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Modular elliptic curves over the field of twelfth roots of unity

Andrew Jones

Abstract

In this paper we perform an extensive study of the spaces of automorphic forms for GL2 of weight
2 and level n, for n an ideal in the ring of integers of the quartic CM field Q(ζ12) of twelfth roots of
unity. This study is conducted through the computation of the Hecke module H∗(Γ0(n),C), and
the corresponding Hecke action. Combining this Hecke data with the Faltings–Serre method for
proving equivalence of Galois representations, we are able to provide the first known examples
of modular elliptic curves over this field.

Supplementary materials are available with this article.

1. Introduction

Following the proof of the Shimura–Taniyama–Weil conjecture at the turn of the twenty-
first century, it is known that all rational elliptic curves are modular, in the sense that for
almost all primes `, the representation arising from the action of the absolute Galois group
GQ := Gal(Q/Q) on the `-adic Tate module of an elliptic curve E defined over Q is isomorphic
to the `-adic representation attached to a cuspidal modular form f of weight 2, whose level
matches the conductor of E.

This notion of modularity can be viewed within the more general framework of the Langlands
programme, which conjectures in particular that certain n-dimensional `-adic representations
of the absolute Galois group GF (where F is a number field) should correspond to automorphic
forms for the algebraic group ResF/Q(GLn), where ResF/Q denotes the Weil restriction of
scalars from F to Q. Among these Galois representations should be the two-dimensional
representation arising from the action of GF on the `-adic Tate module of an elliptic curve E
defined over F , so it is natural to consider modularity over an arbitrary number field.

One can approach this question from either a theoretical or a computational viewpoint. On
the theoretical side, there is the search for a concrete description of the Galois representation
attached to an automorphic form for the group ResF/Q(GL2) for a general number field F .
Carayol [7], Taylor [30] and Blasius and Rogawski [4] defined these representations for the
case of Hilbert modular forms over totally real fields whose weights are at least 2 (including, in
particular, those forms which should correspond to elliptic curves). Subsequently, Jarvis and
Manoharmayum [23] proved modularity of semistable elliptic curves over the real quadratic
fields Q(

√
2) and Q(

√
17), and recent work by Freitas et al. [13] establishes modularity of

elliptic curves over all real quadratic fields.
Harris, Soudry and Taylor [22, 31] provided a construction in the case of automorphic

forms over imaginary quadratic fields, which was later refined by Berger and Harcos [3].
More recently, Mok [26] has constructed Galois representations attached to automorphic forms
defined over CM fields, subject to certain conditions on the central character of these forms
(in particular, his construction covers those forms which are expected to correspond to elliptic
curves). Harris et al. [21] and Scholze [27] have removed these restrictions, and in fact construct
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Galois representations attached to regular automorphic forms for ResF/Q(GLn) for all n over
CM or totally real fields (with Scholze’s results extending even further to account for ‘torsion
automorphic forms’).

As yet, there are no general modularity results over these latter fields, although examples of
modular elliptic curves have been found over certain imaginary quadratic fields, such as in [12].
In this paper, the authors present an algorithm to test for isomorphism of two representations of
the absolute Galois group GF , which relies on knowledge of the traces of these representations
on Frobenius elements over primes in F .

As in the classical case, these traces are determined by the action of Hecke operators on
spaces of newforms, which has led to the development of methods for constructing spaces
of automorphic forms defined over number fields, and for computing the Hecke action on
these spaces. Classically, one can study modular forms through the use of modular symbols
(see, for example, [29]). By the Eichler–Shimura isomorphism, one can realize cuspidal Hecke
eigenforms as classes in the cohomology of modular curves, and modular symbols provide us
with a means to compute this cohomology, and the corresponding Hecke action. More generally,
it is known that cuspidal automorphic forms for ResF/Q(GL2) can be realized as classes in the
cohomology of certain locally symmetric spaces, and so one might hope to extend the notion
of modular symbols to a wider variety of number fields.

Until recently, attention had largely been focused on imaginary quadratic or totally
real fields; however, the authors of [14] provide a description of a method for computing
automorphic forms over the quartic CM field Q(ζ5), where ζ5 denotes a primitive fifth root
of unity. Moreover, they are able to compute the action of Hecke operators on these forms,
and present several examples of elliptic curves which appear to be modular. In this paper, we
shall extend these methods to the field Q(ζ12), and, adapting the methodology of [12], shall
combine the resulting data with our knowledge of the Galois representations constructed in
[26] to give the first proven examples of modular elliptic curves over a quartic CM field.

2. Cuspidal automorphic forms and representations

We begin with a brief discussion of automorphic forms for the group ResF/Q(GL2), where F is
a quartic CM field, before describing the attached Galois representations constructed in [26].

Let F be such a field, let G = ResF/Q(GL2), and let G(A) = G(Af ) × G(R) be
a decomposition of the adelic points of G into finite and infinite parts. For simplicity,
we shall assume that F has trivial class group. We can identify G(R) with the product
GL2(C) × GL2(C) via a fixed choice of non-conjugate embeddings of F into the complex
numbers, and subsequently define a compact subgroup K∞ of G(R) by K∞ = U(2)× U(2).

For an ideal n in the ring of integers O of F , let K0(n) denote the product of the local
subgroups Kv(n), where v runs through the non-archimedean places of F , and Kv(n) is equal
to either the subgroup of GL2(Ov) comprising those matrices which are upper triangular
modulo n, if v|n, or else is equal to GL2(Ov). Note that K0(n) is a compact open subgroup of
G(Af ).

An automorphic form of level n is a function ϕ : G(Q)\G(A)→ C satisfying the following:
– ϕ acts smoothly on the real Lie group G(R);
– ϕ is invariant under the right regular action of K0(n) on G(Af );
– the vector space spanned by the K∞-translates of ϕ (under the right regular action) is

finite-dimensional; and
– ϕ is Z-finite and of moderate growth (in the sense of [6, § 3.2]).

Moreover, we say that ϕ is cuspidal if∫
F\AF

ϕ

((
1 x
0 1

)
g

)
dx = 0
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modular elliptic curves 157

for all g ∈ G(A), and has trivial central character, if it is invariant under the regular action of
the centre of G(A).

Such forms lie in the space L2
0(G(Q)\G(A),1) of square integrable functions on G(A) which

are invariant under the action of G(Q), and are cuspidal with trivial central character. Under
the right regular action of G(A), this space decomposes into a direct sum of irreducible Hilbert
space representations,

L2
0(G(Q)\G(A),1) =

⊕
π

nπVπ,

where nπ ∈ N and Vπ is a Hilbert space on which G(A) acts by the homomorphism π, and
we define a cuspidal automorphic representation for G to be any subrepresentation which is
isomorphic to one of these summands. Cuspidal automorphic forms of level n can be realized
in the space of K0(n)-fixed vectors of some cuspidal automorphic representation, and so we
may transfer our attention to these latter objects, which we are better equipped to work with.

Each cuspidal automorphic representation π admits a decomposition π =
⊗
πv, where v

runs over the places of F . For each non-archimedean place v, πv is an irreducible admissible
complex representation πv : GL2(Fv)→ GL(Vv), in the sense that the stabilizer of each point
v ∈ Vv is open, and, given a compact open subgroup Kv of GL2(Fv), the space of Kv-fixed
vectors in Vv is finite-dimensional.

We recall that a representation πv is unramified if the space of GL2(Ov)-fixed vectors is
non-trivial. Since π is automorphic, each unramified component πv is a principal series, and
is parameterized by a pair (χ1, χ2) of characters of F×v . To each such representation we can
assign a semisimple conjugacy class tπv

in GL2(C), known as the Langlands class of πv, a

representative of which is given by the matrix
( χ1($) 0

0 χ2($)

)
, where $ is a uniformizer for Ov.

As intimated previously, we can realize automorphic forms (or, as we shall consider, the
corresponding automorphic representations) as classes in the cohomology of certain locally
symmetric spaces. An in-depth discussion of this can be found in [28, Chapter 3], of which we
shall present a brief précis, tailored to our particular case.

For a fixed ideal n, we define the locally symmetric space

X0(n) = A0
G(R)G(Q)\G(A)/K∞K0(n),

where the split component A0
G(R) is isomorphic to R+, embedded diagonally into the two

components of G(R) ' GL2(C)×GL2(C). We then define H∗(X0(n),C) to be the cohomology
of Ω(X0(n),C), where the latter denotes the de Rham complex of smooth, complex-valued
differentials on X0(n).

Let mG be the Lie algebra of A0
G(R)\G(R), and denote byA(K0(n)) the space of automorphic

forms of level n on which A0
G(R) acts trivially. There is then an isomorphism of K0(n)-modules,

H∗(X0(n),C) ' H∗(mG,K∞;A(K0(n))),

where H∗(mG,K∞;A(K0(n))) denotes the Lie algebra cohomology with respect to (mG,K∞)
(in the sense of [28, § 3.2]).

There is a decomposition

H∗(X0(n),C) = H∗Eis(X0(n),C)⊕H∗cusp(X0(n),C)

of H∗(K0(n),C) into Eisenstein and cuspidal parts, the latter of which is connected to cuspidal
automorphic representations. Denoting by Vπ = Vπf

⊗ Vπ∞ the space on which a cuspidal
automorphic representation π acts, we have a decomposition of K0(n)-modules

H∗cusp(X0(n),C) '
⊕
π

H∗(mG,K∞;Vπ∞)⊗ V K0(n)
πf

,
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158 a. jones

where the sum ranges over all cuspidal automorphic subrepresentations of the space A(K0(n))

with trivial central character, and V
K0(n)
πf denotes the space of K0(n)-fixed vectors in Vπf

(see
[28, Theorem 4.1]). We shall say that a representation π is of cohomological type and weight
two if H∗(mG,K∞;Vπ∞) is non-zero.

With this in mind, we can now state a version of the main result in [26].

Theorem 2.1. Let F be a CM field, and let π be a cuspidal automorphic representation
of ResF/Q(GL2) of cohomological type, with trivial central character, and fix a prime `. Then
there exists an `-adic Galois representation

ρπ : GF → GL2(Q`)

such that, for each place v of F not dividing `, we have the local-to-global compatibility
statement, up to semisimplification,

WD(ρπ,v)
ss ' Lv(πv ⊗ |det|−1/2

v )ss.

Furthermore, if πv is not a twist of Steinberg (for example, is an unramified principal
series) then we have the full local-to-global compatibility statement, up to Frobenius
semisimplification,

WD(ρπ,v)
Frob ' Lv(πv ⊗ |det|−1/2

v ).

Here Lv(πv) denotes the representation of the Weil–Deligne group W ′v of Fv assigned to πv
by the local Langlands correspondence for GL2, and WD denotes the Weil–Deligne functor
taking representations of GFv

to representations of W ′v.
We shall say that an elliptic curve E over F is modular if, for some rational prime `,

the `-adic Galois representation ρE defined by the action on the `-adic Tate module of E
is, up to semisimplification, isomorphic to ρπ for some cohomological cuspidal automorphic
representation π of weight 2 and level nE , where nE denotes the conductor of E. Note that, since
such representations form a compatible family ranging over all rational primes `, isomorphism
for some prime implies isomorphism for all but finitely many primes.

We note some important details concerning these representations. Firstly, since the Frobenius
semisimplification of a Weil–Deligne representation agrees with the original representation on
inertia, WD(ρπ,v) is unramified at a place v of F if, and only if, ρπ,v is too. Similarly, under
the local Langlands correspondence, Lv(πv) and πv are unramified at the same set of places.
In particular, if the representation π occurs in the cohomology of the locally symmetric space
X0(n), then ρπ,v is unramified at all primes not dividing n.

Secondly, the determinant of Lv(πv) corresponds to the central character of πv, and thus

is trivial, so in particular the determinant of ρπ,v is equal to |det|−1/2
v . Observing that, for a

uniformizer $, we have det(ρπ,v(Frobv)) = |det($)|−1/2
v = q, where q is the cardinality of the

residue field of Fv, we see that det(ρπ,v) is equivalent to the local cyclotomic character.
Finally, the trace of Lv(πv)(Frobv) is equal to the trace of the Langlands class tπv

of πv,
and so Tr(ρπ,v(Frobv)) = q1/2 Tr(tπv

). If the representation πv is unramified, the space of
GL2(Ov)-fixed vectors of πv is known to be one-dimensional, on which the Hecke operator Tv
(defined as the normalized characteristic function of the double coset GL2(Ov)

(
$ 0
0 1

)
GL2(Ov))

acts via scalar multiplication by precisely this value.

3. Comparing Galois representations

Armed with our knowledge of these representations, we shall use the following method,
described in [12] for imaginary quadratic fields, to determine whether an elliptic curve E
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defined over a quartic CM field is modular. We shall denote by ρE and ρπ the Galois
representations corresponding to a curve E and a cuspidal automorphic representation π,
respectively.

We begin with a definition. Let ρ be an arbitrary `-adic Galois representation. Up to
isomorphism, we may assume that the image of ρ is defined over a finite extension of Z`,
and thus we may compose ρ with the reduction map to the residue field of this valuation
ring to obtain a representation ρ̄ : GF → GL2(F`r ) for some r. The residual representation
ρ̃ : GF → GL2(F`r ) is defined to be the semisimplification of any such ρ̄ (which is well defined
up to isomorphism).

Each Galois representation that we shall consider is rational, in the sense that, for each non-
archimidean place v, the coefficients of the characteristic polynomial of Frobv are rational. The
following result (which is no doubt well known to the experts, but for which we could find no
reference) shows that, for any such representation, the corresponding residual representation
can be assumed to have image in GL2(F`).

Lemma 3.1. Let ρ : GF → GL2(Q`) be a rational Galois representation, and let ρ̃ :
GF → GL2(F`) be the corresponding residual representation. Then there exists an element
t ∈ GL2(F`) such that tρ̃(g)t−1 ∈ GL2(F`) for all g ∈ GF .

Proof. Let the image of ρ̃ lie in GL2(F`r ), let σ generate the cyclic group Gal(F`r/F`), and
consider the representations ρ̃ and σ ◦ ρ̃. Since σ fixes F`, the characteristic polynomials of
these two representations on Frobenius elements coincide, and, since both representations are
semisimple by definition, a theorem of Brauer and Nesbitt implies that they are isomorphic.
Thus there exists some s ∈ GL2(F`r ) such that σ(ρ̃(g)) = s−1ρ̃(g)s for all g ∈ GF .

Define an element

πs =

r∏
i=1

σi(s) ∈ GL2(F`r ).

Since GL2(F`r ) is finite, πs must have finite order, m, say.
Let n = mr, and let τ be a generator of the cyclic group G = Gal(F`n/F`), so that, in

particular, τ |F`r
= σ. A straightforward check shows that the map

γ : G→ GL2(F`n); τk 7→ γτk :=

k−1∏
i=0

τ i(s)

defines a G-cocycle. By Hilbert’s Theorem 90, the first cohomology group H1(G,GL2(F`n))
is trivial, and thus there exists some t ∈ GL2(F`n) such that tγτkτk(t)−1 = Id for all k. In
particular, since γτ = s, we have s = t−1τ(t).

Viewing GL2(F`r ) as a subgroup of GL2(F`n) on which τ ∈ Gal(F`n/F`r ) acts as the element
σ ∈ Gal(F`r/F`), we observe that, for each g ∈ GF ,

τ(tρ̃(g)t−1) = τ(t)σ(ρ̃(g))τ(t)−1 = τ(t)s−1ρ̃(g)sτ(t)−1 = tρ̃(g)t−1,

and thus tρ̃(g)t−1 ∈ GL2(F`) for all g ∈ GF , as required.

Remark. There is nothing special about our restriction to rational representations. The same
argument shows that, if the coefficients of the characteristic polynomial of ρ̃(Frobp) lie in F`r
for all primes p, then we can define ρ̃ over the field F`r .

We restrict our attention to the case ` = 2. Thus, for any rational 2-adic representation ρ, the
residual representation ρ̃ has image in GL2(F2), which is isomorphic to S3. It is straightforward
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to see that, up to semisimplification, ρ̃ has only three possible images; it can be trivial, have
cyclic image isomorphic to C3, or be isomorphic to S3 itself.

Using class field theory, it is possible to determine isomorphism of the residual
representations ρ̃E and ρ̃π by checking certain parity conditions on the traces of these
representations at Frobenius elements above a finite set S1 of prime ideals of F (a discussion
of this method may be found in [24, Chapter 6.3]). Henceforth, we shall assume that these
residual representations are indeed isomorphic. It is then known that one can produce a second
set S2 of prime ideals of F such that the full representations ρE and ρπ are isomorphic if, and
only if, the traces of ρE(Frobp) and ρπ(Frobp) for all primes p ∈ S2 are equal. A suitable set S2

can be constructed by the Faltings–Serre method in the case that the residual representations
are absolutely irreducible, or by a result of Livné in all other cases.

For reference, we state these results here, beginning with the absolutely irreducible case.

Theorem 3.2. Let ρ1, ρ2 : GF → GL2(Z2) be two representations which have the same
determinant, are unramified outside a finite set of prime ideals of F , and whose residual
representations are absolutely irreducible and isomorphic. Then there exists a finite set S of
prime ideals of F such that ρ1 and ρ2 have isomorphic semisimplifications if, and only if,
Tr(ρ1(Frobp)) = Tr(ρ2(Frobp)) for all p ∈ S.

For a detailed account of the proof, we refer the reader to [12, § 4]. The requirement that both
representations have image in GL2(Z2), which a priori could be problematic, is in fact easily
dealt with. Indeed, absolute irreducibility of the residual representations, combined with the
rationality of the traces of the full representations, means that we can use a result of Carayol
(see [8, Theorem 2]) to find that ρπ (and indeed ρE , although this is well known) is in fact
equivalent to a representation which takes values in GL2(Z2).

If the images of ρπ and ρE are not absolutely irreducible, then we require the following result
of Livné, whose statement we borrow from the thesis of Chênevert [9, Theorem 5.4.9].

Theorem 3.3. Let F be a number field, and Vλ a finite extension of Q2 with ring of integers
Oλ and maximal ideal λ. Let

ρ1, ρ2 : GF → GL2(Vλ)

be two continuous representations unramified outside a finite set S of places of F , such that

Tr(ρ̃1) ≡ Tr(ρ̃2) ≡ 0 (mod λ) and det(ρ̃1) ≡ det(ρ̃2) ≡ 1 (mod λ).

Let F2,S denote the compositum of all quadratic extensions of F unramified outside S, and
suppose that there exists a set of prime ideals T of F , disjoint from S, such that:

(i) {Frobp, p ∈ T } surjects onto Gal(F2,S/F ); and
(ii) the characteristic polynomials of ρ1 and ρ2 at the elements {Frobp, p ∈ T } are equal.

Then ρ1 and ρ2 have isomorphic semisimplifications.

If the residual representations are trivial, then this suffices to prove isomorphism (up to
semisimplification) of the full representations, and indeed this is all we require for our examples,
which have either trivial or full residual image. For completeness, we note that if the residual
representations have C3-image, then the hypotheses of the theorem do not hold (since the
traces of the elements in GL2(F2) of order 3 are odd), and we must take an additional step.

Let ρ̃E ' ρ̃π ' ρ̃, say, and define the fixed field L = F
ker(ρ̃)

, so that L/F is a cubic Galois
extension, and GL is a normal subgroup of GF . Denoting by ρ′E and ρ′π the restrictions of ρE
and ρπ to GL, it is clear that the corresponding residual representations are trivial, so we can
use Theorem 3.3 to determine isomorphism of ρ′E and ρ′π (as usual, up to semisimplification).

https://doi.org/10.1112/S1461157016000048 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000048


modular elliptic curves 161

For the following argument, we impose an additional restriction on the elliptic curve E,
namely that the base change of E to the field L does not possess complex multiplication. If
this restriction is satisfied, then the representation ρ′E (and thus also ρ′π) is in fact irreducible.
By Schur’s lemma, HomGL

(ρ′E , ρ
′
π) contains a copy of Vλ on which GL acts trivially, and so

HomGL
(1, (ρE⊗ρ∨π )|GL

) is non-trivial. By Frobenius reciprocity, the latter group is isomorphic

to HomGF
(IndGF

GL
(1), ρE ⊗ ρ∨π ), which decomposes as a direct sum

HomGF
(IndGF

GL
(1), ρE ⊗ ρ∨π ) '

⊕
χ|GL

=1

HomGF
(ρπ ⊗ χ, ρE).

Invoking Schur’s lemma once more, we observe that one of these summands must be non-trivial,
and that ρE ' ρπ ⊗ χ for some character χ of GF whose restriction to GL is non-trivial. One
can then determine whether this character is trivial, by finding a prime p of F which is inert in
L. In this case, Frobp is non-trivial, and so χ is completely determined by the value it takes on
this Frobenius element. In particular, if Tr(ρπ(Frobp)) = Tr(ρE(Frobp)), then χ(Frobp) = 1,
χ is trivial, and ρπ and ρE have isomorphic semisimplifications, as required.

4. Computing the Hecke action on cohomology

To utilize the method described in the previous section, we require knowledge of the
representation ρE , and the values Tr(ρπ(Frobp)) for a finite set of primes p of F . The former
is straightforward to find, given an elliptic curve E, as the action of GF on the 2-adic Tate
module Ta2(E) of E is well understood. We therefore require a method to compute the trace
of ρπ on Frobenius elements.

From § 2, we know that, for a place v of F , dividing p, at which π is unramified, this is given
by the action of the Hecke operator Tv on the space of GL2(Ov)-fixed vectors of πv. Moreover,
this Hecke action translates to the cohomological setting mentioned previously, where it is
described in terms of the action of a double coset operator on the de Rham cohomology of
differential forms on X0(n).

At this juncture, we note an important observation: one could, instead, work with the rational
cohomology, H∗cusp(X0(n),Q). By [19, Chapter III, Proposition 2.2], this is also a K0(n)-
module, and so admits a Hecke action. Moreover, the identification

H∗cusp(X0(n),C) ' H∗cusp(X0(n),Q)⊗ C

is an isomorphism of Hecke modules, and so, in particular, the action of the Hecke operators
Tv on the complex cohomology can be defined rationally, a fact which shall prove useful later.

We shall now provide a more concrete realization of this cohomology and the corresponding
Hecke operators, which we can use to compute the desired information about the Galois
representations ρπ. Key to this is the fact that we may reinterpret the locally symmetric
space X0(n) as a quotient of some globally symmetric space X by an arithmetic subgroup
Γ0(n) of G(Q), which in turn allows us to compute H∗(X0(n),C) by considering the group
cohomology H∗(Γ0(n),C).

More precisely, define the globally symmetric space

X = G(R)/A0
G(R)K∞,

and let Γ0(n) denote the arithmetic subgroup of G(Q), which we identify with GL2(F ),
comprising those matrices in GL2(O) which are upper-triangular modulo the ideal n. Recalling
that we have restricted our attention to fields F with trivial class group, we have an
identification

X0(n) ' Γ0(n)\X.
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A standard argument (an example of which can be found in the appendix of [20]) then states
that we have an equivalence of cohomology groups:

H∗(X0(n),C) ' H∗(Γ0(n),C).

We may therefore choose to work with the group cohomology appearing on the right-hand
side, but we require a little extra work before we can compute it effectively.

Recall that the cohomological dimension ν of a torsion-free arithmetic subgroup Γ of G(Q)
is defined to be the smallest integer such that Hν+1(Γ,M) = 0 for all coefficient systems
M. Since Γ0(n) is not torsion-free, we need a more general definition, that of the virtual
cohomological dimension (which we also denote by ν) of an arbitrary arithemtic subgroup Γ
of G(Q), which is defined to be the cohomological dimension of any finite-index torsion-free
subgroup of Γ.

By Borel–Serre duality (see [5, § 11.4]) we have an equivalence of Hecke modules

Hν−k(Γ0(n),C) ' Hk(Γ0(n),St2 ⊗Z C),

where the Steinberg module St2 for GL2(F ) is defined by the short exact sequence

0→ St2 → Z[P1(F )]
ε→ Z→ 0

(here ε denotes the augmentation map sending
∑
nPP to

∑
nP ).

The group homology of Γ0(n) with coefficients in St2 ⊗Z C can in turn be computed by
constructing an appropriate resolution of the Steinberg module. Our preferred example of
such a resolution is given by the sharbly complex S∗, which we define as follows: for each non-
negative integer k, let Sk denote the space of Z-linear combinations of k-sharblies, (k+2)-tuples
u = [u1, . . . , uk+2] with each ui ∈ O2, subject to the following relations:

– [u1, . . . , uk+2] = sgn(σ)[uσ(1), . . . , uσ(k+2)] for any permutation σ ∈ Sk+2;
– [u, u2, . . . , uk+2] = [v, u2, . . . , uk+2] if there exists λ ∈ R+ such that for each embedding
ι : F ↪→ C we have ι(uu∗) = λι(vv∗);

– [u1, . . . , uk+2] = 0 if u1, . . . , uk+2 span a ine-dimensional F -vector space (we call such
sharblies degenerate).

To give S∗ the form of a simplicial complex, we define a boundary map ∂k : Sk → Sk−1 by

∂k[u1, . . . , uk+2] =

k∑
i=1

(−1)i+1[u1, . . . , ûi, . . . , uk+2],

where ûi indicates that we omit the vector ui from the resulting sharbly. The sharbly complex
admits an obvious action of GL2(O), given by

g · [u1, . . . , uk+2] = [gu1, . . . , guk+2], g ∈ GL2(O),

which commutes with the boundary map, and thus in particular we can define the subcomplex
of Γ0(n)-invariants, which we denote by (S∗)Γ0(n), by imposing the additional relation that

– [u1, . . . , uk+2] = γ[u1, . . . , uk+2] for all γ ∈ Γ0(n).
It is known (see, for example, [1, Theorem 5]) that the sharbly complex provides an acyclic

resolution of the Steinberg module, and thus we have an identification

Hk(Γ0(n),St2 ⊗Z C) ' Hk((S∗)Γ0(n),C)

of homology groups. Moreover, the identifications we have established are all Hecke equivariant
(see, for example, [2, Theorem 2.4]), and so we have a Hecke action on the sharbly homology.
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One can see without too much difficulty that, for a non-archimedean place v of F , corresponding
to the prime ideal p of F , the action of the Hecke operator Tv on S∗ is given by

Tv(u) =
∑

giu,

where we have a decomposition of the double coset space

Γ0(n)

(
1 0
0 ν

)
Γ0(n) =

∐
Γ0(n)gi,

for a generator ν of the ideal p.
Thus we can, in theory at least, use the homology of the sharbly complex to compute the

Hecke action on cuspidal automorphic forms of level n. Moreover, as we are interested in classes
which correspond to cuspidal automorphic forms, we can restrict our attention to homology
whose degree lies within a specified range.

Indeed, one can show (using a slight adaptation of [28, Theorem 6.2]) that the cuspidal
cohomology Hi

cusp(X0(n),C) is non-trivial only if 2 6 i 6 5. Combined with the fact that the
virtual cohomological dimension of Γ0(n) is 6 (which can be found by applying [5, Theorem
11.4.4] to our specific case), this means that we need only consider homology in degrees 1 to
4. Furthermore, it is known that any cuspidal automorphic form which appears as a homology
class in one of these degrees in fact appears in every degree, so we lose nothing by specializing
to a single degree.

The sharbly complex is intrinsically linked with the symmetric space X defined previously,
and so we shall spend some time discussing the geometry of this space in greater detail. Recall
that

X = G(R)/A0
G(R)K∞,

and moreover that G(R) ' GL2(C) × GL2(C), K∞ ' U(2) × U(2), and A0
G(R) ' R+. Using

the standard identification of SL2(C)/SU(2) with the hyperbolic 3-space H3, we therefore find
that

X ' H3 ×H3 × R+,

a seven-dimensional space.
We can identify X with a cone of binary Hermitian forms. More precisely, let v1 and v2 be

two non-conjugate embeddings of F into C, and define Herm2(Fvi) to be the space of 2 × 2
Hermitian matrices with entries in Fvi . Then we can define an inner product space

V = Herm2(Fv1)×Herm2(Fv2),

with inner product 〈 , 〉 defined by

〈Φ,Ψ〉 = 2 Tr(Φ1Ψ1 + Φ2Ψ2)

(the factor of 2 is largely irrelevant in this case, but comes into play if we extend these ideas
to fields of mixed signature; see [17] for an example of this).

Note that any point Φ ∈ V defines a Hermitian form on F 2 (which, through abuse of notation,
we shall also denote by Φ) given by

Φ(x, y) = 2 Tr(Φ1x1y
∗
1 + Φ2x2y

∗
2),

where xi and yi denote the images of x and y under the embedding vi, and ∗ denotes the
complex conjugate transpose. We shall henceforth refer to points in V and their corresponding
Hermitian forms interchangeably, dependent on the context.
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We denote by C the cone of positive definite forms in V, whose closure C is the cone of
positive semidefinite forms. It can be shown that a form Φ belongs to C (respectively, C) if,
and only if, each matrix Φi is positive definite (respectively, positive semidefinite). The group
G(R) acts on V via the map

g · Φ = (g1Φ1g
∗
1 , g2Φ2g

∗
2),

and this action preserves C. Moreover, it can easily be seen that G(R) acts transitively on C,
and that the stabilizer of any point is isomorphic to K∞. Thus we obtain an isomorphism

C/R+ ' X.

The usefulness of this isomorphism lies in the fact that the cone C is an example of a
positivity domain, in the sense of Koecher’s work in [25]. Such structures possess many
desirable properties: in particular, C admits a decomposition into polyhedral cones, which
will provide us with a cellular decomposition of our symmetric space X.

This decomposition is straightforward to describe. For each vector x ∈ O2, we can define a
point q(x) ∈ V by setting

q(x) = (x1x
∗
1, x2x

∗
2).

Note that, using this definition, we can rewrite the second relation defining the sharbly complex
as

[u, u2, . . . , uk+2] = [v, u2, . . . , uk+2] if q(u) = λq(v) for some λ ∈ R+.

We may (and henceforth shall) therefore assume that each vector ui ∈ O2 appearing in a
sharbly u is primitive, in the sense that no point of Ξ lies on the line segment joining q(ui)
and the origin (that is, if q(vi) = λq(ui) for some vi ∈ O2 and λ ∈ R+, then λ > 1).

Each matrix xix
∗
i is positive semidefinite, and so q(x) lies in C. The set Ξ := {q(x); x ∈ O2}

is an example of what Koecher refers to as an admissible subset of C. For each form Φ ∈ C,
the set of values {〈Φ, q(x)〉 : q(x) ∈ Ξ} forms a discrete subset of R, and in particular we may
define the minimum of Φ to be

m(Φ) := inf
q(x)∈Ξ

{〈Φ, q(x)〉}.

The points q(x) in Ξ for which 〈Φ, q(x)〉 attains this minimum are called minimal vectors of
Φ, and we denote by M(Φ) the set of minimal vectors of Φ. If the set of minimal vectors of
a form Φ span the vector space V, then we call Φ perfect. Note that, if Φ is perfect, then so
too is λΦ for any λ ∈ R+, so we may assume without loss of generality that m(Φ) = 1 for all
perfect forms Φ.

The perfect forms provide us with our desired decomposition. To each perfect form Φ, we
can assign a convex polytope FΦ in C by taking the convex hull of the minimal vectors of Φ.
We can then define a polyhedral cone, known as a perfect pyramid, by taking the cone above
FΦ (that is, the set of half-lines passing through both the origin and a point in FΦ). Koecher’s
work then shows that the set of perfect pyramids provides a decomposition of the cone C, in
the sense that every point in C lies in some perfect pyramid, and any two perfect pyramids
have disjoint interiors. Moreover, the action of GL2(O) on O2 clearly induces an action on the
set of points Ξ, which preserves the set of perfect pyramids, and under this action there are
only finitely many equivalence classes of perfect pyramids. For a more detailed description of
these ideas, we refer the reader to the excellent exposition in [16, § 7].

Recalling our earlier identification of the symmetric space X with C/R+, the set of polytopes
FΦ provides us with a cellular decomposition of X. At this juncture, we note that one can
use the corresponding cell complex to compute the cohomology H∗(X0(n),C) directly. More
precisely, there is a retract W of the space X, known as the well-rounded retract, from which
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one can obtain a cell complex using the decomposition induced by that on X, and then one
can compute H∗(X0(n),C) by considering the Γ0(n)-equivariant cohomology H∗Γ0(n)(W,C).

Since Γ0(n) has finite index in GL2(O), there are only finitely many cells of a given dimension
up to Γ0(n)-equivalence, and thus one can compute the cohomology using standard techniques
for finite cell complexes (as is done in [17], for example).

We prefer to work completely with the sharbly complex, but still make use of the cellular
decomposition of X that we have just described. Note that any k-sharbly u = [u1, . . . , uk+2]
defines a convex polytope P(u) in V by taking the convex hull of the points q(ui). We define
a k-sharbly u to be reduced if P(u) is contained in FΦ for some perfect form Φ, and totally
reduced if P(u) defines a (k+ 1)-dimensional face of FΦ for some perfect form Φ. Clearly, the
set of totally reduced k-sharblies is a subset of the set of reduced k-sharblies.

Since there are only finitely many perfect pyramids under the action of Γ0(n), it follows that
there are only finitely many reduced and totally reduced sharblies up to Γ0(n)-equivalence.
In [14], the authors use the subcomplex of reduced sharblies to compute the homology of the
sharbly complex. We choose to work instead with the smaller subcomplex of totally reduced
sharblies, which our data suggests also computes the homology of (S∗)Γ0(n) in practice.

It soon becomes apparent that the subcomplex of totally reduced sharblies is not preserved
by the action of the Hecke operators Tv defined previously. Thus we would like to find a means
for rewriting an arbitrary k-sharbly chain in terms of totally reduced sharblies, in order to be
able to compute this action. While this is not possible in general, it turns out that if k ∈ {0, 1}
then, given a k-sharbly cycle representing a class in Hk((S∗)Γ0(n),C), we can in practice find
another representative of the same class whose support consists entirely of totally reduced
sharblies, using an algorithm described in [15], which we shall now briefly describe.

To begin with, suppose that we are given a generic 0-sharbly u = [u1, u2], and consider the
point B(u) = 1

2 (q(u1) + q(u2)). Since C is a convex cone, B(u) lies inside it and, in particular,
is contained in some perfect pyramid FΦ, say. We define the size N(u) of u to be the inner
product 〈Φ,B(u)〉. Note that this definition of size is well defined; this is clear if B(u) lies in
the interior of FΦ, as in this case Φ is uniquely determined. If, on the other hand, B(u) lies in
some face E on the boundary of a perfect pyramid FΦ, then it is a convex combination of the
vertices of E . If Φ′ is another perfect form, with the intersection FΦ′ ∩ FΦ containing E , then
M(Φ) ∩M(Φ′) contains the vertices of E , and so 〈Φ,B(u)〉 = 〈Φ′,B(u)〉.

By definition, N(u) > 1, with equality if, and only if, the points q(u1), q(u2) ∈ M(Φ) for
some perfect form Φ, which occurs if, and only if, u is reduced. The size of a 0-sharbly therefore
seems an appropriate measure for how far it is from being reduced.

Now suppose that u is not reduced, and note that for any point x ∈ O2 we have

u + ∂[u2, u1, x] = [u1, x] + [x, u2],

and thus u is homologous to [u1, x] + [x, u2]. We call a point x ∈ O2 a reducing point for u if

Max{N([u1, x]), N([x, u2])} < N(u).

One can prove (independently of the field F ) that, if Φ denotes the perfect form corresponding
to the perfect pyramid containing the point B(u), then there exists a reducing point x for u
such that q(x) is a minimal vector for Φ.

One can visualize this process by means of the following diagram. Here a 0-sharbly is
represented by a straight line, with shorter lines representing sharblies of smaller size:

u1 x u2

If u is reduced, but not totally reduced, we take a slightly different approach. One can
define an alternative notion of the size of u (as in [14]) which we shall denote by n(u), by
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setting n(u) = NormF/Q (det(u1|u2)). There appears to be a correlation between the values
N(u) and n(u), with small values of N(u) typically corresponding to small values of n(u); for
example, over the field Q(ζ12), we observe that a non-degenerate 0-sharbly u is reduced if, and
only if, n(u) ∈ {1, 4, 9}, and is totally reduced if, and only if, n(u) = 1. We therefore call a
point x ∈ O2 a reducing point for a reduced 0-sharbly u if Max{n([u1, x]), n([x, u2])} < n(u).
Over the field Q(ζ12), one can always find such a reducing point (as there are only finitely
many reduced 0-sharblies up to GL2(O)-equivalence, this can be confirmed by checking a finite
number of possibilities).

We now consider the case of 1-sharblies, which is considerably more involved. Our original
notion of size can be extended to a 1-sharbly u = [u1, u2, u3] by defining N(u) to be 〈Φ,B(u)〉,
where B(u) = 1

3 (q(u1)+q(u2)+q(u3)), and Φ once again denotes the perfect form corresponding
to the perfect pyramid within which B(u) lies. Once again, u is reduced if, and only if,
N(u) = 1. (We note that one can similarly extend the definition of n(u) to cater to 1-sharblies
by setting n(u) = Max{n([ui, uj ])}).

Now suppose we are given a generic 1-sharbly u = [u1, u2, u3], none of whose edges are
totally reduced, and choose reducing points x1, x2 and x3 for the edges [u2, u3], [u3, u1] and
[u1, u2], respectively. Define a 2-sharbly chain

ν := [u1, u2, u3, x1] + [u3, u1, x1, x2] + [u1, u2, x1, x3] + [u1, x1, x2, x3],

so that

u + ∂ν = [u1, x3, x2] + [u2, x1, x3] + [u3, x2, x1] + [x1, x2, x3] +
∑
σ∈A3

[uσ(1), uσ(2), xσ(3)].

By definition, u + ∂ν is homologous to u. If we were able to neglect the final terms
[uσ(1), uσ(2), xσ(3)], then we could represent the process of replacing u with u + ∂ν by
the following diagram, with 1-sharblies represented by triangles, where a smaller triangle
corresponds to a sharbly of smaller size (we note that, unlike in the case of 0-sharblies, we
cannot prove whether these sharblies are indeed smaller than u, although in practice they
seem to be):

u1 u2

u3

x2 x1

x3

In general, we cannot neglect the terms [uσ(1), uσ(2), xσ(3)]. However, if u lies in the support
of some 1-sharbly cycle ξ, then through careful choice of reducing points we can ensure that,
when we perform this procedure over the entire chain, all such terms vanish. To provide a
brief justification of this statement, let u ∈ Supp(ξ), and consider the single edge [u1, u2] of
u. Since the boundary of ξ vanishes in (S∗)Γ0(n), one can show that there must exist some
v = [v1, v2, v3] ∈ Supp(ξ) and some edge [vi, vj ] of v such that

[u1, u2] + [vi, vj ] = 0 (mod Γ0(n)),

or equivalently that
[vi, vj ] = γ[u2, u1]
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for some γ ∈ Γ0(n). Let x be a reducing point for [u1, u2], and assign to [vi, vj ] the reducing
point γx. Then

[u1, u2, x] + [v1, v2, γx] = [u1, u2, x] + γ[u2, u1, x] = 0 (mod Γ0(n)).

Thus, as long as we can choose our reducing points in this manner, the term∑
u∈Supp(ξ)

∑
σ∈A3

[uσ(1), uσ(2), xσ(3)]

vanishes in (S1)Γ0(n) for any 1-sharbly cycle ξ, so we need a means of ensuring that these
points are chosen appropriately. We do this as follows. For any 0-sharbly v, define a lift of
v to be a matrix Mv ∈ M2(O) such that, if m1 and m2 denote the columns of Mv, then
[m1,m2] = ±v, subject to the relations defining the sharbly complex. Now, to each 1-sharbly
in Supp(ξ), we assign three lift matrices, one for each edge, such that if v and w are two edges,
satisfying v = −γw for some γ ∈ Γ0(n), then Mv = γMw.

Now suppose we wish to choose a reducing point for an edge v of u ∈ Supp(ξ). If Mv = γMw,
where γ ∈ Γ0(n) and w is an edge for which we have already chosen a reducing point xw, then
we assign to v the reducing point γxw. Otherwise, we choose an arbitrary reducing point xv
for v, and record both Mv and xv. In particular, if v = −γw, then Mv = γMw, and so
xv = γxw, as we have required.

In practice, repeated applications of this procedure (with some minor adjustments to cater
for certain exceptional cases, for which we refer the reader to the expositions in [16] or
[24]) eventually produce a sharbly chain supported entirely by totally reduced 1-sharblies.
In particular, given a basis for the homology group H1((S∗)Γ0(n),C) and a non-archimedean
place v of F , we can compute the action of the Hecke operator Tv on the sharbly homology.

5. Results

The following pages give details of cuspidal Hecke eigenclasses defined over the field F =
Q(ζ12), for which we investigated the cohomology H5(X0(n),C) for all levels n with norm at
most 5500. In order to detect non-trivial cuspidal cohomology, we required data regarding the
rank of the corresponding Eisenstein cohomology. This is provided in the following table,
which collates heuristic data from [14] (to determine these ranks, one observes that the
Hecke operator Tv, where v does not divide the level n, acts on the Eisenstein subspace via
multiplication by NormF/Q(v) + 1):

Factorization type p p2 p3 p4 p5 p6 pq p2q p3q p4q p2q2 p3q2 pqr p2qr

dim H5
Eis(X0(n),C) 3 5 7 9 11 13 7 11 15 19 17 23 15 23

Up to Galois conjugation, there are 544 levels whose norm lies within the studied range. We
discovered non-Eisenstein cohomology at 55 of these levels, with a total of 99 non-Eisenstein
Hecke eigenclasses spread across these levels. Table 1 lists a set of generators for the levels
studied, together with their factorization type and the discrepancy d between the rank of
H1((S∗)Γ0(n),C) and the expected rank of the Eisenstein cohomology (here t = ζ12 denotes a
primitive twelfth root of unity):

Of the 99 non-Eisenstein Hecke eigenclasses we detected:
– 68 admitted rational eigenvalues;
– 18 admitted eigenvalues lying in a quadratic extension of Q, which we list in Table 8;
– 9 admitted eigenvalues lying in a cubic extension of Q, which we list in Table 9; and
– 4 admitted eigenvalues lying in a quartic extension of Q, which we also list in Table 10.
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Of the 68 eigenclasses which admitted rational Hecke eigenvalues:
– 31 had eigenvalues matching an eigenclass appearing at a lower level, which we list in

Table 4;
– 16 had eigenvalues matching those expected from the base change of an automorphic

form defined over a quadratic subfield of F , which we list in Tables 5 and 6;
– 2 had eigenvalues matching those from the Eisenstein cohomology, up to sign, which we

list in Table 7; and
– 19 classes could not be attributed to any of these phenomena, and we were able to find

elliptic curves defined over F whose local data matched the eigenvalue data for each
of these classes, and whose conductor was equal to the level n at which this eigenclass
appeared. We list these classes in Table 2, while the corresponding elliptic curves are
listed in Table 10.

For each Hecke eigenclass, we list the corresponding Hecke eigenvalues for a number of primes
of small norm. We indicate with a ∗ those primes which divide the level n.

Table 3 lists generators for the prime ideals of norm up to 25.
The classes listed in Table 4 are ‘old’, in the sense that the Hecke eigenvalues of this class

match those of a non-Eisenstein class appearing at a level d dividing n. Lower-case Roman
numerals are used to denote each eigenclass.

The classes listed in Table 5 correspond to the base change of an automorphic representation
π′ defined over a subfield F ′ of F , such that the Hecke eigenvalues aq(π′) are rational. If π is

Table 1. Levels with non-Eisenstein cohomology classes.

Level Generator Type d Level Generator Type d

169 2t3 − 3t2 − 3t+ 2 pq 1 3721a 7t3 − 6t2 − t− 1 pq 3
441 5t2 − 1 pq 1 3721b 6t2 − 5t− 6 pq 1
484 t3 + 4t2 − 4t− 1 pq 1 3844 5t3 − t2 + t+ 6 pq 1
576 2t3 + 2t2 + 2t− 4 p3q 1 3969 9t2 − 6 p2q 2
625 5 pq 2 4033a −8t3 + 9t− 9 pq 1
676 3t3 − t2 + 3t pqr 2 4033b −11t3 + 6t2 + 5t− 9 pq 1

1089 −t3 + 2t− 6 pq 2 4057 6t3 + 2t2 − 9t− 2 p 1
1156 3t2 + 5t− 3 pq 1 4069 −7t3 − 6t2 + 6t+ 2 pq 1
1369 2t3 + 2t2 + 3t− 5 pq 2 4096 8 p6 1
1521 4t3 + 4t2 − 5t+ 1 pqr 2 4225a −5t3 + 3t2 + 9t− 3 pqr 2
1764 t3 + 4t2 + 4t− 5 pqr 2 4225b −9t3 + 3t2 + 6t− 1 p2q 1
1936 4t3 − 4t2 − 6t− 2 p2q 2 4225c −4t3 + 7 pqr 1
2041 −t3 + 6t2 − t− 7 pq 1 4356 5t3 + 3t2 + 5t pqr 6
2116 5t3 − 5t2 + t+ 6 pq 2 4516 −4t3 − 3t2 + 9t+ 1 pq 1

2197a t3 − 2t2 + 3t+ 7 pqr 2 4624 −8t3 − 2 p2q 2
2197b t3 + 2t2 − 7t− 2 p2q 2 4672 8t3 + 6t2 − 6t− 2 p3q 1
2209 4t3 − 8t− 1 p 1 4761 −7t3 + 5t2 + 2t+ 2 pq 3
2257 −2t3 + 6t2 + 5t+ 1 pq 1 4852 −4t3 + 7t2 + 3t+ 1 pq 1
2304 8t3 − 4t p4q 2 5041 −8t3 + 3t2 + 3t− 8 p 2
2401 7 pq 3 5184 −6t2 + 6t+ 6 p3q2 2
2452 −7t3 + t2 + t+ 2 pq 1 5317 −7t3 + 3t2 − 2t− 4 pq 1

2500a −t3 − 7t2 + t p2q 1 5329a t3 + 5t2 + 3t− 9 p2 2
2500b 5t2 + 5t− 5 pqr 4 5329b 3t3 − 8t2 − 3t pq 2
2704 −2t3 − 6t2 + 6t+ 2 p2qr 4 5329c 3t3 − 6t− 10 pq 4
2916 3t3 − 3t2 + 3t+ 6 p3q 2 5329d 8t3 − 9t pq 1
2977 4t3 + 2t2 − 9t+ 2 pq 1 5473 −9t− 8 pq 1
3328 4t3 + 8t2 − 4t− 4 p4q 1 5476 −5t2 − t− 5 pqr 5
3481 5t3 − 5t2 − 6t− 1 p 2
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a base change of π′, and p is a prime of F lying above a prime q of F ′, then

ap(π) =

{
aq(π′) if q splits in F,

aq(π′)2 − 2 NormF ′/Q(q) if q is inert in F.

Table 2. Rational Hecke eigenclasses over F .

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2

441 0 ∗ −6 4 4 −6 −4 −4
1156 ∗ 0 4 4 −6 −6 6 6
2041 2 −2 2 2 ∗ −4 −4 −10
2257 −3 −4 −1 1 −6 −3 1 −8
2452 ∗ 1 −4 −4 −4 5 −1 8

2500a ∗ 0 4 4 −1 −1 1 ∗
2977 2 4 2 −4 ∗ −4 2 −10
3328 ∗ 2 −2 −2 6 ∗ 2 −6

3721b 2 −2 −4 −4 2 2 8 8
4033a −1 4 2 −4 2 2 2 −4
4033b 2 −2 −4 2 2 2 −4 2
4057 −3 −2 −4 −1 −4 1 −5 −2
4069 −3 −4 −3 1 ∗ −5 7 1

4225b −2 −2 −4 ∗ −2 −6 ∗ 4
4516 ∗ 5 4 −1 −6 4 −4 6
4672 ∗ 2 −2 −2 −2 6 −6 2
4852 ∗ −3 −1 −7 −2 −4 3 −8
5317 −3 2 −2 6 −2 ∗ 2 2
5473 −1 −2 2 2 −4 ∗ 2 8

Table 3. Generators for prime ideals of F of small norm.

p Generator p Generator

p2 −t2 + t+ 1 p13,3 −t3 − t+ 1
p3 t2 + 1 p13,4 t3 + t2 + 1

p13,1 −t3 + t2 + 1 p5,1 2t2 − t− 2
p13,2 t3 + t+ 1 p5,2 t3 − 2t2 − t

Table 4. ‘Old’ cohomology classes.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 Original class

676 (i–ii) ∗ −4 0 ∗ 0 ∗ −2 −2 169
1521 (i–ii) −2 ∗ 0 ∗ 0 ∗ −2 −2 169
1764 (i–ii) ∗ ∗ −6 4 4 −6 −4 −4 441
1936 (i–ii) ∗ −5 −1 −1 −1 −1 −4 −4 484

2197a (i–ii) −2 −4 0 ∗ ∗ ∗ −2 −2 169
2197b (i–ii) −2 −4 0 ∗ 0 ∗ −2 −2 169
2304 (i–ii) ∗ ∗ −2 −2 −2 −2 −6 −6 576

2704 (ii–iv) ∗ −4 0 ∗ 0 ∗ −2 −2 169
3969 (i–ii) 0 ∗ −6 4 4 −6 −4 −4 441

4225a (i–ii) −2 −4 0 ∗ 0 ∗ −2 ∗ 169
4356 (i–ii) ∗ ∗ −2 6 −2 6 −6 −6 1089 (i)

4356 (iii–iv) ∗ ∗ 4 −6 4 −6 6 6 1089 (ii)
4356 (v–vi) ∗ ∗ −1 −1 −1 −1 −4 −4 484

4624 (i–ii) ∗ 0 4 4 −6 −6 6 6 1156
5184 (i–ii) ∗ ∗ −2 −2 −2 −2 −6 −6 576

https://doi.org/10.1112/S1461157016000048 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000048


170 a. jones

For each of these classes, we were able to find an elliptic curve defined over the corresponding
subfield whose local data matched these eigenvalues (listed in Table 11).

In Table 6 we list the remaining eigenclasses which correspond to the base change of an
automorphic representation π′ defined over a subfield of F . In each case, the Hecke eigenvalues
ap(π′) lie in a quadratic extension of Q, and so there is no elliptic curve defined over the
corresponding subfield of F whose local data matches these eigenvalues. However, for each
class, we were able to find an elliptic curve defined over F whose local data matched the
eigenvalues ap(π) (listed in Table 12).

In Table 7 we list the remaining two eigenclasses with rational Hecke eigenvalues, which
match those of the Eisenstein cohomology, up to sign. We observe that the ray class group
Cl(OF , n) of the corresponding level admits a single non-trivial quadratic character χ, and
that the Hecke eigenvalues are given by

ap(π) = χ(p)(NormF/Q(p) + 1).

These appear to correspond to classes denoted by H∗res in [18, § 3.2.5].
In Tables 8 and 9 we list the remaining eigenclasses, whose eigenvalues lie in a proper

extension of Q. For the classes appearing in Table 8, the field Q(ap(π)) generated by these

Table 5. Base change from rational Hecke eigenclasses.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 Base field

484 ∗ −5 −1 −1 −1 −1 −4 −4 Q(
√

3)

576 ∗ ∗ −2 −2 −2 −2 −6 −6 Q(
√

3)

1089 (i) −3 ∗ −2 6 −2 6 −6 −6 Q(
√

3)

1089 (ii) 0 ∗ 4 −6 4 −6 6 6 Q(
√

3)

2209 −3 −2 −6 0 −6 0 −6 −6 Q(
√

3)

2704 (i) ∗ −2 2 ∗ 2 ∗ 2 2 Q(
√

3)

2916 (i) ∗ ∗ 5 −4 5 −4 −1 −1 Q(
√

3)

2916 (ii) ∗ ∗ −4 5 −4 5 −1 −1 Q(
√

3)

3844 ∗ −5 −1 −6 −6 −1 1 1 Q(
√
−3)

4225c −4 −2 ∗ ∗ −4 −4 ∗ −10 Q(
√
−1)

5041 (i) 0 5 −6 −1 −6 −1 1 1 Q(
√

3)

5041 (ii) −4 5 2 −1 2 −1 −7 −7 Q(
√

3)

5329d −1 −2 2 2 2 2 2 2 Q(
√
−3)

5476 (i) ∗ −5 −4 −7 −4 −7 2 2 Q(
√

3)

Table 6. Base change from non-rational Hecke eigenclasses.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2 Base field

169 −2 −4 0 ∗ 0 ∗ −2 −2 Q(
√

3)

4096 ∗ 2 −2 −2 −2 −2 2 2 Q(
√

3)

Table 7. Remaining rational eigenclasses.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 p5,1 p5,2

5329a (i) −5 −10 14 −14 −14 −14 26 −26
5329a (ii) −5 −10 14 −14 −14 −14 26 −26
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eigenvalues is a quadratic extension of Q, and we list the pair of Galois conjugate eigenvalues
for each prime. For the classes appearing in Table 9, the field Q(ap(π)) is either a cubic
or a quartic extension of Q, and for each prime we list the polynomial whose roots are the
corresponding eigenvalues.

We provide three tables of data regarding elliptic curves (Tables 10–12). In each case, we
list the coefficients ai of a Weierstrass polynomial

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

defining a representative of an isomorphism class of curves. Each curve was found using a
combination of the Magma routine EllipticCurveSearch [10] and the ideas found in [11].

In Table 10 we present a list of elliptic curves defined over F whose local data match the
Hecke eigenvalues of the classes appearing in Table 2, and whose conductors match the levels
at which these eigenclasses appear:

In Table 11 we present a list of elliptic curves defined over a subfield of F whose local
data (after base change to the field F ) match the Hecke eigenvalues of the classes appearing in
Table 5. After base change, the conductors of these curves match the levels of the corresponding
eigenclasses.

Finally, in Table 12 we present a list of elliptic curves defined over F whose local data match
the Hecke eigenvalues of the classes appearing in Table 6. As before, the conductors of these
curves match the levels of the corresponding eigenclasses.

Of the 19 elliptic curves listed in Table 10, 12 had trivial residual image, while the remaining
7 had residual image isomorphic to S3 (as mentioned previously, we found no curves with
residual image isomorphic to C3). We list these images in Table 13.

For each example, we were able to compute the eigenvalues of the Hecke operators Tp at
sufficiently many primes p to prove that the curve was indeed modular. A list of these primes,
and the corresponding eigenvalues (which necessarily are equal to the traces Tr(ρ̃E(Frobp))),
can be found for each curve in the supplementary file (available online from the publisher’s
website).

Table 8. Eigenclasses with eigenvalues lying in a quadratic extension of Q.

Class p2 p3 p13,1 p13,2 p13,3 p13,4 Q(ap(π))

625 (i–ii) 1±
√
17

2
−1±

√
17 −1±

√
17 −1±

√
17 −1±

√
17 −1±

√
17 Q(

√
17)

1369 (i–ii) −3±
√
17

2
−5±

√
17

2
3±
√
17

2
1±
√

17 3±
√
17

2
1±
√

17 Q(
√

17)

2116 (i–ii) ∗ −2± 2
√

3 −1± 3
√

3 2± 2
√

3 −1± 3
√

3 2± 2
√

3 Q(
√

3)

2500b (i–iv) ∗ −1±
√

17 −1±
√

17 −1±
√

17 −1±
√

17 −1±
√

17 Q(
√

17)

3481 (i–ii) −5±
√
5

2
−5±3

√
5

2
−1± 2

√
5 −7±3

√
5

2
−1± 2

√
5 −7±3

√
5

2
Q(
√

5)

5329b (i–ii) ±
√

7 ±2
√

7 −4 −4 1±
√

7 1±
√

7 Q(
√

7)

5476 (ii–v) ∗ −5±
√
17

2
1±
√

17 3±
√
17

2
1±
√

17 3±
√
17

2
Q(
√

17)

Table 9. Eigenclasses with eigenvalues lying in a cubic or quartic extension of Q.

Class p2 p3 Q(ap(π))

2401 (i–iii) x3 + 2x2 − 11x− 20 x3 + 2x2 − 32x− 80 Q[x]/(x3 + x2 − 8x− 10)
3721a (i–iii) x3 + 2x2 − 9x− 6 x3 + 5x2 − x− 2 Q[x]/(x3 − x2 − 9x+ 12)
4761 (i–iii) x3 + 3x2 − 4x− 4 ∗ Q[x]/(x3 − x2 − 4x+ 2)

5329c (i–iv) x4 + 4x3 − 3x2 − 16x− 8 x4 + 8x3 + 6x2 − 48x− 64 Q[x]/(x4 − 9x2 − 2x+ 2)
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Table 10. Elliptic curves corresponding to the classes in Table 2.

Class a1 a2 a3 a4 a6

441 t2 + t+ 1 −t3 − 1 t2 + t t3 −t2 − 2t− 1

1156 t3 + t2 + 1 t3 + t2 + t− 1 t3 −5t3 − 5t2 + 3t− 2 t3 + 5t2 − 4t+ 3

2041 t3 + 1 t3 − t t2 −2t2 − 2t− 2 −t3 − 2t2 − t
2257 t2 + 1 t3 + t2 − t− 1 t3 + t+ 1 −2t3 − t2 − t− 1 −t3 − t2 + 1

2452 1 t3 − t2 + t 1 −t3 + t2 + t− 1 0

2500a t+ 1 −t3 + t2 + 1 t2 + t t2 − t 2t2 − t− 1

2977 t3 + 1 −t3 t −t3 + t− 1 t3 − 2t2 + t

3328 t3 + t2 + t −t3 + t+ 1 t3 + 1 21t3 − 37t− 26 51t3 + t2 − 113t− 94

3721b t3 + 1 −t3 − t2 + t t+ 1 −t3 + t2 − 2t 2t3 − 2t2 − t+ 1

4033a t −t+ 1 t −t 0

4033b t2 + t+ 1 t2 t3 + t2 + 1 −t2 − 1 −t2

4057 t3 + t −t3 + t2 + t+ 1 t2 + 1 −2t3 + t2 + 2t −t2

4069 t3 + t2 t3 − t2 t −t3 + t 0

4225b t3 + 1 −t− 1 t3 + t2 −t3 + t+ 1 0

4516 t3 + t −t2 + t+ 1 t2 1 0

4672 t3 + 1 1 t3 + t2 + t −11t3 + 15t2 + 10t− 10 −21t3 + 30t2 − 5t− 22

4852 1 −t3 − t2 − t+ 1 t2 −t− 1 0

5317 t2 + t −1 t2 + t −2t3 − 2t2 + 1 0

5473 t+ 1 −t3 + t2 − t+ 1 0 −16t3 + 31t2 − 25t 21t3 + 12t2 − 56t+ 44

Table 11. Elliptic curves corresponding to the classes in Table 5.

Class a1 a2 a3 a4 a6

484
√

3
√

3 + 1
√

3 2
√

3 + 2
√

3 + 1

576
√

3 + 1 −
√

3 + 1 0 −5
√

3− 6 3
√

3 + 6

1089 (i) 1 −
√

3 0 1 0

1089 (ii)
√

3 + 1 −
√

3 1 5
√

3− 9 −6
√

3 + 10

2209 1 −
√

3 1 −
√

3− 1 0

2704 (i) 0
√

3− 1 0 2 2
√

3 + 3

2916 (i) 1 −1
√

3 + 1 −23
√

3− 41 217
√

3 + 377

2916 (ii) 1 −1
√

3 + 1 22
√

3− 41 −218
√

3 + 377

3844 1 1 1
2
(
√
−3 + 3) 1

2
(9
√
−3− 21)

√
−3 + 7

4225c
√
−1 + 1 −

√
−1

√
−1 1 0

5041 (i) 0 −1
√

3 −2
√

3− 4 3
√

3 + 5

5041 (ii) 0 1
√

3
√

3 + 2
√

3 + 1

5329d 3
√
−3

√
−3 + 7 1

2
(
√
−3− 5) 4

√
−3 + 1 1

2
(
√
−3− 3)

5476 (i) 1 −
√

3 + 1
√

3 −
√

3 + 1 −
√

3 + 1

Table 12. Elliptic curves corresponding to the classes in Table 6.

Class a1 a2 a3 a4 a6

169 3t3 − 3t2 − 3t −t3 + 2t2 − 3t− 2 −2t3 + 2t2 − t+ 2 −6t3 + t2 + 9t− 3 5t3 − 3t2 − t+ 2

4096 2t+ 2 −t2 + t− 1 2t3 + 2 −2t3 + 2t2 − 2t 0
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Table 13. Images of the residual representations attached to the elliptic curves in Table 10.

Class Im(ρ̃E) Class Im(ρ̃E) Class Im(ρ̃E)

441 Id 3328 Id 4225b Id
1156 Id 3721b Id 4516 S3

2041 Id 4033a Id 4672 Id
2257 S3 4033b Id 4582 S3

2452 S3 4057 S3 5317 Id
2500a S3 4069 S3 5473 Id
2977 Id
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