
Modular Fair Exchange Protocols for Electronic Commerce

Holger Vogt� Henning Pagnia Felix C. G¨artnery

Darmstadt University of Technology

Department of Computer Science
D-64283 Darmstadt, Germany

fholgervo|pagnia|felix g@informatik.tu-darmstadt.de

Abstract

Recently, research has focused on enabling fair exchange
between payment and electronically shipped items. The rea-
son for this is the growing importance of Electronic Com-
merce and the increasing number of applications in this
area. Although a considerable number of fair exchange pro-
tocols exist, they usually have been defined for special sce-
narios and thus only work under particular assumptions.
Furthermore, these protocols provide different degrees of
fairness and cause different communication overhead.

The purpose of this paper is to present a unifying solu-
tion to the problem. We do this by defining a suite of pro-
tocol modules which allow to compose protocols where the
achieved degree of fairness can be enhanced step by step.
The advantage of the stepwise approach is that after each
step one can decide if the provided degree of fairness is ac-
ceptable or if one is willing to spend more in order to reach
a higher degree of fairness. We show the applicability of our
approach by deriving a novel efficient fair exchange proto-
col.

1. Introduction

“Electronic commerce” via the Internet is currently one
of the most rapidly increasing markets. In e-commerce,
companies use the network for advertising as well as for
supporting their business transactions, while most often the
Internet is used for internal communication, marketing and
support. There is also a steadily increasing number of
providers which also sell their products electronically. One

�This author’s work was supported by the Deutsche Forschungsge-
meinschaft (DFG) as part of the PhD program (Graduiertenkolleg) “En-
abling Technologies for Electronic Commerce” at Darmstadt University of
Technology.

yThis author’s work was supported by the Deutsche Forschungsge-
meinschaft (DFG) as part of the PhD program “Intelligente Systeme f¨ur
die Informations- und Automatisierungstechnik” at Darmstadt University
of Technology.

of the next major challenges in electronic commerce will
probably be the establishment of pay-per-use applications
for digital services, i.e. services which can be entirely ren-
dered via an electronic network. Examples for such services
are the delivery of video or audio data, the purchase of com-
puter software, the transfer of digital money, the writing of
a receipt, or querying a database, but also the provision of
telephone lines or Internet access.

A common characteristic of electronic services is that
they normally cannot be revoked, i.e., once the service
has been granted then the service provider has no effective
means to force the recipient to return it. This is particularly
true if the two business partners reside in different coun-
tries with differing regional law regulations. Therefore, the
exchange of two digital services should take place simul-
taneously in order to guarantee fairness for both involved
parties. Unfortunately, real simultaneousness can in general
not be achieved because digital services cannot be granted
instantaneously. The reason for this is that any type of data
always requires a certain amount of time to be transmitted.
Hence, during the exchange either party might intention-
ally interrupt the transmission at any time or the network
itself might fail, thereby interrupting communication. If at
this time one party has already completed its service but the
other party has not, then the exchange was unfair.

As already mentioned, services can be either the deliv-
ery of arbitrary (digital) items or the provision of a service,
like the provision of a communication link. For the lat-
ter type of servicegradual exchangeprotocols [14] can be
used. The basic idea behind gradual exchange is to repeat-
edly grant small low-value portions of the services. Hence,
interrupting the exchange can only lead to one party gain-
ing a small advantage over the other. Thereby the amount
of “unfairness” which a participating party may experience
is minimized. A precondition for gradual exchange proto-
cols is that the services in question must be divisible into
parts of “near-to-equal” value. Obviously, the smaller these
parts become the more communication overhead increases.
Conversely, splitting the service into larger parts leads to a

non-negligible loss in case the protocol is interrupted. In
order to avoid this situation a different protocol for fairly
exchanging the individual parts is required. For services or
items which are not divisible in the sense described above,
such a protocol must be used anyway.

The first protocols of this type (and also the simplest
ones that have appeared in the literature) always involve
the active participation of a trusted third party (also called
“trustee”) in every run. Such protocols have been presented
by Bürk and Pfitzmann [5] and by Franklin and Reiter [6].
Requiring the active participation of a trusted third party in
every exchange has some obvious drawbacks (such as the
potential performance bottleneck or the need for permanent
availability). These drawbacks can be partly circumvented
by optimistic fair exchange protocols [2–4]. In optimistic
exchange protocols both participating parties try to handle
the exchange on their own and only call for the participa-
tion of a trusted third party if something went wrong during
the exchange. If the protocol is known to ensure fairness
both parties are aware that they cannot gain an advantage
by acting maliciously. Therefore, the situation in which the
assistance of the trustee is required is not likely to happen
in practice.

Protocols which do not involve a trusted third party re-
quire special item properties in order to work correctly (for
example the divisibility of money in Jakobsson’sripping
coins [8]) or make it necessary to resolve a dispute exter-
nally. In the latter case it is important that sufficient ev-
idence is gathered to make the participants concern prov-
able. This can be done, for example, by using the notion of
a publicly visibleblackboard[11] or by using the existing
Internet infrastructure [13].

The fair exchange protocols which have been presented
in the literature are diverse and at first sight appear incom-
parable, even in the amount of fairness they offer. In this
paper we present a unifying approach to describe fair ex-
change protocols. By analyzing the exchange process we
show that many existing protocols are in fact a composition
of different protocol modules with distinct functionality. By
separating the concerns and identifying these modules we
are able to construct a new and even more efficient protocol
for fair exchange.

The remainder of the paper is structured as follows. We
discuss different notions of fairness in Section 2. Subse-
quently, we present our modular approach to fair exchange
protocols in Section 3. This is where we show how to com-
pose given modules into a suite of protocols solving the fair
exchange problem for different levels of fairness. We con-
clude our paper with a discussion of our approach and some
future research directions in Section 4.

2. Fairness

An intuitive way to define fairness is the following: An
exchange is both,completedandfair if both parties have re-
ceived the desired item. If neither party receives nor loses
anything valuable then the exchange is incomplete but still
fair. All other outcomes are unfair since one party has
gained an advantage over the other. A protocol is called
fair if under all valid conditions the exchange always ends
fair.

A straightforward way to guarantee fairness is to design
a protocol such that after each protocol step fairness holds.
(Otherwise, the party which has gained an advantage could
immediately interrupt the protocol which now ends unfair.)
One possibility to achieve this is to use an active third party
which first collects both items and then — after checking
their validity — performs the swap. Obvious disadvantages
of this protocol exist:

1. The third party must be completely trusted, i.e., it must
follow the protocol and particularly not collude with
either party.

2. The third party cannot be implemented stateless since
it must wait for the items of both parties before the ex-
change can commence. This implies a non-negligible
memory overhead and the need for complex mecha-
nisms for crash recovery.

3. A considerable amount of work is delegated to the
third party, resulting in high computational load.

We will discuss methods alleviating these problems later in
this section.

2.1. Validation of items

A problem which is inherent to all exchange protocols
is how to check the items. In order to be able to do this it
is important that a sufficiently detailed specification exists
for both items. For some kind of items, for example digi-
tal money, the validation is rather simple. Another example
is a widely used software package which can be checked
by computing a cryptographic hash value and comparing
it against a trusted reference value which is publicly avail-
able [6]. Problems with this solution however can occur
if the software contains a serial number or an individual
watermark for copyright protection. There are other items
which are difficult to check: E.g., a common description
of a software package usually contains a list of features
which cannot be checked during a formal verification pro-
cess. Promises like “high performance” are not accurate
enough in order to be verified formally. What the customer
expects from this will usually not meet reality. Therefore,

for an accurate validation a complete and formal specifica-
tion is required. Besides the fact that in some cases this is
impossible to obtain, in most other cases it is very costly.
Consequently, for the exchange we can at best guarantee
that a delivered item meets a given specification. But we
cannot guarantee that it meets the other party’s expecta-
tions which might go beyond. So overall, we must assume
that for the items a sufficiently accurate specification exists
against which they can be verified (although this might be
costly).

2.2. A hierarchy of fairness definitions

Several definitions of fairness have been proposed [1, 7,
16]. The most prominent definition is the one by Asokan [1]
in which he distinguishes between strong and weak fairness.
For weak fairness it is required that — in case of a failed
exchange — either party can prove that it has behaved cor-
rectly, i.e., it has followed the prescribed exchange proto-
col. The proofs must then be shown to an arbiter outside of
the system who has the power to establish fairness, usually
by forcing both parties into cooperation. The problem with
this is that in most countries it is still unclear how such a
proof must look like in order to fulfill local law regulations.
In any case, a lawsuit is expensive and its outcome might
be rather uncertain. Therefore, it is desirable to resolve as
many conflicts as possible within the exchange system it-
self. If the third party is sufficiently powerful it can au-
tomatically process the proofs and decide how to proceed.
The advantage of this is that conflicts are now automatically
processed within the exchange system, thus improving the
degree of fairness.

In extension to the definitions of Asokan [1], we propose
the following hierarchy of fairness guarantees:

F6: Fairness can be guaranteed automatically by the sys-
tem without further cooperation of the other party.

F5: Fairness can be guaranteed automatically by the sys-
tem with eventual cooperation of the other party.

F4: Fairness can be achieved automatically by the system
through providing a compensation for a suffered dis-
advantage.

F3: Fairness can only be guaranteed outside the system
without further cooperation of the other party.

F2: Fairness can only be guaranteed outside the system
with eventual cooperation of the other party.

F1: Fairness can only be achieved outside the system by
providing a compensation for a suffered disadvantage.

F0: No fairness.

The fairness definitionsF4 to F6 are supposed to be
stronger than the others because conflicts can be resolved
automatically without the need for a subsequent external
dispute. Strong fairness by the definition of Asokan [1] cor-
responds toF6. As Asokan does not make any assumptions
about the willingness of the parties to cooperate,F5 can
also be regarded as strong fairness. G¨artner et al. [7] callF5
eventually strong fairness. The difference betweenF6 and
F5 lies in the additional assumption made about the partic-
ipants, i.e., whether they can be eventually forced to coop-
erate. In practice, this can be achieved by using a trusted
computing environment such as a smart card. The cate-
goriesF3 andF2 match Asokan’s weak fairness definition.
The categoriesF1 andF4 describe a different fairness con-
cept in which it is assumed that a non-delivered item can be
substituted by a different one (e.g., a payment) which com-
pensates the loss. Because this does not match the original
intention of the exchange process we have ranked compen-
sation as a method to achieve fairness which is weaker than
the others.

2.3. Special item properties

Special properties of the exchanged items can help the
third party to resolve conflicts. In this section, we describe
two of these properties in more detail, namely “generatabil-
ity” and “revocability” [1].

2.3.1. Generatability

A generatable item is an item which can be generated by
the trustee in case the receiving party can prove that it has
behaved correctly. There are different methods to make an
item generatable, among them are the following:

1. A party forwards a copy of its item to the trustee who
stores it for a possible subsequent dispute. The party is
provided with a signed receipt which can be presented
to any other party as a proof that the item is generatable
by the trustee.

2. A party encrypts its item by a random key. This key is
then deposited at the trustee who returns a receipt for it,
which the party can from now on use as a proof for the
generatability of the key. Note, that this receipt can-
not be regarded as a proof for the generatability of the
item, since it cannot be guaranteed that the encrypted
item can successfully be decrypted.

3. A party encrypts its item by a random key and ensures
that this key can be decrypted by the trustee. This can
be done with the help of a public key cryptosystem: the
party encrypts the random key with the trustee’s pub-
lic key and forwards this — as part of the exchange

protocol — to the other party. The latter cannot de-
crypt this random key and hence not the item, but the
trustee could do so (provided that the correct item was
correctly encrypted).

The burden which is placed on the trustee decreases from
method 1 to method 3. While in method 1 the trustee must
store the entire item he only needs to store the decryption
key in method 2. Method 3 is the most efficient one in terms
of storage space: the trustee can use a single key — namely
the own private key — for decrypting any item which was
made generatable.

2.3.2. Revocability

An item is called revocable if the trustee can revoke it
in case it has sufficient evidence to do so. Revocable items
are, for example, payments since payment systems usually
support revocability. Other items which might be revoca-
ble are digital signatures or certificates which provide the
right to use a service. It should be noted that items must not
be revocable by a party itself. Otherwise, after a correctly
terminated fair exchange, one of the parties could easily re-
voke the delivered item and thus gain an unfair advantage
over the other party. Only the trustee should be allowed to
revoke items.

3. Modular fair exchange protocols

In this section we show how different notions of fairness
can be realized by combining appropriate program modules
to an exchange protocol as shown in Figure 1. The advan-
tage of this modular approach is that for different scenarios
suitable solutions can be composed. These solutions may
depend on the properties of the exchanged items, the power
of a third party, the effort which is acceptable for the ex-
change, or on other properties like anonymity of the parties.
We first describe the underlying system model. Then we
present the required modules and discuss possible imple-
mentations.

3.1. System model

We consider a system to consist of a finite set of pro-
cessing elements (also called nodes) which communicate
through asynchronous message passing. The parties in-
volved in a fair exchange (customers, vendors, trustees) are
assumed to reside on distinct nodes which usually are ge-
ographically separated. Messages are sent through a com-
munication subsystem which allows direct communication
between any two nodes in the system regardless of the un-
derlying physical topology. Message passing is point-to-
point and reliable with FIFO delivery order. We place no

timeliness restrictions on the relative processing speed of
individual nodes so that we have theasynchronousmodel
of distributed systems [15]. While trustees are assumed to
follow the protocol correctly, customers and vendors can act
maliciously by stopping to proceed further in a protocol or
by sending corrupted messages. We assume however that
such incorrect behavior can be detected either by a party
which follows the protocol correctly or by a trustee.

3.2. Definition of fair exchange modules

In an exchange protocol at least two parties are involved:
The customerC and the vendorV . Some actions also re-
quire the cooperation of a trusted third party or trusteeT .
The customer has an itemiC and the vendor possesses the
item iV . Although in most cases, the customer’s item will
be a payment, we useiC as a more universal notion for it
here.

3.2.1. ModuleM1: Negotiate

In a first step the customer and the vendor negotiate
about the exchange. They have to agree on a specification
(i.e., a formal description of each other’s item) which en-
ables them to verify whether the item received during the
exchange protocol is the one which was expected. When
both parties know which items shall be exchanged, they also
agree on which fair exchange protocol should be used and
which modules are used in order to implement it. Addition-
ally, they agree on the name of the trustee possibly involved
if the protocol relies on one. If the protocol uses compen-
sation as a method for re-establishing fairness (cf. fairness
definitionsF1 andF4) then the two parties must also agree
on an appropriate compensation. After completion of “Ne-
gotiate” the exchange itself can be started.

3.2.2. ModuleM2: Prepare to exchange

The vendor promises that he will deliver his itemiV af-
ter the customer has sent the itemiC . This is a verifiable
commitment which can be used in an external dispute (e.g.,
a lawsuit) in case that the vendor has misbehaved. If the
vendor refuses to give this commitment, the exchange pro-
tocol is aborted. In this case, fairnessF6 is achieved since
nothing valuable has been exchanged yet.

3.2.3. ModuleM3: Exchange

The customer sendsiC to the vendor, who checks this
item against the specification. If it is the expected item, he
sendsiV to the customer, who also checks the specification
obtained in moduleM1. The outcome of this action can be
that

Resolve with checking
the specification

External dispute

the specification

Exchange

Negotiate

Prepare to exchange

Resolve without checking

Compensation

Figure 1. Composing fair exchange protocols by using the modular approach

1. both parties have the expected item,

2. none of them has an item, or

3. the vendor hasiC , while the customer has received
nothing.

In the first two cases fairnessF6 is achieved, and the pro-
tocol can terminate at this point. In case 3, fairness must
be re-established in one of the subsequent steps. One pos-
sible solution is to start an external dispute which however,
guarantees only a lower degree of fairness (F1, F2, or F3).
Alternatively, the modulesM4 andM5 can be used.

3.2.4. ModuleM4: Resolve without checking the specification

If item iV is generatable then the trustee tries to generate
iV for the customer. If the trustee succeeds, fairnessF6 is
recovered. If not, either an external dispute has to be started
or moduleM5 must be invoked. Alternatively, compensa-
tion can be invoked if it was pre-arranged in moduleM1. If
the delivered itemiV does not match its specification (ob-
tained during moduleM1), moduleM5 should be started. In
most cases, we expect the trustee not to run into problems
when trying to generate the item, because the vendor has al-
ready committed himself to deliver his item during module
M2 which can subsequently be used as a proof against him.

3.2.5. ModuleM5: Resolve with checking the specification

The trustee checks the specification of the vendor’s item
iV against the delivered or generated item. If this verifica-
tion fails or if iV is not available, the trustee has two pos-
sibilities: He can either use compensation (achieving fair-
nessF4) if pre-arranged or he can re-establish the state, in
which neither the vendor nor the customer has the other’s
item (fairnessF6). If this cannot be done, fairness cannot be
guaranteed within the system and an external dispute must
be started.

3.2.6. Combining the modules

We can now set up fair exchange protocols by combin-
ing these modules. This approach is very flexible, because
it provides several protocol variations: if after the execution
of a module the fair exchange is completed, then subsequent
steps using the other modules are not needed. It is also pos-
sible to use only a subset of the five modules by simply
omitting one or more modules. However, the sequence of
the modules must not be changed because this would result
in incorrect protocols. Figure 1 gives an overview of the
possible combinations. If a solution outside of the system
is acceptable, the exchange protocol can also end with an
external dispute.

3.3. Module implementations

In this section, we provide pseudo-code for possible im-
plementations of the modules. The exchange is hereby con-
sidered to be the exchange between payment (which was
iC in the previous section) and the product that the cus-
tomer wants to buy (which wasiV). In the following, we
do not consider compensation as a method to gain fairness
in order to ease presentation. It can however be easily in-
corporated into the implementations. We use the notation
heventi : hdescriptioni to describe the individual steps of the
implementation, whereheventi can be the sending of a mes-
sage from participantX to Y (designated byX ! Y) or
some local computation of a participant (designated by its
name). Thehdescriptioni is a brief explanation of the type
of message sent or the type of actions performed locally.
We assume that secure cryptosystems are available and de-
note encryption and decryption functions using keyx by ex
anddx, respectively. We use the capital lettersDx andEx

whenever an asymmetric cryptosystem is applied for party
x. A participant can also produce digital signatures. To
ease reading, we will abbreviate signing a messagem and
obtaining a signatures by s := sign(m). Finally, we also
assume the availability of a strongly collision-free crypto-
graphic hash functionh. All these assumptions do not im-
pose restrictions on the practicality of our approach, since
sufficient means exist to realize these functions in practice
[9].

3.3.1. First implementation of moduleM1

A straightforward way to implement the negotiation
module is the following:

Protocol I1a

C ! V : specprod, T , set of possible protocols sup-
ported byC

V ! C : specpay, T , set of possible protocols sup-
ported byV

The customer and the vendor exchange the specification
of the items which they want to receive and agree on a
trusteeT which can possibly be invoked. They also de-
termine which exchange protocols are acceptable to both of
them. Then the customer dynamically chooses one of these
protocols with which he proceeds. For the following imple-
mentations it is assumed that for every message it is known
to which protocol it belongs. This prevents various attacks
that can be constructed by mixing steps from different pro-
tocols.

3.3.2. First implementation of moduleM2

The “Prepare to exchange” module can be implemented
like this:

Protocol I2a

C ! V : order product
V : choose a random keyR

encrypt product withR, i.e.
EP := eR(product)
compute hashH := h(EP)
encryptR for the trustee, i.e.
RT := ET (R)
SigV := sign(specprod; specpay; T;H;ET (R))

V ! C : SigV , EP,RT

C : compute hashH := h(EP)
verify signatureSigV

In this implementation the customer receives the product
encrypted with a random keyR, the keyR encrypted with
the trustee’s public key, and a signature from the vendor to
commit on this exchange. The main idea is that the further
exchange process is reduced to the exchange of payment
andR. Furthermore, the trustee will be able to computeR,
after the vendor has sent the correct valueRT .

After execution of this module, it is still possible to abort
the exchange if, for example, signature verification has re-
vealed a bad signature.

3.3.3. First implementation of moduleM3

The exchange can be implemented like this:

Protocol I3a

C ! V : payment
V : check payment

V ! C : R

C : decrypt product, i.e.
product:= dR(EP) = dR(eR(product))
check product against specprod

This type of exchange is called an optimistic exchange
[2], because no third party is required unless a conflict oc-
curs. As most exchange processes can be assumed to run
without failures, optimistic protocols can substantially re-
duce the load that is put on the third party. If a conflict
occurs, the customer must decide which actions should be
used in order to re-establish fairness.

3.3.4. First implementation of moduleM4

ModuleM4 is a solution for re-establishing fairness, if
the previous modules failed to achieve fairness. It can be
implemented like this:

Protocol I4a

C ! T : payment, specprod, specpay, T , H , RT ,
SigV

T : verify signature
decode key:R := DT (RT)
check payment
deposit payment

T ! C : R

C : decrypt product, i.e.
product:= dR(EP) = dR(eR(product))
check product against specprod

The trustee decryptsR, which he sends to the customer
in exchange for the payment. The product is decrypted by
the customer, so that he has to check it by himself. This
implementation obviously relies on the vendor, who has to
provide the correct values, so that the trustee can generate
the correct keyR. Since the vendor might have sent incor-
rect values, fairness cannot be completely guaranteed.

3.3.5. First implementation of moduleM5

In this implementation the trustee checks the specifica-
tion of the product. When he detects a failure, he must be
able to revoke the payment, if it was already sent to the ven-
dor. This guarantees fairnessF6 after the execution of this
module.

Protocol I5a

C ! T : payment, specprod, specpay, T , EP , RT ,
SigV

T : verify signature
check payment
decode keyR := DT (RT)
decode product, i.e.
product:= dR(EP) = dR(eR(product))
check product versus specprod:
if “product OK” then

deposit payment
T ! C : product

elseif “product not OK and payment was
already sent to the vendor” then

revoke payment

3.3.6. Second implementation of moduleM5

One of the last steps of implementationI5a is that the
trustee sends the product to the customer. The following
alternative implementation can be used in order to minimize
the amount of transferred data:

Protocol I5b

C ! T : payment, specprod, specpay, T , EP , RT ,
SigV

T : verify signature
check payment
decode keyR := DT (RT)
decode product, i.e.
product:= dR(EP) = dR(eR(product))
check product versus specprod:
if “product OK” then

deposit payment
T ! C : R

C : decrypt product, i.e.
product:= dR(EP))

elseif “product not OK and payment was
already sent to the vendor” then

revoke payment

This solution works better thanI5a if, for example, the
customer has only a slow modem connection to the trustee.
In this caseI5b should be used for minimizing the transmis-
sion time.

3.3.7. Second implementation of moduleM2

The implementations above are particularly designed for
optimistic fair exchange protocols. For an exchange involv-
ing an active trustee, the modulesM2 andM3 can be im-
plemented in the following manner.

Protocol I2b

C ! T : payment, specprod, specpay
V ! T : product, specprod, specpay

3.3.8. Second implementation of moduleM3

Because the trustee possesses both, payment and prod-
uct, he can check in advance if these items match their spec-
ification. If the checks fail, the exchange will abort without
losing fairness.

Protocol I3b

T : check payment, check product versus
specprod

T ! C : payment
T ! V : product

3.4. Composing protocols

The module implementations described in the previous
section can be combined in different ways according to the
rules displayed in Figure 1. The most important composi-
tions are listed below:

P1: hI1a; I2b; I3bi
This is the basic active exchange protocol for fairness
F6 which is used in several protocols (e.g. [5], [6]).

P2: hI1a; I2a; I3a; external disputei
This is a protocol for a weaker fairness (F2/F3). A de-
tailed discussion of this class of protocols can be found
in [1].

P3: hI1a; I2a; I3a; I4a; external disputei
This is another weak fairness (F2/F3) protocol for the
scenario of non-revocable payments.

P4: hI1a; I2a; I3a; I5ai
This is an optimistic protocol which ensures fairness
F6 inside the system. See [12] for a complete descrip-
tion.

P5: hI1a; I2a; I3a; I5bi
This describes a variation ofP4 with a fewer amount
of transferred data in the case of conflict.

P6: hI1a; I2a; I3a; I4a; I5a or I5bi
This is a very efficient optimistic fair exchange proto-
col providing fairnessF6, which will be elaborated on
at the end of this section.

P7: hI1a; I2a; I4a; external disputei
This is an alternative implementation for the active
protocolP1. The NetBill payment protocol [16] uses a
similar idea to ensure fairness.

P8: hI1a; I2a; I5a or I5bi
This protocol is also a variation of the active protocol
P1.

The protocolsP1,P2,P4, andP7 correspond to the exist-
ing protocols cited in the short protocol descriptions given
above. The other protocols are so far unpublished.
P3 is a novel variation of a weak fairness protocol which

first makes an attempt to re-establish fairness automatically
inside the system. Only if this fails an external dispute is
started.

As already stated above,P5 is a variation ofP4. The
only difference between the two protocols is that at the end
of ModuleM5 the trustee does not send the product to the
customer but the keyR. The customer then decrypts the
product himself.

In protocolP8 after the exchange was prepared by the
customer and the vendor, the trustee is used to finally per-
form the swap of product and payment. It should be noted
that althoughP8 invokesI5a it is not necessary to use a pay-
ment system with revocability. The reason for this is that the
payment was never sent to the vendor during the previous
steps and therefore it does not need to be revoked. Different

to this, the protocolsP4, P5, and P6 require the payment to
be revocable.

ProtocolP6 is an interesting novel protocol which is now
described in more detail.

Discussion of protocolP6. After the negotiation phase in
I1a some preconditions forP6 must be checked: In module
M5 the trustee should be able to revoke the payment. This
is necessary for the (rather improbable) case that the ven-
dor has received the payment duringI3a but the trustee is
not able to generate the product inI4a, due to a misbehav-
ing vendor inI2a. Without revocability the customer can
either initiate an external dispute (this is equal to protocol
P2 or P3) or he must rely on an active trustee (this ends up
in protocolP1 orP7). The advantage of revocable payment
is that with its help fairness can be guaranteed inside the
system and that the trustee is not actively involved in any
fault-free exchange. This is true for protocolP6 which tries
to involve the trustee as seldom as possible. This effectively
reduces communication traffic caused at the trustee, since
we can assume that most exchanges are executed without
experiencing any failure. Thus, in the normal case the pro-
tocol terminates immediately after performing the exchange
in I3a.

The implementationI4a attempts to re-establish fairness
in the case of a failure. As in most cases the trustee will be
able to compute the keyR, so that the customer can decrypt
the product. A lot of failures can be solved by invoking
I4a. Furthermore the implementation ofI4a is very efficient
because only a minimal set of values has to be transferred
to and from the trustee.

It should not be necessary to callI5a or I5b very often,
so that even expensive computations during these modules
(e.g. for checking the product) might be tolerable.

It should be noted that an additional property of this pro-
tocol is that it allows the customer to remain anonymous
when buying a product from the vendor. In this case how-
ever, both the payment-system and the communication con-
nection between the two parties must support anonymity.

4. Conclusions

Fair exchange is a problem of substantial practical sig-
nificance in electronic commerce. Products, payments and
services must be exchanged fairly to ensure the continuing
growth of the electronic marketplace. In order to increase
the trust that participating parties place in exchange services
it is important to state precisely the guarantees of different
protocols with respect to fairness and efficiency. When this
has been done, customers and vendors can select a certain
protocol that suits the application or situation needs best.
For example, if products of considerable value (like a new
CAD-program) are exchanged, both parties will probably

favor a protocol which guarantees a strong fairnessF4–F6
even if this comes at a higher cost (because they might have
to pay a trustee). On the other hand, both parties might be
willing to agree on a weakly fairF1–F3 protocol if they
simply exchange the latest football results.

The fair exchange protocols which have been presented
in literature are diverse and at first sight incomparable even
in the degree of fairness they offer. We have analyzed the
exchange process and we have tried to show that a lot of
these protocols are in fact a composition of several modules
with distinct functionality. By separating the concerns and
identifying these modules we were able to construct a set of
new and even more efficient protocols for fair exchange.

Moreover, by using our compositional approach it is now
possible to construct exchange protocols for a given level
of fairness and given item properties almost dynamically.
In practical settings this enables the vision that a customer
can choose an item from an on-line catalogue, select the
desired level of fairness and have the rest of the exchange be
executed automatically; it is no longer necessary for the user
to select a specific protocol which is clearly a step towards
more user friendliness.

The compositionality of our protocols also lends itself
to modular verification of the protocols in the direction of
the well-known software engineering paradigm of stepwise
refinement. For this, it is however necessary to formalize
the module specifications much more rigorously. We ex-
pect that this will reveal some potential for methodolog-
ical improvements of our approach since the distinction
between module specification and implementation has not
been sharp enough. This is obvious from the fact that some
combinations of modules (e.g.,hI1a; I2b; I3ai) are not pos-
sible. A clearer differentiation between both concepts will
lead the way to a more rigorous verification. This and the
implementation of the given suite of protocols within our
experimental testbed will be the focus of our continuing
work.

References

[1] N. Asokan. Fairness in electronic commerce. PhD thesis,
University of Waterloo, May 1998.

[2] N. Asokan, M. Schunter, and M. Waidner. Optimistic pro-
tocols for fair exchange. In T. Matsumoto, editor,4th
ACM Conference on Computer and Communications Se-
curity, pages 8–17, Zurich, Switzerland, Apr. 1997. ACM
Press.

[3] N. Asokan, V. Shoup, and M. Waidner. Asynchronous proto-
cols for optimistic fair exchange. InProceedings of the IEEE
Symposium on Research in Security and Privacy, pages 86–
99, May 1998.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic
fair exchange of digital signatures. In K. Nyberg, ed-
itor, EUROCRYPT ’98, Lecture Notes in Computer

Science, pages 591–606. Springer-Verlag, 1998. A
longer version is available as Technical Report RZ
2973 (#93019), IBM Research, November 1997 at
http://www.zurich.ibm.com/Technology/
Security/publications/1997/ASW97b.ps.gz .

[5] H. Bürk and A. Pfitzmann. Value exchange systems en-
abling security and unobservability.Computers & Security,
9(8):715–721, 1990.

[6] M. K. Franklin and M. K. Reiter. Fair exchange with a semi-
trusted third party. In T. Matsumoto, editor,4th ACM Con-
ference on Computer and Communications Security, pages
1–5,7, Zurich, Switzerland, Apr. 1997. ACM Press.

[7] F. C. Gärtner, H. Pagnia, and H. Vogt. Approaching a formal
definition of fairness in electronic commerce. InProceed-
ings of the International Workshop on Electronic Commerce
(WELCOM’99), Lausanne, Switzerland, Oct. 1999.

[8] M. Jakobsson. Ripping coins for fair exchange. In
L. C. Guillou and J.-J. Quisquater, editors,Advances in
Cryptology—EUROCRYPT ’95, volume 921 of Lecture
Notes in Computer Science, pages 220–230. Springer-Ver-
lag, 21–25 May 1995.

[9] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone.Hand-
book of Applied Cryptography. CRC Press, 1997.

[10] S. Mullender, editor.Distributed Systems. Addison-Wesley,
second edition, 1993.

[11] H. Pagnia and R. Jansen. Towards multiple-payment
schemes for digital money. In R. Hirschfeld, editor,Finan-
cial Cryptography: First International Conference, FC ’97,
volume 1318 ofLecture Notes in Computer Science, pages
203–215, Anguilla, British West Indies, 24–28 Feb. 1997.
Springer-Verlag.

[12] H. Pagnia and H. Vogt. Exchanging goods and payment in
electronic business transactions. InProceedings of the Third
European Research Seminar on Advances in Distributed
Systems (ERSADS), Madeira Island, Portugal, Apr. 1999.

[13] J. Riordan and B. Schneier. A certified e-mail protocol with
no trusted third party. InProceedings of the 13th Annual
Computer Security Applications Conference, Dec. 1998.

[14] T. W. Sandholm and V. R. Lesser. Equilibrium analysis of
the possibilities of unenforced exchange in multiagent sys-
tems. In C. S. Mellish, editor,Proceedings of the Four-
teenth International Joint Conference on Artificial Intelli-
gence, pages 694–703, San Mateo, Aug. 20–25 1995. Mor-
gan Kaufmann.

[15] F. B. Schneider. What good are models and what models are
good? In Mullender [10], chapter 2, pages 17–26.

[16] J. D. Tygar. Atomicity in electronic commerce. InProceed-
ings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC’96), pages 8–26, New York,
May 1996. ACM.

