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Modular Forms Associated to Real Quadratic Fields 

Don Zagier (Bonn) 

The purpose of this paper is to construct modular forms, both for SL27Z 
(and certain of its congruence subgroups) and for the Hilbert modular  group of 

a real quadratic field. 
In w 1 we fix a real quadratic field K and even integer k > 2  and construct a 

series of functions co,,(Zl, z2) (m=0,  1, 2, . . .)  which are modular forms of weight k 
for the Hilbert modular group SL2(9 ((9=ring of integers in K). The form co o is a 

multiple of the Hecke-Eisenstein series for K, while all of the other co,. are cusp 

forms. 
The Fourier expansion of co,. (z 1, z2) is calculated in w 2; each Fourier coefficient 

is expressed as an infinite sum whose typical term is the product of a finite ex- 
ponential sum (analogous to a Kloosterman sum) and a Bessel function of order 

k - 1 .  
The main result is that, for any points z 1 and z 2 in the upper half-plane .~, the 

numbers m k-1 co,,(z 1, z2) (m= 1, 2, ...) are the Fourier coefficients of a modular 
form (in one variable) of weight k. More precisely, let D be the discriminant of K, 

e.=(D/ ) the character of K, and S(D, k, ~) the space of cusp forms of weight k for 

Fo(D ) with character e; then for fixed z 1, zzc .~, the function 

~c~(Zl ' Z2 ; , [ )=  ~ k-1  " , 2 ~ i m r  m O)mtZl, z2J e (ze.~) 
" = 1  

(considered as a function of z) belongs to S(D, k, e,). What we in fact prove is an 
identity expressing f2 as a linear combination of Poincar6 series for the group 

F o (D) and character e. The necessary facts about such Poincar6 series are collected 
in w the proof that f2 is a modular form is given in w (in these sections we assume 

for simplicity that D = 1 (rood 4)). 
In [2] and [8], K. Doi and H. Naganuma prove the following: assume D is a 

prime (~- 1 (mod 4)) having class number one, and let f ( z ) =  ~,~=t a,, ezni'rC S(D, k, ~) 
be a normalized eigenfunction of all Hecke operators T(n). Then 

\ n = l  ! \ n = l  

is the Mellin transform (in a suitable sense) of a function f of two variables which 

satisfies 

f -Zl ' 
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as well as the trivial invariance property 

f (ez zl + p, ~, 2 z~ + # ' ) = f ( z l ,  z2) (# an integer of K, e. a unit of K). 

In particular, i fK  is Euclidean, so that the matrices ( ;  ~-1e'-1#~ and ( 0 1 ]  _ O) 

g e n e r a t e  S L  2 (~, then f is a Hilbert modular form; to be sure, this is the case only 
for D=5,  13, 17, 29, 37, 41, 73 (cf. [3], Theorem 247). We show (in w that f(z 1, z2) 
is, up to a scalar factor, the Petersson product (with respect to the variable z) 
off(z)  with O(zl ,  z2; z). It follows that f ( z l ,  Z2) is always a cusp form for SL2(9.  1 

Thus f~---,f extends to a linear map from S(D, k, e) to the vector space of cusp 
forms of weight k for SL 2 (9; the image of this map has dimension �89 dim S(D, k, e) 
and is spanned by the forms COm(Z~, ZZ) (m = 1, 2 . . . .  ). 

In Appendix 1 we define the forms ~o,,(Zl, z2) for the previously excluded case 
k = 2 and reprove all the results of the paper in this case; in particular, the restriction 
k > 2 can be lifted in the work of Doi-Naganuma. In Appendix 2 we investigate 
briefly the modular forms 

1 
f~(z)= ~ ( a z Z + b z + c )  k (z~.~, AeN)  

a, b, cEff. 
b 2 - 4 a c = A  

of weight 2k for the full modular group SL 2 7/; these forms arise naturally when one 
looks at the restriction of co,,(Zl, z2) to the diagonal z 1 =z  z in .~ x f3. 

The main results of this paper (in the case when the discriminant D is a prime) 
were announced in a Comptes Rendus note [12]. 

I would like to thank Professor Hirzebruch, who suggested studying the forms ~,,, as well as Deligne 

and Harder for several useful conversations. 
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w 1. Definition and Properties of  o),, 

We will use the following notation: 
a real quadratic number field; 
the discriminant of K; 

i Lenstra has pointed out to the author that, by a recent theorem of Vaserstein, the matrices 

(1 # ) a n d  ( 0 1) always generate SL26), so that this does in fact follow from the work of Doi-  
0 1 - 1 0  

Naganuma.  
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(9 the ring of integers of K; 
(9* the group of units of(9; 
b the different of K (i.e. the principal ideal (l/D)); 
x' the conjugate over Q of an element x e K ;  
N ( x )  the norm of x, N ( x ) = x x ~ ;  

Tr(x) the trace of x, T r ( x ) = x + x ' ;  

0 the upper half-plane {zeC] Imz>0} ;  
k a fixed even integer > 2. 

For each integer m~O,  we define 

~Om(~,, ~2)---- Y/ i 

~, b~zz (a z 1 z 2 + ;t z 1 + 2' z 2 + b) k 
2 ~ b  - I 

N ( ~ . ) - a b = , n t D  

(z,, z2 esS), (1) 

where the summation is over all triples (a, b, 2) satisfying the given conditions, 
and the notation ~ '  indicates that, for m=0, the triple (0, 0, 0) is to be omitted. 

One easily checks that, for zl, z2e O, the expression a z~ z2 + 2 z 1 + 2'z z + b never 

_ ) , z2_b  
vanishes indeed, a z l z 2 + / c z l + ) ~  implies z~ azz+,~ , and this is 

impossible since the determinant of is <0  and that the series con- 

verges absolutely. Therefore a),~ is a holomorphic function in .~ x .~. Its main 
properties are summarized in the following theorem. 

Theorem 1. (i) For each re>O, (o,,(zl, z2) is a modular .form o f  weight k with 
respect to the HiIbert modular group SL 2 (9. 

(ii) OJo is a multiple o f  the Hecke-Eisenstein series o f  weight k o f  the f ield K.  

(iii) (o,, is a cusp Jorm .['or m > O. 

(iv) co, ,=0/f  - 4 m  is not a quadratic" residue o f  D. 

Proof. (i) We recall that a Hilbert modular form of weight k for SL 2 (9 is a holo- 
morphic function F in 0 x 0 satisfying 

F ( CC q + fl ~'z 2 + fl' ) 
\7z~+(3 , 7, z2+(  3, : (yz l  +6)k(T'z2+(3')kF(zl,z2) (z~,Zze~) (2) 

 or ny--x ? ,5 e SL2(~ and also satisfying certain regularity conditions 

(explained below) at the "cusps". We verify only Eq. (2), since the conditions 
on the behaviour of m,~ at the cusps are contained in the statements (ii) and (iii) 
of the theorem. 

7 (5 e S L 2 ( 9 ' t h e n ' f ~  

a* q zz + 2*z I +2* ' zz+b*  

(Tz~ +a)(Yz2 +~') 
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with 
a* = aotc( + 2a])' + 2' cd ]) + b]) ])', 

2* = a a f l ' +  2 a 5 ' +  2 ' f l ' ] )+b])6 ' ,  

b * = a f l f l '  + 2 fl~' + 2' f l ' b + b 3 b ' .  

Thus a* = a N  (c 0 + Tr (2 (a y')) + b N  (])) ~ 7Z since (by definition) the trace of the prod- 
uct of  an element of (9 and an element of b -1 is an integer; similarly, b 'E7/  and 
2*E b -  1. Fur the rmore  N (2*) - a* b* = N (2) - a b. Therefore  

( O~ Z 1 -[- j~ O~' Z 2 At- fl' ) 
COt,, --  - -  ]), 

\ ? Z l + ,  5 '  z 2 + 6 '  

=(])Zl+b)k(] ) 'Zz+6' )  k ~ '  ( a * z l z z + 2 * z ~ + 2 * ' z 2 + b * )  -k  
a,b,). 

N(2)--ab=ra/D 

: (]) zl  + 6) ~ (])' z2 + 6') ~ co,.(zl, z g ,  

the latter equality because (a*, b*, 2*) runs over the same set of triples as does 
(a, b, 2) and because the sum converges absolutely. 

R e m a r k  1. From the general congruence x'-_-x (mod b) (x~(9) and the equation 
6 - fl ]) = 1, one  deduces that  in the above formula 

2* -- 2 (mod (9). 

Thus, for each vsb  -1 such that N ( v ) ~ - m / D  (mod 1) we could define a Hilbert  
modular  form co,,(zl, z2; v) by restricting the summat ion in (1) to those 2 with 
2=_v (mod (9) (notice that, for 2eb  -1, N(2) (mod 1) depends only on 2 (mod (9)). 
The function oom(z~, zz)  would then be the sum of the (finitely many) functions 
corn(z1, z2; v) with v running over the residue classes of b -1 (mod(9) for which 
N(v)=_m/D (mod 1). 

R e m a r k  2. A more  invariant way of writing co,. and seeing that it is a Hilbert  b) 
modular  form is as follows. For  any matrix M = d e G L  2 IR, let 

1 d t 1 ) 
~)M(ZI'Z2)~- d e t M  d z  1 z 2 - M z  1 

1 (3) 

-- ( C Z l Z 2 _ a Z l + d z 2 _ b ) Z  (Zl' z2 E'~) 

(here M z  1 a z l + b l ;  the second formula serves to define 4~M(zl,z2)even if 
\ c z  1 + d  l 
det M =0,  while the first shows that qSM(zl, z2) has no poles in .~ x .~ if det M < 0 .  

On e.sil, chocks that, = = e G L  2 N ,  
71 (51/ ])z 62 

q5 M (A 1 z 1, Az Z2) = (]21 Z 1 -I- 61) 2 (])2 Z2 ~'- 62) 2 ~)A~MA1 (Zl '  Z2) '  (4) 

( -t 2)_(detA2)A l istUeadjoint of A2.Let where A * =  -])2 a2 

d =  {M~ ~1/2 ((9)[ M* = M'} (5) 
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be the set of matrices whose adjoints e%ual their conjugates over ~ ;  a typical matrix 
0 bVD 

of J has the f~ M = ( - a  ] /D O' ) w i t h a ' b e Z ' O ~ ( 9 " w r i t e O = - 2 l / T D w i t h  

2 e b - i  ; then ~bM(zl, z2 )=D -1 (az I z 2 + 2 z  1 +2 ' z2  + b) -2. Hence 

corn(z1, z2)= D k/2 ~' q~M(zl, z~) kj2, (6) 
Ms,~ 

d e t M =  - m  

where the prime on the sigma indicates that, for m=0 ,  the zero matrix is to be 
omitted from the summation.  That  (o,1 satisfies (2) now follows immediately from 
Eq. (4). 

(ii) We recall the definition of the Hecke-Eisenstein series. Let  (temporarily) 
K be a totally real number  field of arbi t rary degree n over (I~, (9 its ring of integers, 
(9* the group of units of (9, C an ideal class. Set 

t 
F k ( z l , . . . , z , ;  C ) = 2 N ( a )  k ~ +v(X~) ~ V~,))k , (7) 

(,, ~)~ . . . .  i~o, o)~),,,* (p~) z~ ...(g(") z,, + 

where z, . . . .  , z, are in .~ and a is any ideal in C; here /2  ~), v (i) are the conjugates 

of #, v and the summat ion is over non-associated non-zero pairs of numbers  in n. 
(The factor 2 is inserted so that for K = 11) Fk agrees with the usual Eisenstein series 
~(m, , )~ • ~- ~(0, 0)} (m z + n)- k where one does not divide by the action of (9* = { _+ 1 }.) 

Clearly, replacing a by (c0 a (c~eK*) does not  change the r ight-hand side of (7), so 
that the expression really does depend only on the ideal class C. The Hecke- 
Eisenstein series of the field K is then defined as the (finite) sum 

Vk(z,, . . . ,  z , ) = ~  Fk(zl . . . . .  z ,;  C). 
C 

We wish to prove (in the case that  K is a quadrat ic  field) the formula 

~(k) , 
coo (za, z2) = - ~ k ~  Fktzl, Z2). (8) 

Here ~(s) is the Riemann zeta-function, ~K(S) the Dedekind zeta-function of K. 

First of all, one of the summat ion  conditions in the definition of co o is 2 2' - a b = 0. 
This implies 2~(9 (since N(2), Tr(2)e~).  It is also homogeneous  in (a, b, 2), i.e. 
if the triple (a, b, 2) appears  in the sum, then so does (ra, rb, r2) for each positive 
integer r. Hence 

COo (z~, z~) = co~ (z~, z~) ~ r -  ~ = ~(k) co~ (z~, z~), 
r = l  

with 
co~(z l , z2 )=  ~ ( a Z t Z z + 2 Z l  + 2 ' z 2 + b )  -k  (9) 

la, b, A) primitive 
) ~ 2 ' = a b  

(where "pr imi t ive"  means that (a, b, 2)EZ x Z x (9 is not divisible by any integer 
> l ) .  

Similarly, define 

F~,(zl ' z2; C ) = 2 N ( a )  k 1 2 "  (10) 
~,, v~=, (l~zl + v)k(g'z2 + v') ~ ' 



6 D. Zagier 

where the summation is over non-associated pairs of numbers /~, veK  whose 
greatest common divisor, 6(/~, v), is the ideal a (again, this depends only on C, 
not on a). Then 

1 
V k (z1, z 2 ; C) = 2 N (a) k ~ ~* 

id.~b ~., ~)=.b (/~Z~ + V)k(ffZ2 + V') k 

(since for any (/~, v) in the summation of (7), b(g, v) is divisible by a) 

1 F~(z 1 z2; lab]), = 2N (ci) k ~ 
2N(ab) k V 

(where [a b] is the ideal class 

=Z 
b 

Hence 

containing a b) 

N(b) -k F~(z 1, zz; C. [b]). 

C 

=~ Z F~*(~,, ~; C-[b])N(~) -~ 
b C 

(the reversal being permitted since ~ is finite) 
C 

= E  N ( b ) - k  E Eke(z1,-72; C) 
b C 

(since, for each b, C [b] runs over all ideal classes as C does) 

C 

Hence to prove Eq. (8) we must show that 

(o~(zl, z2)= ~ F~'(zl, z2; C). (11) 
C 

For each ideal class C, let 

O.)~(Zl,Z2; C ) =  E (azlz2 +'~'zl +2 ' z z+b) -k"  (12) 
(a, b, )0 primilive 

2~.'~ab 
6(a, ~.')eC 

Clearly co~(z 1, zz)= ~ o)~(z 1, z2; C), so that (11) will follow if we show that, for 

each C, c 
co~(zl, z2; C)=F~(zl,  z2; C). (13) 

Fix the class C and an ideal a e C, and let 

S = {(a, b, 2)e 7Z x 7/x 6) I (a, b, 2) primitive, ,t.2' = a b, 6(a, 2') e C}, 

T= {(~, v)~(a • a -  ((0, 0)))/(9" 1~(~, ~)= al 

(recall that 6(, ) denotes g.c.d.). We define a map 

m: S--~T 

as follows. Given (a, b,)OeS, one can write the quotient a/2'=2/b as x/y for 
some x, yea. Then the ideals 6(x,y) and 6(a, 2') belong to the same class, i.e. 
6(x ,y)eC.  Also 6(x,y) is divisible by a, and aeC.  Therefore 6(x,y)=(o)a for 
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some principal ideal (or), and it follows that  x and y are divisible by a and that  

p = x/a, v= y/a are in a and have greatest  c o m m o n  divisor a. On the other  hand,  
it is clear that the two condit ions p/v = 2/b and 6 (p, v)= a determine the pair (p, v) 

up to possible mult ipl icat ion by a unit. We set re(a, b, 2 ) - ( p ,  v). 
The m a p  m is onto, for given #, v we choose an integer b1~;g, b 1 + 0  such that  

21 = b l  -~- is in (9; then al =N(21)/bl is in Q. Mult iplying al ,  bl, 21 by the denom-  

inator  of  al ,  we obtain  (a2, b2 ,5 [2 )~  X Z X (9 with a 2 / A '  2 = 2 2 / b  2 =p/v.  Dividing 
(a2, b2, )~2) by the largest rat ional  integer r for which (a, h, 2)=(a2/r, bz/r, 22/r ) 
satisfies the same condit ions,  we obtain  a primit ive triple (a, b, 2)eS whose 

image under  m is clearly (p, v). 

Finally, the mapp ing  m is two- to-one:  m(al, b t, 21)=re(a2, b2, )-2) if and only 

if (a 1 , b 1 , 21)= _ ( a  2 , b 2 , 22). Indeed, re(a1, b 1 , 21 )=m(a  2, b2,22) implies 2 1 / b  I = 

bo 
22/b 2. Let b o be the greatest  c o m m o n  divisor of  b I and b 2 and write 2o = bT-  z , ,  

ao=2o2'o/bo . Then 2oe(9 and ao~)7, for we can choose r, s e Z  such that  bo = 
bl 

rb 1 + sb2, and then 2o = r21 + s22, ao = ral + sa 2 . Then (a,, b I , 20 = b~- (a0, bo, 2o), 

so (since (al,  bl, 21) is primitive) bl/b o = + 1. Similarly b2/b o = 4- 1 and so (a2, b2,22) 
= -I- (al, bl, 21). 

If re(a, b, 2)=(p ,  v), then 

aZ 1Z 2 -~-2Z 1 q-2'Z 2 -Jr-b= +_ N (a) 1(/, Zl + v)(p, z2 _}_ v').  (14) 

Indeed, from p / v=  a/2 '= 2/b we deduce that  

(# z 1 + v) (p'z 2 + v') = n (a z 1 z 2 + 2 z I + 2'z 2 + b) 

for some nell~, n4-0, and the primit ivi ty of (a, b, 2) implies that n is an integer, 

and in fact that  In[ is the largest integer dividing 6(pp ' ,pv ' ,  vv'). But the greatest  
c o m m o n  divisor (in the sense of  ideals) of pp ' ,  pv ' ,  p'v, and vv' is 

a (p p', p ~,', p' v, v v') = a ((p) a (p', v'), 0') a (p', ~,')) 

= a (p, v) a (p', v') = a a' = (N  (a)), 

so n =  i N ( a ) .  It follows immediately  from (14) and the fact that m is two- to-one  

and  surjective that  

co~(z l , z2;C)= ~ ( a z l z 2 + 2 z l + 2 ' z 2 + b )  -k 
(a, b, ~.)eS 

~-2 E N(fl)k(pz1 -t-V)-k(p'Z2-I-V')-k 
(it, v)~ T 

= Vy(z,, Z2; C) .  

(iii) This proper ty  will be proved in w 2; here we only recall what  it means 

for co,, to be a cusp form for SL z (9. A function F ho lomorph ic  on S3 x .~ and 
satisfying (2), satisfies in par t icular  

F(zl+O, z 2 + O ' ) = F ( q , z 2 )  (0~(~), 
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and therefore has a Fourier development of the form 

F(zl,z2)= ~ a~.e 2ni(vz'+v'zz) 
v ~ b  - I 

The regularity condition which a modular form F(z,, z2) must satisfy is that 
a~=0 if v<0 or v'<0, i.e. that F has a Fourier development 

F(zl,z2)=ao § ~ ave 2~iCvz~+v'Z2) (15) 
veb-i 

v>>O 

(v>>0 means v totally positive, i.e. v>0 and v'>0). 

If F is a cusp form, then also ao=0;  an equivalent condition is that 

F(zl,z2)=O(e - c ~ 2 )  as ylyz---~ov (yl=Imzl,y2=Imz2) 

t > Z~-v-2 because, for v e b - '  totally positive, vv'yly2= D so vyx+v'y2>=2 
[ e 2 = i ( v z , + , " z 2 ) l K = e - 4 7 t ~ ) .  

If the class number of K is 1, then this is the only condition that F must satisfy. 

In general, we require that, for each W= (~ ~)~SL2K, the function 

(az  1 +b a'z 2 +b') 
(FI W)(zl, Zz)=(cz 1 +d)-k(c'z2+d') --k F \czl  +~ , c, z2+d , 

satisfy a similar condition as y, y2- -~ .  By (2), FI W satisfies 

(Ft W)(Zl +0, z 2 +0 ' )=(El  W)(z,, z2) (16) 

whenever W(~ 0 1 1 [1-acO a20 ~, 1 ) W - c S L 2 ( 9 .  But W(~ ~ ) W - = k _ c 2 0  l+acO] sothis  

condition is equivalent to the three conditions 

Oa2G(.9, Oace(9, O c 2 e ( f f  , 

i.e. the fractional ideal (0 -1) divides (a-2), (a-'c -1) and (c-2). Hence (16) holds 
whenever (0-1)]cS(a-2, a-Xc-l,c-2), where (as in the proof of ii)) c5(xl, ...,x~) 
denotes the greatest common divisor of the fractional ideals (x~), ..., (x,). But 
(~(a-2, a-lc-t,c-2)----(~(a-l,c-1) 2, so the condition is that 066(a-l,c-1) -2. 
Denote 6(a -1, c-X) -2 by M. Then we have shown that (16) holds whenever O6M, 
and it follows that F] W has a Fourier expansion of the form 

(F] W)(zx, z2)= ~ a~ e 2~"~'+*'~}, (17) 
veM* 

where M * =  {veKI Tr(vO)e7/ for all :OeM} is the complementary module of M 
(here M*=b-lc~(a-l,c-~)2). The condition that F be a modular form is that, 
for each W~SL, EK , the coefficients a~ in (17) with v<0 or v '<0  vanish; if also 
a0=0 in (17), i.e. if F[ W has an expansion 

(F] W)(z,, z2)= ~ a~ e 2ni(vz'+~'z2) (18) 
v~ M* 
v>O 
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for each WeSL 2 K, then F is a cusp form. There are in fact only finitely many 

such conditions, since, as one easily checks, the condition on W= (~ ~) tha t  FIW 

have a development of the form (18) depends only on the ideal class of the ideal 
,~ (a, c). 

Now take F=oJ,, ,  and expand 

OOm(Zl" Z 2 ) =  Z Cmv e2ni(vz' + v'z2l .  ( 1 9 )  

v~b - 1 

We will calculate the Fourier coefficients c,,v in w 2, and will see then that c,,~=0 
if v<0  or v '<0  and also that CmO=0 for m>0,  i.e. that o),, for m > 0  does have a 

expansion in which only totally positive v occur. If W= - (~ fi) - 
then,F~ the same argument used to prove i), 7 ,5 e SL 2 K, 

((~),,l W)(Zl, Z2)=Dk/2()'zt +b)-k(Y'z2 4-?J') -k ~' ~OM(WZ1, W'z2)  
M ~ ael 

det M = - rn 

=Dk/2 Z t~)W'*Mw(Z1, Z 2 )  k /2  

M E,~ 
det M = - m 

= Dk/2 ~ q ~ M ( 2 1 ,  Z 2 )  k ' 2 ,  

det M = - m 

where 

"-~r = W'*,~ W 

= W ' - I ~ ' W  

= {M e W'-~JJl2((r WIM'= m*}. 

( 0 1 A typical matrix M e J  1 has the form M =  - a l f D  0' } 
and, writing 0=  2 l/D, we obtain 

with O~K, a, heQ, 

(%,1W)(zl, z2)= ~ (aqz2+;tq  +)o'z: + b) -k, (20) 
(a, b, ).)EL 

2,a.' -- ab = rni O 

where L c Q • Q • K is the lattice (i.e. free 2g-module of rank 4) of triples (a, b, 2) 

for which W' ~ - a  LID -2 '  v-~/-D]W-legJl2 (9. We will not in fact calculate the 

Fourier expansion of co,. [ I4/,, but in view of the similarity between Eqs. (20) and (I) 
it will be clear that the method used in w 2 to find the Fourier development of (o., 
applies equally to prove that m,.[ W has a Fourier series of the type (18). 

(iv) This property is clear, since the summation in (1) is empty unless 

- 4 m ~ x 2  (mod D)for some x - (write 2 -  x + y l / D  in (1) and multiply by - 4 D  / 
21/b I \ 

{} 2. The Fourier Coefficients of to,,, 

We wish to evaluate the Fourier coefficients Cmv (m>=O, vsb -1) defined by 
Eq.(19). We first break up the sum (1) into subsums corresponding to various 
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values of a" 

where 

O ) m ( Z l  ' Z 2 ) :  E ( o a ( z 1  ' Z 2 )  
a e ~  

: co~ z2)+2 f o~(zl, z2), 
a = I  

co~(zl,z2)= ~ '  (az~z2+2zl +)~'z2+b) -k. 
b s E  

2El0-1 
22 '  - ab = miD 

(21) 

The individual pieces co~ are no longer modular forms of weight k, but they do 
satisfy the periodicity property ~o~,(z 1 +O, z2+O')=o)~,(zl, z2) (0cO), and hence 
each ~02, has a Fourier expansion 

co~,(zl,z2)= ~ c...~eZ,~.v=,+~'z2) (22) 
vEb-  1 

The Fourier coefficients of COrn are then given by 

oo 
0 a c,~=Cm~+2 ~ cmv. (23) 

a = l  

We wish to compute the c~,v and, in particular, to see that c~,v=O unless v>>O 
o r  v = m = 0 .  

The computation of c~,~ is different according as a = 0  or a>0 .  

Case I. a=0.  
The condition 2 2 ' - a b = m / D  now becomes just 22'=re~D, so co~ z2)_=0 

if - rn  is not the norm of an element of (9. The summation on b e Z  is unrestricted. 
Thus (for m#0)  

co~ z2)= ~' Z ( 2 z , + 2 ' z 2 + b )  -k 

X2' = m/D 

(24) 
= ~ h~(Xz~ +,~'z2), 

J .~b -  I 
22" = m/D 

where 
oo 

1 
h~(0= )5 (25) 

b = _  oo (b + 0 k 

7~ 2 

The functions h k can be expressed in trigonometric terms: h2(t)= sin2rt t and 
- 1  d 

h k ( t ) = k _ t  dt h k - l ( t ) f ~ 1 7 6  

o0 

n 2 CSC 2 rot = --4re 2 ~ re 2~irr for te.~, 
r = l  

and by successive differentiation we obtain 

hk(t) (2~zi)~ f r k-l e 2~i't (t~.~). (26) 
( k -  1)! ,=1 
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For  convenience, we abbreviate 

(2 ~ i) k 
ok= ( k -  1)! " (27) 

In Eq. (24), it follows from 2 2 ' = m / D > O  that 2~>0 or -2~>0.  Since h k is an even 
function (because k is even), we can write 

0 (O,n(Zl,Z2):2 ~ hk(2Zl +2'Z2) 
2 ~ b  - I 

x>>0 
.~ ,.U = m D 

or, using (26), 

).eb x r = 1 

2 M = m D  

Thus we have proved:  

Proposition 1. For m > O, v Eb-  ~, the Fourier coe[])'cient c ~ ~ deigned by (22) is zero 

unless v>>O and v=r)~ with re iN, / i~b  -1, 2 2 ' = m / D ,  in which case 

,o = 2 c  kr ~-1. (28) (-my 

Notice that v can be written as r2 in at most  one way, since necessarily r = , v' 
m 

and 2 = v/r.) 

The excluded case m = 0 is even simpler, since from 2 2 ' - a  b = m/D, a = O, m = 0 

we deduce 2 = 0, and hence 

(Oo~ (z,, z2) = ~ '  b - k : 2 ( ( k ) .  
b e t  

Thus we can complete the above proposi t ion by 

o (2~(k) if v = 0 ,  

c ~  if v + 0 .  
(29) 

Case 2. a > O. 

We have 
~o.", (z1, z2) = Z 4,M (z1, =2) k 2, 

M e S  

(30) 

where 4~M is defined by (3) and S is the set of matrices 

For  M =  e S and 0 e ~ ,  define M o e S  by 
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Conversely, if M1 --- (--'~al - b l )  2,1 ES with 21---2 (moda(9), say 21=)o+aO', then 

bi=(212'i-m/D)/a=b+O2+O'2'+aO0' and Mi=M o. Therefore we can break 
up the sum (30) according to the values of 2 (mod a (9): 

"FM (2)o ~ 1 ~ 2 1  
2oR 0cO 

(31) 

where R is a set of representatives for the set of 2 eb-~ (mod a (9) for which 

N (2 l ~ ) -  - m (mod a D) (32) 

and, for each 2e R, 

M ( 2 ) = (  -2a -b) ,  b 22'-m/Da (33) 

By virtue of (4), we have ~bMo (zl, z2) = ~bM (zl + 0, z2 + 0'), so each inner sum in (31) 
has a Fourier development. Since R is finite, the determination of the Fourier 
coefficients of corn will be known as soon as we know those of the sums 
EO ~M(~.)o(ZI' Z2) k/2" They are given by the following lemma, which will be proved 
at the end of the section. 

Lemmal. LetM=Ct ~)egJl21R,~f-flT=-A<O. Then 
7 

E ~)M(Z1 -t-0, Z2-~-O') k/2 = Z Ck(V' M) e 2 ~ i l ~ z ~ + v ' z 2 )  

v,> o 
with 

(34) 

Ck(V, M) 

[ 1 (2n) k+l (N(v)~L~ ! ~(2niv~-v'~o (4n ) 
= / T l  ~ ,  ~ \ ~ 1  e Jk--1 ~ - ~  if A>O, 

(35) 

7 V D \( --l)'12N(v)k-le if A = 0 .  

Here 
dk-1 (t)= ~176 ( -  1)r(t/2)2r+k-1 (36) 

r=O r!(r+k--1)! 

is the Bessel function of order k - 1. 
Remark. The second formula in (35) is the limiting case of the first, since 

lim(Jk_l(X)/xk_l)= 2 ~-k 
~-o ( k -  1)! 

Substituting (35) into Eq. (31), we obtain for the v th Fourier coefficient the 

formula: 
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Proposition 2. For re>O, Vffb -1, a>O, the Fourier coefficient c~,~ defined by 
(22) is zero unless v >> 0 and is then given by 

k k-1  
(2r0k+, D ~--i ( ~ ) _ )  2 ( 4 r t ] ~  ~ 

a a a ( m ,  V) Jk_ 1 (37) cm~- ( k - l ) !  a \ a [/ D ] '  

where Jk- 1 is the Bessel function of  order k - 1 and G~(m, v) the finite exponential sum 

For m = O, we have 

Ga(m, v)= X e2"r'(~a)l"" (38) 

2 2' =_ miD (mod a~) 

(2/r) 2k D - I / 2  

c ~ =  ( k -  1)! 2 a k N(v)  k-1 G,(O, v). (39) 

Putting the results of Propositions 1 and 2 into Eq. (23), we obtain the following 
theorem, which is the main result of this section. 

Theorem 2. For m>0,  the Fourier coeJJTcient c,,v of  e)m(zl,z2) defined by 
Eq. (19) is given by 

2 (2 re) k 
( 2 m y - - i k - - ~ ' l  t ( - -  1)k'2 teN2 rk-1  

�9 Iv v V  (40) 
N(v 1/D/r)= -m  

\ m ! ,=, a _, \ ~  i/ - ~ - i  G.(m, v) 

if v>O and is zero otherwise. I f  m=0,  then 

22k+17[ -2k Go(0, Y) 
Co"-- ( k - 1 ) ! 2 ~  N(v)k-' L a=l ak (41) 

if v>O, 
Coo=2((k),  

and c , , ,=0  unless v is zero or totally positive. 

Notice the resemblance between Theorem 2 and the Hardy-Ramanujan- 
Rademacher partition formula, in which also the Fourier coefficients of a modular 
form are expressed by infinite series whose terms are products of a finite exponential 
sum and a Bessel function. 

Before giving the proof of Lemma 1, we will look more carefully at the case 
m=0,  where the Fourier coefficients are given by (41). We write Z for the Dirichlet 
character associated to the field K, i.e. X (n)= (D/n). 

Proposition 3. For JTxed v~b -1 the sum Go(O, v) defined by Eq. (38) with m = 0  
is a multiplicative function of a, i.e. G,(O, ~2)=l--Ii Gq? (0, v) if a= l-Iq" i, is the prime 
decomposition of  a. For prime powers, Ga(O, v) is given as .follows: 

(i) I f  )~(q)=-1,  so that (q)=q is a prime ideal in (9, and if q~ is the largest 

power of  q dividing the integral ideal (v) b, then 

g2[r/2] if r<2c~+ 1, (43a) 
Gq,(O, v)= if  r>2c~+2.  
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(ii) I f  ~((q) = O, so that (q) = qZ, and q" is the largest power of  q dividing (v) b, then 

{O r if r < ~, 
Gr v)= i f  r > ~ .  (43 b) 

(iii) I f  z (q )=  + 1, so that (q)= q q', and q', 
dividing (v) b, then 

[ ( r + l ) q r - l ( q - 1 ) + q  r-1 

v" I ( m i n ( ~ ' f l ) + l ) q ' - l ( q - 1 )  
Gq.(O, )=l~4-fl+1_r)q,_,(q_l)_qr_t 

q'P are the largest powers of  q, q' 

/f r < min (~,/3) 

/f min (~, 13) < r < max (~, fi) 

/f max(a, f i )<r=<a+f l+  I 

i f  r > ~ + f l + l .  

(43 c) 

Proof. In (38), the equation 2 2 ' - 0  ( m o d a l )  implies in particular N(2)e2~, 
and, since Tr(2)eZ (by the definition of b-l),  2e(9. Thus 

G,(0, v)= Z e,(Tr(v2)), (44) 
A~Ola~ 

22'  _-- 0 (mod a) 

where we use the standard abbreviation G(n)= e 2~i"/a. That this is multiplicative 
is almost obvious: if a = a l a  2 with (a l , a2 )= l ,  choose integers x l , x  z with 
at  x 1 + a2 x2  = 1. Then 

G.(O, v)= Z G,(Tr(v21)) G~(Tr(v22)) 
2, (mod a, ) 
)~2(mod a2) 

21 .~i --- 0 (rood al )  
A22~--- 0 (mod a2) 

= Gal(0, v). Go2(0, v), 

since there is a one-to-one correspondence between the pairs (21,2z) in this 
summation and the integers 2 of (44) given by 2~-+(x 2 2, x 12), (21, 22)~---~a z 214- a122 . 

Now let a=q" with x(q)= - t. Then 22'---_0 (mod qr) implies qr [r/2ll2 ; writing 
2 = q~- r~/zj #, we find 

Go(O, v)= y~ e+..,(Tr(v~)). 
l~E~/qfr/2 ] [~ 

If q~r/21]v, then each term of this sum is 1 and so Ga(O,v)=](9/qE"/2](9[=q2fr/21; 
if not, then the permutation g~-~l~+x of the summation set (where x~(9 is such 
that Tr(x v)~-O (mod q~r/21)) gives Ga(0, v)=eqi~/~ (Tr(x v)) G~(0, v), so G,(0, v)=0. 

Cases (ii) and (iii) are similar, although the details in the case of decomposable 
primes are more complicated. 

Corollary 1. Let v ~ b-  1, a = (v) b. Then 

G~(O, v) 1 b~ 1 

,=1 a" L(s, Z) N(b) ~-t 

for s ~  with Re(s)> 1; here L(s, Z)= ~ z(n~) is the L-series of  the character )~ 
n= 1 nS  

and the summation is over all integral ideals dividing a. 

Proof. This just summarizes the contents of Proposition 3, for that proposition 
implies that ~G, (0 ,  v)a -~ (Re(s)large) admits an Euler product whose factor 
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corresponding to a prime q is 

(1 +q-~)(1 +q2(1- -s )  4_ . . .  + q 2 ~ O  -s))  

(1 + q ~ - ~ + - . - + q ~ " - ~ ) )  

(1 - q-  ~)(1 + q l - ~ +  ... + q~O- ~))(1 +q~-~+---+qa(~-~))  

if (q) = q, q" II o, 

if (q)=q2, q~lla, 

if (q)=qq ' ,  q'q'r 

Corollary 2. The form O9o(Zi, Z2) has the Fourier expansion 

1 
~Oo(Z 1 , z2) = 2 ~(k)-~ 

L(k, Z) 

2(2rC)ZkDl-k 
( k -  1)!2]/D ~b-,E (bl(~,bE N(b)k-') e2~'(~z'+''z~)" 

v,>0 

Proof. Immediate  from Theorem 2 and Corol lary 1. 

Compar ing  this with the known Fourier  expansion 

2(2n) 2k 
E ( Z N(b)k-1) e2"'(~'+~'~2) Fk(Zl' z2)=2~K(k)+ ( k -  1)! 2 ~ ,'eb-' bI(~)~ 

v>>O 

of  the Hecke-Eisenstein series of weight k ([4], p. 385) and observing that ~K(k) 
=~(k)L(k,z), we obtain a second proof  of the identity 

~(k) ,-,  
~Oo(Z,, z2) = ~ - ( ~ -  ~ktz~, z9  

which was proved by a more  direct method in w 1. 

Finally, we must prove Lemma 1. 

Lemma 2. Let aelR, a>O. Then 

1 

((z~ + O)(z2 + o ' ) -  ~)~ ~ _ ,  

with Fourier coefficients Jk- 1 (~, V) (V ~ 0) given by 

(45) 

(2~) k+l 2 jk_t(4~]/c~N(v)) /f ~ > 0 ,  

Jk-, (~, V)= ( k - ~ ( " l f b  (46) 

(2~)2k N(v) k-1 /f c~=O. 

(k- 1)!2~/b 

We observe that  Lemma i follows immediately,  since (in the notat ion of that 
lemma) 

1 
q~M(zl, zg -  

(TZ1Z2--O(Z 1 -~ (~Z2 --  fl) 2 

1 

7 2 ((z 1 + 6/7)(zz - a/7)- A/Tz) 2 
and hence 

y e (~ ~ )Jk-1 ,V . ek(V,M)= -k 2~i . . . . .  
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P r o o f  The sum on the left-hand side of (45) is absolutely convergent since 

k>2 ,  and is clearly invariant under translations To: (Z1 ,Zz )  b-'+(ZI~-O, Zzq-O'  ) 

with 0e(.0. It therefore possesses a Fourier expansion as in (45) with 

1 1 
jr_ i (~, v) =---~-  5 / E - e- 2 " i ( " " + ~ " 2 ) d z l d z 2  

V D  ~ o~ ((z~ + O)(z~ + 0 ' ) -  ~)~ 

where A is a subset of the plane { I m z l = C ~ > 0 ,  I m z 2 = C 2 > 0  } which is a 
fundamental domain for the group of translations {To} (the factor 1/V~ enters 
because A has area V~). By virtue of the compactness of A and the absolute 
convergence of the sum, we may interchange ~A and ~0 to get 

1 1 

J k - l ( ( X ' Y ) =  [/ ~" ee~9( . . . . .  ) e T o A ~ , 1 2  ! 

But the domains TOA (Oe(9) exactly cover the plane {Ira z 1 = C~, Im z 2 = C2} , so 

1 ~ k 2~i~'z2 O~ - k  

g ~ I m  z2 = C2 = 

In the inner integral, the integrand has its unique pole at z 1 =c~/zz;  since z2e ~ 
and c~>0, this pole is on IR or in the lower half-plane, i.e. below the line of 
integration Im z 1 = C~. Hence if v_<0, we can deform the path of integration up 
to +ioo without crossing any poles, so the inner integral is 0 for each z2. This 
proves that Jk- 1 (~, v) = 0 if v < 0 or (by symmetry) if v' < 0, i.e. Jk_ 1 (~, v) = 0 unless 
v>>0. We therefore suppose that v>>0; then the inner integral in (47) equals 

-  /res . . . .  
z2 ! / 

= -- 2rr i rest= 0 ( t - k e -  2~iv~/z2 e -  2~i~t) 

( -- 2 ~ i) k v k -  i 
--  e -  2~iwx/z2 

( k -  1)! 

and so 

J~_ 1 (~, v ) -  
( - 2 ~ i) k v k -  1 

( k - -  1)!1r Im z2S= c2Z2ke -2n iv ' z2 -2n ivcz /ZZdz2"  

If e = 0 ,  then the same calculation as we just did for the zl-integral gives 

( - 2 r t  i)kv ' k -  1 for the integral and we obtain the second formula of (46); if c~ > 0, 
( k -  1)~ 

then the substitution z 2 = i - -  V ~-@, t gives 

k--1 

- I i(k- .ff 
and the integral equals 2 ~ i J k _ l ( 4 ~  ~l / /~ )  (standard integral representation of 
Jk-,)- 
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w 3. Poinear6 Series for F o (D) 

In this section we recall the basic facts about Poincar6 series and their Fourier 
expansions (a more detailed account can be found in [7], Chapter VIII) and 
introduce the linear combinations of Poincar6 series which will be needed in w 
for the formulation of the main result. 

We use the following notation: 

k (as previously) is a fixed even integer > 2 (for a discussion of the case k = 2 
see Appendix 1). 

For A = ( ~  bd)~SL21R , z ~ ,  

( a A z  k 
~a(Z)~- \ dz ] 

If furthermore f is any map .~---, 02, then f [A is the function defined by 

( f  ]A)(z)= pA(Z) f (Az)  

�9 \ c z + c l  ] 

(Observe that t~AB(Z)=#A(BZ)I@(Z), f lAB=( f lA ) IB  , f l - A = f l A . )  For c~N,  
he2Uc~, ec(h) denotes e 2~ih/c (notice that h is taken modulo c; thus, if (b, c)= 1, 
the symbol ec(a/b) denotes not e 2~i"/bc but rather e 2 ~ix/c where b x - a  (mod c)). 

Let F ~ SL 2 ~ be a subgroup of finite index containing - I, and )~: F ~ { + 1 } 
a character such that X ( - I ) =  1. We denote by Sk(F, )0 the space of cusp forms 
for F of weight k and "reellem Nebentypus" (Hecke's terminology) Z. A function 
feSk( F, )0 is a holomorphic function in .~ satisfying 

(i) f I A = z ( A ) f  for all AeF. 

(ii) f is holomorphic and vanishes at the cusps of f'. 

The second condition means the following. A cusp P of F is an equivalence 
class of points of Q w { o~ } under the action of F. For each cusp P we fix a matrix 
Ap transforming the cusp P to Go (i.e. such that Ai; ~ (~ )~  P). The width w e of the 
cusp P is defined by 

(thisindexisfinitesince[SL2~:F]<oo);thusFe=(lo wing)={(10 nTP)ln~2g }. 

The width w e is independent of the choice of An,. Now for any feSk(F,)O, the 
function f[A~ 1 is periodic of period we; we require that it have a Fourier expansion 
of the form 

( f tA~ ~)(z)= ~ ae,(f) e 2~i"z/~. (49) 
n = l  

The numbers aP,(f) are called the Fourier coefficients of f a t  P, and they do depend 
on the choice of Ap, but in a very trivial w a y - a  different choice of Ap replaces 

aP,(f) by ~"aP,(f), where ~ is some we'h root of unity. 
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If f, g e Sk (F, X), the Petersson product of f and g is defined as 

( f  g) = ~ ~ f (z) g(z) yk- 2 dx dy,  (50) 

where z = x + iye-5 and ~ is some fundamental domain for the action of F on ~; 
it is easily checked that the integral converges (for k >  2) and is independent of 
the choice of Y .  The Petersson product makes Sk (F, Z) into a finite-dimensional 
Hilbert space; thus any linear map Sk(F, Z)--~(12 can be represented as f~--,(f g) 
for some (unique) geSk(F,z) .  In particular, the map f~-~aP.(f) sending a cusp 
form to its n th Fourier coefficient at P can be represented in this way; the function 
g which achieves this is (up to a factor) the Poincark series 

P 1 1 " G, (z)=~ ~ z(A~ A)#a(z)e  2~"az/wp (51) 
A ~ F p \ A p F  

(summation over the orbits of the left action of Fp on ApF; the series is easily 
checked to be convergent for k > 2 and independent of the choices of representa- 
tives A); indeed, it is an easy calculation to check that GP, eSk(F, Z) and satisfies 

( k - e ) !  
(f, G,e)= (4nn)k_~ wke aP.(f) (52) 

for all feSk(F,  Z). 

Now Ge~eSk(F,z) and so has itself a Fourier expansion of the form (49) at 
each cusp Q of F. For  simplicity we take Q=(oo) and suppose that the width 
woo is 1 (this will be the case for the group we need); we can then choose A o= 1 

and have Fo~= (10 1 ) i n  (48). Thus G. e has a Fourier expansion 

G,e(z) = ~ P eE~imz g,,, (ze.9), (53) 
r a = I  

and we wish to calculate the coefficients P grim �9 

bd) @SL21R' 7>0" Then we have the following Fourier Lemma. Let A = ( ~  
expansion: 

e 2 n i y [ a ( z  + r) + b]/[c(z + r)+d ] 

. . . .  [ c (z + r) + d] k 
k -  1 ( 5 4 )  

�9 lk_ 1 e ~-(y~+'d) e 2~imz, (ze~3) 
C m = l  

where Jk- 1 (t) is the Bessel function of  order k - 1 (Eq. (36)). 

Proof. It suffices to treat the case A = , i.e. 

k - 1  

e_Z,,r/(z+,) = 2 n ( - 1 )  k/z ~ ( ~ _ ) z  . 
. . . .  (z+r) k , ~ = 1  j k _ l ( 4 n l / ~ ) e  z . . . .  , (55) 
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d 
since Eq. (54) then follows on replacing z by z + - -  and 7 by 7 / C  2 and multiplying 

c 
both sides of the resulting equation by c-ke 2~/~. TO prove (55), we observe 
that the series on the left converges absolutely and uniformly in ~ (for k>2) 
and is periodic with period 1, so equals Zcme 2~imz for some %; then 

iC+l  
% : ~ e 2~i,.z (~, (z + r) -k e- 2r~i?,/(z+ r))dz 

iC r~Z 

i C + c ~  
= ~ e - - 2 n i m Z z  k e - 2 n i ' i / Z d z  

i c -  oe 

(applying the usual Poisson summation trick); the integral can be evaluated as 
in proof of Lemma 2 of w 2 and equals 

k - 1  

2rcik(m/y) 2 Jk 1 ( 4 ~ ] / ~ )  - 

N o w c o n s i d e r ( 5 1 ) . T w o m a t r i c e s A  (~ ~)and A'=( a' b') = in ApF are 
c' d' 

left equivalent under Fp iff (c' d')=(c d); thus the sum is over all rows (cd) which 

occurasthe bottomrowsof matricesof ApF, thewholematrix (~ bd) then being 

determined (modFp)by the conditions ad-bc=l ,  A~ 1 (~ ~ )eF .  Also (cd) 

occurs iff (d, c) = 1 and - d e P. Thus 
C 

t Z (cz G"e(z)=2 ~ d ~ A~l +d)._ke2~i,,w,. ~,~+b)/(cz+d) 
(c, d)= 1, - T E P  

We break up the sum into the terms with c =0 and twice the sum of terms with 

c>O. Clearly c=O can only occur if P=oo, and then d must be +_l, (~ bd)= -Z- I, 

we=w~=l; thus the terms with c = 0  contribute 6eooe z"i"z (6eoo=Kronecker 
' 7 / \  

delta). To study the terms with c>0,  we observe that F~Foo=(~n ~) and hence 

(~ ~)eApF~ (~ d ; r c ) = ( ;  ~) (10 ~)eApF for all reZ,  i.e." -'the condition 

- d  
- - e P  only depends on d(mod c). Therefore the terms with c > 0  yield 

C 

~* Z ~1 ~ [c(z+r)+d] k , 
c=  1 d(modc) re2Z 

- d  
where the inner summation is over all d (rood c) satisfying (d, c) = 1, - -  ~P and 

C 

we have made some choice of matrix {~ ~)~AeF with lower row (cd). The 

Fourier expansion of the inner sum is now given by the lemma, and we obtain 
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Proposition. The PoincarO series G~(z) has a Fourier expansion of the form 
(53) with k- 1 

g,m =$P~ 6., ,+ 27t( -  1) k/2 H~(n, m)Jk_ ~ (56) 
c=1 \ C I/ We~ 

with 

C d ( m o d  c) 

where the summation is over all d (mod c) such that (d, c)= 1, - d  eP, and where 
C 

For example, if F=SL27Z, X=Xo the trivial character, then 

H2(n,m) = 1  ~ ec(nd-l+md) 
C d (mod c) 

(d. c) = 1 

is a Kloosterman sum. 

We now return to our quadratic field K of discriminant D and take 

and 

Z (: ~)=e(a)=e(d) ((~ ~) ~F0(D) ) ,  

where e = e  o is the fundamental character of K with e(p)=(D/p) for p~'2D. The 
space Sk(F, Z) is usually denoted S(D, k, e). 

For the rest of the paper we suppose 

D = 1 (rood 4), 

or (equivalently) D square-free; this simplifies the formalism and proofs. In 
particular, it is easy to check that, for x/y, x ' /y '~ff)w{~} with (x', y ')=(x, y)= 1, 

the equation x ' _  ax +by (: ~)eFo(D, 

y' cx+dy ' 

can be solved if and only if (y',D)=(y,D). The equivalence classes of Q w { ~ }  
modulo Fo(D ) are thus described by the positive divisors D 1 of D. Let the cusp P 
be given by D 1 and write D2=D/DI; then (D~,D2)=I since D is square-free, 
and we can find p, q~:E such that pD 1 + q D 2 =  1; we choose 

- p  
A , = ( D ~  q )~SL27Z. (58) 

The cusp P is easily checked to have width we=D 2. We will denote the cusp P 
simply by D~; thus for fES(D, k,e) and D 1 ]D we have the Fourier expansion 

(flA~,')(z)= ~ a ~ ( f )e  2~inz/1~2, (59) 
n = l  
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the coefficients a. vl (f)  being independent of the choice of p, q in (58) and given by 

DI ( f ) =  (4xn)a- 1 -k a. D 2 ( f  G. D1) (60) 
(k -2) !  

with G. DI defined by (51). By the proposition, we have 

GDn I(Z)= ~ D1 2rrimz g,,m e 
m=l 

D1 ( _ m ~ _ ) ~  ~ (4~ m~D~ ) g,,,,,=fo, o•.,,,+2rc(--1) k/2 Hy~(n,m)4_l ~ -  , 
C=I 

(C, D)= Ol 

O 1 (,4 ( :  bd))e2rCic-'(na/Dz+md) Hc~(n,m) : -  • X ~I 
C d (rood c) 

(d, c) = 1 

(~ ~ ) = (  aq+pc bq+dp ] will be in Fo(D)only if DE]a 
Now A,~ 1 \ -aDl  +cD2 _bD1+dD2 ! 
(since D 1 [c), so a is determined (mod cD2) by 

Then 

ad-1 (mod c), D2[a. 

(aq+pc~ (aq+pc~ 

= x-ST-  : 

( a/D2 ~ (c/D1 
\DT-I ! \ D2 ] 

= ("D2 ~ ( c/D1 

\ D 1 ] \  D 2 ] 

where in the last line we have used quadratic reciprocity and D 1D 2-=- 1 (mod 4) 

to set (D~_2)(D~_z)= (@~_1). Therefore for (c,D)=DI, 

c E 

(d, c) = 1 

(note that D 2 and d are prime to c, so ec(nD;id -1) makes sense). 
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Finally, we introduce certain linear combinations of the Poincar6 series: 

Definition. Let D = 1 (mod 4) be square-free and positive and n a positive 
integer. We set 

Gn(Z)= ~ ~(D2)DzkG~b2(z) (z~) ,  (62) 
D ~ D~ D2 

D2 In 

where 

D1 
if ol l(mod4) 

g,(D:)= ( D1 ) (63) 
- i  ~ -  2 l ~ z  if Dl=_Dz=--3(mod4 ). 

Thus G.(z) is a linear combination of Poincar6 series at certain of the cusps of 
Fo(D). Notice that the coefficient O(D2) is just the Gauss sum 

x(mod D2) 
it is also easy to check that, if D 2 =D'2D 2 divides D (in which case (D~, D2)= 1), 

(P (D2) = (h (D2) 0 (O~). (64) 

Finally, from the formula above for the Fourier coefficients of oi g.m we obtain 
the Fourier expansion of G,,(z): 

G,(z)= ~ g, me z'i'~ (65) 
m=l 

with 

g.m = ~ O(D2)Dik 01 
gn/D2m 

~176  

=a..+2-(- (m) 2 
n j oT, ylo , 

n m ~t(O2)92 c=l ~ By1 (D22')Jk 1- (C~2 ~n-m) 
(c, o)= o l (66) 

/ m ~  k - 1  ~ 4~ 

where 

g b D  1 , m , 

D2 In 
(b, D2) = 1 

H~ being given by (61). 

(67) 

w The Form I 2 ( z l , z 2 ; r  ) 

As before we fix a real quadratic field K = Q ( 1 / ~  ) (D_= 1 (rood 4)squarefree) 
and even integer k > 2. We define a function of  three variables 

f2(zl,z2; r)= ~ mk-t cOm(Zl,z2)e 2'~imr (zl,z2,26f3), (68) 
ra= l 
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where the m=(Zl, z2) are the forms defined by Eq. (1). The series converges ab- 
solutely. It follows from the results of w that, for fixed ze~,  f a (q , z2 ; r  ) is a 
Hilbert cusp form for S L  2 (f) of weight k with respect to the variables z~, z 2. Our 
goal is to show that, for fixed z l , z2e f9  , fa(zi,z2;z ) is a cusp form for F0(D ) of 
weight k and Nebentypus ( /D)  with respect to the variable z. We will do this 
by proving an identity which expresses f2 as a linear combination of the functions 
G,(r)eS(D, k, c.) constructed in the preceding section: 

T h e o r e m  3. For all zl,  z2, zegg, the identity 

O(zl, z2; z)= ~ n k 1 (DO(zI, z2) G,(z) (69) 
n = l  

holds. 

Proof. We will expand both sides as triple Fourier series. Of course, the defini- 
tion of f2(z I , z2;z) already gives the Fourier series of the left-hand side of (69) 
with respect to the variable z; its Fourier development with respect to Zl, z 2 is 
given by Theorem 2 of w 2, which tells us that 

~ Q ( Z I ' Z 2 ; T ) =  ~ Z mk tCm,'e2~im~e2=i(v=l+v'z2) (70) 
m~Z v ~ b -  [ 
m>O v>O 

with c,,,, as in (40). 

As to the right-hand side of (69), we recall that the function (D~ is 
defined by (24) and has the Fourier expansion 

(D O (Z 1 ,Z2) = 2ca Y'. ~ rk--~ e2,~i,~az,+rx'z2) 

.a. >>. 0 
DkR'-n 

=2ck Z ( Z rk-1) e2=i( .... +,.'z~) 

v>O Dvv'-nr 2 

with Ck the constant (27); here the inner sum is over all natural numbers r such 

that--1 v~b-1 and N ( l ~ v ] = n ,  and containsat  most onesummand.  O n t h e  
r \ r i d  

other hand, G,(z) has the Fourier development (65), so the right-hand side of 
Eq. (69) equals 

nk-lgnm Z rk--1 eZ=i(vz'+v'Z2)e2=imz 
m = l  veb 1 = fly 

v>>O Dvv'=r2n 

.) = 2 c k ~  ~ g ~ .  eZ~i'~*+~'=2le 2~i"~. 
m = l  v~-b 1 

v~>O 

Comparing this with (70), we see that we must prove 

- -  g D ~ '  (71)  
~l~ ~z-, m 
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for meZ,  m>0,  Veb -1, •>)'0. Substituting for Cm,, and g,,, from Eqs. (40) and (66), 
respectively, we see that the identity to be proved is 

, k L - 1  

m k-1 ~ r k - l + 2 n ( - - 1 ) 2 D  2 (mvv') "~ --Ga(m,v)Jk 1 \ - T [  I ~ 1  
r i v  a = l  a 

vv' D ~ m r  2 

r l  v \ r l 
Dvv'-- r2 m 

+2,(_l)~(mvv, D) 2 Z ~ Hbt~T--,m}Jk-, \ b r [ / - o - - f "  
r [ v  b = l  

The first terms on the two sides of this identity are plainly equal, and comparing 

( 4 n ] ~  t the coefficients of Jk-1 \ ~ -  V ~ 7  on the two sides of the equation, we find 

that the theorem will follow once we have proved the following identity between 
finite exponential sums: 

Proposition. For a, m ~ ,  v~b -~, a>O, 

1 [ Dvv' ] 
a ~  Ga (m, v) =,IvZ H.i, \ r 2 , m/" (72) 

via 

Here G,(m, v) is the sum defined by (38) and Hb(n, m) the sum defined by (67), (61) 
and (63). 

It is convenient to write # for v 1//D, so that peC;  then 

Ga(m, v)=Ga (m, ~--~-)= ~ %o(Tr2#) (73) 
\ V L I  I ~. (mod a b) 

N(2)=-  - m ( m o d a D )  

(sum over 2eC/ab) and we wish to show that this equals 

,'la (74) 

=av  Z Z O(D2) .o, 
,lu O=D,O~ D2 "7  o'(-N(p)lr2oz'm)" 
r la  Dz lN(u / r )  

(a/r, D 2 ) -  I 

Now both expressions (73) and (74) are clearly periodic in m with period aD, 
so to prove them equal, it suffices to show the equality of their finite Fourier 
transforms. Thus we must multiply both expressions by eaD(--hm) and sum over 
m(mod aD), i.e. we must show that, for every heZ/aDTZ, 

aD 

eao(-hm) ~ %D(Tr2p) 
m = 1 2 (mod a b) 

N (~)~ -m (.,oa a o~ (75) 

---aV'D ~ Z 0(D2) Z eao(-hm) HD' l't#' 
D2 92 a D ,m , m= 1 T- l P 2 D 2 
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where the condit ions of summat ion  on r and D2 are the same as in (74). The  left- 
hand side of  (75) clearly equals 

eaD(hN(2)+ Tr(g2)). 
2 (mod a b) 

As to the r ight-hand side, we observe that  --cHv',tn, m), considered as a function 

of m, is a linear combina t ion  of terms ~" with {=e~(d) a primitive c th root  of 

unity; therefore for claD, the sum ~,(mod,t))e,o(-hm)H~'(n, rn) is 0 unless 
e,D(h) is a pr imit ive c ~h root  of  unity, i.e. unless (h, aD) equals aD/c, in which 

case it equals aD/c(c/DJ(-d/Dl)efinD{~d -1) with d defined by h/aD=d/c 
(cf. (61)). Hence the inner sum in (75) can only be different from zero if 

(i) (h, aD)= rD 2 . 

On the other  hand the condit ions on r, D2 are that  D~D2=D, (a/r, D2)=l, so 

(a, rD2)=r and hence 

(ii) (a, h )=(a ,  h, aD)=(a, r D 2 ) = r .  

F rom (i) and (ii) we see that  r and D2 are determined by h: given h, we must  set 

(h, aD) 
r=(a, h), D z -  (h, a) (76) 

These values of r and D 2 automat ica l ly  satisfy r La, D2ID, (a/r, D2)= 1, but must  
still satisfy r ig,  D2 [N(y/r) in order  for the r ight-hand side of  (75) to be non-zero.  

Thus  the identity we have to prove  now reads: 

Lemma 1. Let a > 0 ,  ge~), h6Z, and deJlne integers r, D2, D 1 by (76) and 
D 1 =D/D 2. Then 

eaD(h22 '+g2  + g ' 2 ' )  

t 
a / D  0(D2) rD2 { aD1/r ~ -h/rD2 {-- pp' (77) 

otherwise. 

Proof We first show that  the left-hand side is zero unless r ig ,  D2r2[N(g). 

If we replace 2 by 2 + ~ a  zV ~ (ze(9) in the summat ion ,  then 
r 

hN(2)~-~hN 2 +  zl,/D :hN(2)+aD hr rr ~l/~-j-aD----N(Jr r 

- h N ( 2 )  (rood aD) 
and 

r 
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so e~o(h~A'+/a2+g'2') is multiplied by the factor er Tr independent 

~176176176 ,, \ 

itself, and can only be different from 0 if Tr[~-~n z}eZ for all ze(9, i.e. if 

# eb  -1, r[#. 

If we repeat the argument with zea -I instead of zE(9, a being the ideal with 
a2=(Dz) (D2[D is a product of ramified primes), then from D2[h/r we again 
see that 2~--~ 2+(a/r)zl/~ does not change hN(2) (rood aO) and that therefore 

we must have 

er(Tr~DD)=l ( "CEa-  1 ) 

if the left-hand side of (77) is different from zero; this implies that 

rl/~ cab -1, ~ea,r DzlN �9 

We can therefore suppose that the conditions r]#, D2]N(12/r ) hold. Then 
a. h and/~ are now all divisible by r, and we see easily that both sides of (77) are r 2 
times their value when a, h, fl and r are replaced by a/r, h/r, l~/r and 1. It therefore 
suffices to prove Lemma 1 in the case r = 1. We thus assume that (h, a) = 1 and 
that D 2 =(h, D) divides ##', and have to prove the identity 

~O/ab (78) 

=al/D~9(D2) \ Dz ] \ D, faro, (-N(#)D2 h~l) 

(here h - l  makes sense because (h, aD1)= t). Because Ozth and D2 [/~#', we have 

eav(hN(2)+ Tr(#2))=e,D, (~z N(2)+ Tr P~--D2 2~1 

(N(#) 

and replacing 2 by 2 - h - - ~ / ;  (modaD 0, h by h/D 2 and aDx by b, we find as the 

identity to be proved 

2E(O/ab 

where (h,b)= I, (b,O)=Dl, D/D1 = D  2, b/Dl=a. It is convenient to replace the 
summation in (79) by one over (9laD t ; it is clear that this multiplies its value by 
Dt/Dz (both sums are multiples of a sum over (9/aa with a2=(O0). We have 
thus reduced the complicated identity (77) to the simpler one given in the following 

lemma: 
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Lemma 2. Let b be a natural number, h an integer prime to b. Set DI =(b, D), 
D2=D/D 1. Then 

1 
~ eb(hN(2))=' 

2 (mod b) 

( b/D~ ~ h 

b/D, 

if D 1 ~ 1 ( m o d  4), 

if D 1 ~ 3 (mod 4), 

(80) 

(i) If  (D/q)= + 1, 

Nb(n)=f(v, +l)qX-l(q--1) 
((2+l)qX--2q x i 

(ii) If(D/q)= -- 1, 
/ ; x - ' ( q  +1) 

/f v<2, 

if v_>_;t. 

if v < 2, v even, 

if v<2, v odd, 

if v > 2, 2 even, 

if v>__2, 2 odd. 

(83 a) 

(83 b) 

where the summation runs over integers 2~C modulo the principal ideal (b). 

Proof Denote the left-hand side of (80) by C(h/b). Thus C(h/b) depends on 
the class of h in (7Z/b;g)* modulo squares. It is easily checked that C(h/b) has the 
multiplicative property 

C = C \  b' ] C \ b " ] '  b=b'b",(b',b")=l. 

The right-hand side of (80) has the same property, since (setting D' t =(b',D), 
D'2 =D/D'I and similarly for b') 

t 

( b ' )  ( b " ) (  h ) (D[~ /D"'[@,,_} 

= D'E/D' ~ Dj/D' 1 D', D 7 \ D' 2 ! 

(where is or depending whether n - 1  or 3 (rood 4)) 

= (Db2) ( b" '~ (b/Dx t 

as we see after a short calculation. Because both sides of (80) behave multi- 
pticatively, it suffices to prove Lemma 2 for b = q~ a prime power. Clearly 

1 b 

where 
Nb(n)= # {2e(~/b [ N (2)-n (mod b)}, (82) 

and the above multiplicativity property can be stated simply Nb,b,,(n)=Nb,(n)Nb,,(n) 
for (b', b")= 1. To evaluate C(h/b), therefore, we have to find a closed formula for 
Nb(n ) when b=q ~. There are three cases, according to the value of (D/q); we 
summarize the results in a lemma. 

Lemma 3. Let b=q ~ (q prime), n=noq" with v>O, q ~/n o. Then 
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(iii) If q ID, D 2 =D/q, 

Nb(n)= 1 + q~ /f v<2 ,  v odd, 

q~ if v>=2. 

(83 c) 

The proof of the lemma is straightforward and tedious and will be omitted. 

We now substitute (83) into (81). If b=q ~, qXD, then N,(b) only depends on 
the largest power q~ of q dividing n; hence 

/ h x  1 a v b 
C \ / -o {b-) = b - v  ~ Nb(q ) ~" eb(hn)' 

n = l  
qV[ln 

and the inner sum equals 1 if v = 2, - 1 if v = 2 -  1, 0 if v < 2 -  1. Hence 

1 

If (D/q)= + 1, then we see by (83a) that this equals 1, in agreement with (80) 

(here /71=1, D2=D, (b/D2)=+l). If (D/q)=-l, then using (83b) we find 
C(h/b)--(-1)~=(b/D), again in accordance with Lemma2.  

If q lD, D2 = D/q, then (81) and (83 c) give 

C(qh~- )=  ~ ~ (~-)eq (hno) .... 
OGv<)~ no(modq "t v) 
v even (no, q)= 1 

+ (-~Dq 2 ) ~ ~ (~-)eq-~-~(hno) (q.gh). 
O_<v<2 no(modq,~ v) 

v odd (no, q ) -  1 

The inner sum in both terms is zero if v < ; t -  I, as we see on replacing n o by n o + q. 
Thus only the terms v=2-  1 contribute, and we find 

- - ~ - } ( q )  l / / ~  i f 2 i s  even, 

where again 1 / ~  is l /q or i l /~  depending whether q-=l or 3 modulo 4. In the 
notation of Lemma 2, D 1 =q, (-D2/q)=(q/D2), so (84) can be stated as 

N (b=q  ,qzh), 

in agreement with Eq. (80). This completes the proof of Lemma 2 and hence of 

Theorem 3. 
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w 5. The Doi-Naganuma Map 

In the last section we proved the identity 

mk-lcom(Zl,Z2) e2nim~= ~ mk-lOg~ Gm(T5) 
m = l  m = l  

relating the Hilbert modular forms of weight k constructed in w 1 to the Poincar6 

series of weight k and "Neben typus"  constructed in w 3. Depending whether we 
read this identity from left to right or from right to left, we can deduce two state- 

ments asserting that some infinite series defines a cusp form: on the one hand, 

since G,,(O is a cusp form of Nebentypus, we have 

1. For each point (zl, z2)e~  x .~, the series 

m k-1 co,,(za, zz) e 2"i"~, 
m = l  

considered as a function of ~, defines a cusp form for F o (D) of weight k and "Neben- 

typus" ; 

on the other hand, since we know that the (~)m are Hilbert cusp forms, we have 

2. For each point ~ ,  the series 

m k 1 G,,(~) co~ 1 , z2) , 
m ~ l  

considered as a Junction of (z I , z2), defines a cusp form of weight k for the Hilbert 
modular group S L 2 ((9). 

The first of these assertions has several interesting consequences; for example, 
using Hecke's well-known estimate for the Fourier coefficients of cusp forms, 

we have the corollary, 

For f ixed (zi, z z ) ~  9 x ~, the absolute values of com(z~, z2) (m = 1,2,. . .)  satisfy 

[co" (Za, z2)l = O(m k/z) 

(indeed, using the recently proved Petersson conjecture we can improve as m oo 

~- to + e  . A considerably more interesting corollary of 1. is obtained by 

integrating the forms co,. along certain curves. If the field K has a unit of negative 
norm, say e > O > e ' ,  then the function yk%,(ez, e'2) ( z = x + i y e ~ )  is invariant 

with respect to SL2 7l., and so we can consider the numbers 

am=m k- i ~ com(eZ ' e'~) yk- 2 dx dy, 

where ~={zllz[>=l, IRe(z)[<�89 } is a fundamental domain for the action of 

S L 2 Z  on .~. It follows from 1. above that the series ~ = ~  a,,e 2~i"~ is a cusp 

form of weight k and Nebentypus for the group Fo(D) and character ( /D) .  On 
the other hand, the a,, can be evaluated explicitly and turn out to be (apart from 

a trivial factor) integers expressible as a finite sum of class numbers of imaginary 
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quadratic fields. In this way we are able to construct a large number of cusp forms 
of Nebentypus whose Fourier coefficients are explicitly given by certain expres- 
sions involving class numbers. That these class number expressions really are 
Fourier coefficients of cusp forms had been conjectured (in the case k= 2) by 
Hirzebruch and the author on the basis of another interpretation of them as the 
intersection numbers of certain curves on the Hilbert modular surface .~ x ~/SL 2 CO. 
(This conjecture was the original motivation for studying the forms ~o,,.) The 
proofs of these relations will be given in a subsequent paper. 

In this section, however, we will investigate the significance of the second 
assertion above. We fix, as usual, an even weight k > 2 and discriminant D-= 1 

(mod 4). We denote by S 1 the vector space of cusp forms of weight k and Neben- 
typus for F0(O) and the character e=(O/  ) (so $1 =Sk(Fo(D),e)=S(D, k,e) in the 
notation of w 3) and by S z the space of cusp forms of weight k for the Hilbert 
modular group S L  2((9). (The subscripts 1 and 2 refer to the number of variables 
of the functions involved.) The assertion of the theorem in Section 3 is then that 

the function O(zl, z2; z) defined by (68) is in S t |  z. On the other hand, as dis- 
cussed in w 3, the Petersson product on S I is a non-degenerate scalar product 
and provides a canonical identification of $I with its dual S* = Hom(S~, ~). 
Using this, we can identify $1 | Sz with Horn (S~, $2) and thus think of ~ as a 
map from S~ to $2, namely the map sending a cusp form f = f ( z ) e S a  to 

(f, f2)~ = S f (z) C2(zl, z2 ; z) yk-  2 dx  d y 
o~ 

(r = x + iy, ~- = fundamental domain for ~/F0 (D)). 

On the other hand, we have expressed O as a linear combination of Poincar6 
series and therefore can easily evaluate its Petersson product with any cusp 
form. Let feS~ and let a ~ ( f )  ( n = t , 2 ,  . . . ;DI[D ) be its Fourier coefficients at 
the various cusps as defined by Eq. (59). Recalling the definition (62) of G, as a 
linear combination of Poincar6 series and the basic property (60) of Poincar6 
series, we find 

, k - l ( f G , ) = n k - a  ~, ~O(O2)Dzk(G~b2,f)  
D = DI D2 

D2ln 

( k - 2 ) !  Z O(D2) Dk-~ o~ - - -  a,/D2(f) (4 re) k- I o = D ,  O~ 

and hence oz), 

(f, Q)~ = ~ n k- '  (f ,  G.) o~ ~ (z 1 , z2) 
n--1 

( k - 2 ) !  oo 
Z ~(U2)  Dk2--1 L I)1 0 ----(4r0k_l am (f)%,D2(Z~,Z2). 

D=DID2 m=l 

Into this expression we substitute the Fourier expansion 

o - - (  - 1)k/2 2 ~ rk- - le2=i(rxz '+rz ' z2 ,  (Din(Z1, Z2)= 2(2r0 k 
( k - l ) !  ~b- ,  ~=1 

2>0 
N (2) = m/D 

obtained in w 2, and obtain the following theorem. 
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Theorem 4. Let f6Sk(Fo(D),e) be a cusp form of weight k and "Nebentypus" 
and aD. ~ ( f )  (n6lN, D 1 [D) its Fourier coefficients as defined by (59). For each integral 
ideal a of the field K, define 

c ( a ) = ~ r  k t Z ~(D2)D~-I D, aN~,o/r2o2 ( f ) ,  (85) 
via D2I(D, N(a)/r z) 

where the first sum is over all natural numbers r dividing a, the second sum over all 
positive integers dividing D and N(ct)/r z, D 1 =D/D2 and t/J(D2) is defined by (63). 
Then the series 

F(zl ,z2)  = Z c((v)b) e z~i(v~'+v'z~) (86) 
"0613 1 
v~>O 

is a cusp form of weight k for the Hilbert modular group. The map f~--~ F defines a 
linear map 

l: $1 -+ Sz 

which is, up to a factor, the map sending a cusp form f (z) to its Petersson product 
(with respect to z) with Q(zl,  z2; z). 

We have written the Fourier expansion of F in the form (86), with coefficients 
c((v)b) depending on the integral ideal (v)b rather than simply c~ as previously, 
first of all because this form puts into evidence the invariance of F under 

(Z1, Z)k--~ (E Z1, ,~'Z2) (E a totally positive unit) (87) 

as well as under the translations 

(zt, z2)~-~(zl + 0, z2 + 03, (88) 

and, secondly, because this is the appropriate form for writing down the Mellin 
transform of F. Namely, to a cusp form with Fourier expansion (86) we associate 
the Dirichlet series 

4) (s) = ~ c (a) N(a)-~ (89) 
a 

(at least if the class number of K is 1, in which case every integral ideal a can be 
written as (v)b with veb  -1, v>>0); then q~ and F are related in the same way as 
are Dirichlet series and modular forms in one variable, namely that the invariance 
of F under the modular group is reflected by a functional equation of the function 
4,(s). 

We now describe the relationship of Theorem 4 to a construction of K. Doi 
and H. Naganuma, in which these Dirichlet series play a basic role. The original 
paper of Doi and Naganuma [2] treats the case of modular forms of "Haupt-  
typus" (i.e. trivial character); we will in fact describe the modification for forms 
of "Nebentypus"  given by Naganuma [8]. Let 

f ( z ) =  ~ a,e 2~i"z (90) 
n=l  

be a cusp form of weight k for F 0 (D), where D =p  is now assumed to be a prime 
of class number 1. We assume that f is an eigenfunction of all the Hecke operators 
T,, normalized with al = 1 (so that a, is just the eigenvalue of f under T,); then 
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the associated Dirichlet series 
o o  

(p(s)= ~, a,n -s (Res>> 1) (91) 
n = l  

has an Euler product expansion of the form 

(product over all rational primes q). The series 

(fie(s)= ~ a~ ~, p _ -  a, - an, 
n = l  

whose coefficients are the complex conjugates of those of q)(s), will then be the 
Mellin transform of the modular form f ~  ~,e 2~i"z. Thanks to Hecke [5], 
one has the following information about the eigenvalues aq of (p(s) in (92): 

for (q/p) = 1, aq is real; (93 a) 

for (q/p)= -- t ,  aq is pure imaginary; (93b) 

for q = p, Jaq] --- p~k- 1)/2 (93 C) 

This gives us the possibility of writing 

(s) = q~ (s) (po (s) = l~[ (1 - b(q) N(q)-~ + N(q) k-1 - 2 s)--~, (94) 
q 

where the product is extended over all prime ideals q of Q (l/P) and the coefficients 
b(q) are defined by 

b (q) = aq if q q' = (q), (q/p) = 1, (95 a) 

b (q) = aq 2 + 2 qk-~ /f q = (q), (q/p) = - 1, (95 b) 

b(q)=ap+gtp /f q2 =(p). (95c) 

Indeed, for decomposable primes q we know by (93 a) that aq=Ctq, so the factor 
( 1 -  aqq-S+ qk - I -2s ) - t  Occurs twice in ~o(s)tp~ and since there are two prime 
ideals with norm q, it also occurs twice in the product in (94). For inert primes q, 
(93 b) tells us that fiq = -  aq, so the corresponding local factor in ~0(s)~oP(s) is 

(1 - - a qq -S - -qk - l - 2 s ) - t ( l  +aqq-S- -qk- l -2s )  -1 

=(1-aqqZ - 2~_ 2qk- l -2~ + q2k- Z-4~)-x 

= ( l _ b ( q ) N ( q ) - ~ + N ( q ) ,  a-2s)- ,  

with q=(q), b(q) as in (95b), N(q)=q 2. Finally, for the ramified prime p, (p)=q2, 
we deduce from (93c) that the local factor in q~(s)~0P(s) is 

(1 - a p p  -s) 1(1 _?~pp-S)-, =(1 --(ap+~tp)p-~ + p k- '  - 2~)-, 

= (1 - b (q) N(q)-~ + N(q) k- '  - 2~)-, 

We now extend the definition of b(-) to all integral ideals, defining first b(q r) 
(q prime, t e N )  by 

1 + ~ b(q')V=(1 - b ( q ) t + N ( q )  k- '  t2) - '  (96) 
r = l  



M o d u l a r  F o r m s  A s s o c i a t e d  to  R e a l  Q u a d r a t i c  F i e l d s  33 

(as formal power series in IR [[t]]) and then requiring b to be multiplicative, i.e. 

b (q~' ... q,~") = b (q~')... b (q'#). (97) 
Then clearly 

q)(s)= I-[ (1 + b(q) N (q)- S + b(q2) N (q)- 2s + --.)= ~ b(a) N (a) - s 
q a 

(sum over all integral ideals). We can now state the result of Doi and Naganuma: 

Theorem (Naganuma [8]). Let p=-I (mod 4) be a prime with h(p)= 1, and 
fESk(Fo(P), ( /p))  a normalized eigenfunction of the Hecke operators with the 
Fourier expansion as in (90). Define numbers b(a)elR for all integral ideals a of 
Q (l/p) by (95)-(97). Then the function 

F(z , , z2)= ~ b((v)b)e z"i(v~'+''z2) (zl,zze.~) (98) 
v~D- I 
v~O 

satisfies the functional equation 

( - 1 - 1 )  
f - -- , = z~ z~ f ( z l ,  zz). (99) 

Z1 Z 2 

As the author remarks, if the ring of integers (9 is Euclidean, then (99) (to- 
gether with the obvious invariance of (98) with respect to translations and multi- 
plication by totally positive units) is sufficient to ensure that F is in fact a Hilbert 
modular form, for in this case the transformation (87) and (88) together with 

( z x , z z ) ~  ( - I , -1)__ (100) 
Z 1 Z 2 

certainly generate S L  2 (_9. However, it is known that the only primes p -  1 (mod 4) 
for which Q(]~p) is Euclidean (at least with respect to the norm map) are 5, 13, 
17, 29, 37, 41 and 73 (cf. [3], Theorem 247). 

In fact, a recent and very difficult theorem of Vaserstein (Mat. Sbornik 131 
(89) 1972) tells us that the transformations (88) and (100) always generate the 
full group SL2(9, and combining this with the theorem of Naganuma just 
enunciated, we deduce that (98) is in fact always a Hilbert modular form. We 
now give a different proof of this fact by showing that the function constructed 
by Naganuma is precisely the function we constructed in Theorem 4. 

Theorem 5. Let the assumptions be as in the theorem of Naganuma above: 
p =  1 (mod 4) a prime with class number one, f~Sk(Fo(p), ( /p))  a normalized Hecke 
eigenfunction. Then the function defined by (98) is identical with that defined by 
(86), and in particular is a cusp form of weight k for the Hilbert modular group. 

Thus the modular form ~ ( z l , z ~ ; t  ) in three variables constructed in this 
paper has an interpretation as the "kernel" (in the sense of integral operators) 
of the Doi-Naganuma mapping. 

Proof. We must show that, for each integral ideal a, the number b(a) defined 
by (95)-(97) equals the number c(a) defined by (85). Since D = p  is prime, the 
number D 2 in (85) can only have the values 1 or p, and so (85) simplifies to 

c(a)= ~ r k-1 a~v~o)/,~(f)+ ~ r k-1 pk-~ a~o)/,2p(f), (101) 
rla rbla 
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where aP,(f) and a. 1 ( f )  are the Fourier coefficients of f at the two cusps of F 0 (p) 
and the second sum vanishes if b~/a (to obtain (101) we have substituted the 
values ~O (1)= 1, ~ (p)= l/P)- Now the coefficients aP(f) are the Fourier coefficients 

of f ] ( lp  ~ ) (c f .  (58), (59)), and since (lp ~)~Fo(p), these are precisely the a, 

defined by (90). Similarly, the ai,(f) are the coefficients of f , i.e. are 
given by 

( z -P)-k f ( -@)=,=l~ai" ( f )e2~i"~/P (zc~) 

or (replacing z - p  by pz) 

- 1  
p - k z - k f ( ~ - ) =  ~'a~(f)e2~i"z (ZE~). 

n = l  

But, by Lemma 2 of [8], 

(f"(~)=2 ~. e2~"z as above), and therefore 

a~ ( f )=  p-k + a /2 ?tpa,. 

Also, because the local factor corresponding to p in ~o~ is simply 

( 1 - h p p  ')-x = ~ a ;p  .... , 

we see that a, ap=~,p for all n. Therefore (101) can be rewritten as 

c(a)= y" r k- 1 a'N(.)/,~, (102) 
rla 

where 

, ~a. if pXn, (103) 
a, = ) a .  + ft, if p I n. 

Since c(a) is then clearly multiplicative for ideals with relatively prime norms 
(i.e. c(alctz)=c(%)c(ct2) for (N(%), N(%))= l), we only have to prove the 
equality c(a)=b(a)  for prime powers q~" with q inert or ramified or products 
qrq,r if qq'=(q). We consider the three cases separately. 

(i) a = q " ,  q = ( q ) ,  ( q / p )  = - 1. 

Then r t a for r = l, q, ... , q m, so 

m 

c(q")= ~ qiCk-1)aq2 . . . . .  
i = 0  

To evaluate this, we introduce the generating series: 

~ c ( q ' ) t Z m = ~  ~q"k-"aqz,t2t+z'  
m=O i = 0  / = 0  

)( aq2z ) i ( k - - 1 ) t 2 i  t 2! 

i= l=O 
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I 1 1 1 ----(1 _qk.-I  t 2) 1 ~ aq, t +~ aqz(--t) 
\ 1=0 / = 0  

l _ a q t _ q k - l t 2  ~ l + a q t _ _ q k - l t 2  

1 
( 1 - a q t - q  k l t E ) ( l + a a t - q  k - i t  2) 

1 

1 - b ( q ) t 2 + q  2k 2t4 

= ~" b ( q m ) t  2m,  

m=O 

where the various steps use the precise form of the Euler factor for q in (92) as 
well as the properties (95b), (96) of b(q"). Thus c(qm)---b(q m) for all m. 

(ii) a = q  m, q2=(p). 

Now r]a for r =  1, p . . . .  ,p[m/2], SO (102), (103) give 

[m/21 
c(qm) = ~ pi~k-1)apm 2, 

i= 0  

= ~ pick 1)ap . . . . .  + ~ p.k-1)~pm_~, " 

O<i<m O<_i< m- 1 
- - 2  - - 2 

Also, by the above noted total multiplicativity, ap. ,=(ap)  m, f ip ,~=(~p)m.  W e  again 
use a generating series: 

m=O i = 0  / = 0  i = 0 / = 1  

i(k 1 ) t 2 i  Z alp t' + ~ alp t* = p - pi(k-1) t2i  

i= 1=0 / i \1= 1 / 

l [ 1 C l p t  

--l__pk lt2 ~ l ~ p t - ~ - l ~ - j )  

1 1 -- ap61pt 2 

1 - p  k ~t 2 ( 1 - a p t ) ( 1 - ? t p t )  

1 

1--(ap + ~p)t + pk- ~ t 2 

(since ap{tp=p k i by (93c)) 

1 

1-- b(q) t  + pk-- l t 2 

= ~ b(q")t", 
m=O 

and again we deduce c(qm)=b(q m) for all m. 
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(iii) a = q " q  'n, qq '= (q ) ,  (q/p)= 1. 

Then  r L a for r = 1, q , . . . ,  qm~. {,.. ,}, SO 

min (m, n) 
c(qmq'")= y '  qi(k-l)aq . . . . . . .  

i = 0  

Now we have to in t roduce a double  generat ing series with two formal variables t, 
u and  find 

m = O  n = O  i = 0  ~ = 0  / = 0  

= qi(k-1)tibli aq.(t.+t.-lu+...+tu.-lq_u~ ) 
\ i = 0  / n = 0  

1 | t n + l  - - U  n + l  

1--qk- l tu  n= t - -u  

1 - -qk- l tu  t - -u  ,=0 .=0 

1 1 / t U 

1--qk-~tu t - -u  1 - -aq t+qk- l t  2 

1 
(1 -- aqt + qk- 1 tZ)(1 _ aqu + qk- 1U2) 

1 1 

1 -  b(q)t + N (q)k- l t 2 

m = O  n = 0  

1 -- b(q') u + N(q')  k- t u 2 

m = O  n = O  

1 --aqUq-qk-lu 2) 

(the last equat ion because q" and q'" are relatively pr ime and b(a) multiplicative). 

Thus  c(qmq'")=b(qmq '") for all m, n and the p roof  of  Theo rem 5 is complete.  

As a consequence of T h e o r e m  5, we find tha t  we have two descript ions of the 

m a p  t of  T h e o r e m  4: as the Petersson p roduc t  with f2 and as the m a p  of Doi-  

N a g a n u m a .  Using these two descriptions,  we obta in  a better  unders tanding  of 
this mapping .  

First of  all, there is a na tura l  involut ion p o n  SI=Sk(Fo(P), (/p)) which 
sends a normal ized  Hecke  eigenfunction f = ~ ' a n e  2~i"~ to fo=y'a~ 

(a, ~ = 2.) and is then defined on all $1 by linearity (the normal ized  Hecke eigenfunc- 

t ions form a basis of S~). If  we denote  by a, the Four ier  coefficients of  fP (feS~ 
arbi t rary) ,  then it follows from (93 a) and (93 b) that  

a . -  a. if pXn; (104) 
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i.e. p: Sx --r S~ "'twists" the Fourier coefficients of a cusp form by the character 

( /p) .  Let 

Then S~ c~ S{ = {0} since a well-known lemma of Hecke (see e.g. Ogg [9], p. 32) 
states that a non-zero cusp form cannot have a development of the form ~ .  a,e 2~i"p~. 

It is easy to see that 

st = s ~  | si- (105) 

and that S~ are just the (__+ 1)-eigenspaces of the involution p. It follows easily 

from either description of the map ~ that t is zero on Si-. One can in fact show 

Proposition 1. For the splitting (105) of St according to the eigenvalues of p, 

(i) dim S~ = dim S i- =�89 dim S 1 ; 

(ii) the map t: S l --, S 2 is zero on S~ and injective on S[. 

We omit the proof. 

This describes the kernel of t; we now describe the image. 

Proposition 2. The image of t : St ~ $2 is precisely the subspace of $2 spanned 
by the cusp forms co 1 , ~o2, ... defined in w 1. 

Proof. Consider the Poincar6 series GP,(z) for the cusp at infinity of Fo(p). 
By the basic property of Poincar6 series, (G~, f )  is a constant (+0)  times a, for 
an arbitrary f ( z ) =  ~ a, e 2~i"z in $I. In particular, the G~ (n = 1,2 .... ) generate S~, 
since a cusp form orthogonal to all the G~ would have all its Fourier coefficients 

zero and hence vanish. But by the same property of G~, 

z(G, p) = (G~, ~) = (const) �9 ~o, 

since 

n - 1  

and therefore the o9, generate Im(0. 

Propositions l and 2 give some insight into the nature of ~. Since the map t, 
relating as it does modular forms in one variable with Hilbert modular forms, 
seems to play quite a significant role in understanding Hilbert modular forms 
(cf. for example the rather theoretical discussion in w 20 of Jacquet [6]), it would 
be of considerable interest to acquire more information about its properties. 

The following questions suggest themselves. 
I. Elucidate the relationship of t to the Hecke operators in S~ and $2. Just 

as there are Hecke operators Tin: $1 ~ S~ sending a form Fourier coefficients a, 

to one whose n 'h coefficient is 

,it~n, ml ( p  ) tk- l a"'/'2' 
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there are Hecke operators Tb: 82---~S 2 sending a form F(zl,z2) with Fourier 
coefficients c(a) to one whose a ~h coefficient is 

N(t)k-1 c (ab t -  2). 
tl(a,b) 

It is, of course, clear from the Doi-Naganuma description that t maps Hecke 
eigenfunctions in $1 to eigenfunctions of the Hecke operators in $2, and the 
assertion of Proposition 1 is essentially that this map from the (finite) set of 
Hecke eigenfunctions of $1 to the similar set for $2 is precisely two-to-one, 
sending the two eigenfunctions f and fP (which are always distinct, by i) of the 
proposition) to the same eigenfimction. One also has the Doi-Naganuma map 
for forms of "Haupttypus,"  i.e. a map to: Sk(SL2;g)-* $2. This map also takes 
Hecke eigenfunctions to Hecke eigenfunctions and seems to be one-to-one and 
have an image disjoint from that of z. The image of i | t o seems to be precisely 

the set of eigenfunctions in $2 whose eigenvalues c(a) satisfy 

c(a)=c(.') 

for all a. Otherwise stated, one has an involution on the set of Hecke eigenfunc- 
tions which sends a function with Fourier coefficients c(a) to the function whose 
a th coefficient is c(a'), and the image of 1 0  to is the space spanned by those 
eigenfunctions fixed under this involution. This would imply, in particular, that 

�89 dim $1 +d im Sk(SL2:g)=dim (Im t |  10) 

- d i m  $2 (mod 2). 

That this is in fact the situation seems to follow from work of Saito, at least if 
the discriminant D is a prime with class number h(D)= 1 ("Algebraic extensions 
of number fields and automorphic forms," to appear). Saito also finds a similar 
map for Hilbert modular forms associated to certain cyclic number fields of 

prime degree. 
II. Since Hecke eigenfunctions are mapped to Hecke eigenfunctions under t 

and since these eigenfunctions are orthogonal under the Petersson product, it 
is natural to ask whether the map l: $1 -* $2 is not perhaps an isometry (up to 
a constant factor) with respect to this product, i.e. whether the relation 

(l ( f ) ,  1 (g)) = K (f~ g) 

holds for all f, geS1 for some constant tr Because the Hecke eigenfunctions 

form an orthogonal basis, it would suffice to show that 

O(f), , ( f ) )=K(f f)  

for all normalized eigenfunctions f with ~ independent o f f  This can be attacked 
using the Doi-Naganuma description of the associated Dirichlet series and 
Rankin's description [10] of the Petersson product. As far as the author can 
check, however, the answer seems to be negative: t is not an isometry. 

III. Finally, one can ask for a geometrical description of ~; namely, if we 
think of modular forms as functions of pairs (E, co) with E as elliptic curve and co 
an abelian differential on E, and of Hilbert modular forms similarly as functions 
of 2-dimensional abelian varieties, then z should have some interpretation in 
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terms of a relat ionship between abelian varieties of d imension two and one. 

However ,  it is not yet evident what  such an interpreta t ion might be. 

Appendix 1 : The Case k = 2 

In this paper  we have constructed and studied a series of  Hilbert  modu la r  

forms ~o 0, ~o 1 , e)2, ... of  arbi t rary  even weight k > 2. The case k = 2 was excluded 
because the series defining ~,,  is not absolutely convergent.  However ,  Hecke [4] 

has shown that the Hecke-Eisenstein series of weight 2 for a real quadrat ic  field 
can be defined by an appropr ia te  limiting procedure  and is a modu la r  form 

having the same propert ies  as the series of higher weights. S i n c e - a s  we saw 

in w 1 - t h e  Hecke-Eisenstein series is a mult iple of our  ~o o, it is reasonable  to 
expect that  all of the co,, can be defined also for k = 2 by applying Hecke ' s  method.  

This will be carried out here. 
Hecke 's  idea is to replace a condit ionally convergent  series ~ f ( z )  -2 by the 

absolutely convergent  series ~f(z)-2lf(z)[ -2s, where sere  has positive real 

part.  The  latter function is no longer ho lomorph ic  in z but is an entire function 

of s. It also is periodic in z with real period, so has a Fourier  expansion 
G(Y, s) e2€ whose Fourier  coefficients depend on s and also on the imaginary  

par t  of  z. The coefficients c~(y,s) are then ho lomorph ic  in the entire s-plane, 

and in favourable  cases co(y, 0) is independent  of y; then .-,lim ( ~  f(z)- 2 I f (z)  l- 2s) 

= ~  G(Y, 0) e2~i~Z is holomorphic .  

We thus define (for meN, zi, z2e~,seC, Re(s )>0 )  

(Om, s(ZI 'Z2):  E q~s(azlz2+)LZl +)/Zz+b)' (1) 
a, beY 
2~b- I 

22"-ab-m/D 

where for convenience we have used the abbrevia t ion 

1 - 2  C 2slog ]zl 
~pdz)= z2lz[2, - z  (2) 

The function co,., ~ satisfies 

( O(Z1 -]- fl ~'Z2 -[- fl' ) 1 (Oms(Z1,Z2) 
(Dm, s ~ZI~_ ~ ' "yZ2-~-~' q)s(TZl +6)q~s(Y'Z2 +6' ) "" 

for all (~ ~)eSL2~O; in particular, the function (~)~ defined by 
7 

tim  Om, t3) 

(if the limit exists) will satisfy 

( .~Z12~ O(Z2~-fl' ):('~ZI-[-~)2('yZ2@(~')2 (Dm(ZI Z2). (4) 
co,, \ y z i + f i  , y, zz+~, 

We want  to prove  that  oJ~ exists, is ho tomorphic ,  and has a Fourier  expans ion  
given by Theo rem 2, w 2, with k = 2. Since the Hecke-Eisenstein series was treated 

by Hecke,  we assume m > 0. 
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As in w we split up COs, s as t~,.,, + 2 ~_,.~21 ~o~,.s , where O)am.s(Z1 ,Z2)  is defined 
as the subsum of (1) with a fixed vatue of a. The series 

1 
(DOra(Z1 ' Z2) = Z ()~Zl+,~,z2+b)2 

~2t' = m i d  
b~Z 

is absolutely convergent  and lim o~~ -- o~,,~ Therefore  we only have to worry  
s~O 

about  a + 0 .  Let  a > 0  and split up the sum defining c0~,~ as in Eq. (31), w 2: 

q)s (a(z1 -{-O)(z2 +0')-1- ~.(z 1 -{- 0)-1- ~.'(z 2 -I- 0') ~- ; ~ ' - - m / O ]  (5) oja, s(Zl , Z2) = Z 2 
2 ~ R  OeO \ a / 

with R a finite set. The  inner sum equals 

a-2-Z* ~oee(P*( ( z l + ~ + O )  ( z 2 + ~ + O ' \ ) - a ~ D )  \ (6) 

Denote  by b~, ~(c~, y~, Y2) the Fourier  coefficients in the expansion 

2 @s((Z1 -}-0)(Z2 -t- 0') -- 00 = 2 b~,~(ct, y~, Y 2 ) e a " f ~  § (7) 
0e~ veb- t 

(c~>0, za = x l  +iyl ,  z 2 =x2+iyz).  Substi tuting this into (5), we see that co~,,s has 
a Four ie r  expansion 

(Dsm, a ( Z l '  Z 2 ) =  2 
veb- I 

and therefore 

o,.,~(z~, z2) 

=~00 s(21'a2)+ Z ( 2 a ~  veb-1 

with G. (m, v) as in Eq. (38), w 2. 

e2=i(vz~ , v'z2} a - 2 - 2 s  ~ e by s , Yl , Y2 

R~R 

(m 
a 2 +  2s b~,~ ~ Y l '  Y2 (8) 

As usual, b~,s in (7) can be evaluated by Poisson summation" 

1 
I z f  y, e-Zni(vzl+v'=z)(Ps(ZlZ2-a)dzldz2 b~'s(~ Imz2=r2 lm = 

1 -- ~ (p,(z2) e - 2="~'z2+ ~/z2) 
~ hTi 22 = y 2 

e-2niv(z,-~/z2) (l)s z1 _ dzl dz 2 
lm Zl =Yl 

1 
- ~ ~os(z2)e -2~'" '~+~/~'  

~ i~tl Z2 = r 2 

5 e-2"i~'~~ " 
Im t=y , - tm  (a/z2) 

(9) 
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Consider the inner integral. Write y for Yl - Im (0{/Z2). 

i e-2~i~, ~os(t)dt = e - 2 ~ i ~  iy )q) , (x+iy )dx  

o~ = e  2nvy ~ e-2=iVXdx 

-~, (x+iy)2(X2 +y2) s (10)  

e 2~ivyudu 
= Y - '  - 2 s  e i ' ~ r  --m (u-+ i)2(u2 + 1) s '  

where in the last line we have set u = x/y.  The integrand is now holomorphic and 
one-valued in the cut region ~ - [ i ,  i v ] -  [ - i o o , -  i]. If v is negative, we can 
deform the path of integration upwards to a path F starting at - e  + ioo, circling 

counterclockwise about the point i and ending at + e + i o c ;  if v is positive, we 
deform the path of integration to the mirror image of F. The resulting integral 

in both cases is then holomorphic in s for all s and satisfies a uniform estimate 
(Eq. (10) of [4]) which suffices to make the series 

veb 1 a i 

v*O 

absolutely convergent for all s; therefore this series has a limit at s = 0  which is 
obtained simply by setting s = 0  in each term. By L e m m a 2  of w (with k=2) ,  

b~,o(~,y, , ) ' 2 )=4= V 7 D  Jt (4 ~ ]/~v-,") 

(this is independent of y~, Y2, so the limit of (11) as s -~  0 is holomorphic). There- 
fore in (8) the sum of(o~ ~ and the terms with v + 0  tend as s -~0 to the holomorphic 
function~[~,>oC,,~e 2=i1~=' + ~'=~) with c,,~ as in Theorem 2, w 

It remains to treat the term v = 0  in (8). Eq. (10) for v = 0  becomes 

c(s) 
j ~o~(t)dt= V1+2 ~ , 

l m t = y  

where 

d,, r(s + 
c(s)= , [  (u+i)2iu2+])~= - "  - F ( s + 2 f - -  

Substituting this into (9), we find 

cI, ) j. 
bo, s( 0{, Y l ,  Y2) = ] / / ~  Im z2 3'2 

(Ps (Z2) 't2"2 

- lm Z-g- ) 

_ c ( s )  i' dx 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . 2 7  

_ c ( s )  1 ~' du 

(y l  y 2 ) 2 s +  1 I . 0 { / y l Y a \ 2 S +  1 �9 
- ,o (u + i)2 (u 2 + l)S 1 + 7 + 1 - }  

(12) 
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The integral equals c(s)+ O(c~/y~ Y2), with the constant implied by O uniform in s. 
Therefore 

(= ) 2 a2+2 ' bo, ~ a ~ , y l , y  2 
a~l  

2 c(s) 2 G~ (m, 0) (13) 
- 

Ga(m, O) ) 
t-c(s) ~ 0 a4+2 s . 

a = l  

Since I G~ (m, 0)[< a 2, the last sum is bounded for s ---, 0 and, since c (s) ~ 0 for s - .  0, 

term tends to zero with s. Also, Ga(m, 0)= D N.D(m ) the second in the notation 

of Eq. (82), w a n d - b y  Lemma 3 of that s ec t i on - the  function ~ N.n(m)/a" has 

1 - (D/q)q  -= 
an Euler product with q-factor 1 _ q l  -= for qXD~ and therefore has a simple 

pole at s=2.  Hence ~ G~(m, O)/a 2~ 2= has a simple pole at s = 0  and, since c(s) 2 
has a zero of second order, we see that also the first term of (13) tends to zero 
with s. Therefore the terms in (8) with v = 0  contribute nothing in the limit as 
s--~ 0, and we deduce for the limit (3) the Fourier expansion 

oJ,,(zl, z2)= ~ cmve 2=i(~z' +~'=~ (t4) 
veb- t 

v>O 

with %,, given by the same formula as in w 2. In particular, c%(Za, Z2) is holomorphic 
and (by virtue of(4) and the absence of a term with v= 0  in (14)) is in fact a cusp 
form of weight 2 for SL2(9. 

A similar calculation shows that if, in the context of w 3, we define a Poincar6 
series of weight 2 by 

)((A~ 1 A) e z=i"Az/w" (o~(cz + d)) G. e (z)= }im ~ (�89 A =(ej) ~r,.." Apr 

(cf. Eq.(51), w then for non-trivial characters Z Ge.(z) is a holomorphic cusp 

form of weight 2 for the group F and character Z and has the Fourier expansion 
2 2 =  r,P 2rrirnz with e , s , , ,  e grim as in (56) of w 3. In particular, Eq. (65) and (66) of w 3 
define a function G, eS2(Fo(D),(/D)). Since the calculation of w used only the 
Fourier coefficients of co,, and G,, it remains true without any change. We have 

proved: 

Theorem. Let k = 2 and, for m > O, define 

(om(zl,zz)=~i_m , , ~  

22" -ab=m/D 

1 

(--a~z I Z 2 +2Z 1 +) t 'Z  2 -t-b) z [az 1 Z2 "t- •Z 1 -t~,,~'Z 2 -l-hi "2T" 

Then the functions e3 m have all the properties which are asserted in Theorems 1, 2 
and 3 (w167 1, 2 and 4 respectively) for the corresponding forms of higher weight. 
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Appendix 2: Restriction to the Diagonal 

Given a Hilbert modular form F(z1, z2) of weight k, the restriction of F to 
the diagonal in .~ x .~, i.e. the function F(z, z) (zc~), is an ordinary modular form 
of weight 2 k for the full modular group S L2 •. This process can lead to interesting 
modular forms: for instance, Siegel [11] has studied the restriction to the diagonal 
of the Hecke-Eisenstein series of weight k. Since the Hecke-Eisenstein series is 
(up to a factor)just our form ~Jo, this suggests that it might be of interest to study 
the forms co,,(z, z). 

We have 
o),,(z,z)= ~ '  (az2+(Tr)o)Z+C) -k. (1) 

a , c ~  

22'  ac. . .m/D 

Let b =  Tr2e;g and write 2 = -d+b l~D with d2=-b2D (rood 4). Then (1) becomes 
2 #  

(~),,(z, z) = ~ '  (a z2+bz+c)  -k , 
a .b .c ,  de~  

d 2 D(b 2 4ac}--  - 4 m  

where ~ '  means that the 4-tuple a = b = c = d = O  is to be omitted if m=0.  (The 
condition d2=-b2D (rood 4) can be left out since it follows from the equation 
d 2 - ( b 2 - 4 a c ) D =  - 4 m . )  

Definition. For k > 2  an even integer and for any nonnegative integer A, set 

1 
�9 fk (A' Z ) =  E '  ((,IZ2--~.-b-z~_c)k , (2) 

a.b.c~7/ 
b 2 4ac  - ,~ 

where ~ '  means that the term a = b = c = O  is to be omitted from the summation 

in case A =0.  

Then the above equation can be written 

r z ) :  L fk (-t(2 ;-4"7- ' z)" (3) 

d2_ -- -4m (rood D) 

Thus the modular form m,,(z,z) breaks up into an infinite sum of functions 
./k(A,z). We now show that these functions are modular forms having similar 
properties to the properties of the mm considered in w 1. 

Theorem. (i) For each A >0, .[k(A, z) is a modular fi~rm of weight 2k with respect 

t o  S L  2 7Z. 

(ii) fk(O, Z) is a multiple of the Eisenstein series o[" weight 2k. 

(iii) fk(A,z) is a cusp Jbrm Jor A >0. 

(iv) L ( A , z ) - O  unless A - O  or 1 (mod4). 

Proof (i) This is clear, since 

a \ T z + (  5]  + b \ y z + b l + c = ( a * z 2 + b * z + c * ) / ( T z + ( 5 ) 2 ,  
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with a*, b*, c* given by 

Then b*2-4a*c*=A and (a*, b*,c*) runs over the same set as does (a, b, c). 

(ii) If A =0, the equation b2-4ac=A becomes homogeneous in a, b, c, so we 
can remove the greatest common divisor of a, b, c to obtain 

1 
fk(0, z)=((k) ~ (az2+bz+c) k. 

a, b, cEff 
(a,b,c)=l 
b 2 =4ac 

Now (a,b,c)=l, b2=4ac implies (a,c)= 1, a =  _+m 2, c= +_n 2, b=2mn (with the 
signs of a and c agreeing) for some relatively prime integers m, n. Hence 

1 
fk(O,z)=~(k) ~ (mz+n)2k" 

m, n~ff 
(m,n)=l 

By the same argument, the Eisenstein series 

1 

G 2 k ( Z ) =  Z '  ( m z q _ n ) 2 k  
m, neff 

equals 

Therefore 

1 

~(2k) ~ -(mz+n)Zk. 
m, neff. 

( m , n ) = l  

~(o, z)-  ~(k) �9 - ~ f ~  G2k(Z). (4) 

(iii) The whole Fourier expansion of fk(A, z) can be found by the method of 
w 2: one breaks up the sum 

fk(A, z)= fk~ z)+2 ~ f~(A, z) 
a = l  

with fk~(A, z) defined by Eq. (2) with the summation restricted to a fixed value 
of a; thus 

fk~ = ~ hk(bZ) 
b2=A 

(in the notation of (25), w 2) and 
b2_A \-k 

fk" (A, z)= • azZ+bz+-~-a )  
bef f  

b 2 ~_ zt (rood 4 a )  

for a=0.  The Fourier expansion offk ~ is then given by (26) and has no constant 
term; that of fk a is found by breaking up the sum as 

fk"(A,z)= Z Z (a(z +n) z b n 
b2_A \-k 

+ ) 
b ( m o d  2 a )  ne~g \ 

b z =_ A (rnod 4 a )  
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The first summation is finite, so it suffices to show that the inner sum has a 
Fourier expansion with no constant term. But the r ~h Fourier coefficient of the 
inner sum is 

~~ (az2 b 2 A\-* 
-~+ic + b z + Y ~ a  ~ )  e-~i 'Zdz (C>O) (5) 

by the usual argument, and this vanishes for r < 0  because the poles of the 
integrand are on the real axis, below the line of integration. 

(iv) This assertion is clear since the summation is empty otherwise. 

We can evaluate the integral ( 5 ) b y s u b s t i t u t i n g t = - i ( Z + ~ a  ) " 

o ~ i c  e 2"~irzdz  C+ioo e 2 7 t r t d t  

/ b 2 A\k = _ i e ,  i,b/a J r A k 

2 k + � 8 9  �89 
k •  Jk_�89 ( ~ ) e  ~irb/a if A > 0  

= A Y " ~ ( k - l ) !  

22k 7~ 2k 
(2k-1) !a  k r E k - l  e rrirb/a if d = O  

(6a) 

(6b) 

For A = O, we have 

where 

22k.~ i ~2k or; 
.0 r2k_ 1 1 ~ -  S~(r, 0). (9) 

c~ ( 2 k -  1)! ~=1 

fk(O,z )=2~(k)+~  o 2~irz C r e 
r = . l  

S~(r, A)= ~ e2.(rb). (8) 
b (rood 2a) 

b 2 ~ A (rood 4 a )  

the inverse transform of (s2+ 1) -k and is integral is essentially the Laplace 

evaluated in [ 1], (29.3.57). Recall that Jk ~ is an elementary function: the expres- 

sion(6a) equals4~(--4a)k-1 dk 1 ( s i n ~ ] ~ ) )  
( k - 1 ) !  dA k-1 ] / ~  . Therefore we have 

Proposition. For d >0, fk ( A, z) has the Fourier expansion 

f~(A,z)= C r e l.....d 

r = l  

A (21ri)  k d k-1 2k+~Trg42rk-~ ~a-~S~(r ,A,Jk_~(~r~A~t  (7, 
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As in w 2, we can evaluate  So(r, 0), for clearly 

Sa(r, 0 ) =  ~ %(rc) 
c (rood a) 

c 2 -= 0 (rood a) 

is mult ipl icat ive as a function of a and, for a = p", is given by 

(p[m/2] i f  p[m/21[ r, 
Spin(r, O) J 

=].0  if p[m/Zl/~r. 
This implies 

LS~(r,O)a_~=l-[(l+p_~).~d,_2~ - ~(s) ~ 1 
a : l  p ~t~ ~(2s) d 2S-1 

and thus (9) becomes  s imply 

0 _  ~(k) 
cr ~(2k) 

This gives a second proof of (4). 

22k+ 17[.2k 

(2k-1)~ 
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