
AD-AO87041 RAYTHEON CO BEDFORD MA MISSILE SYSTEMS DIV F/G 17/7

MODULAR DIGITAL MISSILE GUIDANCE.(U)
JAN 80 F J LANGLEY. J DEMETRICK, F MARCHILENA N00014-75-C-0549

UNCLASSIFIED BR-I1S ONR-CR233-052-6 NL

EENOMEEEEhh

EE 'hh/////EEEE
lllEllllllllu

, - -~~ ~III t3

1112.2

I.1.8l~lIN IIIIIIM8
11111OL25 EI ES 1.6

MCROCOPY RESOLUI* TEST CHART

NA I ONAL (itIIRI At1 I 1 AR11~ Ii 4

IT. -/
REPORT ONR-CR233-052-SF

I40

If E

MODULAR DIGITAL MISSILE GUIDANCE

.1 Phase VI Final Report

g FRANK J. LANGLEY

JOHN DEMETRICK

I FRANK S. MARCHILENA

Raytheon Company D I
*Missiles Systems Division D I
3 Bedford, MA 01730 CELECTE ~I

JUL 23 1980

Contract N00014-75-C.059 U
~; I ONR Task 2W3.052B

30 JANUARY 190

Technical Report for Period I Jan. 79 -31 Oct 79

Lii Approved for Public Release; Distribution Unlimited

X PREPARED FOR TIl

OFFICE OF NAVAL RESEARCHI*M N. alUINCY ST.9ARLINTONVA2Wl

180 6 30 136)

NOTICES

Change of Address

Organizations receiving reports on the initial distribution list

should confirm correct address. This list is located at the end of

the report. Any change of address or distribution should be
conveyed to the Office of Naval Research, Code 200, Washington,

D.C. 22217.

Disposition

When this report is no longer needed, it may be transmitted to
other authorized organizations. Do not return it to the originator

or the monitoring office. 1
Disclaimer

The findings in this report are not to be construed as an official

Department of Defense or Military Department position unless so U
designated by other official documents.

Reproduction

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

!moon-

S'

V UI

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("ien Dae Entered)__________________

D~~~T ~I~SE~~LIAT~fLI DI~EREAD INSTRUCTIONS
()RPRDUMENTTION~f PAG BEFORE COMPLETING FORM

1. MBFR 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

/ 6 NR R233-052-6 __________

4. TTLE and ubtile)S. TYPE OF REPORT & PERIOD COVERED

- Final Report
(Modular Digital Missile Guidanc,_7 1/1/79 to 10/31/79

C Frank M./archleaJh/Dmtic,4

1-FURFORMING ORGANI ZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASK(

I I CONTROLLING OFFICE NAME AND ADDRESS
aL R nT _ __[

14 MONITORING AGENCY NAME & ADODESSfo different trou,, Coneratlline Office) IS. SECURITY CLASS. (of tisg report)

UNCLASSIFIED

IS. DECLASSIFICATION DOWNGRADING1 SCHEDULE

16 DISTRI13UTION STATEMENT (of tbi. Report)

Approved for public release; distribution unlimited

f [I~ DISTRIBUTION STATEMENT (of ?he obseregi entered if Block 20. It differentr from Report) -

[~1 IS KY WORDS (Continuie on reverse side of necesary and Identify by block nu~mber)

Microcomputer Missile Guidance and Control
Multi-processor Modular Systems
Modular Software

ABSTRACT C-1,nt n rovreer.. side if neceaeary and identify by block number)

Higher throughput general-purpose processors have traditionally
been the domain of Schottky-bipolar or CMOS-SOS integrated
circuit technology with attendant multi-component packaging
logistics and support software problems. In addition, the
modular operational software has proven difficult to achieve
in practice.

To combat these deficiencies, a super-federated ->"

DD I~2S1473 CITION OF I--IV"IS OSOLETE UNCLASSIFIED A _

SECURITY CLASSIfrICATION Of THIS I Ak. "i/ f'.ur. 1 11.1111

r"

UNCLASSIFIED
ECURITY CLASSIFICATION OF THIS PAGE(Ihui Date nielod)

high-speed, multi-processor architecture has been explored
using standard industry 16-bit microprocessors. The
resulting design evolved in this study employs a time-phased
ring approach to high throughput with single processor
programming simplicity. Further, modular software has been
achieved by assigning one microcomputer to each major
algorithm.

\U

[

hi

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE'UI,.n nete F,,der,'d) "

1.%I

* UNCLASSIFIED

I PREFACE

I This technical report covers the work performed under Contract No.

N00014-75-C-0549 from 1 January through 31 October 1979.

The purpose of this contract together with the work performed in the

previous phases, was to provide the means of achieving improved performance,

modularity and flexibility in the design of next generation microcomputer-based

missile guidance and control systems.

"- LCDR. W. Savage, Office of Naval Research Arlington, VA, was the Navy LCDR

I. Scientific Officer.

-- Mr. F.J. Langley was the Principal Investigator for Raytheon, Mr. J.

Demetrick was the Hardware Design Engineer and Mr. F.S. Marchilena the Software

Design Engineer.

Publication of this report does not constitute Navy approval of the

report's findings or conclusions. It is published only for the exchange and

j stimulation of ideas.I

K

~CESSION for

NTIS Wiite Section

DOC Baf Section 03

r u ONIAMC M CM

[U A F

UNCLASSIFIED

SUNCLASSIFIED

1. TABLE OF CONTENTS

i.~~ ~~ ITD IO -

1.1 Background 1-1

1.2 objectives and Scope.... 1-3

1.3 Publications and Presentations 1-4

2. SUIMRY AND CONCLUSIOIS 2-1

2.1 Conclusions 2-2

3. DIGITAL MISSILE GUIDANlCE AND CONTRiOL . .. o.. 3-1

3.1 Motivations for Federated and Super-Federated Systems . 3-1

3.1.1 Hardware . o . o . . o 3-2

3.1.2 Software 3-3

3.1.3 Throughput 3-5

3.2 Defining/Identifying System Structures 3-6

3.2.1 System Timing Considerations 3-8

3.2.2 System Parallelism 3-9

3.2.3 Macro-Structure System 3-9

3.2.4 Super-Federated Systems 3-12

3.3 Microcomputer Modularity 3-14

3.3.1 Programmable Microbus Interface Module 3-17

3.3.2 Spectrum Analyzer Module 3-17

3.3.3 Serial-Digital Input-Output (SDIO) Module . . . 3-18

3.4 Navy Demonstration System 3-19

3.5 Summary...... 3-21

4. CLASSIC IWLTIPOC8OR A--IT8C1 4-1

4.1 Multiprocessor and Computer Systems 4-1

4.1.1 Single Time-Shared Bus 4-2

If 4.1.2 Multiple Bus 4-4

4.1.3 Cross-Point Switch 4-5

4.1.4 Array Processor Systems 4-7

iv

UNCLASSIFIED

..-

UNCLASSIFIED

TMLE OF 1 9 (Cont.)

Page

4.1.5 Associative Processor Systems 4-11

4.1.6 'Hybridu Processor Systems 4-12

4.1.7 FFT Processor Architectures 4-14

4.1.8 Conclusions 4-15

5. SUPUR-FDZATZD MICECIM PUTSR SYSTE (SPNCS) 5-1

5.1 Modifying/Optimizing the Single-Bus Multiprocessor -

Architecture 5-1

5.1.1 Memory Mapping and Single Computer

Programmability 5-2

5.1.2 High Throughput Refinements. 5-3

5.1.3 Time-Phased Ring, Practical Case 5-5

5.2 Expanded System Architecture 5-6

5.3 Physically Distributed Systems 5-7

6 * s 6-1

6.1 Distribution of Programs and Data 6-2

6.2 Modular Software 6-5

6.2.1 Table Driven Software Modules 6-7

6.2.2 Composition of Software Modules 6-8

6.3 SFICS Control Software 6-10

6.3.1 Master/Slave 6-10

6.3.2 Floating Executive (Polling) 6-13

* 6.3.3 Floating Executive (Multiprogramed) 6-15

6.4 High Order Language/Advanced Software Tools 6-19

7. SFC SINULATICMODELING (Expanded System) 7-1

7.1 Microprocessor/CPU Model....... 7-1

7.2 Address Translation Model 7-8

UNCLASSIFIED

LIiI

UNCLASSIFIED

v TAIA OF CU1S(Cont.)

page

7.3 Priority Resolution (Bus Access)........ 7-8

7.4 microbus Model* 7-l1.

7.5 memory Model. 7-11

8. ~3RIC 8-1

APPENDIX A Super-Federated Microcomputer System (SIMCS) Timing

and Throughput Analysis A-1

APPENDIX B Real-Time Missile Simulation with SIMCS B-i

APPENDIX C SFMCS Functional Block DiagramsC-1

I UNCLASSIFIED

LIST OF ILLUSTRATIONS

Figure Pg

1-1 Generic Missile Classes 1-2

3-1 Single versus Federated Missile Guidance and

Control Systems 3-2

3-2 Modular Hierarchical Software Control Structure for Single

Computer Missile Guidance and Control System 3-3

3-3 Single Computer System Software is Inaccessible to

Subsystem Designers 3-4

3-4 Single Computer System General-Purpose Throughput

Requirements 3-6

3-5 Missile Guidance and Control System - Functional Block

Diagram 3-7

3-6 Digital System Timing Considerations 3-8

3-7 System Partitioning by Control Channel 3-10

3-8 Macro-Structure Partitioning 3-11

3-9 Macro-Structure Control Hierarchy 3-11

3-10 Microcomputer Throughput Requirements for Macro-Structured

System 3-12

3-11 Super-Federated Subsystem Processing, Target Seeker and

Autopilot............. 3-13

3-12 Software Change by Hardware Substitution in Super-Federated

Systems 3-14

3-13 Modular Federated Microcomputer Missile Guidance and

Control System o.. .. 3-16

3-14 Radar Signal Processing Throughput Requirements 3-18

3-15 Fiber-Optic Ring Communications Between Missile

* Subsystems 3-19

3-16 Navy/Raytheon Hardware-in-the-Loop Federated jiC System for

Missile Performance'Simulation 3-20

3-17 Federated Microcomputer Macromodules Using HIM

Interface 3-20

vii

SV
9,'l

I , - • . ,- ,. ", .;, ' ,:.' , .

UNCLASSIFIED

LIST OF ILLUSTRRTIOUS (Cont.)

Figure Pg

3-18 Super-Federated Microcomputer System for Higher Performance

Missile Guidance and Control 3-22

4-1 multiprocessor System -Single Time-Shared Memory

Access Bus.. *..* . 4-3

4-2 Multicomputer System - Single Time-Shared Communications

Bus. 4-3

4-3 Multicomputer System - Fiber-Optic Round-Robin

Serial-Digital 1/0 4-4

4-4 multiprocessor System -multiple memory Access Bus4-5

4-5 Multicomputer System - Multiple 1/0 Comunications

B us 4-6

4-6 High-Availability Multiprocessor System - Cross-Point

Switch Communications....*4-6

4-7 Multicomputer System - Cross-Point Switch 1/O

Communications *4-7

4-8 Tactical Multimicrocomputer System - Serial Cross-Point switch

1/O Communications. 4-8

4-9 Array Processor System - Single integrated Array 4-9

4-10 Array Processor System - Multiple External Array. 4-10

4-11 Array Microprocessor System - Single External

4 x 4 Array. 4-10
4-12 Associative Processor System 4-11

4-13 "Hybrid" Processor Systems - Dual Bus 4-12

4-14 "Hybrid" Processor Systems Multiple-Bus

integrated Ensemble, (original Navy AADC) 4-14

4-15 FFT Processor Architectures. 4-15

5-1 Single Time-Shared Bus multi-Microprocessor - Separate

Program Memories 5-1

5-2 Super-Federated Multiprocessor-Memory Mapping Class III

Seeker Processing5-2

[Viii.

UNCLASSIFIED

LL

kI

I

LIST OF ILWUSNATIOS (Cont.)

-Figure Page

-- 5-3 Super Federated Multiprocessor-Extended Memory-Mapping

For Host Processo 5-3

5-4 Time-Phased Ring Bus Memory/Instruction Fetch (F) and

Execute (E) Sequences Four Microprocessors Identical

Instruction Streams 5-4

5-5 Time-Phased Ring Bus Intel 8086 Timing Compatibility 5-5

5-6 Time-Phased Ring Bus - Zilog Z-8000 Timing

Compatibility 5-6

5-7 Expanded Super-Federated Microcomputer System For Physically

Centralized Applications 5-7

5-8 Physically Distributed Super-Federated Microcomputer

System5-8

5-9 Low-Performance Federated Microcomputer Missile Guidance

and Control System (NSWC System) 5-9

5-10 High-Performance Super-Federated Microcomputer System For

Higher Performance Missile Guidance and Control

(NSWC System) 5-10

6-1 Typical Serial Process 6-3

6-2 Distribution of Figure -l Statements............6-4

6-3 Distribution of Data 6-5

• 1 6-4 SFWCS, Host and Dual-Quad Configuration 6-11

6-5 Master/Slave (Polling) 6-12

1 1 6-6 Master/Slave (Control Signal) 6-12

6-7 Floating Executive (Polling) 6-14

6-8 Floating Executive (Multiprogramed) 6-16

1.7-1 SFMCS Major Elements and Timing 7-2

7-2 Microprocessor (CPU) Model Flow Diagram 7-3

! 7-3 Memory Address Translator Model Flow Diagram 7-9

7-4 Priority Resolution Model Flow Diagram 7-10

1 7-5 Microbus Model- Flow Diagram. 7-12

7-6 Memory Model Flow Diagram 7-13

ix

I

LIST OF ILLUSTRATIONS (Cont.)

Figure Page

A-1 Case 1, Four Microprocessors Sharing a Common Memory A-18

A-2 Case 1, Four Processors with Shared Memory,

No Time Phasing A-19

A-3 Case 2, Four Processors with Shared Memory

using Time-Phased Ring Technique A-22

A-4 Case 3, Four Processors with Dedicated Program Memories

and Shared Data Memory Without Time Phasing A-24

B-i High-Performance Super-Federated Microcomputer System

for Missile Simulation B-2

B-2 Control Actuator Section B-9

B-3 Head Control and Stabilization Model B-12

B-4 Reciever/Error Source Model B-15

B-5 Aeromodel Partitioning B-17

C-I SFMCS Quad, Block Diagram C-2

C-2 SFMCS - Expanded System, Dual Quad Configuration, Block

Diagram C-3

C-3 SFNCS - Expanded System, Detailed Block Diagram C-5

x

WIi
... iS.I', , i -

-77

LIST OF TABLES

Table Page

3-i Microcomputer Macromoduies. 3-15

6-1 Comparison of SFMCS Software Control Methods. 6-18

A-i Candidate Instruction Mixes. A-2

A-2 INTEL 8086 Throughput for Candidate

Instruction Mixes A15

B-i CAS modeiQuantities B-9

xi

I

UNCLASSIFIED

1. INTRODUCTION

This report presents the results of the final phase of the Navy Modular Digital

Missile Guidance study which culminates in the design of a high speed "super-federated"

microcomputer system. The latter ^'-viates the need to resort to multi component, bit-

slice computer architectures to meet the higher throughput processing requirements of

missile guidance and control and, more importantly, super-federation supports modular

software by assigning one microcomputer circuit to each major algorithm.

1.1 Background

In the previous study phases (References R-1 through R-18), programmable digital

techniques were shown to offer improved performance and greater flexibility than the

traditional hardwired analog implementations of seeker head control, signal processing,

estimation, guidance, autopilot, warhead fuzing, telemetry and test functions.

To achieve modularity and growth in hardware and software, a top-down system

study approach was adopted, by first dividing the entire range of air-to-air missiles into

three distinguishable generic classes, including upper and lower performance boundaries

within each class (Figure 1-1). The major functions and data rates amenable to digital

processing were then defined, determining their conAtituent software modules and sizing

these in terms of computer throughput and memory requirements, (References R-l, R-2,

R-3 and R-6).

Such a modular breakdown of on-board missile guidance and control functions,

- -. together with their associated interfaces, provided the option of configuring and

evaluating either single or multiple federated/distributed computer system implemen-

tations according to the design constraints of a given missile.

Simulation analyses were also performed to confirm computer requirements and

relate algorithm complexity to performance improvements for the guidance, estimation

and autopilot/control functions, (Reference R-3).

jWith the computer design requirements determined from these studies, a set of

microcomputer "macromodules" was defined to support the entire range of air-to-air

p .missile functions, in either single or multiple/federated microcomputer system configura-

tions (References R-3 through R-7). The modules were simulated individually and ollec-

E i1-1

' [UNCLASSIFIED

*

UNCLASSIFIED

LU

LUj
a 0

Z LU

CL U

CL. 0- UjC

z
0

LU LU

U a0c
Z 0 L

<LU C'_

< tA

LL !0 0 w

0U k 0WN0L.

z z

< LU

LU.

LU LU 0
0O i 0 LU

0. Q LAZl
Lm << R0 _LU

30 I ~ g...

0z - - LU. E

Is Figure 1-1 - Generic Missile Clases

1-2

UNCLASSIFIED

I I
UNCLASSIFIED

tively, as whole microcomputer configurations (References R-8 and R-12) in order to

validate their effectiveness in missile guidance and control applications to the point

where realistic product function specifications could be prepared, (Reference R-14). To

broaden the effectiveness of these specifications with respect to current technology

developments, the compatibility of the Navy AN/UYK-30 microprocessor for general-

purpose processing; charge-coupled device (CCD) technology for signal processing,

(Reference R-17); and fiber-optic data link device technology for the serial digital system

bus were explored (Reference R-14) through NOSC support.

A similar study was then performed under NSWC sponsorship to address the ship-to-

air and ship-to-ship missile requirements, which led to the fabrication of selected micro-

computer macromodules and their application to a Class I missile guidance and control

system, (Reference R-19).

To accommodate improvements in microcomputer circuit technology without

major redesign and provide flexible memory-mapping of input-output and main memory

storage space, a programmable Microbus Interface Module (MIM) was designed and incorpo-

rated in each macromodule, (References R-16 and R-18).

While standard industry, single chip microprocessors could be used for certain mis-

sile functions, their throughput was insufficient for high-performance (Class M) applica-

tions such as target seeker and autopilot processing. To avoid the design and fabrication

of a high-speed, general purpose processor in Schottky-bipolar or CMOS/SOS circuit

technology, with its attendant multicomponent logistics and support software problems, a

"super-federated" multimicroprocessor architecture was proposed for investigation and

design during this phase of the program (References R-20 and R-21). The goals of this

study are described in the following Subsection.

1.2 Objectives and Scope

The objectives and scope of the Phase VI study under the modification of Contract

N00014-75-C-0549 are as follows.

The contractor shall continue the Digital Missile Guidance study by performing

fundamental hardware and software analysis to determine the feasibility of utilizing one

common microcomputer type throughout the modular digital missile concept. In this

Phase VI, the following tasks shall be performed:

1-3

UNCLASSIFIED

-k|-

I

UNCLASSIFIED

1) Ta* I - IMlrostruetural Analypis - Analyze the high throughput require-

ment functional groups defined in the previous phases to determine the

practicality of decomposing these into mlerostructures that can utilize

one common, single chip microcomputer as the basic computing cell.

Investigate the feasibility of software compatibility throughout the

functional groups emphasizing replacing software program linkages

with hardware interfaces.

2) Task 2 - Mcrostrueture SImulation and Ivahation - Perform a digital

simulation of the microstruetures defined in Task I to prove the

intermierocomputer timing and interface and verify that the

throughput of each microcomputer group meets the requirements for

the complex, Class I! missile defined in previous work.

1.3 Publicatinm and Presentations

Throughout the Modular Digital Missile Guidance Program the results of each phase

have been widely published and presented to various Government Agencies and Industry.

The work has proven timely not only in the field of missile guidance and control but in the

design of any microcomputer-based system.

Twenty-two papers and reports have been published. The papers were presented at

various conferences sponsored by: IEEE Computer Society, AFIPS/NCC, NASA/JPL,

AIAA, DDR&E/IDA, SAE, SPIE, DPMA, NATO/AGARD.

Requests for these papers were received from several overseas countries, viz:

Swedish National Defense Research Institute; Center for Applied Research in Electronics,

India; Institute of Nuclear Research, Poland; Central Research Laboratory, Mitsubishi

Electric Corp., Japan; Rijks University, Holland; The Weizmann Institute of Science,

Israel; Institute of Radio and Electronics,, Czechoslovakia; Centre National De La

Recherche Scientifique, France.

Presentations and briefings were made to several branches of the Navy, Air Force,

Army, NASA and allied groups viz: NAVAIR, NOSC, NWC, NPGS, NSWC, SSPO, NAAFI,

AFATL, MICOM, ABMDA, NASA/JPL, MIT/Draper Lab.

1-4

UNCLASSIFIED

1.

L -

I
UNCLASSIFIED

2. SUMMARY AND CONCLUSIONS

Two serious problems exist in military computer-based systems:

1) The seemingly exorbitant cost of operational software and

2) The absence of a standard microprocessor-on-a-chip for all comput-

ing applications.

The first problem has been linked to the size, complexity, and testability of com-

puter programs as well as the level of the programming language and more importantly,

the fundamental structure and modularity of the program assigned to a computer,

(Reference R-3).

The second problem Is purely a technology advancement issue, and the recent

advent of commercial 16-bit microprocessor chips with speeds of the order of 500,000

instructions per second (References R-22 and R-23), presents an opportunity to solve both

of the above imperfections in the state-of-the-art.

Hence, the main thrust of this phase in the Modular Digital Missile Guidance Pro-

gram has been to exploit the low cost of the IS-bit microprocessor and microcomputer to

solve the high cost of software and computer commonality problems.

The basic concept uses what has been termed "super-federated" computer system

design techniques, (References R-20 and R-21) where each major function/algorithm is

assigned to a separate microcomputer. A software change is then identified with a spe-

cific integrated circuit which, in turn, is part of an overall modular structure. As such,

the super-federated design approach reduces program size and complexity, supports

software modularity, and uses one microprocessor type. The latter, however, must be

configured in a suitable multiprocessor architecture which achieves high throughput in

cases where the speed of a single microprocessor chip is inadequate.

This study addresses two major design goals, software modularity and high

throughput, while avoiding the pitfalls, (both hardware and software) of earlier multipro-

cessor designs. The results of the study, which are manifested in the super-federated

microcomputer design drawings given at the end of this report, can be summarized in

Subsection 2.1.

2-1

UNCLASSIFIED

I.

UNCLASSIFIED
I'.1 Conclion

Super-federation of individual functions among separate microcomputers in a prac-

tical multiprocessor architecture provides the following advantages and/or solutions to

computer system software and hardware design problems:

I) Software Modularity - By assigning one major algorithm/program

module per microcomputer, a software change can be identified with

and confined to a replaceable integrated circuit.

2) Software Control Structure - The interface between major program

modules is a fixed hardware interface which facilitates software

changes and bounds the domain of each module. Further, the control

hierarchy is implicit in the multiprocessor hardware structure.

3) Programming Simplicity - Single computer programming simplicity

has been achieved within a common memory map. Each microproces-

sor is programmed as an entity with the base page of the memory

space dedicated to the operational program.

4) High Throughput - The high throughput functions in some missiles,

(guidance and autopilot, for example), can be performed with several

medium performance microcomputers of the same type by exploiting

parallelism and overlap in the execution of their constituent program

modules.

5) Standard Mircrocomputer - Super-federation allows the use of one

microcomputer type throughout the missile guidance and control

system, singly in such cases as warhead fuzing or in a multiprocessor

configuration for the more complex high-speed functions.

6) Common Support Software - The use of one microcomputer type for

both high and low throughput requirements obviates the need to

design and build a high speed processor with a unique instruction set

o [and its attendant support software development cost and risk.

[
- 2-2

L UNCLASSIFIED

..RPM , .. .P0 . .

I
'T UNCLASSIFIED

3. DIGITAL MISSILE GUIDANCE AND CONTROL

Despite the many functional advantages of digital versus analog systems, the

simple substitution of a small general purpose computer in place of the former analog

circuits does not in itself solve all the problems encountered in the life cycle of a missile.

The hardeore problems of advancing technology, changing threat situations, systems inte-

gration and logistics, together with the ever increasing cost of software, can result in an

excessive premium paid for digital missiles.

While throughput could be satisfied with a single, high performance, miniclass

computer and a dedicated, special-purpose target sensor signal processor, form-factor and

electrical interface problems arise due to the many analog and digital discrete signals

being converted and processed at a central point as opposed to being handled at the

source. In addition, the design, assembly and checkout of major missile seetions/func-

tions, (e.g., seeker, warhead, flight control, telemetry), as completely operational modules

are not possible with a single computer design approach.

From a software viewpoint, programming complexity increases with program size

and the time multiplexing of individual missile functions to meet the sampling and compu-

tational delay requirements of the various control loops. This.resulting modification or

updating of any given function within the total program is then fraught with virtually

unknown and complex software interface problems, a situation which worsens as the level

of coding diminishes. In other words, the interface problems cited for analog systems can

reappear in digital missiles at the computer input-output interface and in a more devious

manner within the invisible internal software. Although software modularity supports the

system flexibility rqquirement for changing threat/mission situations, it has nevertheless

proven difficult to achieve and maintain through a development cycle.

3.1 Motivations for Federated and Super-Federated Systems

The motivations for designing and building federated systems stem from the

shortcomings of single computer systems cited in the previous paragraphs and the availa-

bility of low-cost, large-scale integrated (LSI) circuit microcomputers and associated

. I/O support circuits.

L. 3-1

UNCLASSIFIED41
0iJI L

I

3.1.1 Hardware
UNCLASSIFIED

Federated microcomputer systems simplify subsystem design, manufacture,

interface, test and the inevitable modifications and updates. Figure 3-1 serves to

Illustrate the major differences between single and federated computer design

approaches. In the case of the single computer system, a relatively large high perform-

ance minitype computer is subject to the varying form factor constraints of a missile. To

move the computer to a different location invariably entails the repackaging of hardware

to fit the space available. A multiwire analog and digital interface problem also results

from the concentration of data processing and conversion in one place.

In contrast, the federated microcomputer system performs the data conver-

sion and processing tasks at source, within each major subsystem, and allows a standard

serial digital multiplex interface to be used between subsystems and the launcher. This

partitioning is discussed at greater length in subsequent sections of this report.

SIN"L MIIC MPTE SYSTEMLS

GI i

2~2-w41 S GIIAL DIGITA IL.$'O. Ill1

FEDERATED MICROCOMPUTER (0C) SYSTEM

Figure 3-1 - Single versus Federated Missile Guidance and Control Systems

3-2

UNCLASSIFIED

[A

J UNCLASSIFIED
3.1.2 Software

The merits of modular structured software, although well appreciated in

* this day and age, are somewhat idealistic and difficult to achieve and maintain. Figure 3-
2 illustrates a rational, modular, hierarchical control structure for a single computer

missile guidance and control system. All calls are made downward from the executive to
subordinate mode supervisors and supporting functional program modules. However,

under the normal pressure of tight development schedules the finished software is subject

to shortcuts which invariably violate the original clean modular lines of the control struc-

ture. The outcome of a degradation in software modularity is realized more in the later
phases of the development process when changes and substitutions are required (Figure 3-
3). Since software costs are pegged to ever-increasing labor rates, the impact of the

deficiencies in the design structure, together with other significant factors outlined

below, are not apparent until the total cost of the finished product is paid.

" 0.ICIJ3V

ALCAtION

" CON$ Lci
RESOL UTION

TT INITIALIZE PIE LAUT.CH LAUtJCW SLIW ImIDCOUPSI ACID TMNA IECIP

y Fo~o ON4,001NG

MODULIS

INGAL TIALIO AUTooiLcI ZIINC It t, l To *IUPCTIONAL
I I SINA LIMTIN GUIDANCE STRI £ IIENIOCT SWI.C,L2.~I..J OIY.INCONTtOL

LIMAN'

ORE'lION'

Figure 3-2 - Modular Hierarchical Software Control Structure for

Single Computer Missile Guitdance and Control System

3-3

UNCLASSIFIED

.Rix:

.jTO ADAPT'IVE

INTAD Ot BAbOSiW TCHING
WHERE'S THE AUTOPILOT
ITHIS THING ?

' KNOT HOLE -~t N
SOFTWARE CROSS MY

IN. PALM WITH - D DIJKSTPA
GOLDI DOSNT NO

Figure 3-3 - Single Computer System Software Is

inaccessible to Subsystem Designers

Cost Per Instruction

Design Cost+Coding Cost +Verification Cost+Maintenance Cost

No. Lines of Code

Determining factors:

1) Predominantly labor costs, dependent upon:

a) Firmness of Requirements

1.b) Proportion New versus Proven Algorithms

c) Size

d) Complexity

UNCLASSIFIED

VA

II
UNCLASSIFIED

2) Number lines of code, dependent upon:

a) Number Functions Assigned to Software

b) Level of Programming Language

Experienced software costs over the past few years indicate an average cost

of $40 to $60 per instruction for a fully commissioned system in terms of new, real-time,

operational programs, and between $8 and $30 per instruction for more standard routines.

Whereas the cost of semiconductor memory is estimated to be in the order of millicents

per bit, a 50-word subroutine typically costs $3000 as a finished product. Microcomputer

hardware, on the other hand, enjoys a volume market with modules selling in the tens of

dollars. This situation emphasizes the need to be able to reuse or recycle program mod-

ules and to curb the tendency of designers to "do it in software" when in doubt about the

requirements of a specific system function.

3.1.3 Throughput

Studies have shown that the throughput requirements for single computer

systems can reach the two million operations per second (two MOPS) mark (Figure 3-4).

While a machine could be designed and built to meet the speed requirement, the tendency

has been to add more functions, during the initial system development cycle and later,

throughout the life span of the missile. Since there is a finite limit to the speed of the

original computer, the increased load must either be accommodated by redesigning the

machine or outrigging satellite processors to absorb the overflow which, in turn, tends

toward a distributed system of haphazard design.

3-5

UNCLASSIFIED

a m !

UNCLASSIFIED

IHtO

12W

a00m EST A G4JID

THROUGHP.UT I/l
(MOPS) A/P

INfIRIAL

600 MCNA RN.tIILIEF

400 A/FHEAD

Rifi

FUZE I/M FUZE

I IINl

MISSILE CLASS

Figure 3-4 - Single Computer System General-Purpose Throughput Requirements

3.2 Defining/Identifying System Structures

Before embarking upon the design of any federated system, it is important to

consider the whole system as opposed to applying federated techniques on a piecemeal

basis. The reason for this is to identify the characteristic structure of the system in

terms of its constituent functions, data flow and data rates. Figure 3-5 shows the major

functions of a typical missile system and their relationship to one another.

3-6

UNCLASSIFIED

n
p.

v'

I UNCLASSIFIED

I

CO MN,

I
FINKI ISENSOR "IOct SSORL I GUIDANCEl ISTRUC TUALI ELEC:TRONICSI M-

A
"

U I I S

I I I I / FIN M]IXING /

I I F

TAGE F{ O RING WA&{A

O VICE t1

Figure 3-5 - Typical Missile Guidance and Control System -

Functional Block Diagram

In the system shown, the target sensor is mounted on a gimballed platform stabi-
lized against missile body motion by platform-mounted rate gyros and torquers in conjunc-
tion with the seeker head control electronics. Target sensor, e.g., radar, infrared (IR)
electro-optical (EO), outputs are processed by the signal processor which provides target
range and angle data (angle only for IR and EO sensors), for subsequent filtering and proc-
essing into boresight error and 'g' commands using appropriate estimation and guidance
law algorithms. The latter "steering" data controls the seeker platform and autopilot for

* target intercept. The autopilot also stabilizes the airframe against body motion and
bending effects using body gyros and accelerometers as data sources and outputting fin
deflection commands to fin control actuators. Detonation of the warhead is determined
by the detection of the target by the warhead's target detection device augmented with
end game geometry data from the primary target sensor signal processor and estimator.
The form of motor control can vary from a simple squibbing signal from the weapon con-
trol system, via the umbilical, to sophisticated fuel control based on temperature, pres-

sure and aerodynamic data in the case of ramjet propulsion units.

3-7

I! UNCLASSIFIED

IA

UNCLASSIFIED
The degree of interaction between the functional components of the system, their

physical relationship, system modularity requirements, and the magnitude of the process-

ing task in each case, influences the structure of the practical distributed microcomputer

system.

3.2.1 System Timing Considerations

The basic or characteristic structure of a system, as far as its implemen-

tation with distributed microcomputers is concerned, is determined by the system timing

constraints and the autonomy of functions. Figure 3-6 shows the system of the previous

figure with switches interposed between the major functional blocks and the associated

sampling or update rates indicated to satisfy the Nyquist criteria. Three major control

loops are visible: seeker head, autopilot and steering command. The first two of the

latter require relatively high sampling rates (125-500 Hz), to meet the bandwidths

involved, whereas the steering command update rate is quite low (10-20 Hz). Also, the

two high speed loops are virtually autonomous with their respective sensors and

torquers/actuators.

IrOMMANOI NCi" LINK---------------"1

LINK

10-201. I
TARGET

FINS

RETURN NC AUTOPILOT CORL I
TARGET SIGNAL TSIMN & STRPILT C
SENSOR 1 1O GUDAC

I'RFA-D L ~ UDNEFIN MIX LJ
STEERING LOOFP15001

IORQUIRS HEAD GYRO i A/ LOOP

CONTROL
ACCE0IR1

LO P

GYROS [1
PO TRs------------------------- -j AERO

Figure 3-6 - Digital System Timing Considerations

3-8

UNCLASSIFIED

I

UNCLASSIFIED

3.2.2 System Parallelism

Figure 3-6 views the system as a set of functional blocks, but if the system

is redrawn to reflect the planar control channels of pitch and yaw, for the seeker

gimballed platform, pitch, roll and yaw for the autopilot, branching out into four fin con-

trol channels, then parallelism becomes evident (Figure 3-7). The latter system charac-

teristic offers potential for using several low throughput microcomputers as opposed to a

few high throughput machines.

3.2.3 Macro-Structure System

Based upon the system as it appears in Figure 3-6, the obvious macro-

structure which exploits subsystem autonomy and low intersubsystem data rates is as

shown in Figure 3-8. One microcomputer is assigned to each major subsystem and a

common input-output (I/O) interface interconnects subsystems via a system bus at the low

10 Hz update rate. In terms of control hierarchy, the target seeker microcomputer con-

trols the system bus since all other subsystems are subordinate "Users" of the seeker data

(Figure 3-9). This form of distributed microcomputer system is a true federated system,

since each microcomputer operates virtually autonomously. Further, it meets the subsys-

tem modularity design goal whether subsystems are colocated physically or not. How-

ever, there is one major drawback to this level of partitioning, as shown in Figure 3-10.

Throughput requirements for the individual microcomputers vary widely from

up to one MOPS to as low as 50 KOPS. As a result, the high throughput requirements

of the seeker, flight control and head control functions indicate a bit-slice Schottky-

bipolar or complimentary metal-oxide semiconductor, silicon-on-sapphire (CMOS-SOS)

device technology machine, and the remaining low throughput functions as a single-

chip microcomputer. The cost of designing and building the bit-slice IACs and necessary

support software is something to be avoided if possible; hence the need arises to explore

alternative implementations using one type of microcomputer-on-a-chip throughout

the system.

3-9

UNCLASSIFIED

., .

UNCLASSIFIED

ii

0-10

UNCASSFIE

Lz

UNCLASSIFIED

TARGET SEEKER AUTOPILOT AUTO THROTTLE

SILENR PCFR SARSOAD PCZ ENSOS I

~~~~~~CONTROLS ATAOSATAO

10 z (PDTE)SYTEMBU

j SE SOR SENSORS 
1 

NS R SENSORS

ACTUATORS 
AC UA OR [ TJA T J P

IL ~Figure 3- - Maro-Struture Conto irach

TAGTSEE

L UNCLSSIFIE

- ~ ~ ~ ~ O ** ---- . S.~

- .~P.. * .

. . . . . . . . . .. . .



.......... '-V

I
UNCLASSIFIED

SINGLE COMPUTER
KOPS

180I

GP
1600- L

1400

FEDERATED COMPUTER LOADS
1200 I

000. 7, SEEKER

800 Gu111 ~SIGNA L 1A
INERT 14"

600 IIF • FLIGHT

CONTROL

400. HEAD AP HEAD
CONTROL

/ WARHEAD
200 FUZING

' AND 'tESUID E TELEMETRY

EXEC

Figure 3-10 - Microcomputer Throughput Requirements for Maro-tructured System

3.2.4 Super-Federated Systems

The high throughput macro functions identified in the previous paragraphs have the

potential of being broken down into "microstructures" exploiting the intrinsic

parallelism and overlap timing characteristics of the system. Figure 3-11 illustrates the

use of separate single-chip microcomputers for each subfunction within the major func-

tions of target seeker and autopilot.

In the case of the target seeker processing group a "heel-to-toe" computing sequence

is evident since each microcomputer is waiting for the output of a preceding subfunction.

tiowever, certain preliminary operations can proceed while waiting for real-time update

Il

i: I information, eg., state estimation. Further, since the spectrum analysis subfunction

is a fixed entity i.e., either a 64, 128 or 256-point fast Fourier transform (FFT) process,

then this should be executed in a high-speed special purpose processor to allow more

time in the overall budget of 20 or so milliseconds for the slower general-purpose pCs

to execute their respective tasks. In other words, software is used where flexibility

is required.

3-12

UNCLASSIFIED

A " JI .



UNCLASSIFIED

~AUTO4'ILOTr
ARGET SEKER -UTO

INTERNAL BLUS INTERNAL BUS

SPECTRUM TARGET ESTIMATOR GUIDANCE PITCH ROLL YAW

ANALYSIS SELECT LAW - -

(SP)

Figure 3-11 - Super-Federated Subsystem Proessing, Target Seeker and Autopilot

The autopilot case is quite different. As was noted earlier (Figure 3-7), three-

axis control can be exploited through parallel processing, thereby allowing several relatively

low speed 1p Cs to be used to perform a high-speed composite function.

Software modularity is enhanced in each of the above eases, since the functional

program modules shown in Figure 3-2 are now visible as separate single-chip microcom-

- -puters. Taken to an extreme, a 1:1 correlation between the program modules of Figure 3-

2 and tj Cs would ensure software modularity and provide a fixed hardware interface

between software routines. Subroutine calls would then be handled by hardware linkages

* between p Cs. The situation depicted in Figure 3-3 could conceivably be transformed

into the more desirable state of affairs shown in Figure 3-12, where a subfunction change

is performed by the simple replacement of a single-chip microcomputer with the eor-

rectly programmed alternative.

3-13

UNCLASSIFIED

S"4&



r

UNCLASSIFIED

..... _OF BANDSWITCE

INSTEAD OF THE

.DIP

Figure 3-12 - Software Change by Hardware Bustitution

in Super-Federated Systems

3.3 Microcomputer Modularity

To cover the range of missile throughput requirements, a set of microcomputer

macromodules was defined (Tabel 3-1). Memory-mapped I/O is used to eliminate Direct

Memory Access (DMA) to "main" memory and the associated control circuits. Figure 3-13

shows the grouping together of modules to form a federated missile guidance and control

system.

The crux of modularity at the microcomputer level was the definition of a standard

microbus , (Reference R-14) oriented toward standard industry semiconductor memory

circuit interfaces, i.e., read-write/random-access memories (RAMs) for data storage and

read-only memories (ROMs) for programs.

3-14

UNCLASSIFIED

• .'I" 
'

.. . . .. . . . .. . . . . . - -



UNCLASSIFIED
I TABLE 3-1

MICROCOMPUTER MACROMODULES

~is aM a.~ .1 A

92= Zi V;* "t '
0000~~00 0200 0 BI 0.00@

s 10

*.~~ 0. 0.0.

VU ~0 I A
CC .5CC !I

0 c

~ 1~A A caA

3-1
UNCASSFIE



UNCLASSIFIED

I

tS

.~

PilpUe 3-13 - Modular Federated lierocomputer Missile

Guidanee and Control System

3-16

UNCLASSIFIED



I
UNCLASSIFIED

3.3.1 Programmable Microbus Interface Module

In the microcomputer industry no two microbus interface schemes are the

same, e.g., S-100 Bus, Intel MULTIBUS, National Microbus, etc., and similarly, the electri-

cal interfaces of available support modules varies, e.g., analog-to-digital (A-D) and digital-

to-analog (D-A) converters, memory modules, and serial digital interface modules.

Through the definition of an independent microbus interface a programma-

ble microbus interface module (MIMNI),(References R-16 and R-18) was designed. This

module employs high-speed field programmable logic arrays (FPLAs) and programmable

read-only memories (PROMs), to interface standard-industry microcomputer components,

i.e., microprocessors, RAMs, ROMs, multiplexer A-D converters, D-A converters and

serial digital I/O modules with the microbus. Further, each individual component can be

replaced with a more desirable product from a different manufacturer, at any time during

the life cycle of the system, by reprogramming the MIM to accommodate the interface

peculiarities of the new product.

3.3.2 Frequency Spectrum Analyzer Module

Missile radar target seeker signal processing requirements are low compared

to avionic and ground-based air defense systems (Reference R-3) (Figure 3-14).

Nevertheless, the frequency spectrum analyzer (FSA) module of Table 3-1 using bit-slice

microprocessor circuits, requires approximately 150 LSI/MSI/SSI circuits, dissipates

approximately 50 W, using Schottky-bipolar circuit technology, and executes a 64-point

complex FFT in approximately 300 u see, meeting only Class I and [I missile performance

requirements (References R-6, R-14 and R-17). Such a processor dwarfs the single-chip

microcomputer (Figure 3-15). In contrast, a charge-coupled device (CCD) processor using

the chirp-Z transform (CZT) and transversal filters, executes an equivalent 64-point analy-

sis in approximately 13 uisee, with a power dissipation of less than 5 W, meeting all

three missile class requirements (References R-17, R-24 and R-25). While dark current is

a limiting factor in the dynamic range of analog CZT processors at the upper end of the

N IL temperature range, recent improvements in prototype surface channel CCL)s at Ray-

theon and elsewhere (Reference R-26) indicate a temporary situation in this performance

deficiency. Further, based on recent NASA/TI work, a 2-chip CCD Cki processor

appears feasible in the near future.

3-17

UNCLASSIFIED

VA
0'



I
UNCLASSIFIED

34 33.0

,21

24

RAVAALA&J

10 111J~l 0M L ON/ LRE0D

a 4.

INTUC0PT0 SIIATEGIC W'C

A-A ANSSI CLASSES1 All DffENWSI NICS

Figure 3-14 - Radar Signal Processing Throughput Requirements

3.3.3 Serial-Digital Input-Output (SDb) Module

The SDIO module provides a MIL-STD-1553B- compatible serial digital multi-

plex bus interface between microcomputers in the missile and the external weapon con-

trol system (Reference R-27). Using conventional transformer coupling to the

* transmission line requires relatively large, high-current, line driver, receiver and

transformer components which, in turn, are inconsistent with today's single-chip microcom-

puters and the small size, weight and power limitations of a missile. Fiber-optic coupling

between subsystem microcomputers, using simple LED/PIN diode/T 2L interface compo-

nents (Reference R-28) and single-chip Manchester II/NRZ code converters (Reference

* R-29) reduces the serial 1/0 interface hardware to more realistic proportions (Reference

F R-14). However, the single party-line bus is not currently amenable to fiber-optic

* technology, since T-couplers introduce a 3 dB loss at each drop point. A simple alterna-

tive is the ring system of Figure 3-15, using a round-robin protocol (Reference R-30). A

3-18

UNCLASSIFIED

3.. ra-iFtl.u- pt SI)Mdl

Th DOmdl rvdsaMLSD153-cmail eildgtlmli

plexbus ntefacebeteen icrcompter intemsie4. h xena epn n



UNCLASSIFIED

SUBS VS

P AUTO1HROnLE

SDIO

FIBERFIBER
OPTIC OPTIC
LINK LINK

T Rt

TARGET SUSY PC SDIO SDOo PC SUBSYS WARHMA

LINK T DI LINK

PC AUTPILOT

Figure 3-15 - Fiber-Optic Ring Communications Between Missile Subsystems

more complex multiline approach is the star configuration which would be suitable for a

simple, single-mode, short-range missile where the seeker becomes the focalpoint. Eight-

port couplers have been built under Air Force contracts (Reference R-31).

3.4 Navy Demonstration System

The culmination of the above work has been the fabrication of a basic federated

microcomputer guidance and control system under a NSWC contract (Reference R-19).

This microcomputer system constitutes the "hardware-in-the-loop" element of a real-

time missile simulation to evaluate the performance of the federated approach under

the constraints of a MIL-STD-1553B I/O protocol (Figure 3-16).

Breadboard versions of the .C macromodules have been designed and built using

standard industry IAC components integrated with microbus interface modules (MIMs), Fig-

ure (3-17). The simulation is based upon a modular digital missile guidance simulation

3-19

UNCLASSIFIED

S.



UNCLASSIFIED

RESIDENT PROGRAMS: - - -
0 EXECUTIVE - ... ~ MOS - ,RESIDENT PROGRAMS:
" ESTIMATOR* I 1 553AM PROTOCOL
* GUIDANCE LAW (PNP' 0 BASIC AUTOPILOT
* 1553AB PRO TOCOLKA

'9 1553A/B BUS

INI

PERFOMANCERESIDENT PROGRAMS

RECRDRS APPLIED * AIRFRAME (LF)
PLOTTERS1!1:J:,, DYNAMICS AC CDC 6700 S TARGET MODEL

STANDARD
RESIDENT FUNCTIONS: COMPUTER

0AIRFRAME (HF) PERIPHERALS

* SEEKER STABILIZATION OPERATOR
* CONTROL ACTUATOR SERVO (CAS) PRGRAMMER

ETC

Figure 3-16 Navy/Raytheon Hardware-in-the-Loop Federated

vi C System for Missile Performance Simulation

GWDA'.CRAUTOPIL01

MKII

UELTIA MSOU SALAON U I AA

Figure 3-17 - Federated Microcomputer Macrornodules Using MIM Interface

S3.-



UNCLASSIFIED
system developed for NSWC under a separate contract, (Reference R-32). System growth

is achieved by adding additional microcomputers to the system bus and

transferring/recoding simulation program modules to be executed by the appropriate

microcomputer(s).

Figure 3-18 shows modular growth from the simple low-performance guidance and

control system of Figure 3-17 to a high-performance super-federated system using several

microprocessors of the same type and maintaining the original data memory and 1/O mod-

ules. Each microprocessor executes only one algorithm using a dedicated program

memory chip. This arrangement ensures software modularity and programming simplicity

while minimizing i bus traffic.

3.5 Summary

Federated microcomputer systems provide the flexibility to design, develop,

modify and update missile guidance and control systems on an individual subsystem basis,

thereby enhancing system modularity. Standard industry microcomputer components

which meet military environmental specifications can be integrated into a set of micro-

computer macromodules using a standard programmable interface module and microbus.

To achieve and maintain modularity in software, the potential exists to assign each major

program module to a separate single-chip microcomputer, placing a fixed hardware inter-

face between major function algorithms. Furthermore, by exploiting parallelism and/or

the time overlapping of function execution, the use of several standard-industry, single-

chip microcomputers in a "super-federated" configuration eliminates the need to resort to

one-of-a-kind, high-speed, bit-slice processors for high performance missiles, with their

attendant hardware and software logistics support problems. In terms of signal process-

ing, improved charge-coupled device technology, in the form of chirp-Z transforrm proces-

sors using transversal filters, offers a solution to the high chip/parts count of current fast

Fourier transform processors. A two-chip CZT processor would match the level of large-

scale circuit integration presently available in microcomputer technology.

In cases where federated microcomputer systems are distributed physically

throughout a missile, relatively low performance, fiber-optic, serial-digital communica-

tions between mictocomputer-based subsystems using a round-robin protocol eliminates

the high power, transformer-coupled interface of traditional electrical bus systems.

3-21

UNCLASSIFIED

A



UNCLASSIFIED

GUIDANCE AUTOPILOT

P AM2 
N4*2

M MIN

MMt W - MWM MIM HIIMA

DIO eO IDA

11 II !
i ---, I!,-,I'~-,i.,. ..

ucPU-2M

IlI

I RO? RO? PROM 2 PRMItOM]PRM

LI PRnO _qy SE L -EST GUID .. LIN MIX PITCH CH ROLLCH_ VAMCN M

IMIL STD 1553i

REAL IME MISSILE SIMULATION

Figure 3-18 - Super-Federated Microcomputer System for Higher Performance Missile

Guidance and Control

3-22

-LUNCLASSIFIED

* 1'

• S,.-, . ..



UNCLASSIFIED

4. CLASSIC MULTIPROCESSOR ARCHITECTURES

Before embarking on the super-federated microcomputer system architectural

design, a review of earlier multiprocessor architectures was performed to determine their

respective merits and failings both from a hardware and software viewpoint.

Although large physically, due to the state-of-the-art in hardware at the time of

construction, these earlier architectures become classical in terms of the various

approaches adopted to solve such problems as throughput, availability and growth for both

random and highly repetitive computing tasks.

Further, the deficiencies experienced in these architectures (particularly

software), are as important today as earlier, except of course for the shortcomings result-

ing from the number of discrete components and their associated failure rates.

4.1 Multiprocessor and Computer Systems

To overcome the deficiencies of single, uniprocessor computer systems for high-

performance, high-availability applications, viz: limited throughput; failure upon a single

fault; restricted growth in size and performance; various architectures incorporating

either several of the basic elements of a computer, i.e. CPUs, memories, and IOUs,

(multiprocessor systems), or several whole computers (multicomputer systems) have been

designed and built. These systems are characterized by their ability to perform the

simultaneous or parallel execution of similar and/or different tasks at several times the

speed of a single sequential machine.

Multiprocessor systems are essentially expanded and more complex versions of the

basic Von Neumann uniprocessor, (Reference R-33), usually performing a centralized role

in a given system. However, a significant drawback to certain types of past

multiprocessor systems has been the executive processing load associated with the

efficient utilization of processors in a multi-task operating environment, (Reference R-

34). Since this overhead remains sequential, system throughput is not linearly propor-

tional to the number of processors employed.

Multicomputer systems, on the other hand, are composed of several relatively

simple and familiar computers interconnected via their I/O units (IOUs). Multicomputer

4-1

UNCLASSIFIED

&...



UNCLASSIFIED

systems normally function as decentralized, distributed/federated systems with each

computer dedicated to a specific set of interrelated tasks and external devices (EDs).

Communication within a multiprocessor system involves megaword per second

information transfer rates whereas within a multicomputer system, i.e., between IOUs,

functional partitioning is designed to achieve transfer rates in the kiloword per second

range.
The various characteristic forms of multiprocessor and multicomputer systems

built to date involve either single or multiple data busses, or a cross-point switching

matrix for communication between major computer elements or computers respectively.

In the following examples reviewed it car, be seen that it is both the type of communica-

tion employed and the degree of customization of the architecture to the type of process-

ing task to be executed which characterizes the system, whether multiprocessor or

multicomputer.

4,1.1 Single Time-Shared/Party-Line Bus

The most simple form of multiprocessor and multicomputer system employs

a single, time-shared/party-line communications bus. These architectures achieve the

highest throughput only when accesses to the bus can be scheduled to avoid user conflicts.

Of the two types of computer system, the multiprocessor (Figure 4-1) is more throughput

limited by the single bus than its multicomputer counterpart due to the lack of autonomy

of the individual processors and their dependence upon access to a common/shared "main"

memory. The multicomputer system (Figure 4-2) however is far more amenable to the

single-bus for inter-IOU communication due to the low transfer rates in a properly parti-

tioned system. In the example shown, bus accesses can either be controlled by a master-

slave hierarchy or on a round-robin basis to eliminate conflicts. Furthermore, the low

inter-IOU transfer rates in a well designed multicomputer system enables a serial digital

* multiplex bus to be employed, affording higher reliability through simple duplication.

* Current technology in serial data transmission also offers virtually error-free perform-
ance at 1 MHz bit rates and using a ring bus with a round-robin I/O protocol, a low cost

* fiberoptic data link becomes practicable. Figure 4-3 shows a simple missile guidance and
* control system using one microcomputer (vc) per subsystem, serial digital input-output

(SDIO) channel and fiber-optic/T 2 L transmitter (T) and receiver (R) interface circuits.

4-2

UNCLASSIFIED

It

-p'



UNCLASSIFIED

SHARED DATA AND PROGRAM MEMORIES

TIM SHARED MEMORY ACCESS BUS

- -- " .. .. -r ... - I
r i I

CPU I  °, CPU nOU I  *, IOU

PROCESSORS

6ED1  * *sED

Figure 4-1 - Multiprocessor System - Single Time-Shared Memory Access Bus

COMPUTER I COMPUTER 2 COMPUTER N

MEM 1  MEM 2  MEM n

CPU I  CPU 2  • 9 0 CpUn

IOU) IOU 2  IOU n

E...D, BIUI ED ED l 2  ED . D BUh

SINGLE TIME-SHARED COMMUNICATIONS DUS

Figure 4-2 - Multicomputer System - Single Time-Shared Communications Bus

4-3
UNCLASSIFIED

t.



T
1UNCLASSIFIED

P AUTOTHROTILE

SDIOO

FIBER FIBER

OPTIC R OPTIC
LINK LINK

S R

SEKRSUBSYS PC SDIO SDlO PC SUBSYS WARHEAD

Figure 4-3 - Multicomputer System - Fiber-Optic Coupled Round-Robin

Serial-Digital I/O

4.1.2 Multiple Bus

This form of communication within a computer system is more commonly
encountered in multiprocessor systems to overcome the speed limitations of the single,

party-line bus, thus trading off simplicity for increased speed, size, weight, cost and com-

plexity. Figure 4-4 shows a typical multiple bus multiprocessor which has been with us

for well over a decade. Each memory user (processors and IOUs) has a separate bus to

access any memory bank. Conflicts in accessing the same memory are resolved in each

memory bank by a multiplexer (MUX) with priority logic. Optimum speed is achieved

when processors can use separate, dedicated memory banks for their respective instruc-

tion and operand accesses coupled with infrequent accesses to shared data bases and

similarly infrequent DMA I/O transfers. In earlier systems using destructive readout

(DRO) core memories with relatively long data transfer cycles, it was possible to access

the stored data before the completion of the full memory cycle, thereby enabling the

partial overlapping of instruction and operand fetch cycles when the latter were stored in

separate memory units. Such fine tuning techniques are neither possible nor worthwhile

4-4
UNCLASSIFIED

p

-,4



II , UNCLASSIFIED

SHARED DATA & PROGRAM MEMORIES

MEWM

. . OUCPU1 KIS

CPU 2 Is

IOU2 an

-- - I-- T,
!PU cu.,l ,ot [I~

PROCESSOR I PROCESSOR 2

Figure 4-4 - Multiprocessor System - Multiple Memory Access Bus

with today's high-speed semiconductor memories. Under these most favorable conditions,

virtually a multicomputer operating mode, throughput for a dual microprocessor system

approaches twice that of a uniprocessor.

A multicomputer system employing independent I/O busses is shown in Figure 4-5.

Such a system requires multiplexed, direct-memory-access (DMA) IOUs.

4.1.3 Cross-Point Switch

This form of communication/coupling between computer elements or com-

. puters was first described by H.A. Keit in 1960 and formed the essence of what was

termed the "Polymorphic" concept (Reference R-35 and R-36) i.e., a system having "many

I shapes". One of the major objectives was to decentralize system control by making a

passive switch the central element instead of a single processor. Figure 4-6 shows a

multiprocessor configuration employing the polymorphic principle which was used in a

high availability tactical air defense system (Reference R-37). Figure 4-7 is an example

of a multicomputer version. With reliable solid-state switches these systems

4-5

UNCLASSIFIED



UNCLASSIFIED

COMPUTER 1 COMPUTER 2 COMP NE

IEM MM2  MEMn

CPU CPU2  *..*. CPU~

IOU1  IO 2  boun

ED &.VEDn EDI1* EDn ED1 . EDn

- -- COMPUTER I BUS II

COMPUTER 2 BUS

COMPUTER N BUS

Figure 4-5 - Multicomputer System - Multiple 1/0 Communications Bus

SHARED DATA AND

PROGRAM MEMORY BANKS

Figure 4-6 -High-Availability Multiprocessor System -Cross-Point

Switch Communications

4-6

UNCLASSIFIED

60



I
UNCLASSIFIED

COMPUTER I COMPUTER 2 COMPUT N

MEM 1  MEM 2  0EM n

U CPU 2 e CPU

IOU1  IOU 2  IOUn

Figure 4-7 - Multicomputer System - Cross-Point Switch I/O Communications

provide high availability, flexibility and growth capabilities, and although of necessity

confined to ground systems in the past, due to the size and weight of available hardware,

a polymorphic multi-micro computer system with serial communications and LSI switch-

ing becomes a viable candidate for tactical avionic and missile systems (Figure 4-8).

4.1.4 Array Processor Systems

Array processors achieve high throughput for a limited range of tasks,

thereby trading general-purpose features for speed. On one of the first forms of array

processor the register arithmetic and logic unit (RALU) of the uniprocessor was effec-

tively replaceJ by a matrix or array of processing units, each interconnected to its

neighbor, and the whole designed to achieve high throughput for mesh oriented problems

using a common instruction stream.

4-7

UNCLASSIFIED

I,

ii/



UNCLASSIFIED

MODE
CONTROL

SLEEKER .

(IRO, GUIDANCE

TARGET . C
C O M

A
M A N

SEEKER SENSING & AUIOPILO?
(RADAR) CROSS-POINt

SWTC
GP

q 
1 PC UlOTHITI LE

INERTIAL

Figure 4-8 - Tactical Multimicrocomputer System - Serial Cross-Point Switch

I/O Communications

Speed improvement of array processors over the uniprocessor can be a fac-

tor equal to the number of processing units in the array provided that they are

continuously active. The availability of such systems for tactical applications is degraded

by system complexity and the single common source of instructions. The latter defi-

ciency however could be overcome with autonomous processing units.

4.1.4.1 Single Integrated Array

The SOLOMON II (Reference R-38) provides a good example of an

array processor system using a single integrated array (Figure 4-9). The processing units

in the array are virtually small microcomputers, each incorporating a 128 x 32-bit

memory.

4-8

UNCLASSIFIED

I.
v'p



UNCLASSIFIED

Legend CU - Control Unit

Figure 4-9 - Array Processor System - Single Integrated Array

4.1.4.2 Multiple External Array

The early ILLIAC IV (Reference R-39) shown in Figure 4-10

employed four arrays and four control units, thus significantly improving systems availabil-

ity and flexibility by eliminating the dependence upon a single control unit (CU) and

instruction stream. The master executive is resident in an external host computer which

impacts upon the overall system reliability. The ILLIAC IV array processing units were

again effectively microcomputers, each with a high-speed 2K x 64-bit memory and parallel

arithmetic and logical unit. Figure 4-11 illustrates a possible 4 x 4 microcomputer array.

4-9

UNCLASSIFIED

Iu,



UNCLASSIFIED

Figure 4-10 - Array Processor System - Multiple External Array

Figure 4-11I - Array Microcomputer System - Single External 4 x 4 Array

• : 4-10
' UNCLASSIFIED

IIP.

Ia cos P"C"i ..



I
UNCLASSIFIED

4.1.5 Associative Processor Systems

In common with the array processor, the associative processor (Reference

R-40) achieves high throughput by executing a specific class of functions which, instead

of suiting an array of processing units, are suited to the use of a content addressable

memory. Tasks in this category typically involve the correlation of many data points with

a common reference point, e.g., target tracking. Figure 4-12 illustrates an associative

processor system, where the single RALU in a uniprocessor is effectively replaced by a

stack of processing units, each incorporating a serial ALU, "memory", some form of

autonomous control (CU) and input-output circuits (IOU) - or in other words a microcompu-

ter. The "memory" in each processing unit is normally considered as one long word (128

or 256 bits) divided into fields, each containing a specific parameter pertinent to the

single item stored, e.g., range, azimuth and elevation of a target.

Availability of such a system is again impaired by a common instruction

stream, which feeds the associative memory, and the overall uniprocessor architecture.

Speed is unsurpassed for correlation type tasks in a multitarget environment, and is

unaffected by the number of targets within the storage capacity,.

(PROGRAMS) "

ED I

ED3
n{

(DATA)

Figure 4-12 - Associative Processor System

4-11

UNCLASSIFIED

40



UNCLASSIFIED, !
4.1.6 "Hybrid" Processor Systems

IIn an effort to achieve high speed for all or many different classes of prob-

lems within a central computer system, systems have been configured to handle all the

ftasks encountered in tactical air defense and avionic systems. In the two configurations

reviewed, a distinction is made between tasks amenable to highly parallel processing, and

the remaining irregular tasks which are better suited to the traditional sequential method

employed in GP uniprocessors.

4.1.6.1 Dual-Bus External Ensemble

One configuration of a high-speed multi-function processor is shown

in Figure 4-13. This form of processing system (Reference R-41) employs an "ensemble"

rather than an array of processing units as an adjunct to a GP computer which performs

the irregular sequential-oriented tasks and furnishes instructions to the ensemble for

tasks suited to parallel processing. A common global control unit interfaces with the GP

computer and the radar subsystem and furnishes operands and microinstructions to all

PROCESSOR ENSEMBLE

I -I

MEM I MEM1 MEM2 MF"Mn

HOSI CPU CPU CPU

" CPU GP COMPUTER 2 n
I I

IOU I IOU2  IOUn

GLOBAL
I CONTROL UNIT

j Figure 4-13 - "Hybrid" Processor Systems - Dual Bus

External Ensemble, (PEPE)

4-12

UNCLASSIFIED

II
L_.--.

" I GLOBA



! UNCLASSIFIED

processing units via a dual-bus system, one dedicated to correlation tasks, the other

arithmetic. Each processing unit is again the equivalent of a microcomputer with a 512 x

32-bit word memory. Virtually any number of targets can be processed simply by adding

more processing units and without any apparent loss in throughput. Availability, however,

is again jeopardized by the dependence on a single GP computer and global control unit.

4.1.6.2 Multiple-Bus Integrated Ensemble

An integrated approach to the ensemble of processors is exemplified

in the system shown in Figure 4-14. In this system (Reference R-42), the host computer

is eliminated and the single RALU in the uniprocessor configuration is again effectively

replaced by an ensemble of sequential uniprocessors and one special-purpose processor

which incorporates a FFT processor, associative processor and pseudo-associative

memory. A separate bus is provided for access to the bulk storage, main store and master

executive control (shared bus), and the IOU. These communications busses are further

augmented by an interprocessor bus and direct links between the special-purpose proces-

sor and the bulk store matrix providing EDs with direct access to the sequential

uniprocessors. Each uniprocessor contains a 2-4K word high-speed memory to store and

process large routines. These routines or program modules are transferred from the main

store as 'burst" transfers under the direction of the master executive control (MEC), the

objective being to reduce activity and conflicts on the bus system compared to conven-

tional multiprocessor systems. The ensemble is in many respects a multibus,

multicomputer system of Figure 4-5 without the permanent dedication of computers to

specific sets of tasks, except in the case of the MEC which is virtually a host computer.

Availability of this system would depend on the duplication of the MEC and other critical

programs, for immunity against memory failures, together with a duplicate special-

purpose processor. The complexity of the parallel multi-bus communications system

represents a significant deterrent to achieving true high availability.

4-13

UNCLASSIFIED

.tO

* *-~ -. A.,'



F1I

UNCLASSIFIED

UK STOCK STORE

- '~

WIAIII

IO IO O

--F-T - 11XSa I

SCROssPON SWICH

L_

Figure 4-14 - "Hybrid" Proessor Systems
Multiple-Bus Integrated Ensemble, (Original Navy AADC)

4.1.7 FFT Processor Architectures

The Cooley-Tukey fast Fourier transform (FFT) algorithm, (Reference R-

43), has been widely used in high-speed real-time signal processing since its introduction

in 1965. Although the FFT algorithm provided a dramatic reduction in the number of

arithmetic operations required to perform frequency spectrum analysis, it nevertheless

severely burdened the throughput capability of the conventional general-purpose

uniprocessor. As a result of the latter deficiency, various architectures were identified

(Reference 44) and developed providing gigahertz (GHz) computational rates through the

use of pipelined arithmetic elements within the arithmetic unit(s) (AU) of the processor.

Figure 4-15 illustrates the growth from a single sequential uniprocessor to a pipeline of

AUs, (one for every major iteration in the FFT); a parallel iterative organization, and a

full array. As in the previous architectures reviewed, it is conceivable to replace each

MEM/AU combination with a single-chip microcomputer, thereby deriving similar

factorial throughput improvements, based upon the performance of the iC.

4-14

UNCLASSIFIED

- . ... ... . . : : : z " -l i b . m, ,m , m . ri , . . . ..



I
UNCLASSIFIED

TABLE

MEMORY

DATA
MEMORY

ATE 2 LOG2N

INDEXING

SINGLE SEQUENTIAL (1 A.U.) 0 PIPELINE (LOG 2 N A.U.s) '4.8 jASEC

A.U 1 2 LOG2 N

A.U. A.U. A.U.

MEM

N/2 A.U. A.U. A.U.

N/2
A.U- A.U. A.U. A.U.

MEM  A.U. A.U. A.U.

--- ' --- -.-
A ARRAY (N/2 LOG 2N A.U.s)*150 nSEC

PARALLEL ITERATIVE (N/2 A.U.s)900 nSEC

* 64-POINT COMPLEX FFT, 150 nSEC /2-PT

Figure 4-15 - FFT Processor Architectures

4.1.8 Conclusions

It becomes apparent that the classic multiprocessor/computer architectures

reviewed are just as easily implemented, (if not more easily in a practical sense), with

today's single-chip microprocessors/computers as with the smaller scale integrated cir-

cuits. Of the several types discussed, the simplicity of the single time-shared bus

multiprocessor configuration suggests its viability as a candidate for the kernel element

of a modular high-performance architecture. The chief deficiency of the single bus

architecture lies in the shared memory, both programs and data, for each microprocessor

and the resulting high incidence of conflicting memory accesses. Further, the modular

software goal is defeated through shared memory. The latter deficiencies were therefore

more carefully scrutinized in an effort to adapt the basic architecture to satisfy both high-

throughput and modular software.

4-15

UNCLASSIFIED



UNCLASSIFIED

5. SUPER-FEDERATED MICROCOMPUTER SYSTEM (SFMCS)

As was stated in the preceding section, the single-bus multiprocessor architecture

has only the single merit of simplicity in hardware design, but if solutions could be found

to its throughput and software modularity deficiencies it could well prove to be an ideal

kernal processing element for modular digital missile systems.

5.1 Modifying/Optimizing the Single-Bus Multiprocessor Architecture

Since one of the original design goals was to perform a software change through an

integrated-circuit (IC), hardware change, i.e., identifying each major functional algorithm

with an IC, the first obvious modification to the conventional single bus multiprocessor

architecture was separation of program memory from data. Figure 5-1 illustrates the

change.

IJ BUS

F~q F F F

Figure 5-1 - Single Time-Shared Bus Multi-Microprocessor -

Separate Program Memories

Separating programs from data has two major advantages:

1) Reduced microbus access conflicts and hence higher throughput.

2) Each major program module/algorithm is identified with a PROM IC.

5-1

UNCLASSIFIED

'U .
};,7



UNCLASSIFIED

The remaining shared data memory becomes a "mail box" for the transfer of

computed results from one major algorithm to another, and stores the partial results

of each of the separate programs when the number of operands exceeds the register

storage capacity of each microprocessor.

5.1.1 Memory Mapping and Single Computer Programmability

The dedication of program memories to specific program modules, which in

turn are assigned to individual microprocessors, enables each processor to be programmed

as an entity rather than as part of a complex multiprocessor system. The only proviso is

the establishment of a common memory address boundary for the beginning of the shared

data base. This base address must exceed the highest program address used by any one of

the group of microprocessors in the system, and programming can then proceed as for a

single processor. Figure 5-2 illustrates this memory mapping approach for four

processors.

4095 4095 4095 4095
GROWTH GROWTH GROWTH GROWTHSHARED I- - -

RAM DATA DATA DATA DATA

(1/O & OTHER) (I/O & OTHER) (I/O & OTHER) (1/O & OTHER)

3071 PROGRAM 3071 3071 PROGRAM 3071

GROWTH PROGRAM 2609 GROWTH PROGRAM

856 GROWTH GROWTH

INDIVIDUAL SPECTRUM ESTIMATION,,77
PROMS AALSS 117

(PRE & POST) TGT. SEL. LOGIC

0 0 0 0

Figure 5-2 - Super-Federated Multiprocessor-Memory Mapping Class III Seeker Processing

5-2

UNCLASSIFIED

I7-

-



UNCLASSIFIED

Program growth can be accommodated for each function up to the

predefined data boundary. Data can be similarly submapped for memory-mapped I/O

channels as well as partial and final results. Further, if several similar super-federated

groups are controlled by a host processor, a third upper level of memory space can be

made available to each microprocessor for direct communication with the host processor's

storage space (Figure 5-3).

8191

GROWTH

HOST DATA

BASE

4095
GROWTH

SFMC DATA BASE

3071
GROWTH

0

Figure 5-3 - Super Federated Multiprocessor-Extended

Memory-Mapping For Host Processor

S.1.2 High Throughput Refinements

Returning to the basic single bus super-federated multiprocessor of Figure 5-

1, the frequency of data memory access conflicts becomes a function of the degree of

synchronism of the memory fetch cycles of each microprocessor. If all four processors

were executing identical programs and were driven by the same clock waveform, then all

memory fetch cycles would coincide. This situation could occur if, for example, those

5-3

UNCLASSIFIED

9,. ,g,.



I

UNCLASSIFIED
processors executed the three autopilot channels, i.e., pitch, roll and yaw, respectively.

At the other extreme, the dissimilarity of individual processor programs would minimize

fetch cycle conflicts, as would the time skewing of clock waveforms by one memory

access interval to each microprocessor. The latter phasing of clock pulses would then

convert the simplistic single bus multiprocessor to a time-phased ring bus architecture

Reference R-45. Such clock time phasing would eliminate memory access conflicts when

identical programs are being executed by each microprocessor and could be expected to

significantly reduce conflicts among dissimilar instruction sequences. The latter could

then be resolved by a rotating priority scheme executed by a bus controller. Figure 5-4

illustrates the above timing for four processors, although it would be valid for more using

additional clock phases.

CLOCKO - -F _ _

CLOCK 0
P,' P2I1 E I E IF I E I I E I F1

PP4  F E F E F E F E F

Figure 5-4 - Time-Phased Ring Bus Memory/Instruction Fetch (F) and Execute (E)

Sequences Four Microprocessors Identical Instruction Streams

5-4

UNCLASSIFIED

l/4



UNCLASSIFIED
5.1.3 Time-Phased Ring, Practical Case

To be effective in a realistic sense the foregoing timing refinements must

be applicable to commercially available microprocessors. The Intel 8086 and Zilog Z-8000

16-bit microprocessors were selected as representative of the state-of-the-art in single-

chip microprocessor technology.

5.1.3.1 Intel 8086 Waveforms

Figure 5-5 shows the compatibility of the Intel 8086 timing wave-

forms with time-phased clocking of each microprocessor clock input. Further details of

the latter timing relationships are given in Appendix A.

2 0
0ns

T2 T3_T4

8086 OUTPUT ADDRESS DATA

RING pBUS

L (DATA & ADDRESS) TV T2 T3 T4

SP2  8086 OUTPUT ADDRESS DATA

RING uBUS

(DATA & ADDRESS)

0 3

P P3 8086 OUTPUT ADDRESS DATA

RINGi BUS

(DA T
A & ADDRESS)

04

FP 4 8086 OUTPUT [ ADDRESS DATA

RINGpBUS

(DATA & ADDRESS)

Figure 5-5 - Time-Phased Ring Bus Intel 8086 Timing Compatibility

5-5

UNCLASSIFIED

A...-



, UNCLASSIFIED

5.1.3.2 Zilog Z-8000 Waveforms

TheZiogZ-8000 microprocessor requires a minimum of three clockcycles to output the memory address and transfer a data word to/from memory. Figure

5-6 shows the staggering of ring micro/bus accesses through the use of a four-phase clock

(Appendix A).

5.2 Expanded System Architecture

Using the basic four-microprocessor module (quad) described in the previous para-

graphs, an expanded system was configured using four quads and a host processor (Figure

5-7). A functional block diagram of this system is given in Appendix C.

The memory map for this system is as shown in Figure 5-3. Single computer

programming simplicity is maintained and memory access conflicts are resolved by FPLA-

based arbitration units, transparent to the programmer. Input-output activity is handled

by memory-mapped I/O modules (ADAC and SDIO) whose data is directly accessible by

any microprocessor.

T I250' 1 T2 I 1 3 I

,P1 Z800OoUTPUT ADDRESS DATA

RING M BUS

IDATA & ADDRESS)
I Tr I T2 I T3

/P2 ZOC OUTPUT ADDRESS DATA

RING V BUS
(DATA & ADDRES) I

Ti I T2 T3

3 ZS OUTPUT ADDRESS DATA

(DATA F. ADDRESS) T T T
RING pBUS

(DATA A ADORE SSI

I TI I T2 T 3 I

Z Z000 OUTPUJT ADDRESS DATA

RIN4G oBUSm
(DATA & ADDRESS$

Figure 5-6 - Time-Phased Ring Bus - Zilog Z-8000 Timing Compatibility

5-6

UNCLASSIFIED

Aam . - ..



UNCLASSIFIED

I ll

ANAOG MI- SOT- 3o

RAM/ ISHA1IN AIN RA

Clio

Figure 5-7 - Expanded Super-Fedlerated Microcomputer System For

Physically Centralized Applications

This arehitecture, using 16-bit parallel data paths between quads and host, provides

high throughput, i.e. up to 10 MIPS, depending on the instruction mix, microprocessor type

and the amenity of the task to be distributed among the processors. In the configuration

shown for missile guidance and control each quad contains separable subfunctions of the

major function. The host random access memory (RAM) provides a common mail box

store for all four quads, e.g., for the transfer of 'g" commands from the seeker quad to

the autopilot quad at the low 10-20 Hz rate. Such a system provides super-federation of

hardware and software in applications where all the processing hardware must be located

in one place.

5.3 Physically Distributed Systems

Using the basic quad building block as a replacement for the bit-slice, Schottky-

bipolar/CMOS-SOS processor, i.e., ii CPU-2 in the macromodular family, a physically

distributed system wvould be as shown in Figure 5-8.

5-7
UNCLASSIFIED

ia,

_ " , , .,f~l! l ' , , ... . . __ : ,.. -- -- -



UNCLASSIFIED

F_1

2.
4.2

>~ r

0--1

x
0 Lj

I-. 2

o I
I- I I -'

0

U0NN

22

Figure 5-8 - Physically Distributed Super-Federated Microcomputer System

5-8

UNCLASSIFIED



I
UNCLASSIFIED

Similarly, growth from a low-performance federated guidance and control system

such as that built for NSWC (Figure 5-9) to a high-performance Class III system could be

achieved by the simple substitution of a SFMCS quad in place of the single microprocessor

(Figure 5-10).

The chief difference between the expanded system of Figure 5-7 and that of Figure

5-10 is the connection of I/O modules to the quad microbus, as opposed to the host proces-

sor microbus, and the memory mapping of I/O RAMs as part of the ring RAM data base.

GUIDANCE C RAMAUTOPILO T PCRAM/PROM2 J [ IRAM/PROM.2[

g MIL-STD.15B3 SYSTEM BUS

{TERMINAL MODE)7

Figure 5-9 - Low-Performance Federated Microcomputer

Missile Guidance and Control System (NSWC System)

5-9

UNCLASSIFIED

p!

RAM RAM RAM i AM



UNCLASSIFIED

*~ I __

*2a;

40

Figure 5-10 - High-Performance Super-Federated Microcomputer System For Higher

Performance Missile Guidance and Control (NSWC System)

5-10

UNCLASSIFIED

&Ai



UNCLASSIFIED

6. SFMCS SOFTWARE

As stated earlier in this report, the primary advantages of super-federated com-

puter systems for on-board missile guidance and control are throughput and physical com-

patibility with the modular design requirements of a missile, both hardware and software.

From a software architecture point of view, there are certain technical trade-offs which

must be analyzed to achieve the primary design requirements viz:

1) High throughput

2) System extensibility

3) Minimum software development risk

4) Associative software/hardware modularity

The throughput capabilities of a super-federated system will be affected by the

following factors:

* Distribution of application programs throughout system memory

0 Distribution of application programs among the processors within the

federated system

0 Distribution of data throughout system memory

* Selection of control software (network executive)

Support of system extensibility is directly related to the amount of software

modularity which can be supported by the super-federated system architecture and the

adaptability of the control software to the changing software requirements.

Reduction of software development risk in a super-federated system is related to:

* Use of high order languages which support concurrent processing

0 Independence of application program design from system architecture

0 Strict adherence to software modularity guidelines.

6-1

UNCLASSIFIED

e,



UNCLASSIFIED

The close interrelationship of software and hardware modularity is viewed as a key

ingredient in the efficient management of software development and maintenance

throughout the systems life cycle.

Hence, it is apparent that the successful use of a super-federated system is

influenced by the distribution of programs and data throughout the system, modularity,

selection of control software, and the use of high order languages to support concurrent

processing.

6.1 Distribution of Programs and Data

The distribution of programs among the various processors and system memory will

directly impact system throughput. If common memory were used to hold all programs,

it is obvious that the SFMCSs throughput, or any tightly coupled distributed system's

throughput, would be reduced to the availability of that memory to the various

processors. In general, the missile environment does not lend itself to the use of "large

amounts of code sharing" by various software functions. For example, the code of an

autopilot is distinct from the code of a tracking filter, with the possible exception of a

service routine (possibly a matrix manipulation service). For this reason the optimum

layout of code throughout system memory is through the use of a local processor memory

in which the processor does not compete for use of the memory. The SFMCS's

architecture permits maximum throughput by its use of local memories (i.e. dedicated

PROMs). The disadvantage of the local memory design is a slight increase in total

memory due to the possible duplication of service routines.

We traditionally accept target tracking logic as separate from a guidance law or an

autopilot with limited data interfaces. For this reason, we partition the functions of

missile control software among the various processors within the system. The SFMCS

offers the ability to partition the functions within a quad or within several quads.

But the distribution of a function (set of application programs) within a set of

processors is complicated by our limited ability to visualize certain software functions as

parallel (i.e., concurrent) processes. Traditionally, a guidance law or a tracking filter is

presented as a serial process as illustrated in Figure 6-1. The serial process is typified by

the use of a parameter calculated in the previous statement. The challenge is to partition

a function so as to maximize throughput. Figure 6-2 illustrates the type of partitioning

which must be used to distribute the example in Figure 6-1.

6-2

UNCLASSIFIED

X.. .. ...... ..



UNCLASSIFIED

Figure 6-1 - Typical Serial Process

6-3

UNCLASSIFIED



UNCLASSIFIED

00
z

C-,l

0

cc

00
z

C-,i

0 
>

i_
aULL:
Uz

0.

Fiue6- itrbto o iur - taeet

cc LL 6-4

UNcASIIE

.A ~-#



I *UNCLASSIFIED

The development of software tools to assist in this partitioning activity is a neces-

sity, if the application of the SFMCS or any tightly coupled computer system is to mature

to wide application in a real-time environment as throughput-demanding and complex as

missile guidance.

The partitioning of data will impact system throughput if the data is localized in

such a manner as to cause the processors in the system to wait for access to a particular

memory unit. In addition, throughput is adversely affected if a processor must wait for

data to be available before it can continue processing (as illustrated in Figure 6-2). (Data

consistency is obviously an important consideration in any partitioning scheme.)

The SF MCS permits the distribution of data among the various levels of memory to

minimize memory conflict. If we take the example in Figure 6-2, we would distribute the

parameters as illustrated in Figure 6-3.

6.2 Modular Software

This section summarizes the intrinsic characteristics of modular software as they

tend to impact on a super-federated microcomputer system architecture. (References R-

46 and R-47) Desirable modularity features are as follows:

I -P NO. 1 p P NO. 2

PROCESSOR NO. B, C, D, E J, F PROCESSOR NO. 3

LOCAL MEMORY LOCAL MEMORY

PROCESSOR NO. 2A 
H, L, M, N RING

LOCAL MEMORY'

Figure 6-3 - Distribution of Data

6-5

UNCLASSIFIED

V ...



UNCLASSIFIED
0 May be executed as an independent set of codes given proper drive

input.

0 The software module is not required to obtain its input from the sys-

tern (i.e., do I/O operations), rather the system supplies the module

with data.

0 The code may be transported from system to system with no changes

in either the code or the methodology of linkage method.

* The code should be machine and system independent.

* The execution of the code should be system thread independent.

* The module should be able to be replaced with a stub whereby a com-

mand response is a given rather than a calculated one.

* It should be identified as a set of logic with real world boundaries,

i.e., a PROM integrated circuit.

* If the module is an I/O driver, its methodology linkage to the system

should be independent of the specific I/O device.

A modular system is one in which units of standard size, design, etc.,

can be arranged or fitted together in a variety of ways

(implementation independence).

* The operating system needs to be distributed and not centralized.

Centralization and modularity are diametrically opposite concepts.

* A centralized executive is one which is highly dependent on the

implementation.

* A hierarchy of distributed control enhances the modularity concept.

* The concept of local autonomy should be used in partitioning the

distributed structure.

* A centralized operating system is based on the concept of a sole

source issuing directives to subordinate tasks, posting requests for
and dispatching tasks for execution. The program threading is gener-

ally controlled by the supervisor. In distributed control tasks run

asynchronously and do not need to be explicitly dispatched. The local

autonomous control program has sufficient delegated control to

determine whether a task should be executed or other subordinate

tasks dispatched.

6-6

UNCLASSIFIED



r, 7.. .

UNCLASSIFIED
For example, consider a conventional OS dispatcher function. Generally an

external stimuli (interrupt) or a task complete causes the OS to schedule a task to run,

the dispatcher is next called to the control point to dispatch the next task according to

priority, resource availability, etc. Generally an explicit directive from the OS initiates

the task.

In a distributed control task, managers have access to the task queue and deter-

mine whether or not the task can be run. There will be some duplication of software in

this structure, however this is the penalty for modularity. For tasks that are truly

autonomous and thread independent, they can run continuously. An example would be a

continuous A/D converter driving a memory mapped I/O System. The system need not

command the conversion since it is being performed continuously. If we were to elevate

the level of control to an autopilot, for example, then a continuous autopilot calculation

would be performed. One key to modular software is therefore the linkage mechanism.

6.2.1 Table Driven Software Modules

The communications between the operating system or real-time executive

and the modular software is performed through messages prepared by the OS and depos-

ited in a memory space common to both the OS and the modular software. This message

may contain such parameters as the location of the data to be operated on, the task to be

performed, explicit data fields identifying where to deposit results, a field to ascertain

equipment or program status and a variety of parameters necessary to execute the task at

hand. The linkage may not only contain data necessary for the execution of a single

point, sequential task, but may also contain a set of instructions the OS is requesting the

servicing device to perform. The preparation of the table is not restricted to the operat-

ing system but may be loaded by other processors passing data or control to the next

processor in the system thread.

This method of linking programs has several "buzz words" associated with it

which include: packet-directed procedures, linked control blocks, table driven software,

semaphore control, task block and control program generation.

Several methods to bring a software module up to the control point and

cause it to go into execution are available. These methods include:

6-7

UNCLASSIFIED

, ,. V : . ..



UNCLASSIFED

0 A direct call from the OS with argument pointers to the table

directing. This may be termed synchronous execution.

* A subprogram may be polling a directive table when the OS or
other programs deposit an execution directive. Execution

commences. This mode of operation may be termed

asynchronous.

* Direct hardware interrupt is applicable primarily in multiple

CPU configurations, where a single vector interrupt is used to

"wake up" an idling program and cause execution to

commence.

6.2.2 Composition of Software Modules

The module is composed with two primary nodes: a computational, and a

management. The subdivisions of this partitioning include the following elements:

6.2.2.1 Computational Node

1) Functional Description - A mathematical or algorithmic

description of the processing requirement.

2) Data Integrity - It is the responsibility of the calling procedure

to insure the data validity before invoking this procedure.

3) Data Source/Determination - The location of source data,

placement of transitory variables and destination of the result-

ant data shall be specified in the procedure as a part of the

calling linkages.

6.2.2.2 Management Node

The following management (local) functions are identified as:

1) Identification of any subprocedures/subroutines

invoked.

2) Identification of internal data for control purposes.

6-8

UNCLASSIFIED



I

UNCLASSIFIED
3) Identification of any resources shared by the system.

4) Providing the linkage to the operating system to

allocate these resources to this subprocedure.

Modular software or configuration independence requires:

* The need for functional interface definition

* Flexibility for growth

* Changes in configuration do not necessarily

mean changes in code (repercussion effects)

* Ability to introduce another subsystem without

disturbing the entire system

0 Keep specification and top level design independent of

implementation when possible.

Configuration dependence requires:

* Interdependence of elements

6.2.2.3 Definition of a Control Block (High Level) Task Switching

For each process, the software system defines a control block which

represents that task to the system and through which system and process interaction is

performed. It represents a place for the representation of any relationship between the

process and processes that have invoked it. It provides a place for the description of

events that must be completed before the task is to operate. It provides a place for

i" pointers to other system control blocks which represent both the allocation of memory

and devices to the process.

6.2.2.4 Definition of Reentrancy

A reentrant island of code is one in which no changes occur as the

result of execution at any time. All parameters are passed to it and to all intermediate

values that it develops. All results, etc., are considered to be objects external to the

code itself. (NOTE: Common system subprograms and subroutines should be reentrable.)

6-9

UNCLASSIFIED



UNCLASSIFIED

6.3 SFMCS Control Software

While the individual microprocessors of the SFMCS are standard industry devices

supplied with conventional support software, and each processor can be programmed as an

entity using a predefined memory map, nevertheless the expanded architecture of Figure 5-

using a host processor presents various options for system control.

Possible methods of software control of the Super-Federated Microprocessor Sys-

tem (SFMCS) are similar to those available to multiprocessors and tightly coupled distrib-

uted systems. The methods available are:

1) Master/Slave:

2) Floating Executive (Decentralized) Polling

3) Floating Executive with Multiprogramming.

6.3.1 Master/Slave

The master/slave has a master processor in the federated system which

controls the processing carried out by the other (slave) processors in the system. Essen-

tially the scheduling and dispatching of tasks within the SFMCS is carried out by the

master processor. The master/slave is a hierarchical configuration with two levels of

hierarchy in which the host (master) performs all of the task scheduling and dispatching

for the satellite (slave) processors.

It should be noted that in general the master/slave relationship is independ-

ent of the method of communications among the processors. The communications

between processors in the SFMCS can be implemented through memory (the slave polls a

memory location for control information from the master) or through a positive control

signal (e.g., an interrupt) between processors.

The cascading memory feature (the ability of processors within the SFMCS

to directly access various levels of memory) of the SFMCS permits easy implementation

of a memory polling scheme. The control software would be located in the system

memory (Figure 6-4).

6-10

UNCLASSIFIED

I.- '



UNCLASSIFIED

IP

L-LOCAL

MEMORY

IP
Ly LR

I

Figure 6-4 - SFMCS, Host and Dual-Quad Configuration

The polling scheme has two main drawbacks:

* Changing of a slave processor task cannot be accomplished

after the slave processor has started.

* Use of system memory becomes extremely high when slave

processors are polling.

Figure 6-5 is a simplified illustration of the polling control software required in a slave

processor.

The use of a control signal between processors would eliminate the

* drawbacks associated with the polling scheme. The use of a control signal between

processors would increase the complexity of both the software and the hardware in the

SFMCS. Figure 6-6 is a simplified illustration of a slave processor controlled by a control

signal.

The selection of a master/slave control system for the SFMCS implies that

the application requires the assignment of multiple task to the individual processors and

further implies that the task assignments must be synchronized.
: 6--11

UNCLASSIFIED

A



UNCLASSIFIED

(START)

IS TASK ASSIGNMENT

TASS E IS IN SYSTEM
MAIN MEMORY

YES INDICATOR IN
INDICATE PROCESSO SYSTM MINIS BUSY / SYSTEM MAIN

Is BUSY MEMORY

r 1
SELECT AND

L EXECUTE TASK

IINDICATOR IN
INFORM EXECUTIVE SYSTEM MAIN

TASK IS COMPLETE MEMORY

SET PROCESSOR

NOT BUSY

I

Figure 6-5 - Master/Slave (Polling)

STARTED BY
STARTCONTROL SIGNAL

PROCESSOR STATE

CAN ONLY BE STACKED
SAVE CURRENT TO ONE LEVEL WITHOUT

PROCESSOR INTRODUCING A
STATE PRIORITY SCHEME

IN THE SLAVE
,L PROCESSORS.

SELECT AND
EXECUTE I
TASK

X__Z
I NFORM

EXECUTE CONTROL SIGNAL
TASK IS TO MASTER

COMPLETE

RESET

PROCESSOR TO

PRIOR STATE

Figure 6-6 - Master/Slave (Control Signal)

6-12

UNCLASSIFIED

,., .D,,



UNCLASSIFIED
6.3.2 Floating Executive (Polling)

This type of control software is essentialllv the same as the polling

master/slave without one processor providing synchronization of the tasks.

The polling floating executive is a simple routine if a processor is required

to perform one task. If processors are required to perform more than one task, the

polling floating executive must have the ability to stack tasks for processors. The ability

to stack tasks would increase the control software complexity significantly.

The polling floating executive suffers from the same drawbacks as the

polling master/slave software.

Figure 6-7 illustrates a simplified version of the polling floating executive

(without stacking).

6-13

UNCLASSIFIED

,i*



UNCLASSIFIED

FI

STRTGE
NO DATA

READY

YESI MOVE DATA
TO EWORKING
STORAGE"

f CLEAR
DATA

READY

EXECUTE

TASK

NO AREA
READY

YES

I MOVE DATAl

I FOR OTHER
PROCESSOR

SET OTHER

PROCESSORI DATA READY

Figure 6-7 - Floating Executive (Polling)

6-14

UNCLASSIFIED



I
UNCLASSIFIED

6.3.3 Floating Executive (Multiprogrammed)

If the application of the SFMCS requires that the various processors in the

system respond to multiple external stimuli on a priority basis, the multiprogrammed

floating executive will provide the quickest response. The major drawbacks of the

multiprogrammed floating executive are complexity and size of the control software.

Figure 6-8 illustrates a multiprogrammed floating executive.

It should be noted that the multiprogrammed floating executive requires a

control signal between the processors in the system (more complex hardware).

In order to select the control software for an application in which an SFMCS

is to be used, the various methods of software control can be evaluated based on the fol-

lowing criteria:

0 Response Time

0 Throughput

* Complexity

* Extensibility*

0 Size (Memory Requirements)

* Development Cost

* Partitioning Visibility **

Table 6-1 presents a comparison of the various control software methods as

applied to the SFMCS.

*Extensibility is the ability to modify the functions of the system without requiring

changes to the system design.

**Partitioning visibility is the amount of knowledge that the applications programmer

must have of where/how the various functions are partitioned in the system.

6-15

UNCLASSIFIED

= i = ... "=II --



UNCLASSIFIED

YRO ES

HISTEPTCE

EXECUITE
TA SK

R UPT P O I N T E R SI O STAKN

P ROCESSOR
STATEJ

UNCLASIFIEDLAS

DAACOTO

RECRD

E4D INTERRUPT



UNCLASSIFIED

SERVICE
ROUTINE

OBTAIN
VOLATILE
DATA

RECORDS

PLACE TASK
IN DISPATCH SCHEDULER

QUEUE 
I

Z ZZSEND INTERRUPT

A A IF REQUIREDACTIVATE

PROCESSOR

)I REURN)

Figure 6-8 - (Cont.)

6-17

UNCLASSIFIED



UNCLASSIFIED

TABLE 6-1

COMPARISON OF SFMCS SOFTWARE CONTROL METHODS

0 0

a, 4 )

, 0

I L

.4 .0 .4 .0

c m 0

6-18

UNCLASSIFIED

" il



UNCLASSIFIED

6.4 High Order Language/Advanced Software Tools

It is evident that the distribution of software (both programs and data) within a

super-federated system requires careful analysis of the software functions to develop a

partitioning scheme which will produce the required throughput and satisfy the

associative software/hardware modularity goal. A manual partitioning scheme would, in

most cases, result in a software architecture which would not foUow modularity

guidelines.

Two items appear to be desirable to support development software for a super-

federated or tightly coupled system. The first item would be a concurrent high order

language which would be efficient enough to support real-time processing and relieve

application programmers of the requirement of understanding the details of the hardware

configuration. The current Ada development could conceivably lead to solutions to these

requirements. The second item required to support software development is a computer

aided partitioning system. Such a system would aid the system's programmers to define

the hardware architecture, e.g. number and configuration of quads, and evaluate various

software partitioning schemes.

6-19

UNCLASSIFIED

. .



UNCLASSIFIED

7. SFMCS SIMULATION MODELING (Expanded System)

The validation of the expanded SFMCS architecture (Figures 5-7, C2 and C3),

by simple simulation techniques was explored and in the course of establishing a model,

the significance of each element in the system, in terms of its effect on throughput,

was determined.

The major activity in the expanded system occurs in each quad since the host

simply provides the means of initializing the system and interfacing it with the analog and

serial digital data sources/users. The latter occurs virtually autonomously through

memory-mapped I/O channel buffers. Further, traffic between host and quads for missile

applications is relatively light both in quantity and frequency. The detailed timing analy-

sis for the quad time-phased ring is given in Appendix A, and this, in many ways, preempts

the need and effectiveness of a higher level simulation. However, the structure of the

expanded system using several quads and a host computer was characterized before the

detailed timing analysis of the quad was performed.

Major elements of the system model are shown in Figure 7-1. These are developed

as follows:

1) Microprocessor (CPU) Model

2) Memory Address Translator Model

3) Priority Resolution Model

4) Microbus Model

5) Memory Model

7.1 Microprocessor/CPU Model

Figure 7-2 shows the simulation model developed for the microprocessor/CPU.

Instructions are classified according to type, memory access, local, wait states and

extended addressing.

7-1

UNCLASSIFIED



UNCLASSIFIED

-L)aU

00

X O~l:

- - -- .

UU

'<to

to <- z 

Figure 7-1 - SFMCS Major Elements and Timing

7-2

UNCLASSIFIED

I40

- 0.. , -



I
UNCLASSIFIED

FETCH CYCLE:

Ti T
1  

T
2  

T
3  

T4 T,
A - t I t

ADDRESS IDLE MEMORY EXECUTE
INSTRUCTION OUT ACCESS

FETCH

DATA

READY
THIS WILL GENERALLY BE FROM

PRESET AND NOT CHANGE MEMORt
LOOK UP SOURCE DYNAMICALLY

OF NEXT
INSTRUCTION

TYPICAL INSTRUCTIONS 
I

MOVD. MEMAP3. LINKT. OISP. IX SET MEMORY REQUEST TABLE

FOR ADDRESS TRANSLATOR/ LOAD MEM REQ
EXPLICIT OR & ADDR XLATE

FUNCTIONAL TABLE

EG MEMA, PORT 3 MEMORY REQUEST TABLE
OR 1/0 GLOBAL 1.EUSO

LINK TABLE 1 REQUESTOR
QUEUE 2. MEMORY REQUESTED

THE XLATO ADDRESS 3. FUNCTION FNTRY

WILL DIRECT XLATOR 4. ADFJRE:2 TO BE ACCESSED

THE REQUEST MAY BE NUMERICAL

TO THE PROPER OR1OH

BUS, 5 OPERAND DATA

T2 6. MEMORY DATA GETS
STORED HERE (RESULT

DEPOSITI BEGINNING
ADDRESS FOR 5 ELLMENT

OR MORE TABLE

IDLE

MEMORY WORD WAI
CELL CYCLE

Figure 7-2 - Microprocessor (CPU) Model Flow Diagram (SA1)

7-3

UNCLASSIFIED

4*



UNCLASSIFIED

PASS CPU g TO THIS ROUTINE

ENTER

IS THIS CPU QUEUED FOR

FETCH

NO

EXIT

YES

EXAMINE CURRENT

EXECUTION STATE

STATE FOR THIS CPU (NI

(1ST CALL) TSTATE 3
SOURCE TO I ADVANCE STATE EXAMINE MEMORY

MEMORY REQUEST COUNTER FOR "THIS" EXECUTION STATE
TABLE I U FRTI CPUI

SET WAIT CNTR = 0

TO REQUESTOR IN II N O

MEMORY REQUESTI ?
TABLE ,

SE EXITOA EQEE DACEWI

ENTRY TO IFETCH(N) COUNTER FOR
FETCH(N) E THIS CPU

SET PC ENTRY
TO VALUE OF PC

i r -2FORTHISCPU

SET RESULT NONYARRAY NAME ISET STATE

ADDRESSIN KNW B COUNTER FOR TH, SET EXECUTEMEMORY TABLE r-CPU(N, 0 ISSTATE 4
L LEAH HtSULT,,
STO INDICATE WHENIBEN

ISET QUEUE FOR FUNCTION E,

ADDRESS XLATOR(N)

AD LVANCE STATE

COUNTER FOR CPU(N1

EXIT

F igure 7/-2 - (Cont.)

7-4

UNCLASSIFIED

I 
lI



UNCLASSIFIED

1-1 OF .. S AR FA-ICUONSTAES

IUH 1CAN., 
a

ESXECUT ON STATES

<, -TISISCASE *HERE NO
MEWIAT UPS ARE REQUIRED
FOR E XECUTION,

YES ARI
STATES

QUEUE INSHIICTIONDI IIAEUE FETCH

ETUIORU ACCESSES

MORY REDDEST TABLE

ED~t MEMIRH UNCTIONAL ENTRY
REDDEST TARLE DIVLACEMENT

* RESULT DEPOSIT
DETEAMINE OF

EXECUTION SATE TABLE

T,IRSAE, ADDRESS
F

2 
I

F
3
M IDLE MEMORY TRAPANI

STATE TARLI ~ ~ TARESFNETV NH
TATE ABLEF

2 
IDLE

F 
3 

(RmMEMORVI
F

4 
ERXECATE ETC

OLATOR TARLE
& OUEDE THIS

PROGRAM If REWDIRED

IEECUTE ST.. FT

T2

F lAYOFF NIERI
IRI CUTE ST AT E1 l ElD

IITABLEITI

Figure 7-2 - (Cont.)

7-5

UNCLASSIFIED



UNCLASSIFIED

SAYS DATA SHOULD BE READY

PROGRAMELIAMAGE

PROGRAMI SSTATET

U N CESFIE D TE



UNCLASSIFIED

Move Data
:i Memory operation Y, N?

0 Data location Mem A, Port no.=?

B

C

Memory fetches/stores/instruction

* Total clock cycles/instruction

9 Probability of an indexed instruotion

* Number of repeats

* Next source of instruction field

A typical example stated in high order language (HOL) would be:

MD, Mem A, P3, 4, 17, .3, 2, L

Which means Move data to/from memory. Specifically:

From Memory A, Port 3

The number of memory access =4

The dwell time for this instruction is 17

The probability the instruction is indexed is 0.3

Repeat this instruction twice

What happens is as follows:

I) The CPU model decodes an MD operation

2) The timing for the memory access is determined

17 clock/4 machine cycles/state = 4.X cycle

Since there are now four memory accesses, 1 wait state is generated which sched-

ules execution as follows:

TI T2 T3 T4 T1 T2 T3 T4 TI T2 T3 T4 T1 T2 T 3 T3 T4

MEM OP MEM OP MEM OP MEM OP I WAIT due Prog.

7-7

UNCLASSIFIED

TI

t- .



I

UNCLASSIFIED

If the memory is not ready at T3 then wait states are injected.

3) A request for access to Mem A P3 is sent to the address translator.

The translator determines which bus the data is on and queues a

request for Mem A P 3 to the proper priority resolver.

The priority resolver sends a request for a memory operation to Mem A P3 . When

data is ready for CPU #X, a ready flag is set and the CPU model continues by fetching the

next instruction from the source specified (Local Memory) and repeats the next instruc-

tion (decrements the repeat counter by I and continues). Other categories of instruction

can be defined in a similar manner.

7.2 Address Translation Model

This model (Figure 7-3) receives requests for memory and determines which bus

access model to send the request to.

7.3. Priority Resolution (Bus Access)

This device is in reality a priority resolver (Figure 7-4). Its inputs are requests for

bus service and its output is a request to the bus model for a transaction.

The form of the request is:

Device #X requests service of bus #.

The priority scheme is variable. It may be fixed, head to tail, i.e., the next priority

is dependent on the previous device grant. It may be fixed cycle, the cycle

may rotate with time independent of access, and other methods may be used. The point

here is to identify the bus access model as an entity that it may be attached/detached,

from/to any bus subsystem.

7-8

UNCLASSIFIED

* *4



UNCLASSIFIED

ENTER

T.,

INPuT TABLE

1 REOLIESIoR CPU X

"2 MMORY REO
NO ENIT 3 1 LINCTIONAL ENTRY

OUILIED 4 DISPLACEMENT
5 RLSILI DEPOSIt
6 R W MEMORY

YES

DECODE
MEMORY RIE1 Sr

MEMORY XLATION TABLE-.

MEMORY RIO BUS AS.SIGNED RUS TABLE RE 0

LOCAL z0 LOCF(PR 10)
CACHE 1 LOCF (PR121

DI TE RMINE MAIN A 2 LOCF (PR13)
AHICH BIS GI S MAIN B 3
WI H17H[ MAIN C 4
RE OLI S1 B Gt ORAL 10 2
TABLE LOO. IP LINK

THESE TABLES ARE
VOR PRIORI1 ENCODER

t OAD PROPE H INPI S

TABLE

1HiE PRIOR11T TABLE IS
ORDE RE D AS

t'I 01!ENTRIES . . CPL' I REOII S1 ING

R"
INIT F LINC1 IONAL I Ni R
[VI T IDISPL ACE ME NI

G IT LIRESULT DEPOSIT

'PU )21 ENTRIES

AS MANY CPL'U AS CONNECTED TO THIS

PRIORITN ', Tk\ORK

S S1 I Ni MRIORITr 1ABLI BEGINS

PRIORII] LINII A RE GIN ADDRES- A tW0 N]RIE S)

It B

CC
D D
1 )

IlS 1 .\tRI I 1 ELI 5 1 HE ADDESS Nb ALT4Ol MODELt S i
NW 4it E it IO 1AEPl IS RI GIN

Figure 7-3 - Memory Address Translator Model Flow Diagram

7-9

UNCLASSIFIED

1,1.

. .. . I . . . . . . I .. . ... . .. III



UNCLASSIFIED

ENTER

NoI SHOULD ALWAYS BE OUEUED)

OUE ULO

YES

CLOCK

EXAMINE
RE OLIEST

TABL)E

SCANS ENTRIES IF PRESENT
& GRANTED THEN ZERO OUT ENTRY

THIS TABLE IS THE
OUT POT TABLE (IF NO EXIT
ADDRESS XL ATOR REOUESTS

CPU RIO I DYNAMIC ROTATING

YES PH PRIORITIES

DATA TORBE PASSED)

ARCDGRANTATHEN1

"FNTRIES RESOLIVE 1 CDA GRANT B THEN
CPLI REG 2 PRIORI TYCDGRNCTE

33DABC GRANTD THEN 4

ENTRIS GIVEFN TIHISI PRIORITIES ALL HAVE

CPU HRG 3 ACCESS& TIFPR IORITY ROTATES

SO THAT NO MATTER WHO GETS IT

71I : NE XT IIGHL-T PRIORITY IS

EOAETFR GRANT THENCH
I IC C A F TI R D CRANT THEN A P

LOAD BUIS
TRHANSACT ION

REGUIST TABLE

THIS TRANSACTION TABLE IS

OF STIC AL IL) THE INPUT TABLE
[(tp ONLY5 I REGLIES7 IS GENERATED

01,PEU1 TASK

I1 RI 1)111 ST
I AlTA To BF PASSED.

FO R CASIf OF NO0 REOF'ESIT
I XII T IF T5 ESNTRY IS1 f IOED AS

POT - HI(;HEST PRIOTRITY

PH Figure 7-4 - Priority Resolution Model Flow Diagram

7-10

UNCLASSIFIED



UNCLASSIFIED

7.4 Microbus Model (Bus Model)

Given there are a number of buses in the system, a bus model is required. All bus

models need not be the same. They are characterized by the number of devices con-

nected to them and their cycle time, i.e., time to bus, time from bus. (Program Linkage

Model) Table driven, interrupt driven (I/O Model).

This is a relatively simple model as shown in Figure 7-5.

7.5 Memory Model

Each memory model has an access control determined by the number of users con-

nectedtoit (Figure 7-6). Part of this access control is a priority network which can be identi-

fied as a priority model. The one shown is a dynamic rotating priority. Other priority

schemes may be used such as fixed linear select.

The priority module has a cycle time associated with it. The output of the priority

network results in a request for a certain memory bank operation In the case of local

memory this model will be a demand type i.e. since it is the only device using the memory

no priorities are involved. In the case of Cache 4, devices may request service. In the

case of Memory Bank 4, 9 devices may access this one. In general, the priority model

should be a separate, detatched entry independent of any system configuration. The idea

is to be able to attach different priority models to different memories.

7-11

UNCLASSIFIED



AD-AOB7 01F 
1/7 AD-AO87 01 RAYTHEON CO BEDFORD MA MISSILE SYSTEMS DIV F/6 17/7

MODULAR DIGITAL MISSILE GUIDANCE.(U)
JAN 80 F J LANGLEY, J DEMETRICKt F MARCHILENA N0 -T14-75-C-0549

UNCLASSIFIED BR-O6 ONR-CR233-052-6 NL
IFlB f*f* f*2hIIIIIEIIIII

,IIIIIIIIIIIEEE
EEEIIIEIIIIEI

'lllllllllEND

*EEEEEEI



1-" III-_ 11 .

1.2 NG5 o f .

.....C.f.. .7OW~ ILSICH

...lI..... 111112OF~ t~[F~ . 2

L 4



UNCLASSIFIED

TENTER

ALWAYS
QUEUED

EXAMINE
REQUEST
QUEUE

NO CLOCK
REQUESTIDLE

STATE

_________________________________________ E X IT

LOAD REQUEST
IN PROPER
MEMORY BIU
&
ADD DELAYIIF REG

QUEUE
TASK TO
RUN AGAIN

EXIT

Figure 7-5 - Microbus Model - Flow Diagram

7-12

UNCLASSIFIED

AAA".?



Tb

UNCLASSIFIED

ENTER

ALWAYS
QUEUED

EXAMINE
REQUEST
TABLE

<REQUEST>

READ WRITE

EXTRACT DATA WRITE DATA TO
FROM MEMORY & ADDRESS
DEPOSIT IN SPECIFIED
REQUESTOR CELL

SET MEMORY SET MEMORY
TRANSACTION TRANSACTION
COMPLETE COMPLETE

REQUEUE THE

TASK

EXIT

Figure 7-6 - Memory Model Flow Diagram

7-13

UNCLASSIFIED

• 4-



r

UNCLASSIFIED

L 8. REFERENCES

The following is a list of all the reports and papers published as a result of the

Navy Modular Digital Missile Guidance Program together with papers from other sources

referenced during the course of the studies.

R-1 Hall, B.A., and Trainor, M.V., "Modular Digital Missile Guidance System

Study," Ph. I Report, 30 June 1974, DDC-AD784-969/8GA.

R-2 Langley, F.J., and Cooney, J.J., "Synchronous Microcomputer System for On-

Board Missile Guidance and Control," 1975 National Computer Conference,

Anaheim, CA, 19-22 May 1975.

R-3 Hall, B.A., and Langley, F.J., "Modular Digital Missile Guidance," Ph. II

Report, DDC-AD-B010399L, 28 January 1976.

R-4 Langley, F.J., "Macro-Modular Microcomputer Family for On-Board Missile

Guidance and Control," IEEE/NADC Warminster, 22-24 June 1976.

R-5 Cole, B.C., "The Impact of LSI Microprocessors on the Military," Electronic

Warfare Defense Electronics, July, 1978.

R-6 Hall, B.A., Langley, F.J. and Wefald, K.O., "Computer Design Requirements

for Digital Air-to-Air Missiles," AIAA Guidance and Control Conf., San

Diego, CA., 16-18 August 1976.

R-7 langley, F.J., Kaplan, S., "Raytheon Macromodular Microcomputer Family",

Proceedings of NASA/JPL Microprocessor Seminar, Caltech, April, 1977,

JPL Pub. No. 77-39.

R-8 Langley, F.J., "Modular Digital Missile Guidance System Study." Ph. lII

Report, DDC-AD-A042466, 4 May 1977.

8-1

UNCLASSIFIED



UNCLASSIFIED
A. R-9 Langley, F.J., "Macro Modular Microcomputer Family for Digital Missile

Guidance and Control" DDR&E/IDA Symposium on the Utilization of LSICs

i in in Military Systems, Arlington, VA. 9 August 1977.

R-1O Nesline, F.W., and Langley, F.J., "Computer Architecture for Digital Con-

trol of Homing Missiles," SAE Aerospace Control and Guidance Systems

Committee, Ft. Walton Beach, October 1977.

R-11 Langley, F.J., "The Application of Microcomputers to Digital Missile Guid-

ance and Control," 1977 Mini/Micro Computer Conference and Exposition,

Anaheim, CA, December 1977.

R-12 Langley, F.J., Sheehan, J. and LaGro, G.A., "Simulating Modular

Microcomputers," 11th Annual Simulation Symposium, Tampa, FL, March

1978, and SCS Simulation Magazine, May, 1979.

R-13 Leventhal, L., "Design Tools for Microprocessor Systems," Digital Design,

October 1979.

R-14 Langley, F.J., "Modular Digital Missile Guidance", Ph. IV Raytheon Report

BR-11344.

R-15 Langley, F.J., and Cruikshanks, A., "Microcomputer-Based, On-Board Missile

Guidance and Control," IEEE Guidance and Control Group, Boston Section,

MITRE, Bedford, MA, May 1978.

R-16 Langley, F.J., and Demetrick, J., "An Adaptive Microprocessor/Microbus

Interface Module," IEEE Annual Microprocessor Workshop, John Hopkins

University, APL, Laurel, MD, June 1978.

R-17 Langley, F.J., Goldstein, D.S. and Mannion, A.J., "Real Time Signal Process-

ing Devices for Missile Guidance and Control", 22nd SPIE Symposium, San

Diego, CA, August 1978.

8-2

UNCLASSIFIED



UNCLASSIFIED

. R-18 Langley, F.J., "Modular Digital Missile Guidance," Ph. V Report, DDC-AD-

A072544. 30 November 1978.

R-19 Langley, F.J., "Application of Digital Control Techniques to Modular Ship-

Launched Missiles," Ph.1 Report, Raytheon Report No. BR-10472, 8

January, 1979.

R-20 Langley, F.J., "Applications of Microproeessing in Distributed Systems",

AIAA/DPMA Microprocessor/Microcomputer Applications Conference,

Newport Beach, CA, October 1978, Washington, D.C., 3 April 1979 and

Boston, MA, 1 May 1979.

R-21 Langley, F.J., "Federated Microcomputer Systems for On-Board Missile

Guidance and Control", NATO AGARD Guidance Control Panel, Ottawa,

Canada, May 8-11, 1979.

R-22 "MCS-86 User's Manual", Intel Corporation, February 1979.

R-23 "'Z8001 CPU/Z8002 CPU Product Specification", Zilog Corporation, March

1979.

R-24 Zimmerman, T.A., and Barbe, D.F., "A New Role for Charge Coupled

Devices: Digital Signal Processing", Electronics, 31 March 1977.

R-25 Rabiner, L.R., Schafer, R.W., and Rader, C.M., "The Chirp Z-Transform

4 Algorithm," IEEE Trans. on Audio and Electroacoustics, Vol. AU-17, pp. 86-

-92, June 1969.

R-26 Claeys, C.L., et al, "Elimination of Stacking Faults for Charge-Coupled

L Device Processing," Proceedings of the Third International Symposium on

Silicon Material Science and Technology, Electrochemical Society, May

1977.

r 8-3

1. UNCLASSIFIED

I



UNCLASSIFIED
R-27 "Military Standard Aircraft Internal Time Division Command/Response Mul-

tiplex Data Bus", MIL-STD-1553B 16 June, 1978.

R-28 "Modal Superdips" Data Sheet, Meret Inc.,

R-29 "HD 15531" Data Sheet, Harris Semiconductor.

R-30 "Proposed Military Standard Weapon Internal Time Division Multiplex Data

Bus", AFATL/DLMM, 1 October, 1979.

R-31 Shaunfield, J.E., "EMI/EMP Resistant Data Bus", Final Report, DDC-AD-

B014579, September, 1976.

R-32 "Modular Guidance System Simulation, User's and Programmer's Manuals",

Raytheon Report BR-10438/39 June 1978, NSWC Contract N60921-78-C-

A085.

R-33 Burks, A.W. Goldstone, H.H., Von Neuman, "Preliminary Discussion of the

Logical Design of an Electronic Computing Instrument", Part 1 and 2,

Datamation, Sept. and Oct. 1962.

R-34 Amdahl, G.M., "Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities", Proc. SJCC, pp. 483-485, 1967.

R-35 Keit, H.A., "The Polymorphic Principle in Data Processing", IRE WESCON,

pp. 24-28, 1960.

R-36 Porter, R.E., "The RW-400, A New Polymorphic Data System", Datamation,

Volume 6, No. 1, pp. 8-14, Jan. and Feb. 1960.

R-37 Anderson, J.P., et al., "D-825, A Multiple Computer System for Command

and Control", Proc. FJCC, pp. 86-96, 1962.

1 -

8-4

: |. UNCLASSIFIED

o'.



r

UNCLASSIFIED

R-38 Slotnik, D.L., et al., "The SOLOMON Computer", Proc. FJCC, pp. 97-107,

1962.

R-39 Stokes, R.A., "ILLIAC IV: Route to Parallel Computers", Electronic Design,

pp. 64-69, Dec. 30, 1967.

R-40 Rudolph, J.A., "The Associative Processor - A New Computer Resource",

IEEE Region 6 Conference, April 1969.

R-41 Huttenhoff, J.H., and Shively, R.R., "Arithmetic Unit of a Computing

Element in a Global, Highly Parallel Computer", IEEE Trans. Computers,

Volume C-18, No. 8, pp. 695-698, Aug. 1969.

R-42 Entner, R.S., Bersoff, E.H., "Operating System Reliability for the Navy

Advanced Avionic Digital Computer" IEEE Trans. on Aerospace and Elec-

tronic Systems, Vol. AES-7, No. 1, pp. 67-72, Jan. 1971.

R-43 Cooley, J.W. and Tukey, J.W., "An Algorithm for the Machine Calculation of

Complex Fourier Series," Math. Comp., V. 19, 1965 pp 297-301. MR

31#2843.

R-44 Berglund, G.D., "Fast Fourier Transform Hardware Implementations An

Overview, "IEEE Trans. on Audio and Electroacoustics Vol Au-17, No. 2, pp

104-108, June 1969.

R-45 Flynn, M.J., "Some Computer Organizations and Their Effectiveness", IEEE

Transactions on Computers, VoL C-21, No. 9, September 1972.

R-46 Lorin, H., "Parallelism in Hardware and Software, Real and Apparent

Concurrency", Prentice Hall, 1972.

R-47 Flores, I., "Computer Programming", Prentice Hall, 1966.

8-5

UNCLASSIFIED



I.I

UNCLASSIFIED

APPENDIX A

SUPER-FEDERATED MICROCOMPUTER SYSTEM (SFMCS)
TIMING AND THROUGHPUT ANALYSIS

Al Introduction

In order to determine the throughput capability of the SFMCS architecture, a repre-

sentative state-of-the-art commercial microprocessor was selected and its performance

evaluated as a single processor using a realistic avionics instruction mix. The perform-

ance of the SFMCS quad multiprocessor was then determined using the above mieroproces-

sor and instruction mix, applied to four quad configurations viz:

1) Basic shared-memory multiprocessor (Figure 4-1);

2) Shared-memory multiprocessor using the time-phased ring technique.

3) Dedicated microprocessor program memories and shared data

memory without time phasing.

4) Dedicated microprocessor program memories and shared data
memory with time phasing.

In each of the above cases, the performance improvement of the quad versus the

. single processor was noted.

Lastly, the performance of Configuration 4 was determined using different avionic

instruction mixes in each microprocessor.

iI

SA-1

UNCLASSIFIED



2 CUNCLASSIFIED
A2 Calculation of Intel 8086 Throughput

IP There are several established avionic instruction mixes which are representive of

various guidance and control-type algorithms. These mixes are shown in Table A-I.

TABLE A-1

CANDIDATE INSTRUCTION MIXES (%)

STANDARD P4 FIRE F15 AMT R.F4
AIRBORNE CON)L FLIGHT rNUTL

CONTROL HRV

MOVE 45 22 41 45

ADD/SUB 9 17 19 9

MULTIPLY 5 17 4 <1

DIVIDE .2 4 -<

SHIFT 5 2 3 8

LOGICAL 5 4 10 13

TEST & BRANCH 30 32 21 24

I/O CONTROL 1 2 2

The Intel 8086 has over 100 basic instructions. Within the basic instructions, a

variety of options may be used to perform the same basic operation. In addition, several

different addressing modes may be used in the instruction.

The execution time of an instruction is therefore a sum of the contributions due to

basic type, option selected, and address mode. A method of weighted averages will be

used that considers not only the above mentioned factors but also includes a usage weight

as well. An analysis of the move instruction will be used to illustrate the technique.

A-2

UNCLASSIFIED



~UNCLASSIFIED

A2.1 Move Instruction

S.toThere are several types of move instruction which are as follows:

Mnemonic: MOV

Description: MOV performs a byte or word transfer from a specified source

to a specified destination.

Encoding:

Memory or Register to/from Memory or Register:

1 0 0 0 1 0 dw mod reg r/m

Percent Usage

if d = 1 then SRC = EA, DEST = REG

else SRC = REG, DEST = EA

Timing (clocks): register to register 2 10

memory to register 8+EA 5

register to memory 9+EA 5

Immediate Operand to Memory or Register:

j1 1 0 0 0 1 1 w mod 0 0 0 r/m data data if w=1

SRC = data, DEST =EA

Timing (clocks): Immediate to register 4 10

I Immediate to memory 10+EA 5

i" j Immediate Operand to Register:

1 1 1 w reg data data if w=l

SRC = data, DEST = REG

Timing: 4 clocks 12 15

A-3

UNCLASSIFIED

-, :



UNCLASSIFIED

Memory Operand to Accumulator:

Percent Usage

1 0 1 0 0 0 0 w addr-low addr-high

if w = 0 then SRC = addr, DEST = AL

else SRC = addr+l :addr, DEST = AX

Timing: 10 clocks 30 20

Accumulator Operand to Memory:

1 0 1 0 0 0 1 w addr-low addr-high

if w = 0 then SRC = AL, DEST = addr

else SRC = AX,DEST = addr+l:addr

Timing: 10 clocks 25 20

Memory or Register Operand to Segment Register:

1 0 0 0 1 1 1 0 mod0reg r/m

if reg = 01 then SRC = EA, DEST = REG

else undefined operation

Timing (clocks): register to register 2 2

memory to register 8+EA 3

Segment Register Operand to Memory or Register:

1 0 0 0 1 1 0 0 mod0reg r/m

SRC = REG,DEST =EA

Timing (clocks): memory to register 9+EA 2

register to register 2 3

A-4

UNCLASSIFIED

&



I

UNCLASSIFIED

Operation:

(DEST) <== (SRC)

Flags Affected:

None

A number of addressing modes are available that are used to calculate the effective

address (EA). These times are as follows:

Effective Address Timing

Addressing Mode Percent Used

1) No EA calc required 0 clocks 25

2) Direct 16-bit offset address 6 clocks 50

3) Indirect through base or index 5 clocks 10

register (BX, BP, SI, DI)

4) Indirect through base or index 9 clocks 8

register with displacement

constant

5) Indirect through sum of in- x 7 or 8 clocks 5

register plus base register

6) Indirect through sum of base 11 or 12 clocks 2

register plus index register

with displacement constant

* A-5

UNCLASSIFIED

* ,.*



UNCLASSIFIED
Now the weight average for EA is calculated as:

Address Mode Clocks Percent Used 100/ASTR Clocks Total

1 0 25 25 25 0

2 6 50 50 300 300

3 5 10 10 50 50

4 9 8 8 72 72

5 7.5 5 5 37.5 37.5

6 11.5 2 2 23 23

482.5

482.5 clocks x 200 nsec/clock

Time for EA cale = •

100 EA calculations

EA time = .965 p see or 4.825 clocks

In order to calculate the weighted average for the move instruction, the weighted

average of the MOV instruction is determined. Here we have:

Operation Clocks Percent Used Total Clocks

Instruction #1 r-r 2 10 20

m-r 8+4.82 5 64.1

r-m 9+4.82 5 69.1

Instruction #2 -r 4 10 40

I-m 5+4.82 5 49.1

Instruction #3 4 15 60

A-6

UNCLASSIFIED

.4



UNCLASSIFIED

Operation Clocks Percent Used Total Clocks

Instruction #4 10 20 200

Instruction #5 10 20 200

Instruction #6 r-r 2 2 4

m-r 8+4.82 3 38.4

Instruction #7 m-r 9+4.82 2 27.64

r-r 2 3 6

778.34

778.34 x 200

Move tine = = 1.556 p see or 7.78 clocks

100

A2.2 Add/Subtract Instructions

The six types of these instructions are:

1) Memory or Register Operand with Register Operand

Operation Clocks Percent Used Total Clocks

(a) r-r 3 10 30

(b) m-r 9+4.82 5 69.1

(c) r-m 16+4.82 5 104.1

2) Immediate Operand to Memory or Register Operand

(a) I-M 17+4.82 10 218.2

(b) I-r 4 20 80

A-7

UNCLASSIFIED

A gtj =



UNCLASSIFIED
Operation Clocks Percent Used Total Clocks

3) Immediate Operand to Accumulator Operand

(a) 4 10 40

4) Add with Carry

(a) r-r 3 10 30

(b) m-r 9+4.82 5 47.41

(c) r-m 16+4.82 5 104.1

5) Immediate Operand to Memory or Register Operand

(a) I-rn 17+4.82 5 109.1

(b) I-r 4 10 40

6) Increment

(a) r 3 5 15

(b) m 15+4.82 5 99.1

986.11

* Ad/Sutrac tie = 986. 11 x 200 nsee

Add/ubtact ime100

Add/Subract time = 1.972 i see or 9.86 clocks

A2.3 Multiply Instruction

Multiply (unsigned) 30 percent (usage)

A-8

UNCLASSIFIED



*- -q.---

UNCLASSIFIED

Clocks Clock Percent Total Clocks

8 bit register (70-77) 73.5 5 367.5

8 bit memory (76-83)+4.82 84.3 5 421.5

16 bit register (118-133) 125.5 10 1,255.0

16 bit memory (124-139)+4.82 136.3 10 1,363.0

Multiply (Integer) 70 percent (usage)

8 bit register (80-98) 89 10 890

8 bit memory (86-104)+4.82 99.82 10 998.2

16 bit register (128-154) 141 25 3,525.0

16 bit memory (134-160)+4.82 151.82 25 3,795.5

12,615.7

12,615.7 x 200 nsec

Multiply time =

100

Multiply time = 25.231 usec or 126.15 clocks

A2.4 Divide Instruction

* Divide (unsigned) 30 percent (usage)

Clocks Clocks Percent Used Total Clocks

8 bit register (80-90) 85 5 425

* 8 bit memory (86-96)+4.82 95.8 5 479

16 bit register (144-162) 153 10 1,530

16 bit memory (150-168)+4.82 163.82 10 1,638.2

A-9UNCLASSIFIED



UNCLASSIFIED

Divide (Integer) 70 percent usage

8 bit register (101-112) 106.5 10 1,065.0
8 bit memory (107-118)+4.82 117.3 10 1,173.0
16 bit register (165-184) 174.5 25 4,362.5

16 bit memory (171-1S0)+4.82 155.3 25 4,632.5

15,305.2

15,305.2 x 200 nsec

Divide time =

100

Divide time = 30.61 p sec or 153.05 clocks

A2.5 Shift Instruction

Shift logical left (25 percent) usage

Single bit reg 2 2 5 10

Var bit reg 8+4/bit 24 10 240

Var bit mem 20+EA+4/bjt 65.64 10 328.2

667.3

A-10
UNCLASSIFIED



UNCLASSIFIED

Shift logical right (25 percent) usage

Single bit reg. 2 2 5 10

Single bit mem. 15+EA 15+4.82 5 99.1

Var bit reg. 8+4/bit 24 10 240

Var bit mem 20+EA+4/bit 65.64 5 328.2

667.3

Shift Arithmetical (25 percent) usage

Single bit reg 2 2 5 10

Single bit mem 15+EA 15+4.82 5 99.1

Var bit reg 8+4/bit 24 10 240

Var bit mem 20+EA+4/bit 65.64 5 328.2

667.3

Rotate (25 percent) usage

Single bit reg 2 2 5 10

Single bit mem 15+EA 15+4.82 5 99.1

Var bit reg 8+4/bit 24 10 240

Var bit mem 20+EA+4/bit 65.64 5 328.2

667.3 x 4 2709.2

2709.2 x 200 nsec

j Shift time =-5.418 jj see or 27.09 clocks

100

A-li

UNCLASSIFIED



A2.6 Logical Instructions N L SS F E

Exclusive OR (25 percent) usage

Percent Total Clocks

()r-r 3 15 45

(2) m-r 9+4.82 2 18.96

(3) r-rn 16+4.82 2 41.64

(1) I-r 4 2 8

1-rn 17+4.82 2 43.64

()I-r 4 2 8

AND 50 percent usage

()r-r 3 25 75

rn-r 9+4.82 10 138.2

r-m 16+4.82 5 104.1

(2) I-r 4 5 20

I-rn 17+4.82 5 109

OR 25 percent usage

r-r 3 10 30

rn-r 9+4.82 3 41.46

r-rn 16+4.82 3 62.46

*1 -r 4 3 12

* I A-12

UNCLASSIFIED



UNCLASSIFIED
Percent Total Clocks

I-rn 17+4.82 3 65.46

I-r 4 3 12

835.024

835.04 x 200 nsec

Logical time
100

Logical time =1.670 it sec or 8.35 clocks

A2.7 Test and Branch Instructions

Jump on, Less than

imp taken 8 25 200

Not taken 4 25 100

imp

Int. segment 7 10 70

It, segment 7 535

Int. segment 3 20 60

Jmem 7+EA 5 59.1

Inmt. segment 16+EA 10 208.2

[ 732.3

~ a 732.3 x 200
Test and branch

100

Test and branch time =1.464 -p sec or 7.32 clocks

A-13

* UNCLASSIFIED



UNCLASSIFIED
A2.8 IVO Control Instructions

Interrupt 25 Percent Clocks Percent Total Clocks

Type 3 51 12.5 637.5

T, 3 50 12.5 625.0

INTO 7 %pass 52 7 364

8 %fail 4 8 32

IRET 25 % 24 25 600

CLC 20 % 2 20 40

STC 15 % 2 15 30

2328.5

2328.5 x 200

1/0 control

100

1/0 Control time = 4.657 j sec or 23.28 clocks

A2.9 Average Instruction Execution Times

In summary, then the average execution time for each Intel 8086 instruction based

on a 200 nsec clock is as follows:

A-14

UNCLASSIFIED

-, ~ ~ Ai



r i.i
UNCLASSIFIED

Instruction Execution Time Clocks

P see)

Move 
1.556 7.78

Add/Sub 1.972 9.86

Multiply 25.23 126.15

Divide 30.61 153.05

Shift 5.481 27.09

Logical 1.670 8.35

Test and Branch 1.464 7.32

I/O Control 4.657 23.28

A2.10 Intel 8086 Throughput

The throughput of the 8086 may now be determined for the mixes cited in Table A-1.

The results are tabulated in Table A-2. It is interesting to note how multiply/divide

operations significantly affect throughput. In the F-4 fire control case, a 21 percent

multiply/divide load diminishes the throughput by four times over inertial NAY mix where

the load was only 0.5 percent.

-i

A-15

UNCLASSIFIED

L 
t4



UNCLASSIFIED
TABLE A-2

INTEL 8086 THROUGHPUT FOR CANDIDATE INSTRUCTION MIXES

%o fn m C4 '1 A f" r

.4~I- C

In
I-4 V:

1 A w %

IA In

.4 .4 in V; fn 0 -

~I
IA * A Ce A I0

I- *Am16

UNCIA ASSIED- .



UNCLASSIFIED
A3 SFMCS Quad Throughput

The throughput for several architectural cases will now be examined.

The cases will be developed to. measure both single and multiple processor

throughputs.

A3.1 Case 1 Four Processors Sharing a Common Memory (no time phasing)

The timing and arbitration rules for this case, (Figure A-1), are found

in Figure A-2.

A3.1.1 With Memory Access Conflicts

In order to determine CPU waiting time, a 25 clock sample will be used. Referring

to Figure A-2 p p1 encounters 14 wait states. The waiting time becomes:

14 wait clock
Waiting time (p pl) - 56 percent

25 clocks

Similarly for p p2 we have

14
Waiting time (Ij p2) - = 56 percent

25

Similarly for p p3 we have

14

Waiting time (p p3) - 56 percent

25

A-17

UNCLASSIFIED

4. ,+,,

. • . ., °+ . .. . . . ,. ,, ,+ ., , ,.



UNCLASSIFIED

MEMORY

l Ipp2

" STANDARD AIRBORNE MIX APPLIED TO

ALL PROCESSORS

SYSTEM THROUGHPUT 816 KOPS (NO TIME PHASING)

, SYSTEM THROUGHPUT = 1242 KOPS (WITH TIME PHASING)

" L

Figure A-i - Case 1, Four Microprocessors Sharing a Common Memory

A-18

UNCLASSIFIED
'I



UNCLASSIFIED

I-7

M Mq

Mp.I

N- Mq N

a~ eq

0q W

N. eq eq NNe

I-U

eq N eq eq N
I- IL

eq eq eq>

I- ~ I- 8

04 am beOu

Ni NL N14 U
! - I.- 0 . X-0

ame Wq eq tow a L O A C) U

W- L'I- U 0 O
_j U LA Uj j U 4 V W N

> > - LUeq
N cccc.

-J wJ

Figure A-2 - Cuse 1, Four Processors with Shared Memory, No Time Phasing

A-1 9

UNCLASSIFIED



UNCLASSIFIED

and for J p4

19

Waiting time (lp4) --- = 76 percent

25

Ap-i. ing the standard airborne mix to all processors we get:

PIpl = 304.5 1isec + 304.5 (0.56) = 475 Psec = 210 KOPS

1. p2 = 304.5 lisee + 304.5 (0.56) = 475 Visec = 210 KOPS

1p3 = 304.5 Psec + 304.5 (0.56) = 475 lPsee =  210 KOPS

P p4 = 304.5 lisec + 304.5 (0.76) = 535 llsec = 186 KOPS

Quad Throughput 816 KOPS

A3.1.2 Without Memory Access Conflicts

If the system were to run without memory access conflicts, the max throughput

would be:

Quad Throughput = 328 KOPS x 4 = 1312 KOPS

The gain of this system over the single processor case is:

816

Gain over 1 processor - = 2.4

328

or

816
The percent of throughput utilized is - = 62 percent

1312

A-20

UNCLASSIFIED



UNCLASSIFIED

A3.2 Cae2 Four Processors Sharinx a Common Memory with Time Phasing

The timing diagram for this case together with arbitration rules is

found in Figure A-3.

The waiting time for each processor becomes:

0

Waiting time (lip1) = - =0 percent

25

(V (p2) = - =4 percent

25

2

(Uip3) = - = 8 percent

25

3

(I'p4) = - = 12 percent

25

Again applying the standard airborne mix to each processor we get:

UPI. = 304.5 lisec + 304.5 (0) = 304.5 lPsec = 328 KOPS

* 1p2 = 304.5 'sec + 304.5 (0.04) = 316.6 lIsec = 315 KOPS

V p3 = 304.5 11 see + 304.5 (0.08) = 328.8 Usec = 304 KOPS

UP 4 = 304.5 11 sec + 304.5 (0.12) = 341.4 Psec = 293 KOPS

Quad Throughput 1242 KOPS

A-21

UNCLASSIFIED



UNCLASSIFIED

- N

N -4.I

N -4

Cn.i
N riO

eqI I. ~
1. P. G

N N 4

0~

I- I U.

4( 4
cccwC

<w

toe 0 @

Case~ ~~~ Prcssr wit Shreemr
Tie-hae Rin Techniqu

A-22C4

NCLASIE

eq C



UNCLASSIFIED

The gain of this system over the single processor case becomes:

1242

Gain over 1 processor - = 3.78

328

or

1242

Percent of throughput utilized - - 94 percent

1312

The effect of time phasing can be seen by comparing the two cases. This increase

in throughput becomes:

Gain by using time phasing = 94 - 62 = 32 percent

A3.3 Cs 3,LFour Processors with Dedicated Program Memories Sharing a Common

Data Memory Without Time Phasing

In this configuration, Figure A-4 the program is split so that the program resides in

a local memory with shared data between processors in common memory. The split for

memory access used is 75 percent to local for instructions and 25 percent for shared data.

It is noted that the shared memory is utilized 100 percent of the time. Again

applying the standard airborne mix, the throughput becomes for 11 pl:

Access time from local = 304 x 75 percent = 228 p see

Access time from common = 304 x 25 percent = 76 jisee

The access time to common memory involves wait states, and since memory is 100

percent utilized the same percent wait time that was determined in Case 1 applies.

Access time to common = 76 J see + 76 (55 percent) = 117.8 pI see

A-23

UNCLASSIFIED

.4 4 " -



UNCLASSIFIED

SHARED DATA
MEMORY

25%1 25% ~ 25% ~ 25%1

Mp .lImD2 iup3 '

* 5 %75% 75%

PROG Po RGPo
MEMMMMMME

THROUGHPUT - 143 KOPS

I Figure A-4 - Case 3, Four Processors with Dedicated Program Memories

and Shared Data Memory Without Time Phasing

[ A-24

UNCLASSIFIED



UNCLASSIFIED

The total time for the 100 standard airborne mix instructions becomes:

Totaltime = 228 + 117.8 = 345.8 P see

1

pi pl throughput = = 289 KOPS

3.458 V see

'pp
2  = 289 KOPS

p p3  = 289 KOPS

p4= 304 (0.75) + 76 + 76 (0.76) = 276 KOPS

Quad Throughput: 1143 KOPS

The gain over the single processor case is

1143

Gain over 1 processor = - = 3.48

328

A3.4 Ca. 4, Four Processors with Dedicated Program Memories and Shared Data

Memory (with Time Phasing)

Using the same techniques as in Case 3 the throughput becomes:

ppl = 328 KOPS

pp2 = 326 KOPS

p p3 = 323 KOPS

p p4 = 320 KOPS

Quad Throughput: 1297 KOPS

1297

Gain over 1 processor - = 3.955

328

A-25

UNCLASSIFIED

V1 ' .. ..



UNCLASSIFIED

A3.5 Cm 5,_ouW ProeMors with Dedicated Program Memories, Different Instruction

Mixes, Shared Data Memory, Without Time Phasing

In order to determine system throughput sensitivity on algorithms, a different

instruction mix is applied to each processor:

ipl = Standard Airborne Mix = 304 usee

Pp2 = F-15 Auto Flight = 275 psee

t'p3 = R-F4 Inertial NAV = 204 psee

u p4 = F-4 Fire Control = 692 usee

upl Access for instruction = 304 x 75 percent = 228 uisee

ppI Access for data = 304 x 25 percent = 76 jisec

The common memory wait in time is:

76 + 76 (55 percent) = 117.8 Usee

vipl total time 228 + 117.8 345.8 psee = 289 KOPS

similarly,

vp2 = 319 KOPS

jip3 = 430 KOPS

ji p4 = 122 KOPS

Quad Throughput: 1160 KOPS

The average throughput for the single processor ease is 331.25 KOPS, (Table A-2).

The gain over the single processor case is:

1160

* ( Gain over 1 Processor - 3.5

331.25

A-26

UNCLASSIFIED



II

UNCLASSIFIED

In comparision to the single algorithm of Case 3, the above result shows that

executing different instruction mixes in each microprocessor does not have a significant

effect on the overall throughput of the quad.

.
- [. A-27

UNCLASSIFIED



UNCLASSIFIED

APPENDIX B

REAL-TIME MISSILE SIMULATION WITH SFMCS

B1 Introduction

Given a high-speed modular processing system such as the SFMCS, it became

apparent that the potential existed to significantly reduce the present high cost of missile

simulations using large-scale, time-shared computing facilities, by providing instead a low-

cost dedicated system using standard industry microcomputers.

High throughput and software modularity could be addressed through "super-

federation", i.e., assigning one microcomputer per major airframe component or func-

tional element. The net result of this approach would therefore be aimed at rapidly

adapting any given airframe model to a new or improved version, as is typically the case

during the course of specific missile development~by the substitution of alternate prepro-

grammed microcomputers. Further, the time-sharing and delays associated with a single

large-scale computing facility would be eliminated through the replication of small

dedicated microcomputer systems.

The following paragraphs describe the analysis of missile simulation functions and

resulting computer performance requirements based upon the expanded SFMCS as shown

in Figure B-i. Figure B-l shows functions which immediately come to mind in terms of

the missile airframe application. The following paragraphs outline the nature of missile

airframe functions for simulation on the SFMCS.

Bl.i Missile Aero Model

The functional aerodata has been linearized to stability coefficients which are a

function of Mach number. Since these terms are relatively, slowly variable, and they only

act as multipliers in the dynamic control loops (Subsection B1.6.5), they are computed at

the low frequency rate in the simulation model.

B-1

UNCLASSIFIED
11.

p, i. -.

. ,.:'r : L..I



I

UNCLASSIFIED

PI) $IU 1 LplU

KF C s~

Figure B3-i - High-Performance Super-Federated Microcomputer System

For Missile Simulation

The aero derivatives are as follows:

I C16e is the aerodynamic rail effectiveness coefficient, f(Mach)

~Cip is the roll damping coefficient, f(Mach)

Ag"

{ Pitch/Yaw

~Cm o is the lateral moment effectiveness coefficient of the control

f. surfaces at the aerodynamic reference point, -f(Mach)

Cmco~ is the lateral moment partial with respect to inpiane angle-of

attack at the reference point, -f(Mach)

( 13-2
UNCLASSIFIED

CONRO

Vt u SP U
PR 07

(XCT



UNCLASSIFIED

Cm; is the aerodynamic damping derivative, f(Mach)

Cnx is the aerodynamic force derivative with respect to angle-of-

attack, f(Mach)

CnS is the aerodynamic force derivative with respect to control sur-

face deflection, f(Mach)

Other aerodynamic parameters are computed in order to develop the forces and

moments acting on the missile. These terms depend on certain missile states, velocity,

altitude, and orientation.

Velocity (VM) and altitude (RM 2 ) are obtained from the missile translational

motion model. Altitudes ( M, OM, *M) are obtained by snapshooting the high fre-

quency states developed in the missile dynamics model.

The earth (inertial reference frame) to missile transformation matrix is then

computed.

(ME) = (OM) (EM) (OM)

Then the velocity vector is transformed to the missile coordinate frame.

VM (ME) VM

from which the two components of angle-of-attack are generated.

ayo = tan- (-FMM3/VMMl)

ZO = tan-' (VMM2 /VM l)

where the subscript refers to the value of these quantities at the start of the low fre-

quency calculation cycle. Note that in the missile dynamics model that these quantities

are updated between the low frequency calculations at the high frequency data rate.

Dynamic pressure and Mach number are also computed as part of this model. Air

density and velocity of sound are table look-ups,

P - f(RM2 )

Vs a fiRM2 )

B-3

UNCLASSIFIED

I .



I
UNCLASSIFIED

and Mach number is developed as

MACH - IvMI/V 8

and dynamic pressure is given by

Q - 1/2 plVMI2

Note that this model neglects the effect of wind.

B1.2 Missile Physical Properties

The characteristics of the missile that are categorized as missile physical

properties are the thrust, mass, inertia, etc. This model generates those quantities which,

when combined with the aerodynamic forces and moments, produce the rotational and

translational acceleration of the missile.

The basis of the model is the defined time history of the motor thrust, and the

relationship of this to the other physical properties of the missile. Thus, the thrust pro-

file is determined from a table of thrust level specified at arbitrary time points, with

linear interpolation for intermediate values. That is;

THRUST = f (t)

There is a single state variable associated with this model which is the total

impulse, or energy expended while thrusting. That is obtained via the integration of the

rate of energy expenditure, thrust.

IMP = o f t THRUST'dt

The other physical properties are directly proportional to energy (fuel) expended,

so that they may be drived from impulse.

B-4

UNCLASSIFIED

il.



J
UNCLASSIFIED

MASS = MASSIC + (aMASS/aIMP) IMP

Ixx = IxxiC + (aIxx/aIMP) IMP

IYY =f IYYC + (aI /IMP) IMP

AXCG + AXOGIC + (BAXoG/aIMP ) IMP

These are missile mass (MASS), roll moment of inertial (Ixx), pitch-yaw moment of

inertia (lyy), and center of gravity displacement (XCG) from the longitudinal reference

point (at the missile nose).

The partial derivatives are assumed constant over the entire range of thrust, with

an average value used to insure the proper parameters in the missile glide condition.

Other properties of the missile necessary to scale the aerodynamic quantities to

force and moment are as follows:

Xo = Reference point at which moment data is taken

S = Aerodynamic reference area

C = Reference dimension, pitch and yaw

b = Reference dimension, roll

B1.3 Missile Translational Motion

Missile translational motion is described by integration of Newton's equations in an

inertial reference frame. The acceleration vector developed from aerodynamic force,

missile thrust, and other forces applied to the missile (such as launcher constraints) is

converted to an Earth fixed reference frame (E-frame) and combined with gravity to

produce the three-component acceleration vector which is successively integrated to

velocity and position.

The acceleration in the missile fixed axes is given by,

NM = (NMI , NM2 , NM3 )T

The conversion to the E-frame is achieved through the transformation matrix

describing the relative orientation of the missile coordinates and the inertial reference.

When gravity is added, the total inertial acceleration results.

B-5

UNCLASSIFIED

• : p



UNCLASSIFIED

AM=G+(M T)T M

This is then integrated to obtain the velocity and position states

VM = V1MIC + f Am-dt

= + f VM-dt

These states are typically assigned to the low frequency regime of state variables

in the continuous subsystem. Because these equations have been decoupled from the rota-

tional modes of the missile (via MET), there is no significant component of the higher

frequency motion present in these equations. The missile linear acceleration due to the

aerodynamic and internal forces (NM) is generated from the aerodynamic parameters and

the physical properties of the missile.

NM1 = (THRUST +qS(CDo + CXTHR) )/MASS

where

CXTHR A drag correction coefficient to
account for drag increase when motor
burns out (switched to zero prior to
burnout)

CDo = The base drag coefficient, f(Mach)

qS
NM2  = ;- (CNQC*.p + CN6" 6 p)

MASS

qS
NM3  = - (CNa*CZY + CN6Y)

MASS

B1.4 Relative Geometry Model

The relative geometry model combines the missile and target states to produce

several quantities of prime importance in the simulation. The driving terms to the guid-

ance of the missile are the relative position and velocity of the target with respect to the

missile.

B-6

UNCLASSIFIED



UNCLASSIFIED

The relative range is merely the difference between the target and missile position

vectors,

RTM = RT - RH

while the relative velocity is given by,

VTM = VT - VM

The line-of-sight to the target (as seen from the missile) is obtained by unitizing

the relative range vector,

LOS = u (RTM)

The closing velocity is the relative velocity along the line-of-sight, that is

VC - - asm-)

and projected time-to-go is given by,

tgo -VC IR-h1 / JI12

B1.5 Miss Distance Calculation

When a simulated flight is terminated due to the time-to-go to the target

becoming negative, a miss distance iteration is made. This calculation is based on the

missile and target states near intercept, and assumes that over the short iteration time

missile and target acceleration is constant.

The range between the missile and target can be expressed as a quadratic in time-

to-go.

RF + R + Rtgo + R.tgo2/2

B-7

UNCLASSIFIED

* 1 ~ ,*.. . ~ V*



UNCLASSIFIED

where

R, R and R are the relative range, velocity, and acceleration that exist between

the target and missile at the time the simulation run is terminated, but prior to the miss

distance iteration.

The relative velocity is given by,

V R+ Rtgo

The minimum approach to the target by the missile is defined by the condition,

RV =0

This requires the solution of a cubic equation which is solved by a Newton-Raphson

iteration method. The iteration is performed until the time-to-go has settled to within I

PIsec of the solution, or if 100 passes have been made through the iteration cycle. The

result is the amount of time the extrapolation covered, the magnitude of the miss dis-

tance vector, and the three components of the miss distance vector.

B1.6 High Frequency Models

The high frequency regime contains the rotational motion of the missile and the

models of the missile subsystems, the control actuator section, inertial instruments, the

seeker gimbal system, and the receiver.

B1.6.1 Control Actuator Section (CAS)

The control actuator modeled as a first order transfer function with rate

and position limits. There are four such actuators, one for each control surface. The

block diagram for a single actuator is illustrated in Figure B-2. Table B-1 lists the inputs,

outputs, and parameters of the CAS model.

B-8

UNCLASSIFIED

* .

, .- ' * '



UNCLASSIFIED

tkM M

66 'CASF

Figure B-2 - Control Actuator Section

TABLE B-1

CAS MODEL QUANTITIES

Type Quantity Nominal Value Def inition

Input 6c; (1-4) Control surface angle

coimmand

Output 6 ; (1-4) Control surface angle

Parameter T CAS 0.01 sec Response time constant
rx 5.236 rad/sec Rate limit

6 12 0.5236 rad Angle limit

B-9

UNCLASSIFIED

'pPA



UNCLASSIFIED

B1.6.2 Inertial Instrument Models

The Level-I model of the instruments represents the more significant errors

present in the measurement process.

These errors are added to the quantities to be measured as determined by

the kinematics. The errors include the effects of gyro drift and accelerometer bias, but

not the dynamics of response of the measurement devices. Also included are the output

limits representing the dynamic range of the devices.

The gyro measurements are modeled by the following expressions:

HPLIM iV I Y2LM

where

WM' 1 = 101 + DDGIN1B

WM' 2 = M2 + DDGIN2B

WM' 3 = WM 3 + DDGIN3B

and

DDGINIB, DDGIN2B, DDGIN3B are the zero-gee drift rates of the respec-

tive gyros. These are nominally zero but may be used for error sensitivity studies.

Each of the error sources is determined from statistical distributions with

specified mean and variance. For Monte-Carlo analysis a new value of each parameter is

chosen for each flight in a sample set, to represent the errors typical of random missiles.

The accelerometer measurements are modelled by the following

expressions:

Hp LIMj as IAC2

LBC3LM

B-10

UNCLASSIFIED

L i 4.E~h



UNCLASSIFIED

where

NP' 1 - NM 1 + NP 10

NP'2 - NM 2 + NP 2 0

NP'3 - NM3 + NP3o

B1.6.3 Head Control and Stabilization Model

The model of the missile seeker is defined to represent head control and

stabilization. It is configured to operate in the inertially stabilized model, so as to repre-

sent the operation of the missile seeker. The inertially stabilized mode uses gyros

mounted on the antenna to achieve the desired rate stabilization.

The head control and stabilization system is pictured in block diagram form

in Figure B-3. There are two control axes, an outer gimbal which is the pitch axis, and an

inner gimbal which is the yaw axis. Head control is achieved by rate commanding the

seeker in the inertially stabilized mode. Base motion, which is developed by the missile

rotation and for the inner gimbal by outer gimbal motion, is decoupled from the seeker

track loop by the inherent inertial stabilization of the electric motor drive, and

supplemented by gyro feedback.

The stabilization loop has been simplified to a first order response, but

improved low frequency stabilization could be achieved with a more complex

representation of the stabilization loop dynamics. The amount of coupling through the

motor and gearing is defined by the parameters KGR2 and KGR3. If these are zero, then

no base motion is coupled into the antenna drive, while when they are 1, the base motion

is directly coupled.

B1.6.4 Receiver Measurement Model

The receiver measurement model produces the equivalent boresight errors

from the geometric tracking errors and the various noise sources present in the measure-

ment process.

The geometric error is derived from the line-of-sight to the apparent

(glinting) target and the seeker orientation with idealized antenna patterns included in the

model. The line-of-sight vector is transformed to the antenna coordinates by:

B-11

UNCLASSIFIED

* Ii.



UNCLASSIFIED

<:31

>x N

20 +3

-i cb

<z

wI 0

Figur B-3 HeadContol an StablizaionMoe

B-12

UNLSSFE



UNCLASSIFIED

where

(M) - (OM) (e) (ME)

The idealized antenna pattern model then produces the monopulse channel

signals as follows,

V - 1.0

Apv 0 U'A2

A'V W -U'A3

and the boresight error (prior to adding other errors) is

£2 . AyV/ZV

3 = APv/Zv

The range and range rate (prior to adding errors) and taken directly from

the geometry. That is,

r: I R =  v

:U IImI

The measurement noise is added to produce angle errors and the doppler

velocity to be used for target tracking and guidance.
k IReceiver thermal noise and range independent noise are generated by adding

band limited Gaussian noise to the quantities that have been derived from the geometry.

The bandwidth is assumed constant as it is representative of the receiver hardware. The

noise variance due to thermal noise is dependent upon the receiver signal-to-noise ratio,

which changes with the effective radar cross section of the target and the power loss due

to range. The signal-to-noise ratio (S/N) is computed from,

UNCLASSIFIED

0
.4



UNCLASSIFIED

%o4 (S/N o ) aTS/N

VM4 o

I where

Ro, S/No, and o = Normalizing parameters to represent the

illuminator power and missile receiver gain

aT= The effective bistatic cross section of the

target as determined by the fading target

model

RTM = The magnitude of the range vector between

missile and target

The noise variance of the signals (which is considered white noise) is given

by,

VRN * (2 RN)/(1+S/N) + O2 SN

where

a 2 RN = *RN/ AtH

I
2
S - ON/ ttH

and

*RN, fSN = The spectral densities of receiver and servo noise

1i l(range independent)

AtH = The integration step size for the high frequency

states in the simulation

B-14

UNCLASSIFIEDF
+L, -W-Y ....



'I"I

UNCLASSIFIED

The standard deviation of a Gaussian distribution is determined from

the square root of the noise variance, VRN, and then filtered so as to represent the

noise bandwidth as a filter with a time constant TN. The resultant noise is added to

the geometric error along with the other error sources modeled to produce the guidance

errors as indicated in Figure B-4.

The measurement of closing rate is assumed to be the ideal (geometric)

closing velocity, VC.

B1.6.5 Missile Dynamics Model

The aerodynamic forces and moments are developed by combining the aero-

dynamic coefficients with the missile physical properties. However, in the case of the

moment generation, care must be taken to preserve the dynamic integrity of these

calculations. Since the rotational modes of the missile are of significantly wider band-

width than the translational motion, an effectively smaller computation cycle is required.

This is achieved, while maintaining computational efficiency, through hybridization of the

airframe model.

M

2

RECEIVER NOISE

H
4  

ECM_
S/N = Ro (S/No)°T ECM

E E AE] "E 4  
VARIANCE:."v = 1.0 2

APv = p A2 VARIANCE: RADOME 'ECH /(1+S / N)
AyvSN 2N/ (1+S/N) P2 = 

f 
('N) BANDWIDTH:

(AEI 2 V BANDWIDTH: P3= N 
T

ECM
3 = .A v/ V N  

MEAN:

MMEAN:SMEAN: 2ECM ' 3ECM

A3A33

P3  M

3 V 3 (3

Figure B-4 - Receiver/Error Source Model

B-1 5

UNCLASSIFIED

. ~~.j. . , - . . . ,



| UNCLASSIFIED

B1.6.6 Moment Generation

Moments are not a direct output of this model; rather, the torque/inertia

ratio, which is the inertial acceleration (rotational), is the quantity sent to the rotational

motion model.

These terms are developed in the manner indicated in Figure B-5. The

model is "hybrid" in nature, in that some terms are computed at the high data rate and

others at the lower data rate. The low data rate terms are typically multipliers to the

high data rate variables. The multipliers themselves are slowly varying quantities. In this

role they do not contribute phase errors to the high bandwidth loops. The simulation com-

putational savings gained by this form of implementation is that the function generation

(aerodynamic coefficients, missile physical parameters) is performed at a relatively low

data rate (see missile kinematics model).

This provides adequate compensation to make the quantities aty and ap

effectively computed at the high data rate.

f

B-16

UNCLASSIFIED

I,. '; ......



r7
UNCLASSIFIED

SLOW CALCULATIONS FAST CALCULATIONS
20 msc 0.5msec

b R

A h Qsbb C M R l-!

lxxm

A" CMk(M)

-o tan-
1 (-VMWM 2 /VMWMI) 1 Aoy.

A wk

'F''

y A 6X - X0x 

(



rr.

UNCLASSIFIED

Missile rotational motion is obtained by integration of a modified set of

Euler equations. The missile body-fixed axes system is chosen in the direction of the

principal axes of the missile, thus making the products of inertia vanish. There remains

the Euler form of the rotational equations of motion.

1xx WMi + (Izz - Iyy) WM2 WM3 - T1

Iyy WM2 + (IxX - Izz) W 1 WM3 -T2

Izz WM3 + (Iyy - Ixx) WK1 WM2 - T3

where

T1 , T2 , and T3  = The components of torque applied to axes 1,

2, and 3

Ixx, lyy, and Izz = The moments of inertia about axes 1, 2, and 3

WMI, WM2, and WM3= The rotational rates about these axes

Since missiles are nearly symmetrical in pitch and yaw,

lyy1 Izz

and since roll moment of inertia is typically only I or 2 percent of the lateral inertia

Ixx < < Iy

so that the equations can be reasonably simplified to

B-18

UNCLASSIFIED"I



UNCLASSIFIED

Ti
WM1 =-

Ixx

T2

WM2 - + WM1 WM3

Iyy

T3

We3 - - wM1 wM2

I yy

These terms are the derivatives of the body rate vector, whose components

are the state variables of this model. Since these states are in the high bandwidth control

loop of the autopilot, it is necessary to perform this state integration at a sufficiently

small step size so that no adverse lag is imparted by the simulation.

Missile orientation is developed by integrating a set of Euler rates driven by

the missile body rate vector.

These rates are integrated to produce the Euler angles OM, *M, and 6M

which define the orientation state (relative to the inertial reference) of the missile.

From these angles we compute the earth-to-missile transformation matrix.

B1.7 Approximate Computer Requirements

The computer requirements are est,nated based on the speed of execution and the

accuracy required to implement the control functions and provide an accurate simulation

of the physical system. These requirements are defined for each of the four function

groups described earlier.

B1.7.1 Guidance Functions

The computers implementing the guidance function must execute the algo-

rithms so that the autopilot commands and seeker tracking commands are generated in

NGT 10 msec. The filter prediction and inertial reference algorithms must be complete

prior to the beginning of the next guidance cycle (20 msec). The result is that the com-

puter can support a guidance cycle rate of 50 Hz and the guidance and tracking com-

mands suffer from no greater than a 10 msec computer time delay (transport lag).

B-19

UNCLASSIFIED

* gi,



UNCLASSIFIED

The computer should have at least 16 bits of dynamic range with double

precision (or equivalent) to maintain the inertial states to the equivalent of 1 m/sec 2

acceleration resolution over a dynamic range of 20,000 m.

The input/output functions should be supported by modules of NLT 10 bits.

B1.7.2 Autopilot Functions

The computers implementing the autopilot function must execute the algo-

rithms so that the control actuator commands are generated in NGT 1 msec. The Euler

angle integration for the altitude reference must be complete prior to the beginning of

the next autopilot cycle (2 msec). The result is that the computer can support an autopi-

lot cycle rate of 500 Hz and the autopilot stability path suffers from no greater than a I

msec compute time delay (transport lag).

The computer should have at least 16 bits of dynamic range.

The input/output functions should be supported by modules of NLT 10 bits.

B1.7.3 Low Frequency Physical Models

The computers implementing the low frequency physical models must

execute the algorithms in a period NGT 20 msec.

The computers should have a word size of NLT 16 bits, with double precision

(or equivalent) for the velocity and position states of the missile and target in order to

achieve trajectory accuracy of 0.1 m with a 20,000 m dynamic range.

The input/output functions should be supported by modules of NLT 12 bits.

B1.7.4 High Frequency Physical Models

The computers implementing the high frequency physical models must
execute the algorithms in a period NGT 0.5 reset.

The computer should have a word size of NLT 16 bits.

The input/output functions should be supported by modules of NLT 12 bits.

1-20

UNCLASSIFIED

'i .



UNCLASSIFIED

B1.8 Conclusion

In conclusion, it appears quite feasible to perform real-time digital missile simula-

tions using the SFMCS. Further, the degree of configuration/flexibility and independence

from time-shared facilities are two unique advantages.

IJ

B-21

UNCLASSIFIED

-A



UNCLASSIFIED

APPENDIX C

SFMCS FUNCTIONAL BLOCK DIAGRAMS

This appendix contains functional block diagrams of the basic quad and expanded

I SFMCS architecture, which employs four quads and one host processor. These designs

formed the basis of the detailed timing analyses and simulation models.

j

1~~

C-1

UNCLASSIFIED

A4.



UNCLASSIFIED

-T

13
t;IWI

9Lx 9

91xU

9Lx 9

iQ 91xa9

I -*------________________________________MA__

* Figure Cl SFMCS Quad, Block Diagram

C2
* UNCLASSIFIED



.. 6 I 5

,, ,- 4 gS
L M5

"(4.-c7" .

.~~ ,.,.. \\ • --.44be,'M

r It

Nabs~~4 w oryh, Che.op-.a.ch 1g~n

Mm ..

do---

l 0-56 leet by semet

Main mmry map 'i .I
All local meory segment 2

3MgW cache segment 3 fleet

"g 2 0-254 master LMI

Sg 2 0-13 ring 61 cache

9eg 2 0-256 Cou $I Lii

9"e3 0-25d CPU #5 LM.?

S" 2 0-254 CPU 03 LII

SG" 2 0-254 CPU 04 LIN

. .0-1 in " 2 cache 1>

S"ag 0-256 CPU 0S Lii

Sag 2 0-254 CPu *7 LKiA

kg 2 0-254 CUS #7 1

..... C,4 .. 6...o, -

";4 ,,." , .. r........j rru..."".... '...

v/ t4/ ... Xa,.

A- -

6 e I #4I 6 A A4

/
- flLS i



'71

UNCLASSIFIED
4 3 2 1

,d4'j(*? PfvSIMN

... .s ... '- AM S VS71 MeS0

lf* .A.,* OWSVb*

I =COb *.* f
V.___*-'

NW-M~

p~~AMA

CPU

10ve, t I

WAVIO

*.sm S*, . ~. PARTS**LIST

U",n L MR 0 ft w(WE RAYTHEON LEXINGTON, MASS. 0217)

f-4. ~ ., - 1 s-, MAC.,., 009

*W% C3/C4 * CH

21 PNCLASSIFIED
KA C .1 A



a 72 0

IA LI~jg "Opw

D 4 l ~ Be

C ~ ____ W

psr~ A...1

* PS bS~~4 ~ p..aiy i Pb _____

CP

4-7L
- - ~ l.*i~ld -A

ot~

__ CPUC... ..

ps &- -
_________________

,77s_________ I __

q AI SS$

CP :1 -

CON el

-- ~ o I 6 5

Figur



UNCLASSIFIED
54 3 2

Pa.~- t

ai I a 040

4 "Vft g9vW4

bwo~

4.8 '

11

din 06

- 10_
1 01

---
4*3~~ .9-s - __

-f 2F ,I

_ _ _ _ _ RAY HEON LE~iICTON. MASS. 02173

53 
2LMOM*

Figure C3 -SFMCS -Expanded System, Detailed Block Diagram

C5/C6
UNCLASSIFIED



UNCLASSIFIED

DISTRIBUTION LIST

Air Force Avionics Laboratory

Wright Patterson AFB, Ohio 45433

AFAL/DHM (Mr. R. E. Conklin)()

Air Force Systems Command

Andrews AFB, Md 20334

AFSC/DLCA (Mr. P. Sandier) (1)

AFSC/SDZ (COL R. Loukota) (1)

AFSC/XRL (COL F. Smith) (1)

Armament Development and Test Center

Eglin AFB, Florida 32542

ADTC/DL (COL A. D. Brown) (1)

ADTC/SD7 (Mr. G. Kirby) (1)

ADTC/ADDE (Dr. J. W. Jones) (1)

ADTC/DLMI (LCOL Britton) (1)

ADTC/DLMT (MAJ E. Halprin) (1)

AFATL/DLMM (Mr. M. Henne) (1)

Chief of Naval Operations (1)

The Pentagon

Washington, D. C. 20350

NOP-982E1 (1)

NOP-987P3 (1)

DCASR

Raytheon Company

Wayside Ave.

Burlington, Mass 01803 (1)

UNCLASSIFIED



A i 2UNCLASSIFIED

Defense Technical Information Center

Bldg. 5, Cameron Station
Alexandria, VA 22314(I

Director of Defense Research and Engineering

The Pentagon

Washington, D. C. 20350

Mr. M. Keller (Rm. 3E1081) (1)

Mr. G. Kopcsak (Rm. 3D1089) (1)

Harry Diamond Laboratory

2800 Powder Mill Road

Aldephi, MD 20783

Dr. Carter (1)

Institute for Defense Analysis

400 Army Navy Drive

Washington, D. C. 2.2202

Dr. T. C. Bartee (1)

Mr. G. W. Preston (1)

National Aeronautic and Space Administration

Headquarters

Washington, D. C. 20546

NASA-KC (Mr. W. E. Mclnnis) (1)

National Aeronautic and Space Administration

Jet Propulsion Laboratory

4800 Oak Grove Dr.

Pasadena, CA 91103

NASAJPL-114-122 (Mr. P. E. Lecoq) (1)

NASAJPL-114-122 (Mr. M. Ebersole) (1)

NASAJPL-158-205 (Mr. R. E. Covey) (1)

NASAJPL-/T1180 (Mr. R. W. Scott) (1)

UNCLASSIFIED



UNCLASSIFIED

Naval Air Development Center

Warminster, PA 18974

NADC-2031 (Mr. C. M. Nowicki) (1)

Naval Air Systems Command

Washington, D. C. 20361

NAIR-03P2 (Mr. J. W. Malloy) (1)

NAIR-03P3 (Mr. R. H. Krida) (1)

NAIR-350F (Mr. R. J. Wasneski) (1)

NAIR-360B (Mr. B. A. Zempolich) (1)

NAIR-360 (Mr. C. Thomas) (2)

NAIR-52022B31 (Mr. G. B. Cudd) (1)

NAIR-533DX (Mr. R. S. Entner) (1)

PMA-263 (CAPT. W. M. Locke) (1)

Naval Avionics Facility

Indianapolis, Ind 46218

NAFI-072.9 (Mr. R. H. Huss) (1)

NAFI-DO72 (Mr. W. Bridges) (1)

NAFI-D824 (Mr. C. W. Hagen) (1)

NAFI-D824 (Mr. J. Carr) (1)

NAFI-D3900 (Mr. R. Barnett) (1)

NAFI-D3924 (Mr. G. Forsee) (1)

Naval Electronic Systems Command

Washington, D. C. 20360

ELEX-304 (Mr. J. Cauf fman)(1

Naval Material Command

[ Washington, D. C. 20362

NMAT-0321(1

UNCLASSIFIED



A

UNCLASSIFIED

Naval Ocean Systems Center

San Diego, CA 92152

NOSC-19 (Mr. S. Maynard) (1)

NOSC-722 (Ms. N. S. Mathis) (1)

NOSC-8222 (Mr. D. Wilcox) (1)

NOSC-9102 (Mr. W. Dejka) (1)

NOSC-923 (Mr. E. C. Urban) (1)

NOSC-923 (Mr. J. F. Poulson) (1)

NOSC-923 (Mr. E. S. Holland) (1)

NOSC-9232 (Mr. R. D. Peterson) (1)

NOSC-923 (Mr. A. Johnson) (1)

Naval Post Graduate School

Monterey, CA 93940

Dr. T. F. Tao 62TV

Naval Sea Systems Command

Washington, D. C. 20362

NSEA-03132 (Mr. R. Cuddy) (1)

NSEA-0341 (Mr. T. Tasaka) (1)

NSEA-393M2 (1)

PMS-406 (1)

Naval Surface Weapons Center

Dahlgren Laboratory

Dahlgren, VA 22448

DF-34 (Mr. R. Holden) (6)

DF-34 (Mr. R. Dorsey) (1)

Naval Surface Weapons Center

White Oak Laboratory

Silver Spring, MD 20910

WA-32 (Mr. A. Kolodzinski) (1)

(Mr. R. Bost) (1)

UNCLASSIFIED



UNCLASSIFIED

Naval Weapons Center

China Lake, CA 93555

NWC-01 (Mr. R. M. Hillyer) (1)

NWC-015 (Dr. R. Cartwright) (1)

NWC-033 (Mr. C. Neal) (1)

JNWC-395 (Mr. W. G. Hueber) (1)

NWC-3130 (Mr. L. Lakin) (1)

NWC-3132 (Mr. R. Hawkins) (2)

Office of Naval Research

800 North Quincy Street
Arlington, VA 22217

ONR 212 (LCDR W. Savage) (6)

ONR 221 (Mr. J. Trimble) (1)

Office of Naval Research Branch Office

495 Summer Street

Boston, Mass 02210 (1)

U.S. Army Electronics Command

Fort Monmouth, N.J. 07703

NL-BP (Mr. D. Haratz) (1)

U.S. Army Missile R&D Command

Redstone Arsenal, Ala 35809

DRDMI-TG (Mr. J. B. Huff) (1)

DRDMI-TGG (Mr. D. Ciliax) (1)

DRDMI-TE (Mr. D. Holter) (1)

DRDMII-EA (Mr. C. Riley) (1)

DRCPM-PE-X (Mr. W. Jann) (1)

*DRCPM-MD (Mr. E. Wood) (1)

UNCLASSIFIED



UNCLASSIFIED
U.S. Naval Research Laboratory

Washington, D.C. 20375

NRL 2627 (6)
NRL 5216 (Mr. L. Palkuti) (1)
NRL 5260 (Dr. D. Barbe)(1

UNCLASSIFIED

9-lob[



-aATE-

FILME l


