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Preface

This is a graduate-level textbook about algorithms for computing with mod-
ular forms. It is nontraditional in that the primary focus is not on underly-
ing theory; instead, it answers the question “how do you use a computer to

explicitly compute spaces of modular forms?”

This book emerged from notes for a course the author taught at Harvard
University in 2004, a course at UC San Diego in 2005, and a course at the
University of Washington in 2006.

The author has spent years trying to find good practical ways to compute
with classical modular forms for congruence subgroups of SL2(Z) and has
implemented most of these algorithms several times, first in C++ [Ste99b],
then in MAGMA [BCP97], and as part of the free open source computer
algebra system SAGE (see [Ste06]). Much of this work has involved turning
formulas and constructions buried in obscure research papers into precise
computational recipes then testing these and eliminating inaccuracies.

The author is aware of no other textbooks on computing with modular
forms, the closest work being Cremona’s book [Cre97a], which is about
computing with elliptic curves, and Cohen’s book [Coh93] about algebraic
number theory.

In this book we focus on how to compute in practice the spaces Mk(N, ε)
of modular forms, where k ≥ 2 is an integer and ε is a Dirichlet character
of modulus N (the appendix treats modular forms for higher rank groups).
We spend the most effort explaining the general algorithms that appear so
far to be the best (in practice!) for such computations. We will not dis-
cuss in any detail computing with quaternion algebras, half-integral weight
forms, weight 1 forms, forms for noncongruence subgroups or groups other

xi



xii Preface

than GL2, Hilbert and Siegel modular forms, trace formulas, p-adic modular
forms, and modular abelian varieties, all of which are topics for additional
books. We also rarely analyze the complexity of the algorithms, but instead
settle for occasional remarks about their practical efficiency.

For most of this book we assume the reader has some prior exposure to
modular forms (e.g., [DS05]), though we recall many of the basic defini-
tions. We cite standard books for proofs of the fundamental results about
modular forms that we will use. The reader should also be familiar with
basic algebraic number theory, linear algebra, complex analysis (at the level
of [Ahl78]), and algorithms (e.g., know what an algorithm is and what big
oh notation means). In some of the examples and applications we assume
that the reader knows about elliptic curves at the level of [Sil92].

Chapter 1 is foundational for the rest of this book. It introduces congru-
ence subgroups of SL2(Z) and modular forms as functions on the complex
upper half plane. We discuss q-expansions, which provide an important
computational handle on modular forms. We also study an algorithm for
computing with congruence subgroups. The chapter ends with a list of ap-
plications of modular forms throughout mathematics.

In Chapter 2 we discuss level 1 modular forms in much more detail. In
particular, we introduce Eisenstein series and the cusp form Δ and describe
their q-expansions and basic properties. Then we prove a structure theorem
for level 1 modular forms and use it to deduce dimension formulas and give
an algorithm for explicitly computing a basis. We next introduce Hecke
operators on level 1 modular forms, prove several results about them, and
deduce multiplicativity of the Ramanujan τ function as an application. We
also discuss explicit computation of Hecke operators. In Section 2.6 we make
some brief remarks on recent work on asymptotically fast computation of
values of τ . Finally, we describe computation of constant terms of Eisenstein
series using an analytic algorithm. We generalize many of the constructions
in this chapter to higher level in subsequent chapters.

In Chapter 3 we turn to modular forms of higher level but restrict for
simplicity to weight 2 since much is clearer in this case. (We remove the
weight restriction later in Chapter 8.) We describe a geometric way of view-
ing cuspidal modular forms as differentials on modular curves, which leads
to modular symbols, which are an explicit way to present a certain homol-
ogy group. This chapter closes with methods for explicitly computing cusp
forms of weight 2 using modular symbols, which we generalize in Chapter 9.

In Chapter 4 we introduce Dirichlet characters, which are important
both in explicit construction of Eisenstein series (in Chapter 5) and in de-
composing spaces of modular forms as direct sums of simpler spaces. The



Preface xiii

main focus of this chapter is a detailed study of how to explicitly represent
and compute with Dirichlet characters.

Chapter 5 is about how to explicitly construct the Eisenstein subspace
of modular forms. First we define generalized Bernoulli numbers attached to
a Dirichlet character and an integer then explain a new analytic algorithm
for computing them (which generalizes the algorithm in Chapter 2). Finally
we give without proof an explicit description of a basis of Eisenstein series,
explain how to compute it, and give some examples.

Chapter 6 records a wide range of dimension formulas for spaces of
modular forms, along with a few remarks about where they come from and
how to compute them.

Chapter 7 is about linear algebra over exact fields, mainly the rational
numbers. This chapter can be read independently of the others and does not
require any background in modular forms. Nonetheless, this chapter occu-
pies a central position in this book, because the algorithms in this chapter
are of crucial importance to any actual implementation of algorithms for
computing with modular forms.

Chapter 8 is the most important chapter in this book; it generalizes
Chapter 3 to higher weight and general level. The modular symbols for-
mulation described here is central to general algorithms for computing with
modular forms.

Chapter 9 applies the algorithms from Chapter 8 to the problem of
computing with modular forms. First we discuss decomposing spaces of
modular forms using Dirichlet characters, and then explain how to compute
a basis of Hecke eigenforms for each subspace using several approaches.
We also discuss congruences between modular forms and bounds needed to
provably generate the Hecke algebra.

Chapter 10 is about computing analytic invariants of modular forms.
It discusses tricks for speeding convergence of certain infinite series and
sketches how to compute every elliptic curve over Q with given conductor.

Chapter 11 contains detailed solutions to most of the exercises in this
book. (Many of these were written by students in a course taught at the
University of Washington.)

Appendix A deals with computational techniques for working with gen-
eralizations of modular forms to more general groups than SL2(Z), such as
SLn(Z) for n ≥ 3. Some of this material requires more prerequisites than
the rest of the book. Nonetheless, seeing a natural generalization of the
material in the rest of this book helps to clarify the key ideas. The topics in
the appendix are directly related to the main themes of this book: modular
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symbols, Manin symbols, cohomology of subgroups of SL2(Z) with various
coefficients, explicit computation of modular forms, etc.

Software. We use SAGE, Software for Algebra and Geometry Experimen-
tation (see [Ste06]), to illustrate how to do many of the examples. SAGE

is completely free and packages together a wide range of open source math-
ematics software for doing much more than just computing with modular
forms. SAGE can be downloaded and run on your computer or can be used
via a web browser over the Internet. The reader is encouraged to experi-
ment with many of the objects in this book using SAGE. We do not describe
the basics of using SAGE in this book; the reader should read the SAGE

tutorial (and other documentation) available at the SAGE website [Ste06].
All examples in this book have been automatically tested and should work
exactly as indicated in SAGE version at least 1.5.

Acknowledgements. David Joyner and Gabor Wiese carefully read the
book and provided a huge number of helpful comments.

John Cremona and Kevin Buzzard both made many helpful remarks that
were important in the development of the algorithms in this book. Much of
the mathematics (and some of the writing) in Chapter 10 is joint work with
Helena Verrill.

Noam Elkies made remarks about Chapters 1 and 2. Sándor Kovács
provided interesting comments on Chapter 1. Allan Steel provided helpful
feedback on Chapter 7. Jordi Quer made useful remarks about Chapter 4
and Chapter 6.

The students in the courses that I taught on this material at Harvard,
San Diego, and Washington provided substantial feedback: in particular,
Abhinav Kumar made numerous observations about computing widths of
cusps (see Section 1.4.1) and Thomas James Barnet-Lamb made helpful re-
marks about how to represent Dirichlet characters. James Merryfield made
helpful remarks about complex analytic issues and about convergence in Stir-
ling’s formula. Robert Bradshaw, Andrew Crites (who wrote Exercise 7.5),
Michael Goff, Dustin Moody, and Koopa Koo wrote most of the solutions
included in Chapter 11 and found numerous typos throughout the book.
Dustin Moody also carefully read through the book and provided feedback.

H. Stark suggested using Stirling’s formula in Section 2.7.1, and Mark
Watkins and Lynn Walling made comments on Chapter 3.

Parts of Chapter 1 follow Serre’s beautiful introduction to modular forms
[Ser73, Ch. VII] closely, though we adjust the notation, definitions, and
order of presentation to be consistent with the rest of this book.
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Notation and Conventions. We denote canonical isomorphisms by ∼=
and noncanonical isomorphisms by ≈. If V is a vector space and s denotes
some sort of construction involving V , we let Vs denote the corresponding
subspace and V s the quotient space. E.g., if ι is an involution of V , then
V+ is Ker(ι− 1) and V + = V/Im(ι− 1). If A is a finite abelian group, then
Ator denotes the torsion subgroup and A/tor denotes the quotient A/Ator.
We denote right group actions using exponential notation. Everywhere in
this book, N is a positive integer and k is an integer.

If N is an integer, a divisor t of N is a positive integer such that N/t is
an integer.
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euclidiens, designs sphériques et formes modulaires, Monogr. Enseign.
Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 147–162.
MR 1878749 (2002m:11064)

[Cre] J. E. Cremona, personal communication.

[Cre84] , Hyperbolic tessellations, modular symbols, and elliptic curves over
complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275–324.

[Cre92] , Modular symbols for Γ1(N) and elliptic curves with everywhere
good reduction, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2,
199–218.

[Cre97a] , Algorithms for modular elliptic curves, second ed., Cambridge
University Press, Cambridge, 1997,
http://www.maths.nott.ac.uk/personal/jec/book/.

[Cre97b] , Computing periods of cusp forms and modular elliptic curves, Ex-
periment. Math. 6 (1997), no. 2, 97–107.

[Cre06] , Proceedings of the 7th International Symposium (ANTS-VII)
(2006).

[CS88] J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. III. Per-
fect forms, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 43–80.
MR 953277 (90a:11073)

[CW94] J. E. Cremona and E. Whitley, Periods of cusp forms and elliptic curves
over imaginary quadratic fields, Math. Comp. 62 (1994), no. 205, 407–429.

[CWZ01] Janos A. Csirik, Joseph L. Wetherell, and Michael E. Zieve, On the genera
of X0(N), http://www.csirik.net/papers.html (2001).

[Dar97] H. Darmon, Faltings plus epsilon, Wiles plus epsilon, and the generalized
Fermat equation, C. R. Math. Rep. Acad. Sci. Canada 19 (1997), no. 1,
3–14. MR 1479291 (98h:11034a)
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de formes parfaites), Astérisque (1991), no. 198-200, 7–8, 177–185 (1992),
Journées Arithmétiques, 1989 (Luminy, 1989). MR 1144322 (93g:11071)

[JBS03] A. Jorza, J. Balakrishna, and W. Stein, The Smallest Conductor for an
Elliptic Curve of Rank Four is Composite,
http://modular.math.washington.edu/rank4/.

[JC93] David-Olivier Jaquet-Chiffelle, Énumération complète des classes de
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Arithmétiques (Limoges, 1997). MR 1730439 (2000j:11084)
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Math. J. 54 (1987), no. 1, 179–230.
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List P1(Z/NZ), 146

Merel’s Algorithm for Computing a

Basis, 165

Minimal Generator for (Z/prZ)∗, 65

Modular Symbols Presentation, 154

Multimodular Echelon Form, 107

Order of Character, 70

Period Integrals, 181

Rational Reconstruction, 106

Reduction in P1(Z/NZ) to Canonical

Form, 145

Restriction of Character, 75

Sum over A4(N), 99

System of Eigenvalues, 166

Values of ε, 70

Width of Cusp, 9
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Definition Index
Γ-invariant on the left, 206

k-sharblies, 233
q-expansion, 4

Q-rank, 245
abelian variety attached to f , 178
action of Hecke operators, 139

antiholomorphic, 137
arithmetic group, 208

associate proper Q-parabolic subgroups
of G, 212

automorphic form, 209
automorphy factor, 205

Bernoulli numbers, 16
Bianchi groups, 247

Borel conjecture, 212
boundary map, 40, 134

bounded domains, 211
cellular decomposition, 219
character of the modular form, 160

Cholesky decomposition, 214
codimension, 219

complex upper half plane, 1
conductor, 71

congruence subgroup, 4, 208
congruence subgroup problem, 7

Connected, 207
critical integers, 138

cross polytope, 238
cusp form, 4

cuspidal, 209
cuspidal automorphic form, 210
cuspidal cohomology, 212

cuspidal modular symbols, 40, 134
cusps for a congruence subgroup Γ, 5

Defined over Q, 207
degeneracy map, 59, 161

diamond-bracket action, 160
diamond-bracket operators, 128, 159

dimension, 219
Dirichlet character, 64

divisor, xiii
echelon form, 103
eigenforms, 59

Eilenberg–Mac Lane, 211
Eisenstein cohomology, 212

Eisenstein series, 210
Eisenstein subspace, 83

extended modular symbols, 179
extended upper half plane, 6

fan, 218
Farey tessellation, 220

formal power series, 4
Fourier expansion, 3

generalized Bernoulli numbers, 83
generalized modular symbol, 251
Grothendieck motive, 179

group cohomology, 211
Hecke algebra, 54, 83, 128

Hecke correspondence, 225
Hecke operator, 37, 128, 226

Hecke polynomials, 241
height, 107
Hermite normal form, 120, 240

Hermitian symmetric spaces, 211
holomorphic, 2

holomorphic at ∞, 4
holomorphic at the cusp α, 7

Humbert forms, 244
hypersimplices, 246

Krylov methods, 116
Krylov subspace, 116

Laplace–Beltrami–Casimir operator, 209
left action of G, 123

left action of GL2(Q), 40
left action of SL2(Z), 133
left translations, 208

level 1, 4
level of Γ, 4

linear fractional transformations, 1
Maass forms, 210

Manin symbol, 124
meromorphic, 2

meromorphic at ∞, 4
Miller basis, 20

modular complex, 244
modular elliptic curves, 187

modular form, 4, 7
modular function, 4
modular group, 2

modular symbols, 228
modular symbols algorithm, 229

modular symbols for Γ0(N), 40
modular symbols over a ring R, 124

newform, 59, 164
new modular symbols, 143

new subspace, 59, 162
nonnormalized weight k Eisenstein series,

13
normalized Eisenstein series, 17
old modular symbols, 144

old subspace, 161
opposite, 222

perfect, 216
perfection, 244

pivot column, 103
plus one quotient, 165

primitive, 71, 215
primitive character associated to, 71

principal congruence subgroup, 208
Ramanujan function, 25

rational Jordan form, 114
rational period mapping, 185
real-analytic, 210
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reduced, 234
reducing point, 230

regular, 219
relative to the cusps, 39

restriction of scalars, 207
right action of SL2(Z), 44, 125

right translation, 209
satisfies condition Cn, 131

self-adjoint homogeneous cone, 248
Semisimple, 207

set of cusps, 5
Set of real points, 207

sharbly complex, 233

sigma function, 15
slowly increasing, 209

split form of SLn, 207
split symplectic group, 208

standard fundamental domain, 17
star involution, 141

strong deformation retract, 219
symplectic sharbly complex, 250

tilings, 245
topological cell, 218

transportable, 182
unimodular, 229

virtual cohomological dimension, 215
Voronǒı decomposition, 219

Voronǒı polyhedron, 215
Voronǒı reduction algorithm, 218

weakly modular function, 3, 5
Weierstrass ℘-function, 14

weight, 3, 4, 7

weight k modular symbols for G, 123
weight k right action, 5

well-rounded retract, 219
width of the cusp, 6, 8

SAGE Index
SAGE , ix, xii, 2, 15, 16, 20, 22, 26, 30,

41, 43, 45, 51, 52, 56, 58, 63, 65–67,

74, 77, 78, 85, 89, 95, 106, 144, 161,
163, 198

M36, 28
q-expansion of Δ, 15

SL2(Z), 2
Z/NZ, 65

basis for M24, 20
basis for S2(Γ0(N)), 56

Bernoulli numbers, 16
Bernoulli numbers modulo p, 30

boundary map, 52
continued fraction convergents, 43

cuspidal submodule, 52
dimension formulas, 93

dimension Sk(Γ0(N)), 95
dimension Sk(Γ1(N)), 97

dimension with character, 101, 161
Dirichlet character tutorial, 78

Dirichlet group, 67
echelon form, 112

Eisenstein arithmetic, 26
Eisenstein series, 89

evaluation of character, 67
generalized Bernoulli numbers, 85

Hecke operators M2(Γ0(39)), 50
Hecke operators M2(Γ0(6)), 49

Hecke operator T2, 49
Heilbronn matrices, 49

Manin symbols, 45

Miller basis, 22
modular symbols, 44

modular symbols of level 11, 41
modular symbols printing, 46

rational reconstruction, 106

General Index
Basmaji’s trick, 133

Bernoulli numbers
generalized, 83

Birch and Swinnerton-Dyer conjecture,
10

boundary map, 134
computing, 51

boundary modular symbols
and Manin symbols, 134

congruent number problem, 10
conjecture

Maeda, 28
Shimura-Taniyama, 37

cusp forms
Δ, 14

for Γ, 134

higher level dimension, 92, 96
cuspidal modular symbols

and Manin symbols, 134
cusps

action of SL2(Z) on, 5
and boundary map, 134

criterion for vanishing, 136
dimension

cusp forms of higher level, 92, 96
Diophantine equations, 10

Dirichlet character, 142
and cusps, 136

Eisenstein series, 13
algorithm to enumerate, 88

and Bernoulli numbers, 83
are eigenforms, 88

basis of, 88
compute, 63

compute using SAGE, 89
Fourier expansion, 15
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Eisenstein subspace, 83
Fermat’s last theorem, 10

Hecke algebra
generators over Z, 175

Hecke operator, 54, 225
Heilbronn matrices, 48, 132, 133, 148,

150

SAGE, 49
Krylov subspace, 114

lattices, 11
linear symmetric spaces, 245

Maeda’s conjecture, 28
Manin symbols, 44

and boundary space, 134
and cuspidal subspace, 134

modular symbols
finite presentation, 44

new and old subspace of, 143
newform, 155

associated period map, 177

computing, 159
system of eigenvalues, 166

new modular symbols, 143
number field sieve, 69

old modular symbols, 143
partitions, 11

period mapping
computation of, 185

Petersson inner product, 59, 160
Ramanujan graphs, 10

right action of GL2(Q), 5
Serre’s conjecture, 11
Shimura-Taniyama conjecture, 37

valence formula, 17
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This marvellous and highly original book fi lls a signifi cant gap in the exten- 

sive literature on classical modular forms. This is not just yet another introduc-

tory text to this theory, though it could certainly be used as such in conjunction 

with more traditional treatments. Its novelty lies in its computational emphasis 

throughout: Stein not only defi nes what modular forms are, but shows in illumi-

nating detail how one can compute everything about them in practice. This is 

illustrated throughout the book with examples from his own (entirely free) soft-

ware package SAGE, which really bring the subject to life while not detracting 

in any way from its theoretical beauty. The author is the leading expert in com-

putations with modular forms, and what he says on this subject is all tried 

and tested and based on his extensive experience. As well as being an invaluable companion to those 

learning the theory in a more traditional way, this book will be a great help to those who wish to use 

modular forms in applications, such as in the explicit solution of Diophantine equations. There is also 

a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it 

to inspire many PhD theses for years to come. While the book’s main readership will be graduate stu-

dents in number theory, it will also be accessible to advanced undergraduates and useful to both spe-

cialists and non-specialists in number theory.
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