\H = X(N)\ {cusps}, it is easy to see that the points of Z ′N,ε := ∆ε\(X ′(N)×
X ′(N)) ⊂ ZN,ε can naturally be identified with triplets (E1, E2, ψ), where E1 and E2 are
elliptic curves and ψ : E1[N ] ∼→ E2[N ] is an isomorphism of the N -torsion subgroups Ei[N ]
of determinant ε; the latter means that the Weil pairings are related by the formula

eE1,N ◦ (ψ × ψ) = eεE2,N .

Furthermore, by using Galois descent it is not difficult to see that the surface ZN,ε has
a “canonical model” over Q (and even over Spec(Z[ 1

N ]) which serves as a coarse moduli
scheme for the moduli functor ZN,ε defined by

ZN,ε(S) = {(E1, E2, ψ) : E1, E2 are elliptic curves over S and ψ : E1[N ] ∼→ E1[N ]
is an S-isomorphism with det(ψ) = ε}/(isomorphisms).

Note that if S = Spec(K), K a number field, then this set may be identified with the set
of isomorphism classes of pairs of elliptic curves together with an isomorphism ψ of the
associated modular Galois representations ρ̄Ei,N : Gal(K̄/K)→ Aut(Ei[N ]).

As a result of this modular interpretation, the above theorem has several interesting
applications which are worth mentioning.

First of all, the above theorem has an interesting connection with a question of Mazur
which was studied by Kraus and Oesterlé [12]. In this question Mazur [15] poses the
problem of finding examples of pairs (E,E′) of non-isogenous elliptic curves over Q such
that for some integer N ≥ 7 their associated Galois representations on their N -torsion
points are symplectically isomorphic, and in [12] such an example is exhibited for N = 7. In
view of the above modular interpretation, Mazur’s question can be rephrased as asking for
the existence of Q-rational points on modular diagonal quotient surface ZN,1 which do not
lie on any “obvious” curves on ZN,1 (such as the curves at infinity or those coming from
the relation of isogeny, i.e. on “graphs of Hecke correspondences”). Viewed in this light,
the above theorem therefore shows that the Kraus-Oesterlé example should come as no
surprise: indeed, since Z7,1 is rational (over Q̄) by Theorem 4, there should exist infinitely
many such examples, at least over a sufficiently large number field K. More generally, one
might expect the following conjecture to be true:

Conjecture 5 For any number field K and any N ≤ 12, there are infinitely many pairs
(E1, E2) of non-isogenous elliptic curves defined over K whose associated Galois represen-
tations mod N are isomorphic.

Theorem 4 gives partial evidence for this: since for N ≤ 12, at least one of the surfaces
Z̃N,ε is either rational or an elliptic fibring, the above conjecture is true if we replace
“any number field” by “any sufficiently large number field” and “non-isogeneous” by “not
isogenous by an isogeny of degree ≤ d” (for any fixed d).

It is an intriguing and important question to determine to what extent the converse of
Conjecture 5 is valid, i.e.

Question 6 For which integers N is it true that there are only finitely many pairs (E,E′)
(up to Q̄-isomorphism) of non-isogenous elliptic curves defined over a number field K whose
associated Galois representations mod N over K are isomorphic?
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Indeed, H. Darmon and others have conjectured that this question has a positive answer
for all sufficiently large N , and this would have far-reaching diophantine consequences such
as the Asymtotic Fermat Conjecture (cf. Frey[2]).

Again, Theorem 4 gives some partial evidence for this, particularly if we admit the
conjecture of S. Lang [14] that almost all of the K-rational points of an algebraic surface Z
of general type are contained in the “exceptional locus” which by definition is the union of
the (conjecturally finitely many) curves of genus ≤ 1 lying on Z. What remains to be done,
however, is to identify these curves as Hecke correspondences (at least when N is large),
but this seems to be a rather formidable problem!

Yet another application concerns the moduli space Mell
2 (N) of curves of genus 2 with

an elliptic differential of degree N which was defined and studied in [8] (see also [7]). By
definition, Mell

2 (N) classifies isomorphism classes of pairs 〈C, f〉 consisting of a curve C of
genus 2 and a (minimal) covering f : C → E of degree N to an elliptic curve E, and it can
be shown (cf. [9]) that this space is a double cover of the Humbert surface with invariant
∆ = N2 (as defined in van der Geer [3], p. 210ff; cf. also [9]). More precisely, one can prove
(cf. [8]) thatMell

2 (N) is an open subvariety of the twisted diagonal quotient surface ZN,−1,
and so we obtain from Theorem 4:

Theorem 7 The (desingularization of the) compactification Mell
2 (N) = ZN,−1 of the

moduli space Mell
2 (N) is rational if N ≤ 5, is a (blown-up) elliptic K3-surface if N = 6 or

7, is an elliptic surface (with κ = 1) if 8 ≤ N ≤ 10, and is of general type if N ≥ 11.

After we had proved a preliminary version of Theorems 4 and 7, R. Weissauer drew our
attention to the article of C. F. Hermann [5] who had also determined the classification type
of the surfaces ZN,ε. Unfortunately, the interesting connection between the geometric genus
pg of Z̃N,ε and the Enriques-Kodaira classification type is not mentioned there; in addition,
the (more subtle) case (N, ε) = (10, 3) is missing in Hermann’s list of elliptic surfaces.1

However, it should be emphasized that our method is substantially different from that of
Hermann in that most of Theorem 6 is deduced from the general classification Theorems 1
– 5, and only in two cases do we need to analyze the surfaces in more detail. This should
be compared to the 14 cases or so which would have to be studied in detail in Hermann’s
article (but were not since virtually all details of his proof were suppressed). In particular,
we do not need Hermann’s curves Fn (which admittedly are of interest in connection with
Mazur’s problem) for the proof of the above theorems, with the possible exception of the
case (N, ε) = (11, 1). Furthermore, there are a number of typographical errors and other
inaccuracies in his paper; cf. Remarks 1.7, 2.2 and 2.12 below.
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with G. Frey, A. Geramita, E. Viehweg, R. Weissauer, and J. Zarhin. The second author
wants to thank Queen’s University for its hospitality during a visit supported by NSERC
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Council of Canada (NSERC) and also by the Advisory Research Council (ARC) of Queen’s
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1After this manuscript was completed, Hermann showed the first author a copy of his (unpublished)
Habilitationsschrift in which both these lacunae were correctly addressed.
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1 Invariants associated to the modular curve X(N)

1.1 The genus of Xk

For each N ≥ 1, the modular curve X(N) is the compactification of the quotient Γ(N)\H
of the upper half plane H by the action of the principal congruence subgroup Γ(N) = {A ∈
SL2(Z) : A ≡ 1 mod N}, where A =

(a b
c d

)
∈ Γ(1) acts on z ∈ H by the linear transformation

z 7→ az+b
cz+d . For the basic properties of X(N) we refer to Schoeneberg [18] or Miyake[16].

The action of Γ(1) on H induces an action of G = GN = Γ(1)/±Γ(N) ' SL2(Z/NZ)/{±1}
on X(N), and the quotient X̄ = GN\X(N) = X(1) ' P1 is rational.

The quotient map π : X(N)→ X̄ is ramified precisely at the points P̄0, P̄1 and P̄∞ ∈ X̄
which are the images of the points i, ρ = e

2πi
3 and ∞ ∈ H∗ = H ∪ Q ∪ {∞}, respectively.

The corresponding ramification indices ek = eP̄k are e0 = 2, e1 = 3 and e∞ = N . More
precisely, if Pk = Pk,N (k = 0, 1,∞) denote (respectively) the images of i, ρ and ∞ ∈ H∗ in
X(N), then the stabilizers Gk = GPk = 〈σk,N 〉 of Pk,N are cyclic groups of order ek with
generators

σ0 = σ0,N :=
(

0 −1
1 0

)
, σ1 = σ1,N :=

(
0 −1
1 1

)
, σ∞ = σ∞,N :=

(
1 1
0 1

)
.

Since the level N will be fixed from now on , we shall suppress the dependence on N in our
notation, as long as this does not lead to any confusion.

For ε ∈ (Z/NZ)× we let αε denote the automorphism of GN induced by conjugation
with the matrix Qε =

(ε 0
0 1

)
∈ Gl2(Z/NZ); i.e.

αε(g) = QεgQ
−1
ε =

(
a εb

ε−1c d

)
, if g =

(
a b
c d

)
.

As was explained in the introduction, we want to study the geometry of the diagonal
quotient surface Z = (X(N) × X(N))/GN , as well as that of its twists Zε = Zαε . From
[10] we know that the fundamental invariants (Betti, Hodge and Chern numbers) of the
desingularization Z̃ε of Zε are determined by three basic invariants Gε = Gαε , Sε = Sαε and
Lε = Lαε (together with the genera g = g(X) and ḡ = g(X̄) = 0), which therefore have to
be computed here. Since all three are defined by invariants involving the quotient curves
Xk,ε = 〈α−1

ε (σk,N )〉\X(N), we begin by calculating their genera gk,ε = g(Xk,ε). For this,
let rk,ε denote the number of ramification points on Xk,ε of the covering πk,ε : X → Xk,ε

and tk,ε the number of fixed points of the group Gk,ε = 〈α−1
ε (σk〉) on X. Then by the

Riemann-Hurwitz formula (together with Schoeneberg [10], p. 76) we have:

Proposition 1.1 If N ≥ 3, the genus g = g(X(N)) of X(N) and the genera gk,ε of its
quotients Xk,ε = Gk,ε\X(N) are given by

g = 1 +m
N − 6
12N

, where m = |GN | =
N3

2

∏
p|N

(
1− 1

p2

)
,

g0,ε = 1
2

(
g + 1− 1

2r0,ε

)
, g1,ε = 1

3 (g + 2− r1,ε) ,

g∞,ε =
g − 1
N

+ 1− 1
2
r∞,ε +

1
2N

t∞,ε.
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We next want to compute the numbers rk,ε and tk,ε, as well as the related invariant
rn,ε(P̄k), which denotes the number of points x ∈ Xk,ε which have ramification degree
ex(πk,ε) = n. It turns out that these are closely related to the following expressions which
may be interpreted as class numbers h(d) of binary quadratic forms of discriminant d (cf.
Hua [6], pp. 321-2):

Notation 1.2 For a positive integer N > 1 put

h(−4N2) = 1
2N

∏
p|N

(
1− 1

p

(−4
p

))
,

h(−3N2) = 1
3N

∏
p|N

(
1− 1

p

(−3
p

))
,

where
(
d
p

)
denotes the Legendre/Kronecker symbol; in particular,

(
−4
2

)
= 0 and

(
−3
2

)
=

−1.

The relation between these expressions and the invariants rk,ε, tk,ε and rn,ε(P̄k) is given
by the following result which will be proved in the next section as a corollary of the com-
putation of the finer “local invariants” sν,ε(P̄l, P̄k).

Proposition 1.3 For N ≥ 5, the isomorphism class of the curve Xk = Xk,ε does not
depend on ε ∈ (Z/NZ)× and hence neither does its genus gk = gk,ε. Furthermore, the same
is true for the invariants rk = rk,ε, tk = tk,ε and rn(P̄k) = rn,ε(P̄k); these are given by

a) r0 = t0 = h(−4N2),

b) r1 = t1 = h(−3N2),

c) rn(P̄∞) = 1
2φ(n)φ(Nn ), for 1 < n | N ,

d) r∞ = 1
2

∑
n|N φ(n)φ(Nn )− 1

2φ(N) and t∞ = m
N −

1
2Nφ(N).

Remark 1.4 Some of the above formulae can be found in the literature albeit in a different
guise. For example, since the stabilizer subgroup of P∞ in GN is G∞ = ±Γ1(N)/± Γ(N),
where Γ1(N) = {A ∈ Γ(1) : A ≡

(1 ∗
0 1

)
mod N}, the quotient curve X∞ is the modular

curve usually denoted by X1(N) = ±Γ1(N)\H∗. Thus, the above two propositions yield
the well-known relation for the genus of X1(N),

g∞ = g(X1(N)) = 1 +
m

12N
− 1

2
ν∞,

where ν∞ = 1
2

∑
ν|N φ(ν)φ(Nν ) for N > 4; cf. Miyake[16], Theorem 4.2.9.

Similarly, the genus of X0 and X1 was determined by Hecke [4] for the case of prime
level N ; however, the presentation of his result is somewhat more indirect and does not
easily generalize to composite N ’s.
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1.2 The local invariants

As was explained in [10], much of the structure of the twisted diagonal quotient sur-
face Zε associated to X = X(N) is known once we have determined the local invariants
sν,ε(P̄l, P̄k) := sν,αε(P̄l, P̄k) which count the number of points x ∈ Xk,ε lying above P̄l whose
“ramification characters” λx,ε are of a certain type (cf. [10], Notation 1.4 and Remark 1.5).
Here we want to compute these numbers and hence derive in particular the values for rk, tk,
etc., which were asserted in Proposition 1.3. In order to state the result, we first introduce
the following notation.

Notation 1.5 For any pair of natural numbers N, k ∈ N with (k,N) = 1, let

ρ(k,N) = |{x ∈ Z/NZ : x2 = k}|

denote the number of square roots of k mod N . Thus, ρ(k,N) = 0 if k /∈ ((Z/NZ)×)2 and
otherwise ρ(k,N) = ρ(N), where

ρ(N) := |(Z/NZ)×2 | = [(Z/NZ)× : ((Z/NZ)×)2] = 2s+t,(1)

where s denotes the number of odd primes dividing N , and t = 0 if 4 6 |N , t = 2 if 8|N and
t = 1 otherwise (cf. Landau [13], Satz 88).

Theorem 1.6 The twisted local invariants sν,ε = sν,αε are related to the standard (un-
twisted) invariants sν = sν,id by the formula

sν,ε(P̄l, P̄k) = s(κν)(P̄l, P̄k), for 1 ≤ ν ≤ ek,(2)

where κ = κk,ε is defined by

κk,ε =

{
1 if k = 0 or k = 1 and 3 6 |N
ε if k =∞ or k = 1 and 3|N,(3)

and (κν) denotes the least positive residue of κν (mod ek). In particular,

rn(P̄l, P̄k) = rn,αε(P̄l, P̄k), where n|ek,(4)

is independent of ε. Furthermore, with the notation introduced in Notations 1.2 and 1.5 we
have
a) sν,ε(P̄l, P̄k) = δνekr1,ε(P̄l, P̄k) = δνek

m
elek

, if l 6= k;
b) s1,ε(P̄0, P̄0) = r2,ε(P̄0, P̄0) = r0 = h(−4N2),

s2,ε(P̄0, P̄0) = r1,ε(P̄0, P̄0) = m
4 −

1
2r0;

c) sν,ε(P̄1, P̄1) = 1
2h(−3N2) = 1

2r1, if ν = 1, 2 and 36 |N,
sν,ε(P̄1, P̄1) = h(−3N2) = r1, if ν = 1, 2, ν ≡ ε (mod 3) and 3|N,
sν,ε(P̄1, P̄1) = 0, if ν = 1, 2, ν 6≡ ε (mod 3) and 3|N,
s3,ε(P̄1, P̄1) = r1(P̄1, P̄1) = m

9 −
1
3r1 = m

9 −
1
3h(−3N2);

d) sν,ε(P̄∞, P̄∞) = 1
2ρ( ενd ,

N
d )φ(d), where d = (ν,N),

rd,ε(P̄∞, P̄∞) = 1
2φ(d)φ(Nd ), if d|N.
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Remark 1.7 As the explicit formulae in Theorem 1.6 show, the local invariants sν,ε(P̄l, P̄k)
depend only on the square class ε · ((Z/NZ)×)2 of ε modulo N . This may also be seen
directly as follows. First note that if ε = e2 is a square modulo N , then conjugation by Qε
is the same as conjugation by

( e 0
0 e−1

)
∈ Sl2(Z/nZ), and hence the map ε 7→ αε induces a

homomorphism

ᾱ : (Z/NZ)× /
(
(Z/NZ)×

)2
→ Aut(GN )/Inn(GN ) = Out(GN ).

Thus, since the local invariants sν,α depend only on the image of α in Out(G) (cf. [10],
Remark 1.5d), the assertion follows.

As regards to the map ᾱ, note that ᾱ is injective for N > 4 (as is easy to see), but that
this is false for n = 4 since G4 is isomorphic to the symmetric group S4 which has no outer
automorphisms whereas ρ(4) = |(Z/4Z)×/((Z/4Z)×)2| = 2.

In Hermann [5], p. 96, it is asserted that ᾱ is in fact an isomorphism (even for N = 4!).
For a proof, Hermann refers to Praetorius [17] §2, who actually only considers the case
N = pr with a prime number p > 3. By showing that Gpr is a characteristic subgroup of
GN , if pr ‖ N and p > 3, one can deduce from Praetorius that this is true if (N, 6) = 1. In
the general case, however, it is still unclear which automorphisms actually exist.

The proof of Theorem 1.6 is based on the group-theoretical method presented in [10],
Proposition 1.7. There it was shown that the local invariants sν,α(x̄, ȳ) are determined by
the orders of certain “normalizing subsets” N∗ν,i(σ, τ) of G attached to generators σ and τ of
the ramification groups Gx and Gy,α = α−1(Gy), where x ∈ π−1(x̄) and y ∈ π−1(ȳ). Recall
from [10], Notation 1.6, that these normalizing sets are defined as follows. If r = (ex, ey)
and k = (ν, r), σ̄ = σex/r, τ̄ = τ ey/r, then for any i ∈ Z:

Nν(σ, τ) = Nk(σ, τ) := {g ∈ G : gσ̄νg−1 ∈ 〈τ̄ν〉} = {g ∈ G : g〈σ̄ν〉g−1 = 〈τ̄ν〉},
N i
ν(σ, τ) = N i

k(σ, τ) := {g ∈ G : gσ̄kg−1 = τ̄ki},
N∗ν (σ, τ) = N∗k (σ, τ) := Nk(σ, τ) \

⋃
d|k,d6=k

Nd(σ, τ),

N∗ν,i(σ, τ) = N∗k,i(σ, τ) := N∗ν (σ, τ) ∩ N i
ν(σ, τ).

In the case that σ = σk and τ = α−1
ε (σk), these normalizing sets are closely related to

the following sets, as we shall see in Lemma 1.9.

Notation 1.8 For k = 0, 1 and ε ∈ (Z/NZ)× let

M̃k,ε(N) =
{
A ∈ Gl2(Z/NZ) : A =

(
x −y
y x+ δ1ky

)
and det(A) = ε

}
,

Mk,ε(N) = {(x, y) ∈ Z/NZ× Z/NZ : qk(x, y) = ε},

where qk(x, y) = x2 + δk1xy + y2. These two sets are related by the map p :
(x y
z w

)
7→ (x, z)

which induces a bijection
pk,ε : M̃k,ε(N) ∼→Mk,ε(N) .
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Furthermore, for d|N and (n, Nd ) = 1 we put

M̃∞,d,n(N) = {
(x y
z w

)
∈ Sl2(Z/NZ) : x ≡ n (mod N

d ), (z,N) = N
d },

M∞,d,n(N) = {(x, y) ∈ Z/NZ× Z/NZ : x ≡ n (mod N
d ) and (y,N) = N

d },

M̃
(2)
∞,d,n(N) =

⋃
ν2=n

M̃∞,d,ν(N) and M
(2)
∞,d,n(N) =

⋃
ν2=n

M∞,d,ν(N).

Here the above map p :
(x y
z w

)
7→ (x, z) induces a bijection

p∞,d,n : M̃∞,d,n(N)/〈σ∞,N 〉
∼→M∞,d,n(N).

Lemma 1.9 If d|N ≥ 5 and (n, Nd ) = (ε,N) = 1, then

a) N∗1,1(σ0,N , α
−1
ε (σ0,N )) = Q−1

ε

(
M̃0,ε(N) ∪Q−1M̃0,−ε(N)

)
/{±1};

b) N∗1,1(σ1,N , α
−1
ε (σ1,N )) = Q−1

ε M̃1,ε(N)/{±1},
N∗1,2(σ1,N , α

−1
ε (σ1,N )) = Q−1

ε

(
M̃1,−ε(N)

(1 1
0−1

))
/{±1};

c) N∗d,n(σ∞,N , α−1
ε (σ∞,N )) = Q−1

ε M̃
(2)
∞,d,εn(N)/{±1}.

Proof. Let f : G̃ := Sl2(Z/NZ)→ G̃/{±1} = GN denote the projection map and put

Ñ i
ε(σk) := f−1(N i

1(σk, α−1
ε (σk))), for k ∈ {0, 1,∞};

thus we have N i
1(σk, α−1

ε (σk)) = Ñ i
ε(σk)/{±1}.

a) Since σ0 has prime order (in GN ), we have N∗1,1(σ0, α
−1
ε (σ0)) = N1

1 (σ0, α
−1
ε (σ0)) =

Ñ1
ε (σ0)/{±1}, and so it is enough to calculate the “twisted centralizer” Ñ1

ε (σ0). For this,
let A =

(x y
z w

)
∈ Sl2(Z/NZ). Then

A ∈ Ñ1
ε (σ0) ⇔

(
x y
z w

)(
0 −1
1 0

)
= ±

(
0 −ε−1

ε 0

)(
x y
z w

)
and xw − yz = 1

⇔ y = −ε−1z, w = εx, εx2 + ε−1z2 = 1 or y = ε−1z, w = −εx,−εx2 − ε−1z2 = 1
⇔ A ∈ Q−1

ε M̃0,ε(N) ∪Q−1
−εM̃0,−ε(N).

b) To determine the twisted centralizer of σ1 we observe that

A ∈ Ñ1
ε (σ1) ⇔

(
x y
z w

)(
0 −1
1 1

)
= ±

(
0 −ε−1

ε 1

)(
x y
z w

)
and xw − yz = 1

⇔
(
y −x+ y
w −z + w

)
= ±

(
−ε−1z −ε−1w
εx+ z εy + w

)
and xw − yz = 1

⇔ y = −ε−1z, w = εx+ z, xw − yz = 1 ⇔ A ∈ Q−1
ε M̃1,ε(N).

Here, the second last equivalence is valid because the case of the minus sign implies 2w =
2y = 0, so 2 = 2(xw − yz) = 0, which is false for N > 2, and the last because Q−1

ε M̃1,ε =
{
(ε−1x −ε−1z

z x+z

)
: x2 + xz + z2 = ε} = {

(x −ε−1z
z εx+z

)
∈ Sl2(Z/NZ)}.
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In the same way one can determine Ñ2
ε (σ1,N ) = {A ∈ G̃ : Aσ1 = ±

(−1 −ε−1

ε 0

)
A}.

c) For a divisor µ of N we have the following equivalences which will be justified below:

A ∈ NG̃(〈±σµ∞〉)

⇔ there is a k:
(
x y
z w

)(
1 µ
0 1

)
= ±

(
1 kµ
0 1

)(
x y
z w

)
and xw − yz = 1

⇔ there is a k :
(
x xµ+ y
z zµ+ w

)
=
(
x+ kzµ y + kwµ

z w

)
and xw − yz = 1

⇔ z ≡ 0 mod
N

µ
and xw − yz = 1.

To justify the second equivalence, note that Aσµ∞ = −σµ∞A leads to z = −z and 2w = zµ =
−zµ = −2w, hence 4 = 4(xw − yz) = 0 which is a contradiction since N > 4.

The last equivalence may be derived as follows. First of all, if zµ+w = w (in Z/NZ), then
z ≡ 0( mod N

µ ), which proves one implication. Conversely, assume that z ≡ 0 (mod N
µ ) and

xw− yz = 1. Thus 1 ≡ xw− yz ≡ xw (mod N
µ ), i.e. (w, Nµ ) = 1 and consequently there are

k′, l such that 1 = k′w+lNµ . By multiplying with xµ, it follows that xµ = xk′µ+lxN ≡ wkµ
(mod N) (with k = xk′), which is the condition of the third line. Therefore

N∗d (σ∞,N ) =
{
A ∈ GN : z ≡ 0 mod

N

d
, z 6≡ 0 mod

N

µ
, µ|d, µ < d}

}
=
{
A : (z,N) = N

d

}
.

Moreover, if A ∈ N∗d (σ∞, σ∞), then the above computation shows that in fact A ∈
Nk
d (σ∞, σ∞) for wkd ≡ xd (mod N) or, equivalently, for k ≡ x2 (mod N

d ), and so the
assertion follows for ε = 1.

From this the general case follows easily. Indeed, if ε∗ε ≡ 1 (mod N), then α−1
ε (σ∞) =

σε
∗
∞ and M̃

(2)
∞,d,ε∗n(N) = Q−1

ε M̃
(2)
∞,d,εn(N), and so we see that

N∗d,n(σ∞, α−1
ε (σ∞)) = N∗d,n(σ∞, σε

∗
∞)) = N∗d,ε∗n(σ∞, σ∞) = M̃

(2)
∞,d,ε∗n(N)=Q−1

ε M̃
(2)
∞,d,εn(N).

We now count the number of elements in each of the above sets.

Lemma 1.10 For any N, d, ε and n ∈ N with d | N and (ε,N) = (n, Nd ) = 1 we have

a) |M̃0,ε(N)| = |M0,ε(N)| = 2h(−4N2), if 4 6 |N,
|M̃0,ε(N)| = |M0,ε(N)| = 2h(−4N2)

(
1 +

(
−1
ε

))
, if 4|N ;

b) |M̃1,ε(N)| = |M1,ε(N)| = 3h(−3N2), if 3 6 |N,
|M̃1,ε(N)| = |M1,ε(N)| = 3h(−3N2)

(
1 +

(
−3
ε

))
, if 3|N ;

c) |M̃∞,d,n(N)| = |M∞,d,n(N)| ·N = dφ(d)N,

|M̃ (2)
∞,d,n(N)| = |M (2)

∞,d,n(N)| ·N = ρ (n, N
d

) dφ(d)N.

Proof. a) Keller [11] (The proof is similar to b) below.)
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b) As was already remarked in Notation 1.8, we have a bijection M̃1,ε
∼→ M1,ε, so the

the first equality in each case is clear. Since M̃ := ∪εM̃1,ε is a subgroup of Gl2(Z/NZ),
and since M̃1,1 = Ker(det|M̃ ), we see that M̃1,ε is either empty or an M̃1,1-coset, and that

the latter occurs precisely when ε ∈ D := det(M̃) ⊂ (Z/NZ)×. Thus, the assertion follows
once we have determined D and have shown that |M̃1,1(N)| = 3h(−3N2); for this we shall
use the quadratic form interpretation of M̃1,ε(N) ∼→M1,ε.

Since by Chinese remainder theorem the number of solutions of the given equation is
multiplicative (as a function of N), as is 3h(−3N2), it suffices to consider powers of primes
N = pr. If p 6= 2, we can transform the quadratic form a2 + ac+ b2 to x2 + 3y2 by putting
a = x+ y and c = −2y. Thus, if p > 3 then we see that D = (Z/NZ)× (cf. [6], p. 310), and
so by using the same arguments as in Keller[11] we get the result in this case.

If p = 3, then clearly −1 /∈ D, so D = ((Z/NZ)×)2 since D contains the squares which
have index 2 in (Z/NZ)×. Furthermore, since

(
1−3y2

3r

)
=
(

1
3

)
= 1, the equation x2 = 1−3y2

has exactly two solutions for each y ∈ Z/3rZ, which means that |M1,1| = 2 · 3r. Thus, the
formula is true in this case.

Finally, if p = 2 then D = (Z/NZ)×. Indeed, D certainly contains all squares, i.e. all
x ≡ 1 mod 8. Choosing a ≡ c ≡ 1 (mod 2) we have a2 + ac+ c2 ≡ 2 + ac (mod 8) and thus
all other residue classes modulo 8 appear in D, i.e. D = (Z/NZ)×. Since a2 + ac + c2 ≡
0 (mod 2)⇔ a ≡ b ≡ 0 (mod 2) we obtain |M̃1,1(N)| = |M̃ |/|D| = (22r − 22(r−1))/2(r−1) =
2r−1 · 3 = 3h(−3 · 22r).

c) It is clear that the second formula follows from the first. To prove the latter, we may
assume by the Chinese remainder theorem that N = pr and d = ps are prime powers. We
now distinguish two cases:
Case 1: r = s. Here we have only the condition (z,N) = 1. The number of choices for z
is therefore φ(N), and for each choice of x,w (mod N), there is a unique y (mod N) such
that xw − yz ≡ 1 (mod N). Thus, we have in total φ(N)N2 matrices in M̃∞,d,n(N) and
φ(N)N vectors in M∞,d,n(N).
Case 2: r > s. The number of x (mod N) with x ≡ n (mod N

d ) is clearly d. Note that
for each such x we have (x, p) = 1 because (n, pr−s) = 1 by hypothesis. Thus, for each y, z
there is a unique w (mod N) such that xw − yz ≡ 1 (mod N). Of these, the number of z
satisfying (z,N) = N

d is φ(d), so in total we have dφ(d)N matrices and dφ(d) vectors.

For the proof of Theorem 1.6 we also need the following fact.

Lemma 1.11 If N ≥ 5, ε ∈ (Z/NZ)× and x̄ 6= ȳ ∈ X̄, then Gx ∩ Gy,ε = {1}, for all
x ∈ π−1(x̄) and y ∈ π−1(ȳ), and hence sν,ε(x̄, ȳ) = 0, for 1 ≤ ν < eȳ.

Proof. Since ±Γ1(N) has no elliptic elements for N > 4 (cf. [16], Th. 4.2.9), we have
Gx ∩ Gy = {1} for y = P∞ and for all x ∈ π−1(P̄k), k = 0, 1. Now since αε(σ∞) = σε∞,
we see that Gy,ε = α−1

ε (Gy) = Gy, and hence also Gx ∩ Gy,ε = {1}. Furthermore, if
y′ = gy ∈ π−1(ȳ), then Gx ∩Gy′,ε is a conjugate of Gx′ ∩Gy,ε for a suitable x′ = g′x, and
hence is also trivial. Thus, the assertion holds for x̄ = P̄k, k = 0, 1 and ȳ = P̄∞, and also
for x̄ = P̄∞ and ȳ = P̄k, k = 0, 1, since Gy ∩Gx,ε = α−1

ε (Gx ∩Gy,ε−1). This proves the first
statement since the assertion is trivial for all other pairs of distinct points, and the second
follows immediately from the first from the definition of sν,ε(x̄, ȳ); cf. [10], Notation 1.4.
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Proof of Theorem 1.6. It is enough to verify the formulae in a) – d), for (2) clearly follows
from these, and (4) follows from (2) since by Remark 1.5 of [10] we have (with e = eȳ)

rn,α(x̄, ȳ) =
e∑
ν=1

(ν,e)= e
n

sν,α(x̄, ȳ),(5)

and since multiplication by κ permutes the ν with (ν, ek) = ek
n .

a) For ν 6= ek, this follows directly from Lemma 1.11, and hence, in view of (5), the
result also holds for ν = ek because we always have (cf. [10], Remark 1.5):

ek∑
ν=1

sν,ε(P̄l, P̄k)(ν, ek) =
∑
d|ek

rd,ε(P̄l, P̄k)
ek
d

=
m

el
.(6)

b) Fix ε and put σ′k := α−1
ε (σk). Then we have trivially λPk,αε(σ

′
k) = λPk(σk), where

λPk,αε = λPk ◦αε is the twisted local ramification character (cf. [10], Notation 1.2, 1.3), and
hence it follows from [10], Proposition 1.7c) that

sν,ε(P̄k, P̄k) =
1
dek
|N∗ν,ν̄∗(σk, σ′k)| =

1
dek
|N∗d,ν̄∗(σk, σ′k)|,(7)

where d = (ν, ek) and ν̄∗ νd ≡ 1 (mod ek
d ). Thus, since the combination of Lemmas

1.9a) and 1.10a) yields |N∗1,1(σ0, σ
′
0)| = 2h(−4N2), we obtain from (7) that s1,ε(P̄0, P̄0) =

1
2 |N

∗
1,1(σ0, σ

′
0)| = h(−4N2), which does not depend on ε. Furthermore, since e0 = 2 we

have by (5) and a) that s1,ε(P̄0, P̄0) = r2,ε(P̄0, P̄0) =
∑
x̄∈X̄ r2,ε(x̄, P̄0) =: r0,ε = r0. The

second equation of b) follows from the first by using (5) and (6).
c) From Lemmas 1.9b) and 1.10b) we have |N∗1,1(σ1, σ

′
1)| = 3

2h(−3N2), if 3 6 |N (and
|N∗1,1(σ1, σ

′
1)| = 3h(−3N2), if 3|N and ε ≡ 1 (mod 3), and |N∗1,1(σ1, σ

′
1)| = 0, if 3|N and

ε 6≡ 1 (mod 3)), and so by the same argument as in a) we obtain the indicated values for
s1,ε(P̄1, P̄1) = r1,ε(P̄1, P̄1). The formula for s2,ε(P̄1, P̄1) is proven similarly, and the formula
for s3,ε(P̄1, P̄1) follows from (5) and (6).

d) Let ν̄∗ be such that ν̄∗ νd ≡ 1 (mod N
d ), where d = (ν,N). Then by Lemmas 1.9c)

and 1.10c) we have |N∗d,ν̄∗(σ∞, σ′∞)| = 1
2ρ(εν̄∗, Nd )dφ(d)N = 1

2ρ( ενd ,
N
d )dφ(d)N , the latter

since (νd )/ν̄∗ is a square mod N
d . Thus, by (7) we obtain sν,ε(P̄∞, P̄∞) = 1

2ρ( ενd ,
N
d )φ(d), as

asserted. The last formula of d) follows from the previous one by using (5) and the fact
that

n∑
ν=1

(ν,n)=1

ρ(εν, n) = φ(n).

Proof of Proposition 1.3. The first assertion follows directly from Lemma 1.12 below, and
the independence assertions follow from (4). It thus remains to prove the asserted formulae.

a), b) If ex̄ = p is prime, then rx̄ = tx̄ = rp(x̄) =
∑
sν(x̄), where the sum is over all ν

with 1 ≤ ν < ex̄ and (ν, ex̄) = 1, and so both a) and b) follow directly from Theorem 1.6.
c) Since rn,ε(P̄∞) =

∑
x̄∈X̄ rn,ε(x̄, P̄∞) by definition, we have by Theorem 1.6a), d) that

rn,ε(P̄∞) = rn,ε(P̄∞, P̄∞) = 1
2φ(n)φ(Nd ).
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d) The formula for r∞ follows directly from part c), and that for t∞ follows from c)
together with the following (well-known) identity which, in view of Theorem 1.6d), follows
from formula (6) above:

1
2

∑
ν|N

νφ(ν)φ
(
N

ν

)
=

m

N
= 1

2N
2
∏
p|N

(
1− 1

p2

)
.(8)

In the above proof we had used the following result.

Lemma 1.12 For each k = 0, 1,∞ the stabilizer Gk,ε = α−1
ε (Gk) is conjugate to Gk;

more precisely, we have αε(σk) = τ−1
k σκεk τk, where κε = κk,ε is as in (3) and τk = τk,ε ∈

Sl2(Z/NZ)/{±1}; in fact, we can take τk = 1 if k =∞ and τk = g±k,εQ
−1
±ε with g±k,ε ∈ M̃k,±ε,

if k = 0, 1.

Proof. Since αε(σ∞) = σε∞, the assertions are clear for k =∞.
For k = 0, 1,we first observe that either M̃k,ε(N) or M̃k,−ε(N) is non-empty (cf. Lemma

1.10), so there exists an element g±k,ε ∈ M̃k,±ε. Clearly τk := g±k,εQ
−1
±ε ∈ Sl2(Z/NZ) and

τkQ±ε = g±k,ε ∈
⋃
µ M̃k,µ(N) = CGl2(Z/NZ)(σk). Thus Q−1

±ετ
−1
k σkτkQ±ε = σk, or τ−1

k σkτk =
Q±εσkQ

−1
±ε = αε(σ±1

k ). This proves the assertions, for the (−1)-case is only plays a role if
k = 1 and in this case is only necessary if 3|N and ε ≡ 2 (mod 3) (cf. Lemma 1.10).

Corollary 1.13 The character h1
αε afforded by the G-module H1(X(N),C) (endowed with

the twisted G-action) is independent of ε, i.e. h1
αε = h1.

Proof. The above Lemma 1.12 implies that (1α−1(Gk))G = (1Gk)G, for k = 0, 1,∞, and so
the assertion follows directly from [10], Proposition 1.8, Equation (16).

Although h1
ε = ωε + ωε, where ωε = ω ◦ αε denotes the character afforded by the G-

module H0(X,ωX) of holomorphic differentials (with the twisted G-action), it is not true
in general that the character ωε is independent of ε. However, we have:

Proposition 1.14 For any character χ of G and any ε ∈ (Z/NZ)× we have χ−ε = χε,
where χε := χ ◦ αε, and hence also ω−ε = ωε. In particular, if −1 is a square mod N , then
ωε = 1

2h
1 is independent of ε.

Proof. In view of the above corollary and the remarks after it (together with Remark
1.7), the last assertions clearly follow from the first. Furthermore, since α−ε = αε ◦ α−1,
it is enough to verify the first assertion for ε = 1, and for this it suffices to prove that
α−1(A) =

( a −b
−c d

)
is conjugate to A−1 for all A =

(a b
c d

)
∈ Sl2(Z/NZ), where N = pr is a

prime power. For the p-adic valuation we have w.l.o.g. vp(a − d) ≥ min{vp(b), vp(c)} =: s
(otherwise consider A′ =

(1 0
1 1

)
A−1 =

( a−b b
a−d+b+c b+d

)
). If s = vp(c) then c

ps ∈ (Z/prZ)∗ and

hence S :=
(1 a−d

ps
( c
ps

)−1

0 1

)
∈ Sl2(Z/prZ). Observing that ca−dps ( c

ps )−1 = a − d (in Z/prZ) we
find Sα−1(A)S−1 = A−1. In the case that s = vp(b) we use S =

( 1 0
d−a
ps

( b
ps

)−1 1

)
.
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2 The diagonal quotient surfaces ZN,ε and Z̃N,ε

2.1 The singularities of ZN,ε

Now that we have calculated the local invariants sν,αε of the modular curve X = X(N),
we can apply the general results of [10] to determine the geometry of the modular diagonal
quotient surface Zε = ZN,ε = ∆ε\(X(N)×X(N)), where ∆ε = {(g, αε(g)) : g ∈ GN}.

We begin by summarizing the nature of the singularities of ZN,ε. Recall from [10] that
every diagonal quotient surface has only cyclic quotient singularities and that these may be
classified according to their type (n, q); this means that the singularity in question has the
form An,q = Cn\C2, where the cyclic group Cn acts on C2 via σ(z1, z2) = (χ1(σ)z1, χ2(σ)z2)
where the “weights” χi : Cn → C

× have order n and satisfy χ1 = χq2.
To state the result, we let ϕ and ψ denote the canonical quotient maps induced by the

inclusion of subgroups {1} ≤ ∆ε ≤ GN ×GN :

Y = X(N)×X(N)
ϕ−→ Zε

ψ−→ Ȳ = X(1)×X(1) ∼= P
1 × P1.

Theorem 2.1 a) For N ≥ 5 the set Sε of singularities of Zε decomposes into the disjoint
union of the sets Sk,ε = Sε ∩ ψ−1(P̄k, P̄k) of singularities lying over (P̄k, P̄k) ∈ Ȳ , where
k = 0, 1,∞.

b) The total number of singularities over (P̄k, P̄k) is given by |Sk,ε| = rk, where rk is as
in Proposition 1.3; in particular, this number does not depend on ε. Moreover:

1. All r0 singularities in S0,ε are of type (2, 1).

2. We have r1 = s1,1,ε + s1,2,ε, where s1,q,ε denotes the number of singularities in S1,ε of
type (3, q), q = 1, 2. Moreover, if 3 6 |N , then both types occur equally often (so s1,q,ε =
r1
2 ), whereas if 3|N , then all r1 singularities are of type (3, q), where q ≡ ε (mod 3).

3. For each d|N , d 6= N , and each q ∈ ((Z/Nd Z)×)2, there are 1
2ρ(Nd )φ(d) singularities

of type (Nd , εq) in S∞,ε, and other types do not occur. In particular, if N is prime,
Zε has exactly one singularity of type (N, q) for every 1 ≤ q < N with

( q
N

)
=
(
ε
N

)
.

Remark 2.2 In [5], Hilfssatz 1, Hermann claims that |S0,ε| = N
2

∏
p|N

(
1−

(
−1
p

))
and

|S1,ε| = N
3

∏
p|N

(
1−

(
−3
p

))
, rather than the above values |S0,ε| = N

2

∏
p|N

(
1− 1

p

(
−1
p

))
and |S1,ε| = r1 = N

3

∏
p|N

(
1− 1

p

(
−3
p

))
. Presumably this is a typographical error in [5].

Proof of Theorem 2.1. a) In view of [10], Theorem 2.3b), this is equivalent to the assertion
that sν,αε(x̄, ȳ) = 0 if x̄ 6= ȳ and 1 ≤ ν < eȳ, which is true by Theorem 1.6a).

b) By [10], Theorem 2.3c), we have |Sk,ε| = rk,αε , which by (4) does not depend on ε
(and hence is given by Proposition 1.3). The last assertions follow immediately from the
fact that if d = (ν, ek), then the number of singularities of type ( ekd ,

ν
d ) in Sk,ε is sν,αε(P̄k, P̄k)

(cf. [10], Theorem 2.3) which by Theorem 1.6 has the indicated values.

The above theorem describes mainly the number of singularities of a given type. How-
ever, by analyzing the above proof, we see that we have also determined the singularities
themselves as well in the process. To make this more precise, let us first introduce the
following notation.

14



Notation 2.3 For ε ∈ (Z/NZ)×, let

M∗k,ε(N) = {(x, y) ∈ Z/NZ× Z/NZ : qk(x, y) ≡ ±ε (mod N)}, if k = 0, 1,
M∗∞,ε(N) = {(x, y) ∈ Z/NZ× Z/NZ : gcd(x, y,N) = 1, gcd(y,N) 6= 1},

where q0(x, y) = x2 + y2 and q1(x, y) = x2 +xy+ y2; cf. Notation 1.8. Furthermore, if d|ek,
d 6= ek and 1 ≤ n < ek, (n, ekd ) = 1, then let M∗k,ε,d,n := M∗k,ε,d,n(N) ⊂M∗k,ε := M∗k,ε(N) be
defined as follows:

M∗0,ε,1,1 = M∗0,ε = M0,ε ∪ M0,−ε,

M∗1,ε,1,1 = M1,ε, M∗1,ε,1,2 = M1,−ε,

M∗∞,ε,d,n = M
(2)
∞,d,εn.

It thus follows from the definitions that

M∗k,ε =
·⋃
d,n

M∗k,ε,d,n,

and from Lemma 1.9 that

pε(N∗d,n(σk, α−1
ε (σk))) = M∗k,d,n,ε/{±1},

where pε(
(x y
z w

)
) = (εx, z). In particular, for each (x, y) ∈ M∗k,ε,d,n there is an element

σk,ε,x,y ∈ N∗d,n(σk, α−1
ε (σk)) ⊂ Sl2(Z/NZ)/{±1} such that pε(σk,ε,x,y) = (x, y). (For ex-

ample, σ0,ε,x,y = Q−1
ε

(x −y
y x

)
=
(ε−1x −ε−1y

y x

)
, if (x, y) ∈ M0,ε, and σ0,ε,x,y = Q−1

−ε
(−x y
y −x

)
=(ε−1x ε−1y

y −x
)
, if (x, y) ∈M0,−ε, etc.)

Note that if we view the elements of M∗k,ε as column vectors, then ±σk acts on M∗k,ε,d,n
and hence also on M∗k,ε; we shall denote the quotient space of this action by M

∗
k,ε,d,n =

〈±σk〉\M∗k,ε,d,n, and by M∗k,ε = 〈±σk〉\M∗k,ε.

Corollary 2.4 If N ≥ 5, then the map (a, c) 7→ zk,ε,a,c := ϕ(σk,ε,a,cPk, Pk) induces a
natural bijection

ζk,ε : M∗k,ε
∼→ Sk,ε

between the set M∗k,ε := 〈±σk〉\M∗k,ε of ±σk-orbits of M∗k,ε and the set Sk,ε of singularities
of Zε which lie above (P̄k, P̄k). Furthermore, if (a, c) ∈ M∗k,ε,d,n, then zk,ε,a,c = ζk,ε(a, c) is
a singularity of type ( ekd , q), where qn ≡ 1 (mod ek

d ). In particular, if a, c ∈ Z satisfy the
conditions d := (c,N) > 1 and (a, d) = 1, then z∞,ε,εa,c = (π̃(ac ), P∞) is a singularity of
type (d, q), where qεa2 ≡ 1 (d) and π̃ : H∗ → X(N) = Γ(N)\H∗ denotes the quotient map.

Proof. We first note that it follows from Lemma 1.9 that the above map pε :
(a b
c d

)
7→ (εa, c)

induces a bijection
p̄ε : Gk,ε\N∗d,n(σk, σ′k)/Gk

∼→ M
∗
k,ε,d,n,

where σ′k = α−1
ε (σk). On the other hand, since λk(σk) = λk,ε(σ′k) (cf. the proof of Theorem

1.6), it follows from [10], Corollary 2.5c), that the map g 7→ ϕ(gPk, Pk) induces a bijection

Gk,ε\N∗d,n(σk, σ′k)/Gk
∼→ Sdq,αε(P̄k, P̄k),

where Sdq,αε(P̄k, P̄k) denotes the set of singularities lying above (P̄k, P̄k) which are of type
( ekd , q), where nq ≡ 1 (mod ek

d ). Combining these two bijections, we see that the assignment
ζk,ε : (a, c) 7→ ϕ(p̄−1

ε (a, c)Pk, Pk) = ϕ(σk,ε,a,cPk, Pk) yields the desired bijection.
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2.2 The configuration of exceptional curves on Z̃N,ε

We now turn our attention to the minimal desingularization σ : Z̃ε → Zε of Zε, which is
obtained from Zε by replacing each singularity s ∈ Sε by an “exceptional curve” Es. Here
Es = Cs,1 + . . . + Cs,rs is a chain of P

1’s whose length rs and self-intersection numbers
C2
s,j = −cs,j are determined by the continued fraction expansion ns

qs
= [[cs,1, . . . , cs,rs ]] of

ns
qs

, where (ns, qs) denotes the type of the singularity s ∈ Sε; cf. [1], III.2 or [10], section
3.2.

We can view the surface Z̃ε as an X(N)-fibration over X̄ ' P
1 in two ways. Indeed,

if ψ̃i : Z̃ε → X̄ denotes the composition of ψ̃ = ψ ◦ σ : Z̃ε → Ȳ with the i-th projection
map pri : Ȳ = X̄ × X̄ → X̄, where i = 1, 2, then all except three of the fibres ψ̃−1

i (x̄) of ψ̃i
are isomorphic to X(N) (cf. [10], Proposition 2.1) whereas those over P̄k, k = 0, 1,∞, are
reducible: their components consist of the above exceptional curves Cs,j together with the
curves C̃k,i which are the proper transforms under σ of the curves Ck,1 = ϕ(P̄k ×X) and
Ck,2 = ϕ(X × P̄k) on Zε. More precisely, we have:

Proposition 2.5 The divisor E =
∑
s∈Sε Es of exceptional curves on Z̃ε is the sum of the

three disjoint curves Ek =
∑
s∈Sk,ε Es =

∑
s∈Sk,ε

∑rs
j=1Cs,j, where k = 0, 1,∞. If we put

Dk = C̃k,1 + C̃k,2 + Ek, D∗k = ψ̃∗1(P̄k) + ψ̃∗2(P̄k), and D′k = D∗k −Dk,

then we have:
a) E0 is the sum of r0 disjoint (−2)-curves joining C̃0,1 to C̃0,2, and we have

ψ̃∗i (P̄0) = 2C̃0,i + E0, for i = 1, 2, and hence D∗0 = 2D0, D′0 = D0.(9)

b) E1 = E11 +E12 decomposes into two disjoint curves E11 and E12, where E11 consists
of s1,1,ε disjoint (−3)-curves joining C̃1,1 to C̃1,2, whereas E12 consists of s1,2,ε disjoint
(−2)-chains of length 2 joining C̃1,1 to C̃1,2. Moreover, if E12i denotes the sum of the
components of E12 which meet C̃1,i, then

ψ̃∗i (P̄1) = 3C̃1,i+E1 +E12i, for i = 1, 2, and thusD∗1 = 3D1−E11, D
′
1 = 2D1−E11.(10)

c) E∞ =
∑
s∈S∞ Es decomposes into r∞ disjoint P1-chains Es = Cs,1 + . . . + Cs,rs

indexed by s ∈ S∞,ε = ζ∞,ε(M∗∞,ε). Moreover, if s = z∞,ε,a,c, where ns := (c,N) 6= 1,
and (a, ns) = 1, then s is a singularity of type (ns, qs), where a2qs ≡ ε (mod ns) and
hence C2

s,j = −cs,j, where ns
qs

= [[cs,1, . . . , cs,rs ]] is the continued fraction expansion of ns
qs

.
Furthermore,

ψ̃∗i (P̄∞) = NC̃∞,i +
∑

s∈S∞,ε

rs∑
j=1

as,i,jCs,j ,(11)

where i = 1, 2 and the coefficients as,i,j are determined from the continued fraction expansion
of ns

qs
by the recursion relations as,i,j+1 = cs,jas,i,j − as,i,j−1, 1 ≤ j ≤ rs, together with the

boundary conditions as,1,0 = as,2,rs+1 = N , as,1,rs+1 = as,2,0 = 0.
d) Each C̃k,i is a smooth curve of genus gk whose self-intersection number is given by:

C̃2
0,i = −r0/2, C̃2

1,i = −(2r1 − s1,1,ε)/3, and C̃2
∞,i = −

N−1∑
ν=1

φ((ν,N))

〈
ν2ε

N(ν,N)

〉
,
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where 〈x〉 = x − [x] denotes the fractional part. Furthermore, we have (C̃l,1.C̃k,2) =
r1(P̄l, P̄k) > 0, where r1(P̄l, P̄k) is as in Theorem 1.6.

e) The canonical divisor Kε of Z̃ε is given by

Kε ∼ −3D0 +D′1 +D′∞ ∼ D0 −D1 −D∞.(12)

Proof. The first assertion follows from Theorem 2.1a). Moreover, since e0 = 2, e1 = 3, and
e∞ = N , a), b) and c) follow easily from Propositions 3.5, 3.13 and 3.12 of [10], together with
Theorem 2.1b). (For c), use also Corollary 2.4.) Moreover, d) follows from Corollary 3.15 of
[10] by using Theorem 1.6. Finally, for e) we note that the different divisor D(ψ̃) (as defined
in [10], Theorem 3.10) is by definition D(ψ̃) = D′0 +D′1 +D′∞ and that ψ̃∗(KȲ ) ∼ −2D∗k, for
any k = 0, 1,∞, and so the first equivalence in (12) follows from [10], Theorem 3.10, and (9).
The second follows from the first by noting thatD′1+D′∞ ∼ 2D∗0−D1−D∞ ∼ 4D0−D1−D∞
by (9) again.

2.3 The invariants of the surface Z̃ε

We now turn to study the numerical invariants of Z̃ε. Recall that by Theorem 3.7 of [10],
the Betti, Hodge and Chern numbers of Z̃ε can all be expressed in terms of the three
fundamental invariants Gε, Sε and Lε. Here these invariants have the following explicit
values.

Theorem 2.6 The invariants Gε, Sε and Lε are given by

Gε =
m(N − 12)

144N
− 1 +

1
8
φ(N) +

1
8
r0 +

1
6
r1 +

1
4
r∞,

Sε =
1
18

(2s1,1,ε − r1) + S∞,ε

Lε = r0 + 2r1 − s1,1,ε + L∞,ε,

where r0, r1, r∞ and s1,1,ε are as in Theorem 2.1 and

S∞,ε =
∑
d|N
d6=N

φ(d)
2

N
d∑
n=1

(n,N
d

)=1

S

(
εn2,

N

d

)
and L∞,ε =

∑
d|N
d6=N

φ(d)
2

N
d∑

n=1
(n,N

d
)=1

L

(
N

εn2d

)
,

where S(q, n) =
∑n−1
k=1

((
k
n

)) ((
kq
n

))
denotes the usual Dedekind sum and L(nq ) the length

of the continued fraction expansion of n
(q) , where (q) is the least positive residue of q mod

n. Thus, if we put

R∞,ε := 12S∞,ε + L∞,ε + r∞ =
∑
d|N
d6=N

φ(d)
2

N
d∑

n=1
(n,N

d
)=1

(〈
εn2 + ε∗(n∗)2

N/d

〉
+ L

(
N

N − n2ε

))
,

where n∗n ≡ 1 (mod N
d ) and 0 < n∗ < N

d , then the geometric genus pg,ε, and the Chern
numbers c2

1 = K2
ε and c2 = χtop,ε of Z̃ε are given by
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pg,ε = Gε − Sε =
m(N − 12)

144N
+
φ(N)

8
+
r0

8
+

2r1

9
− s1,1,ε

9
+
r∞
3

+
L∞,ε
12
− R∞,ε

12
− 1,

K2
ε = 8 + 8Gε − Lε − 12Sε =

m(N − 12)
18N

+ φ(N)− s1,1,ε

3
+ 3r∞ −R∞,ε,

χtop,ε = 4 + 4Gε + Lε =
m(N − 12)

36N
+
φ(N)

2
+

3r0

2
+

8r1

3
− s1,1,ε + r∞ + L∞,ε.

Proof. The formula for Gε := 1
2(g − g0,ε − g1,ε − g∞,ε) (cf. [10], Remark 1.5), follows

immediately from Propositions 1.1 and 1.3. Furthermore, by definition (cf. [10], Theorem
3.7) we have Sε = S0,ε + S1,ε + Sε where Sk,ε =

∑ek−1
ν=1 sν,ε(P̄k)S( ν

(ν,ek) ,
ek

(ν,ek)) denotes the
contribution from P̄k. Since S(1, 2) = 0 and S(1, 3) = −S(2, 3) = 1

18 , it follows that S0,ε = 0
and S1,ε = 1

18s1,1,ε − 1
18s1,2,ε = 1

18(2s1,1,ε − r1) (cf. Theorem 2.1b)). Moreover, by Theorem
2.1b) we have

S∞,ε =
∑
d|N
d6=N

φ(d)
2

N
d∑
n=1

(n,N
d

)=1

ρ

(
εn,

N

d

)
S

(
n,
N

d

)
.

This equals the asserted expression because the inner sum runs only over the n satisfying
εn ≡ x2 (mod N

d ) for some x, and the number of x satisfying εx2 ≡ n (mod N
d ) is precisely

ρ(εn, Nd ) = ρ(Nd ).
The proof for Lε is similar, using the fact that L(2

1) = L(3
1) = 1 and L(3

2) = 2.
The indicated expression for R∞,ε follows directly from the above expressions for S∞,ε

and L∞,ε, together with the identity

12S(q, n) + L

(
n

q

)
+ 1 = L

(
n

n− q

)
+
q

n
+
q∗

n
≤ n,(13)

which was established in [10], Proposition 1.15. Finally, the first expression for pg,ε (and
similarly, those for K2

ε and χtop,ε) is that given in Theorem 3.7 of [10], and the second
follows from the first by substituting the above values of Gε, Sε and Lε.

Remark 2.7 Some of above invariants have a natural character–theoretic interpretation:
we have by Theorem 3.7 of [10] that

Gε =
1
4

(h1, h1
ε), Sε =

1
4

(h1, h1
ε)− (ω, ωε), and pg,ε = (ω, ωε),

where h1
ε and ωε are as in Corollary 1.13 and Proposition 1.14. It thus follows from [10],

Corollary 3.3, together with Proposition 1.14, that pg(Z̃ε) + pg(Z̃−ε) = 2Gε is independent
of ε, and hence, if −1 is a square modulo N , then the same is true for pg(Z̃ε) = Gε itself.

In order to be able to classify the surfaces according to the Enriques–Kodaira classifi-
cation scheme, we require some good lower bounds for K2

ε and pg.

Proposition 2.8 The following inequalities hold for all N ≥ 5 and all ε:

K2
ε >

m

18N2
(N − 1)(N − 30) >

1
60
N(N − 1)(N − 30).(14)

Moreover, we have K2
ε > 0 whenever N ≥ 17 or N ≥ 13 and ε 6≡ 1 mod ((Z/NZ)×)2.
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Proof. We shall bound each of the terms appearing in the formula for K2
ε . For s1,1,ε we

have the estimate:

s1,1,ε ≤ r1 =
N

3

∏
p|N

(
1− 1

p

(−3
p

))
≤ N

3

∏
p|N

(
1 +

1
p

)
=

2m
3Nφ(N)

≤ m

6N
,

since φ(N) ≥ 4 if N ≥ 5. Moreover, by Proposition 1.3d) and identity (8) we have

r∞ =
1
2

∑
d|N,d6=N

φ(d)φ(
N

d
) ≥ 1

2N

∑
d|N,d6=N

dφ(d)φ(
N

d
) =

m

N2
− φ(N)

2
.(15)

Furthermore, using the inequality (13) and Theorem 1.6d) we obtain

R∞,ε ≤
∑

1<d|N
rd,ε(P̄∞, P̄∞)d =

1
2

∑
d|N,d6=N

N

d
φ(d)φ(

N

d
) =

m

N
− φ(N)

2
,(16)

the latter by (8) again. Substituting these estimates in the formula for K2
ε in Theorem 2.6

yields

K2
ε >

m(N − 12)
18N

+ φ(N)− m

18N
+ 3

(
m

N2
− φ(N)

2

)
− m

N
+
φ(N)

2

=
m

18N2
(N2 − 31N + 54)

>
m

18N2
(N2 − 31N + 30) =

m

18N2
(N − 1)(N − 30),

which proves the first of the desired inequalities (14). The second follows from this because

m

N3
=

1
2

∏
p|N

(
1− 1

p2

)
≥ 1

2

∏
p

(
1− 1

p2

)
=

1
2ζ(2)

=
3
π2

>
3
10
.(17)

From (14) we see that K2
ε > 0 if N ≥ 30. By computing the values K2

ε for N ≤ 29 (cf.
Tables 1 and 2 below), one verifies that this is also true if N ≥ 16 or if N ≥ 13 and ε 6≡ 1
(mod ((Z/NZ)×)2).

Proposition 2.9 For N ≥ 9 or for N ≥ 6 and ε 6≡ 1 mod ((Z/NZ)×)2, the geometric
genus of Z̃ε is positive: pg,ε > 0. Moreover,

pg,ε >
1

480
N(N − 1)(N − 23),(18)

and hence we have pg,ε ≥ 3 if N ≥ 13.

Proof. We first derive the inequality (18). Since r0, L∞,ε and r1 ≥ s1,1,ε are positive,
substituting the estimates (15) and (16) in the formula for pg,ε of Theorem 2.6 gives

pg(Z̃ε) + 1 >
m(N − 12)

144N
+

1
8
φ(N) +

1
3

(
m

N2
− φ(N)

2

)
− 1

12

(
m

N
− φ(N)

2

)
=

m

144N2
(N2 − 24N + 48).
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Using the lower bound (17) we obtain

pg >
3N

1440
(N2 − 24N + 48)− 1 =

1
480

N(N − 1)(N − 23) +
5
96
N − 1,

from which (18) follows readily.
If N ≥ 25, then (18) shows that pg > 1

48025·24·2 = 5
2 > 2, which proves the last assertion

for N ≥ 25. For small N , the corresponding statement follows by explicit computations of
the values (cf. Tables 1 and 2). Similarly, the first assertions may be verified in this way.

Remark 2.10 We can compute the geometric genus of Z̃ε not only by the Noether formula
as above but also with the help of the character ω. This yields a formula involving the class
numbers h(−d) of the imaginary quadratic fields Q(

√
−d), where d|N . (As usual, we adopt

the convention that h(−3) = 1
3 and h(−4) = 1

2 ; cf. Notation 1.2.) To be precise, we have
for N ≥ 4 the following formula:

pg(Z̃ε) = Gε+
1
18

(s1,1,ε−s1,2,ε)−
1
2

∑
ν|N

φ(ν)φ(
N

ν
)
∑
µ|ν

1
φ(µ)

∑
d|µ

−d fund

χd(ε)
∏
p|µ
p|/d

(1−χd(p))2h(−d)2,

where the above sum runs only over those d|N such that −d is a fundamental discriminant,
and χd denotes the usual quadratic character on (Z/NZ)× defined by χd(x) =

(
−d
x

)
. Since

we do not require this formula in the sequel, we shall not present its proof here.

2.4 Classification

We shall now classify the surfaces Z̃ε according to their types in the Enriques–Kodaira
classification table. For this, we may and shall view ε ∈ (Z/NZ)×/((Z/NZ)×)2 since the
isomorphism type of the diagonal quotient surfaces Zε depends only on the image of αε in
the outer isomorphism group Out(GN ) (cf. Remark 1.7 and [10], Remark 3.9). It turns out
rather surprisingly that the type of Z̃ε is completely determined by its geometric genus pg:

Theorem 2.11 a) Z̃ε is a rational surface if and only if pg(Z̃ε) = 0, and this is the case
precisely for N ≤ 5 or for (N, ε) = (6, 1), (7, 1) or (8, 1).

b) Z̃ε is a (blown-up) elliptic K3-surface if and only if pg(Z̃ε) = 1, i.e. if and only if
(N, ε) = (6, 5), (7, 3), (8, 3), (8, 5), (9, 1) or (12, 1).

c) Z̃ε is a (blown-up) elliptic surface with κ = 1 if and only if pg(Z̃ε) = 2. This is the
case for (N, ε) = (8, 7), (9, 2), (10, 1), (10, 3) or (11, 1).

d) Z̃ε is a surface of general type if and only if pg(Z̃ε) ≥ 3, or equivalently, if N ≥ 13
or if (N, ε) = (11, 2), (12, 5), (12, 7) or (12, 11).

Remark 2.12 While this theorem is closely related to Satz 3 of Hermann[5], it is not
identical with the latter. First of all, the interesting role of pg in the classification of Z̃ε is
not mentioned by Hermann. Secondly, the somewhat tenacious case (N, ε) = (10, 3) seems
to be missing in Satz 3c) of [5]. Thirdly, Hermann claims on p. 96 that the residue classes
of (Z/NZ)×/((Z/NZ)×)2 are represented by the elements ε ∈ (Z/NZ)× with ε2 = 1, which
is false e.g. for primes p ≡ 1 mod 4 (in which case the only solutions of ε2 = 1 are ±1 which
are both squares). Thus the list of cases considered by Hermann seems to be incomplete.
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The proof of this theorem is based on the classification criteria of [10], section 4. Here
we apply these criteria to the curves C = C̃∞,i, whose properties seem to control the type
of Z̃ε, as the following proposition shows. It is interesting to note that virtually all the
cases of Theorem 2.11 are covered by this result.

Proposition 2.13 a) If g∞ = 0 and C̃2
∞,1 = −1, then Z̃ε is rational.

b) If g∞ = 0 and C̃2
∞,1 = −2, then Z̃ε is not of general type (i.e. κ(Z̃ε) ≤ 1). If, in

addition, pg(Z̃ε) = 1 and either φ(N) > 4 or φ(N) = 4 and −ε ∈ ((Z/dZ)×)2 for some
d|N , d 6= 1, then Z̃ε is a (blown-up) K3-surface; in the latter case, the minimal model of
Z̃ε is also an elliptic surface.

c) If g∞ = 0 and C̃2
∞,1 = −3 and

s(N, ε) :=
1
2

∑
1<d|N

−ε∈((Z/dZ)×)2

ρ(d)φ
(
N

d

)
> 5− 1

2
φ(N),

then Z̃ε is not of general type.
d) If g∞ ≥ 1 and dε := 2pg(Z̃ε)− 2g∞ + C̃2

∞,1 ≥ 1, then Z̃ε is of general type.

Proof. Most of this proposition follows from Theorem 6 of [10], applied to x = P∞. By
Proposition 2.5d) we have, with the notation there:

cx,ε = −C̃2
∞,1 = −C̃2

∞,2 and r1,x,ε = (C̃∞,1.C̃∞,2) =
1
2
φ(N);(19)

in particular, the curves C̃∞,1 and C̃∞,2 always meet. Note that both are smooth of genus
g∞ (cf. Proposition 2.5d). In addition we note that by Theorem 1.6d) the invariant sx,ε of
Theorem 6 is given by sx,ε :=

∑
d|ex,d6=ex sex−d,ε(x̄, x̄) = s(N, ε).

a) (cf. [10], Theorem 6a)) The hypothesis means that C̃∞,1 and C̃∞,2 are two (−1)-curves
which meet, so Z̃ε is rational (cf. van der Geer[3], VII.2.2).

b) If g ≤ 1, i.e. N ≤ 6, then κ(Z̃ε) ≤ 0 by the classification Theorem 4.1c) of [10]. Thus,
assume N ≥ 7, so φ(N) ≥ 4. But then C̃∞,1 and C̃∞,2 meet in at least 2 points (counting
multiplicities), so {C̃∞,1, C̃∞,2} is a (−2)-configuration which cannot exist on a surface of
general type (cf. vdG[3], VII.2.7). Thus κ(Z̃ε) ≤ 1.

If, in addition, pg = 1 etc., then we can apply Theorem 6b) of [10]. Here the hypotheses
imply that kx,ε := 4g∞ − 2C̃2

∞,1 − 4 = 0 and ix,ε = 2r1,x,ε + 2C̃∞,ε = φ(N)− 4. Thus, the
hypotheses on N and ε guarantee that sx,ε > (k2

x,ε− ix,ε)/2, and so it follows from Theorem
6b) of [10] that Z̃ε is a K3-surface. Finally, to verify the last assertion we note that in the
latter situation the hypotheses of [3], Proposition VII.2.9 apply (since {C̃∞,1, C̃∞,2} forms
an elliptic configuration), and so the last assertion follows.

c) In this case kx,ε = 2 and ix,ε = φ(N) − 6, so again sx,ε > (k2
x,ε − ix,ε)/2, and the

assertion follows from Theorem 6b) as before.
d) This follows directly from Theorem 6c) of [10].

Proof of Theorem 2.11. We first note that pg has the asserted values. Indeed, if N ≥ 17,
then pg ≥ 3 by Proposition 2.9, whereas if N ≤ 16, then Table 1 below shows that pg is as
stated in the theorem. Thus, since the cases a) – d) cover all possibilities and are mutually
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exclusive, it is enough to show that Z̃ε has the indicated type for each of the values (N, ε)
listed.

a) If N ≤ 5, then g = 0, so Z̃ε is rational since Zε is dominated by Y ' P
1 × P1; cf.

also [10], Theorem 4.1a). For the other three cases the hypotheses of Proposition 2.13a)
are satisfied (cf. Table 1), so Z̃ε is rational in all these cases.

b) If (N, ε) = (6, 1), then Z̃ε is an elliptic K3-surface by [10], Theorem 4.2c) because
g = 1, ḡ = 0 and pg = 1. Next, if (N, ε) = (8, 3), (8, 5) or (12, 1), then g∞ = 0 and
C̃2
∞,i = −2, and φ(N) = 4. Since 2|N , the last criterion of Proposition 2.13b) applies and

so Z̃ε is an elliptic K3-surface. Finally, if (N, ε) = (7, 3) or (9, 1), then we have g∞ = 0,
C̃2
∞,i = −2 and φ(N) = 6 > 4, so Z̃ε is a (blown-up) K3-surface by Proposition 2.13b). It

remains to show that the minimal models Z̄ε of these two surfaces are elliptic.
Suppose first that (N, ε) = (7, 3). Since K2

ε = −1 and Z̄ε is a K3-surface, we see that
Kε = E, where E is the unique blow-down curve. Consider C := C̃1,1, which is a smooth
elliptic curve on Z̃ε. Thus, by the adjunction formula (C.E) = (C.Kε) = −C2 = 1, so
the image C̄ of C on Z̄ε is a smooth elliptic curve with C̄2 = 0. Thus, Z̄ε has an elliptic
configuration and is therefore an elliptic K3-surface (cf. [3], Proposition VII.2.9).

Finally, suppose that (N, ε) = (9, 1). Here K2
ε = −6, so we have 6 blow-down curves

E1, . . . , E6. Three of these are: E1 = Γ̃, the image of the diagonal (cf. [10], Remark
4.9), which meets a unique (−2)-curve E2 lying in the fibre (of ψ̃1) over P̄0 and a unique
(−3)-curve E3 in the fibre over P̄1. Furthermore, E1 meets the fibre over P̄∞ only in the
(−9)-component. Now the latter fibre contains four (−3)-curves: three meet C̃∞,1, the
fourth does not but is connected to C̃∞,1 by a (−2)-chain. Since the K3-surface Z̄ε does
not contain any curves with odd self-intersection number (by the adjunction formula), we
see that each of these four (−3)-curves has to be met transversely by a blow-down curve.
But we have only three such curves (since E1, E2 and E3 cannot meet them), so one blow-
down curve (say E4) has to meet two of them. Thus, since C̃∞,1 is a (−2)-curve, we obtain,
after blowing down E4, an elliptic configuration consisting of a cycle of (−2)-curves, and
hence Z̄ε is again elliptic.

c) If (N, ε) = (10, 3) or (11, 1), then Z̃ε is an elliptic surface by Proposition 2.14 below.
For the other three cases we have s(N, ε) + 1

2φ(N) = 6, so by Proposition 2.13c) we have
κ(Z̃ε) ≤ 1. Since pg ≥ 2, we must have κ = 1, and so Z̃ε is a (blown-up) elliptic surface, as
asserted.

d) By Proposition 2.8 we have K2
ε > 0 if N ≥ 17 or if N ≥ 13 and ε 6≡ 1 mod

((Z/NZ)×)2, so Z̃ε is of general type in those cases (cf. [10], Corollary 4.6). We are thus
left with the cases

(11, 2), (14, 1), (15, 1), (16, 1).

But for each of these cases we have g∞ ≥ 1 and dε := 2pg(Z̃ε)− 2g∞ +C2
∞,1 ≥ 1 (cf. Table

1), and so Proposition 2.13d) shows that these surfaces are all of general type as well.

To conclude the proof of Theorem 2.11, we still have to study the following two cases
which seem to be much more subtle than the others in that they cannot be treated by general
principles but instead require a detailed study of certain special curve configurations lying
on them.
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Proposition 2.14 If (N, ε) = (10, 3) or (11, 1), then Z̃ε is a (blown-up) elliptic surface
with κ = 1.

Proof. We first observe that it is enough to show that κ(Z̃ε) ≤ 1 because pg(Z̃ε) = 2 and
hence κ(Z̃ε) ≥ 1 in both cases.

a) Let us first consider the case that (N, ε) = (10, 3). Then (with the notation of 2.5)
we have D∞ = C̃∞,1 + C̃∞,2 + E∞,1 + . . . + E∞,6, where E∞,1, . . . , E∞,6 are 6 disjoint
chains joining C̃∞,1 to C̃∞,2. More explicitly, E∞,1 is a (−4,−2,−2)-chain, E∞,2 and E∞,3
are (−2)-curves, E∞,4 is a (−2,−3)-chain, E∞,5 a (−3,−2)-chain, and finally E∞,6 is a
(−2,−2,−4)-chain; these correspond under the correspondence of Proposition 2.5c) to the
points z∞,ε,1,0, z∞,ε,1,2, z∞,ε,1,4, z∞,ε,1,5, z∞,ε,2,5, and z∞,ε,3,0, respectively. (Here, ε = 3.)
Thus, using the terminology of [10], Definition 4.16, we see that D = D(P̄∞, P̄∞) = C̃∞,1 +
C̃∞,2 +E∞,2 +E∞,3 is a (−2)-join of breadth 2 of the two (−3)-curves C̃∞,1 and C̃∞,2 with
intersection number (C̃∞,1.C̃∞,2) = 1

2φ(10) = 2.

Claim 1: If Z̃ε is of general type and C is a (−1)-curve on Z̃ε, then C meets D∞ in each
of its two (−4)-components transversely and in no other components, i.e. (C.D∞) = 2.

First note that since none of the fibre components of ψ̃i are (−1)-curves, C is not a
component of a fibre and so (C.ψ̃i(P̄k)) > 0; in particular, (C.D∞) > 0.

Since Z̃ε is of general type by hypothesis, we are in the situation of [10], Corollary
4.18 (with D = D(P̄∞, P̄∞)), from which we conclude that C can only meet the (−4)-
components of D∞. Moreover, C has to meet any such component C ′ transversely, for
otherwise the image C̄ ′ of C ′ on the blow-down surface Z̄ would be a singular curve with
(KZ̄ .C̄

′) ≤ (KZ̃ε
.C ′)− 2 = 0, which is impossible (cf. [1], VII.2.3).

We thus have (C.D∞) = 1 or 2, depending on whether C meets one or both of the
(−4)-components. Suppose the former were possible, i.e. that C meets only E∞,1 (or
E∞,6). Since the multiplicity of the (−4)-component of E∞,1 in ψ̃∗i (P̄∞) is 3 respectively 1
for i = 1 respectively i = 2 (cf. 2.5), we have (C.ψ̃∗1(P̄∞)) = 3 and (C.ψ̃∗2(P̄∞)) = 1. Then
also (C.ψ̃∗1(P̄1)) = 3 and (C.ψ̃∗2(P̄1)) = 1, which is impossible: on the one hand C has to
meet a unique component Cs,j of D1 transversely, but then (C.ψ̃∗1(P̄1)) 6= 3 (cf. 2.5). This,
therefore, shows that the case (C.D∞) = 1 is impossible, and so we must must have the
situation of the claim.
Claim 2: Let f : Z̃ε → Z̄ denote the blow-down map with respect to a (−1)-curve C as in
claim 1. Then Z̄ is minimal.

If not, then there is a (−1)-curve C̄ on Z̄. Since D̄ = f∗(D∞) consists entirely of (−2)-
and (−3,−2)-chains (etc.) which join the (−3)-curves f(C̃∞,1) and f(C̃∞,2), we conclude
from [10], Corollary 4.18 that C̄ does not meet D̄. Thus, if C̃ denotes the proper transform
of C̄ with respect to f , then (C̃.(D∞ + 2C)) = (C̃.f∗D̄) = (C̄.D̄) = 0, which means that
C̃ meets neither C nor D∞. But then C̃ is a (−1)-curve on Z̃ε which doesn’t meet D∞,
which is impossible by claim 1. Thus, C̄ cannot exist, which verifies claim 2.

From claims 1 and 2 we can readily see that κ(Z̃ε) ≤ 1. Indeed, since K2
ε = −1 and

pg = 2 > 0, Z̃ε is not minimal, so there exists a (−1)-curve C on Z̃ε. Thus, if Z̃ε were of
general type, then by claims 1 and 2 the blow-down Z̄ is minimal. But K2

Z̄
= K2

Z̃
+ 1 = 0,

so Z̄ cannot be of general type, contradiction. Thus κ(Z̃ε) ≤ 1 as desired.
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b) We now turn to the much more difficult case that (N, ε) = (11, 1). Here we have (with
the notation of 2.5) that E0, resp. E11, resp. E12 consists of 6 disjoint (−2)-curves, resp. of
2 disjoint (−3)-curves, resp. of 2 disjoint (−2)-chains of length 2. Moreover, E∞ = E∞,1 +
. . .+E∞,5, where E∞,i is the P1-chain associated to the singularity z∞,1,i,0 ∈ S∞,1; cf. Prop.
2.5. Thus, E∞,1 is a (−11)-chain, E∞,2 is a (−4,−3)-chain, E∞,3 is a (−3,−2,−2,−2,−2)-
chain, E∞,4 is a (−2,−2,−2,−2,−3)-chain, and E∞,5 is a (−3,−4)-chain.

As in Remark 4.9 of [10], let Γ̃ denote the image of the diagonal of Y , and let Γk denote
the unique component of Ek which meets Γ̃. From that remark we easily deduce:
Claim 3: Γ̃ is a (−1)-curve which meets the (−2)-curve Γ0 and the (−3)-curve Γ1 trans-
versely; in particular, there is a blow-down map f1 : Z̃ → Z̄1 which contracts each of Γ0,
Γ1 and Γ2 := Γ̃ to a point. Moreover, we have τ̃(Γk) = Γk for k = 0, 1, 2, where τ̃ denotes
the involution of Z̃ induced by the one on Y = X ×X which interchanges the two factors.
Claim 4: There exist (−1)-curves Γ3 and Γ4 on Z̃ with the property that τ̃(Γk) = Γk and
that Γk meets the (−k)-components of both E∞,2 and E∞,5 transversely for k = 3, 4.

To construct these Γk we shall use certain twists of the Hecke correspondences Tn =
T ′(1, n) on Y (cf. Shimura[19], §3.3, §7.3). Explicitly, for n, k ∈ N with (nk,N) = 1, let
Tn,k := ϕ((τ−1

k × idX)Tn) ⊂ Zε, where τk =
(k−1 0
0 k

)
∈ Sl2(Z/NZ)/{±1}. Then Tn,k is an

irreducible curve on Zε which is birationally isomorphic to the modular curve X0(n) if and
only if k2nε ≡ 1 (mod N). If this is the case, then it follows from the definitions that its
proper transform T̃n,k on Z̃ε is one of the curves F (i)

n studied by Hermann[5], pp. 104-7.
Moreover, it is easily verified that in that case we have

Tn,k ∩ S∞,ε = {z∞,ε,εkn/d,0 : d|n}.(20)

In addition, if ε = 1, then we also have τ(Tn,k) = Tn,k and hence τ̃(T̃n,k) = T̃n,k.
Applying this to the case (N, ε) = (11, 1), we shall now show that Γ3 = T̃4,5 and Γ4 =

T̃3,2 satisfy the properties of the claim. Indeed, Γ3 and Γ4 are (−1)-curves by Hermann[5],
Hilfssatz 16. Moreover, (20) shows that T4,5 passes through z∞,1,2,0 and z∞,1,5,0, so Γ3 meets
E∞,2 and E∞,5 (and no other components of E∞), and similarly, Γ4 meets E∞,1 = Γ∞,
E∞,2 and E∞,5. Next we note that (Γ3.ψ̃

∗
i (P̄∞)) = 6 and (Γ4.ψ̃

∗
i (P̄∞)) = 4 because in

general (T̃n,k.ψ̃∗i (P̄ )) = ψ(n) (by the projection formula). Thus, since the multiplicities
of the components of E∞,2 in ψ̃∗1(P̄∞) and in ψ̃∗2(P̄∞)) are (3, 1) and (1, 4), respectively,
and those of E∞,5 are (4, 1) and (1, 3), respectively, one easily sees that Γk must meet the
(−k)-components of E∞,2 and E∞,5 transversely, which verifies the claim.

Let us now put Γ5 = T̃5,3 and Γ6 = T̃9,4. By exactly the same method as that of the
proof of claim 4 one shows:
Claim 5: There exist (−2)-curves Γ5 and Γ6 on Z̃ such that Γ5 (resp. Γ6) meets the (−3)-
components (resp. the extremal (−2)-components) of both E∞,3 and E∞,4 transversely.
Claim 6: Let f : Z̃ → Z̄ denote the blow-down map, where Z̄ is the surface obtained by
blowing down Z̄1 (cf. claim 3) via the images of Γ3 and Γ4 on Z̄1. Then K2

Z̄
= 0 and the

involution τ̃ on Z̃ induces an involution τ̄ on Z̄. Moreover, Ē0 := f∗(E0) and Ē1 := f∗(E1)
consist entirely of (−2)-curves, whereas Ē∞ := f∗(E∞) consists of (−2) and (−3)-curves,
together with the (−7)-curve Γ̄∞ = f∗(Γ∞).
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The first assertion is clear since K2
Z̃

= −5 (cf. Table 1) and five curves are blown down,
as is the second since τ̃(Γk) = Γk for 0 ≤ k ≤ 4. To prove the third, note first that
Γ0, Γ1 and Γ2 meet E0 (resp. E1) only in Γ0 (resp. in Γ1), which is blown down to a
point by f . Moreover, by Hermann[5], Hilfssatz 11, Γ3 and Γ4 do not meet E0 (because
ν2(3) = ν2(4) = 0),2 and so all the components of E0 other than Γ0 remain (−2)-curves.
Similarly, Γ3 does not meet E1 (ν3(4) = 0) whereas Γ4 meets a (−3)-component of E1

(because ν3(3) = 1), which has to be different from Γ1, for otherwise two (−1) curves would
intersect on a suitable blow-down. Thus, this (−3)-component becomes a (−2)-component
after blowing down Γ4, and so the third assertion follows since all other components are
(−2)-chains which do not meet Γk, 0 ≤ k ≤ 4 (cf. [5], Hilfssatz 11). Finally, the last
assertion is immediate by claim 4 and the fact that Γ3 meets Γ∞ but Γ4 does not.
Claim 7: For the minimal model Zmin of Z̃ (and of Z̄) we have K2

Zmin
≤ 1.

We may assume that Zmin is of general type for otherwise K2
Zmin

= 0. The two curves
C̄i = f(C̃∞,i), i = 1, 2, on Z̄ are joined by the (−2)-chain Ē1 arising from the images of the
(−3)-components of E∞,2 and E∞,5, and also by the (−2)-chain Ē2 obtained from the images
of the extremal (−2)-curves of E∞,3 and E∞,4 together with Γ6 (cf. claim 5). Since no Γk,
0 ≤ k ≤ 4, meets C̃∞,1 + C̃∞,2, we see that D̄ := C̄1 + C̄2 + Ē1 + Ē2 is a (−2)-join of breadth
2 with invariants k(C̄1, C̄2) := (KZmin .(C̄1 + C̄2)) = 4 and i(C̄1, C̄2) := (C̄1 + C̄2)2 = 6, and
so we have K2

Zmin
≤ 42/(2 · 2 + 6) < 2 by Proposition 4.17 of [10].

Claim 8: Z̄ is minimal and hence κ(Z̃) ≤ 1.
Suppose not; then there is a (−1)-curve C̄ on Z̄, and so by claims 7 and 6, the blown-

down Z̄ ′ of Z̄ via C̄ is a minimal surface of general type. Thus C̄ is unique (so τ̄(C̄) = C̄)
and C̄ cannot meet any (−2)-curve on Z̄. From claim 6 we therefore see that C̄ cannot
meet Ē0 and Ē1, and hence the total transform C of C̄ does not meet E0 + E1. Thus,
2(C.C̃0,1) = (C.ψ̃∗1(P̄0)) = (C.ψ̃∗1(P̄1)) = 3(C.C̃1,1), and so it follows that (C.ψ̃∗1(P̄k)) ≡
0 (mod 6), and hence (C.ψ̃∗1(P̄k)) ≥ 6 because C̄ cannot be a component of Ēk by claim 6.

Next we note that (C.C̃∞,i) = 0, for i = 1, 2. If not, then (C.C̃∞,i) ≥ 1 for i = 1, 2
(because τ̃ fixes C and interchanges C̃∞,1 and C̃∞,2), and so the image D̄′ = C̄ ′1 + C̄ ′2 +
Ē′1 + Ē′2 on Z̄ ′ of the (−2)-join D̄ constructed in the proof of claim 7 would have invariants
k(C̄ ′1, C̄

′
2) ≤ 2 and i(C̄ ′1, C̄

′
2) > 6, which violates the inequality of Proposition 4.17 of [10].

In addition, C̄ cannot meet any (−3)-components of Ē∞ = Ē∞,1 + . . . + Ē∞,5, where
Ē∞,j := f∗(E∞,j). Indeed, if C̄ meets that of Ē∞,2 or of Ē∞,5, then it also meets both
because τ̄ interchanges these components, and then the images of Ē∞,2 and Ē∞,5 on Z̄ ′

would form an elliptic (−2)-configuration, which is impossible (cf. [3], VII.2.7). Similarly, if
C̄ meets one of the (−3)-components of Ē∞,3 and Ē∞,4, then it meets both, and the images
of Ē∞,3, Ē∞,4 and Γ6 on Z̄ ′ would form an elliptic (−2)-configuration, contradiction.

From claim 6 we thus see that C̄ can meet ψ̃∗1(P̄∞) only in Γ∞ = E∞,1, which has
multiplicity 1 in ψ̃∗1(P̄∞). Thus (C̄.Ē∞,1) ≥ (C.E∞,1) = (C.ψ̃∗1(P̄∞)) ≥ 6, and so the image
Ē′ of Ē∞,1 on Z̄ ′ is a (singular) curve with (Ē′.KZ̄′) = (Ē∞,1.KZ̄)−(C̄.Ē∞,1) ≤ 5−6 = −1,
which is impossible since Z̄ ′ is minimal. Thus, no such curve C̄ exists and so Z̄ is minimal.

2Note that the formulae for ν2(n) and ν3(n) on p. 104 of [5] are incorrect when 4|n and 9|n, and have to
be modified as in Miyake [16], p. 108
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N ε m g g0 g1 g∞ C̃2
0 C̃2

1 C̃2
∞ d 2G L 2S pg c2 K2 κ

5 1 60 0 0 0 0 −1 −1 −1 −1 0 10 0 0 14 −2 −1
5 2 60 0 0 0 0 −1 −1 −1 −1 0 9 0 0 13 −1 −1
6 1 72 1 0 0 0 −2 −1 −1 −1 1 10 1 0 16 −4 −1
6 5 72 1 0 0 0 −2 −2 −2 0 1 18 −1 1 24 0 0
7 1 168 3 1 1 0 −2 −1 −1 −1 1 12 1 0 18 −6 −1
7 3 168 3 1 1 0 −2 −1 −2 0 1 19 −1 1 25 −1 0
8 1 192 5 2 1 0 −2 −2 −1 −1 2 14 2 0 22 −10 −1
8 3 192 5 2 1 0 −2 −2 −2 0 2 18 0 1 26 −2 0
8 5 192 5 2 1 0 −2 −2 −2 0 2 18 0 1 26 −2 0
8 7 192 5 2 1 0 −2 −2 −3 1 2 28 −2 2 36 0 1
9 1 324 10 4 3 0 −3 −1 −2 0 3 20 1 1 30 −6 0
9 2 324 10 4 3 0 −3 −2 −3 1 3 28 −1 2 38 −2 1

10 1 360 13 6 3 0 −2 −3 −3 1 4 30 0 2 42 −6 1
10 3 360 13 6 3 0 −2 −3 −3 1 4 25 0 2 37 −1 1
11 1 660 26 12 8 1 −3 −2 −2 0 5 27 1 2 41 −5 1
11 2 660 26 12 8 1 −3 −2 −3 1 5 34 −1 3 48 0 2
12 1 576 25 11 7 0 −4 −2 −2 0 7 22 5 1 40 −16 0
12 5 576 25 11 7 0 −4 −4 −4 4 7 38 −1 4 56 4 2
12 7 576 25 11 7 0 −4 −2 −4 2 7 30 1 3 48 0 2
12 11 576 25 11 7 0 −4 −4 −6 6 7 58 −5 6 76 8 2
13 1 1092 50 24 16 2 −3 −2 −3 1 8 39 0 4 59 1 2
13 2 1092 50 24 16 2 −3 −2 −3 1 8 34 0 4 54 6 2
14 1 1008 49 23 15 1 −4 −3 −4 2 10 36 2 4 60 0 2
14 3 1008 49 23 15 1 −4 −3 −5 5 10 49 −2 6 73 11 2
15 1 1440 73 35 23 1 −4 −2 −4 2 14 34 6 4 66 −6 2
15 2 1440 73 35 23 1 −4 −4 −6 4 14 44 2 6 76 8 2
15 7 1440 73 35 23 1 −4 −2 −6 8 14 54 −2 8 86 22 2
15 11 1440 73 35 23 1 −4 −4 −8 10 14 76 −6 10 108 24 2
16 1 1536 81 39 25 2 −4 −4 −3 1 15 34 7 4 68 −8 2
16 3 1536 81 39 25 2 −4 −4 −5 5 15 44 1 7 78 18 2
16 5 1536 81 39 25 2 −4 −4 −5 7 15 50 −1 8 84 24 2
16 7 1536 81 39 25 2 −4 −4 −7 11 15 80 −7 11 114 30 2
17 1 2448 133 65 43 5 −4 −3 −4 6 20 62 0 10 106 26 2
17 3 2448 133 65 43 5 −4 −3 −4 6 20 47 0 10 91 41 2
18 1 1944 109 52 34 2 −6 −3 −5 7 21 46 5 8 92 16 2
18 5 1944 109 52 34 2 −6 −6 −8 14 21 82 −5 13 128 40 2
19 1 3420 196 96 64 7 −5 −3 −4 10 29 60 1 14 122 58 2
19 2 3420 196 96 64 7 −5 −3 −5 11 29 67 −1 15 129 63 2

Table 1: The invariants of Z̃N,ε for 5 ≤ N ≤ 19
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N ε m g g0 g1 g∞ C̃2
0 C̃2

1 C̃2
∞ d 2G L 2S pg c2 K2 κ

20 1 2880 169 83 53 3 −4 −6 −6 12 30 64 6 12 128 28 2
20 3 2880 169 83 53 3 −4 −6 −8 14 30 62 2 14 126 54 2
20 11 2880 169 83 53 3 −4 −6 −10 20 30 104 −6 18 168 60 2
20 13 2880 169 83 53 3 −4 −6 −8 18 30 74 −2 16 138 66 2
21 1 4032 241 117 79 5 −8 −2 −6 14 40 56 10 15 140 52 2
21 2 4032 241 117 79 5 −8 −4 −8 16 40 64 6 17 148 68 2
21 5 4032 241 117 79 5 −8 −4 −12 28 40 124 −10 25 208 104 2
21 10 4032 241 117 79 5 −8 −2 −10 26 40 100 −6 23 184 104 2
22 1 3960 241 118 77 6 −6 −6 −6 16 40 63 6 17 147 69 2
22 7 3960 241 118 77 6 −6 −6 −9 25 40 102 −6 23 186 102 2
23 1 6072 375 185 123 12 −6 −4 −4 18 55 55 9 23 169 119 2
23 5 6072 375 185 123 12 −6 −4 −7 33 55 112 −9 32 226 170 2
24 1 4608 289 141 93 5 −8 −4 −4 12 50 48 24 13 152 16 2
24 5 4608 289 141 93 5 −8 −8 −10 30 50 88 0 25 192 120 2
24 7 4608 289 141 93 5 −8 −4 −10 30 50 88 0 25 192 120 2
24 11 4608 289 141 93 5 −8 −8 −12 36 50 120 −8 29 224 136 2
24 13 4608 289 141 93 5 −8 −4 −8 24 50 64 8 21 168 96 2
24 17 4608 289 141 93 5 −8 −8 −10 30 50 92 0 25 196 116 2
24 19 4608 289 141 93 5 −8 −4 −10 30 50 84 0 25 188 124 2
24 23 4608 289 141 93 5 −8 −8 −16 48 50 208 −24 37 312 144 2
25 1 7500 476 236 156 12 −5 −5 −9 39 72 106 0 36 254 190 2
25 2 7500 476 236 156 12 −5 −5 −9 39 72 99 0 36 247 197 2
26 1 6552 421 208 137 10 −6 −6 −9 37 66 111 0 33 247 161 2
26 5 6552 421 208 137 10 −6 −6 −9 37 66 84 0 33 220 188 2
27 1 8748 568 280 187 13 −9 −3 −9 49 88 102 4 42 282 234 2
27 2 8748 568 280 187 13 −9 −6 −12 54 88 132 −4 46 312 252 2
28 1 8064 529 261 173 10 −8 −6 −9 47 85 102 9 38 276 192 2
28 3 8064 529 261 173 10 −8 −6 −15 59 85 162 −9 47 336 240 2
28 5 8064 529 261 173 10 −8 −6 −11 55 85 110 −1 43 284 244 2
28 11 8064 529 261 173 10 −8 −6 −13 51 85 106 1 42 280 236 2
29 1 12180 806 400 266 22 −7 −5 −7 67 118 118 0 59 358 362 2
29 2 12180 806 400 266 22 −7 −5 −7 67 118 109 0 59 349 371 2
30 1 8640 577 285 187 9 −8 −6 −10 50 96 94 18 39 290 190 2
30 7 8640 577 285 187 9 −8 −6 −12 64 96 110 2 47 306 270 2
30 11 8640 577 285 187 9 −8 −12 −18 78 96 216 −18 57 412 284 2
30 17 8640 577 285 187 9 −8 −12 −16 64 96 132 −2 49 328 272 2

Table 2: The invariants of Z̃N,ε for 20 ≤ N ≤ 30
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[12] A. Kraus, O. Oesterlé: Sur une question de B. Mazur. Math. Ann. 293 (1992), 259-275.

[13] E. Landau: Vorlesungen über Zahlentheorie. Chelsea Publ. Co., New York, 1950.

[14] S. Lang: Number Theory III. Ency. Math. Sci. vol. 60, Springer-Verlag, Berlin, 1991.

[15] B. Mazur: Rational isogenies of prime degree. Invent. math. 44 (1978), 129-162.

[16] T. Miyake: Modular Forms, Springer-Verlag, Berlin, 1989.

[17] H.W. Praetorius: Die Charaktere der Modulgruppe der Stufe q2. Abh. Math. Sem. Univ.
Hamburg 9 (1933), 365-394.

[18] B. Schoeneberg: Elliptic Modular Functions. Springer-Verlag, Berlin, 1974.

[19] G. Shimura: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami
Shoten & Princeton University Press, 1971.

E. Kani
Department of Mathematics
and Statistics
Queen’s University
Kingston, Ontario, Canada
K7L 3N6

W. Schanz
Schuppstr. 2
65191 Wiesbaden
Germany

28


