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Epistatic interactions, manifested in the effects of mutations
on the phenotypes caused by other mutations, may help
uncover the functional organization of complex biological
networks1–3. Here, we studied system-level epistatic
interactions by computing growth phenotypes of all single and
double knockouts of 890 metabolic genes in Saccharomyces
cerevisiae, using the framework of flux balance analysis4.
A new scale for epistasis identified a distinctive trimodal
distribution of these epistatic effects, allowing gene pairs to
be classified as buffering, aggravating or noninteracting2,5.
We found that the ensuing epistatic interaction network6

could be organized hierarchically into function-enriched
modules that interact with each other ‘monochromatically’
(i.e., with purely aggravating or purely buffering epistatic
links). This property extends the concept of epistasis from
single genes to functional units and provides a new definition
of biological modularity, which emphasizes interactions
between, rather than within, functional modules. Our approach
can be used to infer functional gene modules from purely
phenotypic epistasis measurements.

Metabolism has been studied in its entirety, in a search for hierarchical
and modular organization based on topology7, reaction fluxes8–10 and
gene expression11,12. System-level organization of cellular metabolism
can alternatively be explored based on the way gene mutations affect
each other’s phenotypic consequences. The variability spectrum of
such epistatic interactions between mutations is attracting attention
from the complementary perspectives of evolutionary theory and
genetics1,2,5. From the evolutionary perspective, our understanding
of many processes, including speciation, the emergence of sexual
reproduction and the maintenance of genetic variability, fundamen-
tally depends on the nature of epistasis5,13. Although the implications
of epistasis have been studied mostly under the assumption of
identical interactions between all mutations, variability in the level
and ‘sign’ (aggravating or buffering; Table 1) of epistasis between
different loci could substantially affect (and sometimes even reverse)
its evolutionary consequences5. From the genetic perspective, epistatic
interactions are of particular importance for elucidating functional
association between genes2,6. This premise has motivated recent
genome-wide screens for identifying pairs of synthetic-lethal muta-
tions1. Such extreme aggravating interactions comprise B0.5% of the

gene pairs tested in the yeast Saccharomyces cerevisiae and are
correlated with functional association between genes1.

Fundamental questions remain about the distribution of the sign
and magnitude of epistatic interactions for the remaining 99.5% of the
gene pairs. Despite the immediate importance of these questions from
both the evolutionary and the genetic perspectives, available data on
the distribution of epistatic interactions are very limited. The most
direct experimental measurement, analyzing fitness of double mutants
in Escherichia coli, showed that interactions are ubiquitous and that
the overall distribution of the level of interactions among random
pairs of mutations is unimodal, roughly symmetric and centered near
zero epistasis, despite frequent pairwise interactions14. This observa-
tion is supported by experimental evidence in other organisms15–17

and by computational modeling18,19. Environmental factors were also
suggested19,20 and shown21 to affect gene interactions.

Here we studied the spectrum of epistatic interactions between
metabolic genes in S. cerevisiae using the framework of flux balance
analysis (FBA), a mathematical method for computing whole-cell
metabolic fluxes and growth rates based on steady-state and optim-
ality assumptions4,22 (Supplementary Methods online). Extending
previous work on in silico yeast deletion studies, we applied FBA to the
complete metabolic network of S. cerevisiae4,23,24 and calculated the
maximal rate of biomass production (Vgrowth) of all the networks with
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Table 1 Nonscaled and scaled definitions of interactions

between mutations

Nonscaled epistasis Scaled epistasis

e ¼ WXY – WXWY ~e ¼ W XY � W XW Y

j ~WXY � W XW Yj
a

No epistasis e ¼ 0 ~e E 0

Aggravatingb e o 0 ~e E �1

Bufferingc e 4 0 ~e E 1

WX and WY represent the fitness values of single mutants and WXY represents the fitness value
of the corresponding double mutant. aThe reference fitness value is defined by

~WXY ¼ minðWX;WYÞ for WXY4WXWY

0 otherwise

�
:

bIn evolutionary biology: synergistic epistasis, negative epistasis; in genetics: enhancers,
synthetic interactions, synthetically sick. cIn evolutionary biology: antagonistic epistasis,
diminishing returns, positive epistasis; in genetics: partial suppressors, alleviating.
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single or double gene deletions relative to the rate of biomass produc-
tion of the unperturbed wild-type network. For the deletion of gene X,
fitness was defined as WX ¼ VDX

growth=V
wild�type
growth (refs. 25–27). For any

pair of genes X and Y, we evaluated the level of epistasis by comparing
the fitness WXY of the double mutant with the product of the fitness
values WX and WY of the corresponding single mutants5,14,18.

We first analyzed the distribution of deviations from this multi-
plicative behavior using previously proposed scales (Supplementary
Fig. 1 online) and concentrated in particular on a conventional
nonscaled measure of epistatic interactions: e ¼ WXY � WXWY

(refs. 5,14). In agreement with existing theoretical and experimental
results14,18, apart from the synthetic-lethal pairs (located at e { 0),
this approach yielded a unimodal distribution of genetic interactions
centered around e ¼ 0 (Fig. 1a). Thus, on average, mutations in FBA
combined multiplicatively to affect fitness (Supplementary Fig. 2
online). Deviations from no epistasis towards buffering (e 4 0) and
towards aggravating (e o 0) interactions were equally common (53%
and 47%, respectively). On the e o 0 side of the distribution,
there seemed to be a distinction between the strongly interacting
synthetic-lethal pairs and other, much milder, nonlethal effects. For

e 4 0, however, such a distinction between strong and weak interac-
tions was not apparent.

To assess whether a given value of e was large or small, we used a
normalization based on two natural references. For aggravating inter-
actions, the extreme reference case was complete synthetic lethality:
WXY ¼ 0. We compared buffering interactions to the special case in
which the mutation with the stronger effect completely buffers the
effect of the other mutation: WXY ¼ min(WX,WY) (ref. 20). Using
these reference cases, we defined a new scale, ~e, which quantifies the
relative strength of the interactions (Table 1 and Supplementary
Fig. 1 online). Using the scaled measure of epistasis ~e, the distribution
of the epistasis level diverged into a trimodal distribution (Fig. 1b),
which, to our knowledge, has not been previously described. Some
experimental support for the predicted trimodal distribution is found
in previously published fitness measurements of RNA virus mutants
(Fig. 1e,f)15. The new scale ~e uncovered a qualitative distinction
between different pairs of genes (Fig. 1c) and allowed them to be
classified into three classes: buffering, aggravating and multiplicative.
A schematic metabolic network demonstrating these interaction types
is shown in Figure 1d.
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Figure 1 Epistatic interactions between mutations can be classified into three distinct classes. Fitness values of all possible double mutants relative to the

expected no-epistasis values are calculated with FBA over all pairs of enzyme deletions (excluding essential genes and gene-deletions with no phenotypic

consequence). The trimodal distribution is uncovered by transforming the (a) nonscaled epistasis level e ¼ WXY � WXWY into (b) the new scale ~e defined in

Table 1. The ~e values are used to classify the interactions into buffering (green) at ~e 4 y+; aggravating (red), including synthetic lethal at ~e ¼ �1 and strong

synthetic sick at ~e o y–; and no epistasis (black). Here we used (y–,y+) ¼ (�0.25,0.95). Relatively few interaction pairs (gray) fall in a nondecisive area.

Although the ~e ¼ 1 point is the outermost value in the FBA model, in experimental measurements compensatory interactions could exceed this buffering

case (see also e and f). (c) The classification of gene interactions is also evident in a scatter plot showing e/~e versus e normalized to the effect of the double

mutation, 1 – WXY. The ratio between the x and y axes is equal to the scaled epistasis level ~e. A small random displacement was added to resolve overlapping

points. (d) A schematic metabolic network showing simple examples of buffering, aggravating and multiplicative interactions (green, red and black arcs,

respectively) between gene deletions (X). The synthesis of biomass (full square) from biomass components (full dots) requires an optimal allocation of a

common nutrient (empty square) through intermediate metabolites (empty dots). Additional reactions (dotted arrow) may account for more subtle buffering

interactions in the complete network (for additional details and topologies, see Supplementary Figs. 2 and 4 online). (e,f) Distribution of epistasis in

experimental data of fitness measurements of double and single mutants in RNA viruses15. The unimodal distribution of e (e) diverges into a trimodal

distribution when ~e is used (f). While these data support the FBA-derived trimodal distribution in the [�1,1] range of ~e, the presence of pairs with ~e 4 1

stresses the relevance of the additional class of such compensatory interactions (31 pairs, not shown). In viewing these results, one should keep in mind

that, as explained in ref. 15, the data are based on a heterogeneous collection of diverse experiments and may not represent a truly random set of mutations.
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This classification can be represented as a genetic network of
buffering and aggravating links between genes. To understand the
overall organization of the network, we started with a supervised
analysis of the total number of buffering and aggravating interac-
tions between groups of genes defined by preassigned functional
annotation23. Pairs of epistatically interacting genes were more likely
to share the same annotation than would be expected by chance
(21% relative to 10% expected for random pairs, Pgene E 10�11;
Fig. 2a). Much additional information on functional organiza-
tion, however, can be extracted by looking for patterns in the

remaining 79% of the interacting gene pairs (Fig. 2a). These interac-
tions tend to be either exclusively buffering or exclusively aggravating
(Pgroup o 10–4). This property, which we call ‘monochromaticity’ of
interactions between gene sets, has a biological interpretation, and we
suggest that it is an inherent part of a general definition of functional
gene modules3. From a system-level perspective, we expect that a
disruption in a given functional module (e.g., a mutation affecting the
synthesis of a certain amino acid) in the interaction network would
either buffer or aggravate the phenotypic consequence of a disruption
of a second functional module. In other words, if all the genes in a
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A Glycolysis / gluconeogenesis
Pentose phosphate cycle

Salvage pathways
Sterol biosynthesis

Coenzyme A biosynthesis

Glycine, serine and threonine metabolism
Sucrose and sugar metabolism
Lysine metabolism
Methionine metabolism
Phospholipid biosynthesis
Plasma membrane transport - amino acids

Pantothenate and CoA biosynthesis

Arginine metabolism
Alanine and aspartate metabolism

Purine metabolism
Pyrimidine  metabolism
Proline metabolism
Sulfur metabolism
Cysteine biosynthesis
Aromatic amino acids metabolism
Transport, other compounds
Transport, metabolic byproducts
Anaplerotic reactions
ATP synthetase
Mitochondrial membrane transport
Pyruvate metabolism
Oxidative phosphorylation
Electron transport complex IV
Tricarboxylic acid cycle
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Figure 3 Schematic description of the Prism algorithm. (a) The algorithm arranges a network of aggravating (red) and buffering (green) interactions into

modules whose genes interact with one another in a strictly monochromatic way. This classification allows a system-level description of buffering and

aggravating interactions between functional modules. See also Supplementary Video 1 online. Two networks with the same topology, but different

permutations of link colors, can have different properties of monochromatic clusterability: permuting links 3–4 with 2–4 transforms a ‘clusterable’ graph (b)

into a ‘nonclusterable’ one (c). See also Supplementary Figure 6 online.

Figure 2 Epistatic interactions between genes

classified by functional annotation groups tend to

be of a single sign (i.e., monochromatic).

(a) Representation of the number of buffering and

aggravating interactions within and between

groups of genes defined by common preassigned

annotation from the FBA model. The radii of the

pies represent the total number of interactions

(ranging logarithmically from 1 in the smallest

pies to 35 in the largest). The red and green pie

slices reflect the numbers of aggravating and

buffering interactions, respectively.

Monochromatic interactions, represented by

whole green or red pies, are much more common

than would be expected by chance. (b) Sensitivity
analysis of the prevalence of monochromaticity

with respect to changes in the growth conditions

In each matrix, an input parameter was modified

with respect to the nominal analysis: O–, 0.5�
oxygen concentration; C–, 0.5� carbon

concentration; AC, acetate (instead of glucose)

supplied as carbon source. The color of the

matrix element indicates the kind of interactions

observed between the genes in different

annotation groups: red for pure aggravating, green

for pure buffering and yellow for mixed links. The

annotation groups are represented with the same

letter code used in a (see extended analysis in

Supplementary Fig. 3 online).
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b
Figure 4 Unsupervised organization of the gene interaction network using the

Prism algorithm. (a) Buffering (green) and aggravating (red) gene interaction

network. Genes (black nodes) are grouped into monochromatically interacting

modules (enclosing boxes). Gene annotations (white letters inside nodes; see

Fig. 2a) correlate well with the unsupervised classification. For directional

buffering links, arrows point from the deletion with the larger effect to the
deletion with the smaller effect (i.e., to the mutation whose fitness effect is

buffered by the presence of the other; Supplementary Fig. 4 online). Gene

names are indicated on the side of the nodes. Names consisting of the letter

U followed by a number correspond to enzymatic or transport reactions with

unassigned genes (see URL for S. cerevisiae stoichiometry)23. Prism

parameter a ¼ 0.3 was used. (b) The monochromatic organization allows a

system-level view of interactions between functional modules. Notable

predictions of module-module interactions include the aggravating link

between LYSbs and TRPcat and the buffering one between PRObs and ATPs

(for details and additional examples, see Supplementary Note online).

‘Buffering chains’, such as PENT-ATPs-PRObs-IDP, can be observed

owing to the coherent directionality of the buffering links in a. Such chains do

not necessarily have transitivity; for example, although PENT buffers ATPs,

which buffers PRObs, there is no direct buffering from PENT to PRObs. The

interacting functional modules are shown at their approximate locations on a

schematic metabolic chart adapted from Molecular Biology of the Cell by B.

Alberts et al. Reproduced by permission of Routledge/Taylor & Francis Books,

Inc. Copyright 2002. Functional modules in the figure are named to reflect the
main common metabolic processes of the genes involved: ACAL, acetaldehyde

and acetate metabolism; ATPs, ATP synthase; COA, pantothenate and

coenzyme-A biosynthesis; ETHxt, ethanol transport; GLUCN, gluconeogenesis;

GLYC, glycolysis; IDP, isocitrate dehydrogenase; LYSbs, lysine biosynthesis;

PENT, pentose phosphate pathway; PRObs, proline biosynthesis; PROcat,

proline catabolism; PYR, pyruvate metabolism; RESPIR, respiratory chain;

STEROL, sterol biosynthesis; TCA, TCA cycle; TRPcat, tryptophan catabolism;

URA, uracil biosynthesis.
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module are involved in the same cellular function, then the type
of interaction of this module with others should not depend on
the specific genes chosen in these modules. The few exceptions
to monochromaticity (Fig. 2a) occurred mainly in annotation
groups that do not overlap completely with cellular functions
(e.g., some tricarboxylic acid (TCA) cycle genes (group C) are
involved in amino acid biosynthesis as well as in respiration; mito-
chondrial membrane transport genes (group F) have functions
related to the different metabolites transported). Although mono-
chromaticity was robust with respect to changes in model para-
meters (Supplementary Fig. 3 online), the pattern of interactions
between the modules could be substantially affected by environmental
perturbations (Fig. 2b).

Next, we determined whether it was possible to reorganize
genes into modules that had no nonmonochromatic exceptions,
using an unsupervised method (i.e., without taking into account
existing information of gene annotation)7,11. Towards this goal, we
developed the Prism algorithm, which hierarchically clusters interact-
ing genes into modules that have strictly monochromatic interconnec-
tions with each other (Fig. 3). We found that such a classification
was achievable for the entire epistasis network of yeast metabolism
(Fig. 4) and for a wide range of parameters (Supplementary Fig. 3
online). The probability of Prism achieving such a monochromatic
classification in a random network is very small (Pmoduleo 10�3).
An unbiased random search algorithm suggested that this was a
consequence of an inherent mathematical property of the epistasis
network, which we call ‘monochromatic clusterability’ (Fig. 3b,c). The
functional modules discerned by the Prism algorithm were largely
composed of genes with the same annotation (Fig. 4a). Genes with
identical function could be grouped into the same module even in the
absence of direct interaction between them (e.g., PROcat and TCA
modules; Fig. 4a). One exception was the IDP module, which did not
cluster with other TCA cycle genes as expected. This is because the
NADP-specific isocitrate dehydrogenase is incapable of participating
in TCA cycle–based respiration but does contribute a-ketoglutarate
and reduced NADPH for amino acid biosynthesis (Supplementary
Note online). Some (63%) of the buffering links also had intrinsic
directionality (Fig. 4), which reflects the asymmetric nature of
alleviating effects that are not due to trivial buffering in the same
linear pathway. The directionality was coherently organized at a high
hierarchical level (Fig. 4b), whereas nondirectional buffering links
occurred mostly in smaller modules. This emerging pattern was an
unanticipated consequence of the Prism approach, rather than an
input to it.

The modular organization of the epistasis network that we uncov-
ered occurs at multiple levels. The lowest hierarchical level describes
how a mutation in a given gene affects the phenotypic consequence of
another mutation (Fig. 4a), and the highest level (Fig. 4b) describes
how altered functionality of a given module of genes affects the
phenotypic consequence of altered functionality of another module.
Thus, we derived a system-level description of the network based on
the new concept of epistasis between modules rather than between
individual genes (Fig. 4b). Most of the recovered modules and their
connections are in good agreement with our understanding of yeast
metabolism. As expected, perturbations of the respiratory chain or the
ATP synthetase would aggravate disruption of glycolysis, because
either fermentation or respiratory function is needed for ATP synth-
esis. Similarly, respiratory chain and ATP synthetase have buffering
interactions with each other, because any of these processes is indis-
pensable for ATP synthesis through oxidative phosphorylation. On the
other hand, interactions that were not expected a priori provide

interesting predictions of the model, which have not yet been tested
in current screens1. For example, the simulation predicted a currently
unidentified aggravating link between lysine biosynthesis and trypto-
phan degradation (Supplementary Fig. 4 online). Model predictions
and limitations are pointed out in Supplementary Note online, and
an example of environment-dependent modular organization is given
in Supplementary Figure 5 online.

By measuring epistasis with respect to specific positive and negative
extremes, we found a distinctive trimodal spectrum, which allowed us
to define a network of buffering and aggravating gene interactions.
The resulting genetic interaction network identified a special organi-
zation of genes into modules that interact with each other through
exclusively buffering or exclusively aggravating links. This concept of
monochromatic modularity extends the classical gene-gene definition
of epistasis to the level of functional units. These results suggest a new
definition of biological modularity, which emphasizes interconnec-
tions between modules and could complement approaches emphasiz-
ing intramodule properties28. It will be interesting to explore what
correspondences exist between gene associations identified using
different classical and modern conceptual approaches7–12,28–30.
In particular, modules defined through monochromatic epistatic
interactions may be reflected in gene cotranscription patterns11 or
in covariation of module components at other levels30. The trimodal
spectrum we predicted computationally, which is also observed
in experimental data15, could replace a commonly used hypothesis
of identical interactions between all mutations for addressing specific
fundamental questions in evolution, such as the possible advantage
of sexual reproduction in purging deleterious mutations5,13. Comple-
menting our sensitivity analysis, it would be interesting to study
the universality of this trimodal distribution with respect to
different assumptions and models, such as different environmental
conditions24, objective functions22 and deviation from optimality27.
Most notably, future large-scale experimental measurements of
epistatic interactions could be designed to test the predicted distribu-
tion. Unlike synthetic-lethal screens, characterization of buffering
interactions inherently requires much more accurate phenotypic
fitness measurements of single and double mutants. Although
the FBA model has been valuable in our preliminary exploration
of system-level organization of epistasis networks, our current results
are specific to computational predictions in deleterious metabolic
enzyme knockouts. Quite different patterns might emerge in other
types of epistatic interaction, such as those involving beneficial
mutations, partial loss of function, regulatory genes or multi-
cellular developmental networks. New types of interactions, such as
the compensating interactions discernible in the RNA-virus data
set, may motivate the extension of our monochromatic classification
approach to networks with more than two colors. Monochro-
maticity could also be extended to other types of networks in
which multiple kinds of mutually exclusive interactions are present,
as well as to directed networks, where unidirectional interacting
modules could be defined.

METHODS
FBA. In FBA, mass conservation and additional simplifying assumptions are

used to produce quantitative predictions of steady-state rates of metabolic

reactions (or fluxes; Vi, i ¼ 1,y,N). FBA has been described in detail

elsewhere4 (see Supplementary Methods and Supplementary Table 1 online

for a list of FBA parameters). The two fundamental steps in FBA are (i) the use

of linear constraints to define a space F of feasible reaction fluxes for the

network and (ii) an optimization step, aimed at finding the set of fluxes in F
that maximize a given linear objective function, using linear programming. The

©
20

04
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
g

en
et

ic
s

NATURE GENETICS ADVANCE ONLINE PUBLICATION 5

L E T T E R S



major set of constraints (mass conservation) can be written as SSijVj ¼ 0,

where Sij is the stoichiometric coefficient of metabolite Mi in reaction j. Our

S matrix also incorporates stoichiometric information about all exchange

reactions (uptake and secretion) and about the maintenance and growth

reactions. The growth reaction, SciMi - biomass, is based on measured

organism-specific biomass composition (the ci coefficients). Its flux Vgrowth is

the objective function to be maximized. Lower and upper bounds for fluxes

(aj r Vj r bj) are used to impose irreversibility of certain reactions, to define

nutrient uptake limitations and to impose the range or value of the main-

tenance flux. The specific S. cerevisiae stoichiometric model used in this analysis

is based on a recently published reconstruction23 (see URLs and Supplemen-

tary Methods online). Our nominal simulated setting consists of a Dhis3 Dleu2

Drip1 strain grown on glucose and oxygen-limited minimal medium contain-

ing nitrogen, phosphate, sulfate, threonine, histidine, leucine and uracil.

Sensitivity with respect to the main condition-specific parameters is studied

in Supplementary Figure 3 online.

Double mutants and epistatic network. Complete deletions of metabolic

genes are handled in FBA by setting the corresponding fluxes to zero. Evidence

of substantial agreement between experimental data and the FBA predictions

for viability of yeast single mutants has been shown4,24 (Supplementary

Methods online). Fitness for the mutant of gene X is defined as

WX ¼
max

V
fVgrowthjV 2 F;VX ¼ 0g

max
V

fVgrowthjV 2 Fg :

Like the fitness used in ref. 26, the FBA fitness used here is defined as the

mutant growth rate normalized to the wild-type one and is a function of the

fluxes of the major carbon utilization pathways. For double mutants, the new

constraints are added for both deleted genes. Some caution is required for

isoenzymes, as well as in cases where the enzyme is a protein multimer. Also,

some genes encode enzymes that catalyze more than one reaction. Such cases

are treated by appropriately keeping track of gene-enzyme-flux relationships.

We carried out the computations using the commercial software Xpress. A

typical run of all the double mutants took B1 d on a single Pentium 4

processor. After carrying out the FBA double mutant calculations, we calculated

the matrix of scaled epistasis ~eX,Y between gene pairs (X,Y) (X,Y ¼ 1,y,N

genes; Table 1). The epistasis network, EX,Y, is then defined as a discretization

of the ~eX,Y values based on two cutoff parameters, y� and y+: EX,Y ¼ �1 if
~eX,Y o y�; EX,Y ¼ 1 if ~eX,Y 4 y+; and EX,Y ¼ 0 otherwise. We used noise cutoff

as described in Supplementary Table 1 online. Sensitivity with respect

to y� and y+ and the noise cutoff parameters is shown in Supplementary

Figure 3 online.

The Prism algorithm. The algorithm for pairwise reduction into subgraphs

monochromatically (Prism) carries out agglomerative clustering, with the

additional feature of avoiding, when possible, the generation of clusters that

do not interact with each other monochromatically (Supplementary Fig. 6

online). At the onset, each gene is assigned to a distinct cluster. In sequential

clustering steps, pairs of clusters are combined until the whole network is

covered. At each step, the biological proximity, or affinity Ax,y between cluster

x (size nx) and cluster y (size ny), is computed as the linear combination

Ax;y ¼ aAd
x;y+ð1 � aÞAa

x;y of a direct affinity

Ad
x;y ¼

X
X2x;Y2y

jEX;Yj=ðnxnyÞ

and an associative affinity

Aa
x;y ¼ max

X2x;Y2y
fagX;Yg

(single linkage), where

aX;Y ¼ 1 �
XN

Z¼1

jEX;Z � EY;Zj=ð2NÞ:

At every step, each cluster pair (x,y) is also assigned an integer Cx,y, counting

how many nonmonochromatic connections would be formed if clusters x and y

were joined (i.e., the number of clusters z that have buffering links with x and

aggravating links with y, or vice versa). The algorithm hence identifies the set c
of (x,y) pairs for which Cx,y ¼ Cm, where

Cm ¼ min
x;y

fCx;yg:

The set c contains all the candidate pairs that, if joined at the next step, would

cause the minimal possible number of monochromatic conflicts. The pair with

highest Ax,y in c is then chosen as the pair of clusters to be combined. At a

given step, monochromaticity is preserved if Cm ¼ 0. The final clustering

solution is assigned a total module-module monochromaticity violation

number, Qmodule ¼
P

Cm, where the sum is over all the clustering steps. For

sensitivity of Prism with respect to choice of parameters a and g, see

Supplementary Figure 3 online.

Prism carries out a greedy classification, based both on monochromaticity

and on the biological relatedness embodied in the affinities. We also imple-

mented a variant, Prism-R, aimed at evaluating the monochromatic cluster-

ability of a network (i.e., how likely it is to find monochromatic solutions in a

given network). Prism-R works similarly to Prism, except it ignores the

affinities and chooses at random from c the pair of clusters to be combined

at each step. Multiple runs of Prism-R on a given network may result in

different numbers of monochromatic violations, Qmodule. For a given network,

the average number of monochromatic violations over an ensemble of Prism-R

clustering solutions is defined as Qcluster ¼ /QmoduleS. In the calculations

presented, we used an ensemble of 100 Prism-R runs for each network tested.

A Matlab implementation of Prism and Prism-R is available on the authors’

website (see URLs).

Enrichment for annotation similarity between interacting genes. This test

assesses the statistical significance of the enrichment of common functional

annotation among pairs of interacting (either buffering or aggravating) genes

versus what would be expected by chance. Our null hypothesis is that the true

enrichment is the one expected if gene interactions were assigned at random.

In a one-tailed test, the P value can be computed as the probability of randomly

observing a subset of at least k interacting pairs with identical annotation from

a set of size n of interacting pairs (with a total of K same-annotation pairs in

the full set of N pairs), given by the hypergeometric distribution,

Pgene ¼ 1 �
Xk�1

i¼0

K
i

� �
N � K
n � i

� �
=

N
n

� �
:

The N gene pairs do not include essential genes and gene deletions without

phenotypic consequence. For the nominal conditions (Supplementary Meth-

ods online), of a total number n ¼ 278 of interacting gene pairs, 21% have

identical annotation (i.e., k ¼ 59 pairs), compared with 10% (K ¼ 104) among

all N ¼ 1,034 gene pairs. The resulting P value is Pgene E 10�11, which suggests

that our null hypothesis is not true.

Significance level of monochromatic interactions in the annotation groups.

A pair of annotation groups G1 and G2 is defined as violating monochroma-

ticity if there are both buffering and aggravating epistatic links connecting

genes in G1 with genes in G2. We define Qgroup as the number of pairs of

annotation groups that violate monochromaticity. Having found for the yeast

epistatic network that Qgroup ¼ 9 (Fig. 2a), we wanted to know whether this

corresponded to an enrichment of monochromatic interactions in a statistically

significant way. Our null hypothesis was that Qgroup is what would be expected

for a random network. To test this hypothesis, we carried out 10,000

randomizations of the networks, in which the annotation and the topology

of gene-gene interactions were conserved but the sign (buffering or aggravat-

ing) of each link was randomly assigned (Supplementary Fig. 7 online). The

total numbers of buffering and aggravating interactions were fixed. We

computed Qgroup for each of these randomized networks and compared the

resulting distribution with the observed value (Supplementary Fig. 7 online).

None of the 10,000 random networks had fewer mixed links than the real

network, corresponding to an upper bound for the P value of Pgroup o 10�4.

This is a conservative estimate (Supplementary Fig. 7 online), as quantified by

the number of standard deviations (Zgroups ¼ 9.7) separating the observed value

(Qgroup ¼ 9) and the average of the distribution (24.5 7 1.6).
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Significance level for monochromatic clusterability by Prism. The Prism

algorithm, when applied to the epistasis interaction network of yeast metabo-

lism, yields a fully monochromatic solution (i.e., Qmodule ¼ 0). Here we tested

the null hypothesis that the true Qmodule is the one expected for a randomized

network. We applied the Prism algorithm to 1,000 networks that were

randomized as explained above and in Supplementary Figure 7 online. For

each network, we calculated the number of monochromatic violations, Qmodule.

For the real network we had Qmodule ¼ 0, whereas for all the randomized

networks we found Qmodule 4 0 (Qmodule ¼ 7.73 7 1.5; Supplementary

Fig. 7 online); hence, Pmodule o 10�3. This result is based on Prism and is

algorithm-dependent.

A probabilistic test for monochromatic clusterability. We carried out a less

biased probabilistic test for monochromatic clusterability (which is not con-

strained by affinities Ax,y) by calculating Qcluster using Prism-R for each of

the 1,000 randomized networks defined above. We tested the null hypothesis

that the true Qcluster is the one expected for a randomized network. None

of the randomized networks had a lower value of Qcluster than the real network

(Pcluster o 10�3). The value of Qcluster in the random networks was 12.9 7
0.43, compared with 2.73 in the real network (Supplementary Fig. 7 online).

We obtained a similar significance level (data not shown) with a different

randomization of the network, which allowed for varying topologies while

preserving the degree distribution of buffering and aggravating links per node28

(Supplementary Fig. 7 online).

URLs. The S. cerevisiae stoichiometric reconstruction23 and other details

relevant for building the FBA model can be found at http://www.genome.

org/cgi/content/full/13/2/244/DC1/. Additional model details and the Prism

algorithm are available at http://www.cgr.harvard.edu/kishony/prism/. Gene

knockout fitness data calculated in this work can be downloaded from ftp://

ftp.ebi.ac.uk/pub/databases/FBA2KO.
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27. Segrè, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed
metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002).

28. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science
298, 824–827 (2002).

29. Kaufman, A., Kupiec, M. & Ruppin, E. Multi-knockout genetic network analysis: the
Rad6 example. in 2004 IEEE Computational Systems Bioinformatics Conference
332–340 (IEEE, Stanford, California, 2004).

30. Salthe, S.N. Evolving Hierarchical Systems. (Columbia University Press, New York,
1985).

©
20

04
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
at

u
re

.c
o

m
/n

at
u

re
g

en
et

ic
s

NATURE GENETICS ADVANCE ONLINE PUBLICATION 7

L E T T E R S


