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ABSTRACT The popularity of video on-demand streaming services increased tremendously over the last

years. Most services use http-based adaptive video streaming methods. Today’s movies and TV shows are

typically recorded in UHD-1/4K and streamed using settings attuned to the end-device and current network

conditions. Video quality prediction models can be used to perform an extensive analysis of video codec

settings to ensure high quality. Hence, we present a framework for the development of pixel-based video

quality models.We instantiate four different model variants (hyfr, hyfu, fume and nofu) for short-term video

quality estimation targeting various use cases. Our models range from a no-reference video quality model to

a full-reference model including hybrid model extensions that incorporate client accessible meta-data. All

models share a similar architecture and the same core features, depending on their mode of operation. Besides

traditional mean opinion score prediction, we tackle quality estimation as a classification and multi-output

regression problem. Our performance evaluation is based on the publicly available AVT-VQDB-UHD-1

dataset. We further evaluate the introduced center-cropping approach to speed up calculations. Our analysis

shows that our hybrid full-referencemodel (hyfr) performs best, e.g. 0.92 PCC forMOS prediction, followed

by the hybrid no-reference model (hyfu), full-reference model (fume) and no-reference model (nofu).

We further show that our models outperform popular state-of-the-art models. The introduced features and

machine-learning pipeline are publicly available for use by the community for further research and extension.

INDEX TERMS Quality Assessment, quality of experience, video quality, full reference, no reference,

hybrid video quality models, UHD-1/4K, video streaming, machine learning.

I. INTRODUCTION

Considering the enormous increase of uploaded, watched and

shared videos, it is not a surprise that approximately 70%

of the overall internet bandwidth is spent for video stream-

ing [14], and this is projected to increase to about 80% to

90% by 2022 [13]. Today’s video streaming uses http-based

adaptive streaming (HAS) such as dynamic adaptive stream-

ing (DASH) [61] to distribute video contents to the end users.

The core idea of HAS is to automatically adapt the played

video quality to the used end device and in particular to the

available network bandwidth, to avoid stalling of video play

out due to buffer depletion, and continuously play out the

video at the highest possible quality even in low bandwidth
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situations. To enable such an adaption, it is required to store

several representations on the server. Each representation is

usually segmented into smaller portions of the video, with

a range of 2-10 seconds [61] each, so that the client can

smoothly switch to another representation during play out.

Technically it is further required to have meta-data stored

to assemble streams, usually done in a manifest file stored

on the server. Depending on the used approach, the mani-

fest file can also include representation headers. As another

application, DASH is further used for livestreaming of broad-

cast video content [18], which shows that this technology

is quite generic. Moreover, different adaptation strategies or

algorithms are investigated to improve quality of experience

of users during video streaming [84], especially because the

server back-end is based on http, and does not require addi-

tional intelligence for adaptation at server level. There are
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efforts to also increase the tasks of the back-end server, e.g.

using back channel data to specify different encoding parame-

ters, or to collect andmonitor quality-related factors, see [19],

to improve streaming efficiency and stability by enabling low

latency and faster adaptation to bandwidth fluctuations.

Currently, there has been an increase in the usage of 4K

TV screens by end customers, and in addition 8K screens

are also available [76]. Furthermore, popular video streaming

providers such as Netflix [56], Youtube or Amazon Prime

Video are supporting 4K or even higher streaming resolu-

tions. Even at the recommended viewing distance of 1.5 or

1.6 times the height of the display for 4K content (maybe

even closer for 8K) and thus with visual angle per pixel below

visual acuity of approximately 1′, see [30]–[32], [82], it can

still be quite challenging for users to perceive differences

between videos at such very high resolutions, for example

between FHD (1920 × 1080) and UHD-1/4K (3840 × 2160

or 4096×2160). For this reason, Kara et al. [42] analyzed the

effects of labels on the perception of 4K content, and showed

that most users will not be able to see a difference between

FHD and 4K content, with similar results being presented in

the study conducted by Berger et al. [10]. Moreover, in [27],

it is analyzed whether people see a difference between FHD

and UHD-1/4K for uncompressed videos without additional

labels. In their work, Göring et al. [27] show that there is

only a perceivable difference for about 50% of the consid-

ered videos. This is the result of both the characteristics of

the recorded scene and the camera system and production

settings used. Since a clear conclusion on the suitability

of the usage of 4K based on specific content features was

not directly possible, the authors trained a machine learning

system using several pixel-based features to classify videos

in terms of whether viewing in 4K resolution can be distin-

guished from the less resource-demanding FHD alternative.

Similar analyzes regarding video source resolution have been

performed by Katsavounidis et al. [44] to evaluate the native

video resolutions. In general, 4K or UHD-1 videos show ben-

efits if the scenes are slow and with a lot of details, however,

the content has a huge impact on the perceived video quality,

which is also the conclusion of VanWallendael et al. [86].

Thus, it follows that video quality models should also con-

sidermore content diversity, for example for higher resolution

videos.

Moreover, in streaming situations with newer video

codecs, e.g. AV1 [1] or VVC [34], it is required to have a

proper understanding of the video quality subjectively per-

ceived by viewers. It is especially important when taking

into account that today’s video streaming platforms use more

optimized encoding settings, and that viewing strategies and

also user’s expectations and hence quality perception have

changed. The automatic encoding optimization can be per-

formed per title or even per scene or shot of a given video. For

example, Netflix now uses a scene-optimized encoding [43].

The main goal of encoding optimization is to deliver high

quality video material to users having low internet band-

width or experiencing strong bandwidth fluctuations. For

such optimization, video quality models of high accuracy are

required. For example, Netflix uses its own video quality

metric VMAF [57] in its optimization pipeline. However,

VMAF does not include a dedicated handling of framerate

variation [69], and in case of 4K it is not clear for which

video codecs it has been trained [58]. Moreover, it also

does not include any long-term analysis of video quality

suitable for video streaming sessions longer than the 5 to

10 s typically used for video-quality development. Hence,

there is room for improved video quality models for the case

of 4K adaptive streaming. VMAF is a full reference (FR)

model, where the reference and distorted videos are required

as input. In practical use cases, e.g. livestreaming, it is not

possible to have a proper reference video stored, making

such FR models less appropriate for this type of applica-

tions. Recently, there has been work within ITU-T Study

Group 12 on standardizing a set of different short-term video

quality models as the new standards series Rec. P.1204 [37],

[67]. There, also a pixel-based, full/reduced reference model

and a hybrid no-reference model have been standardized as

Recs. P.1204.4 [38] and P.1204.5 [72], respectively. While

the mentioned models enable high-accuracy and -precision

quality predictions [67], they are not based on a common,

modular framework that enables video-quality predictions in

a scalable manner, adding features as they are available. This

is what is provided with the present paper, as well as an

open-source implementation of all model components, which

can be used as the basis for further research.

To summarize the open points for video quality models in

case of 4K streaming, the following research questions have

been identified, which will be addressed in the remainder of

the article.

• Can a common feature set and architecture be used to

estimate video quality for several application scopes?

• Is it possible to develop no-reference pixel-based video

quality models that have a comparable performance to

full-reference models?

• Can pixel-based video quality models be extended by

meta-data to improve performance?

• Can center cropping be used to speed up calculation with

similar overall prediction performance?

• Are such models able to predict more than only mean

opinion scores?

To answer the identified questions, we introduce

pixel-based video features and a general model frame-

work. We describe four instances of the framework, (1) a

no-reference video quality model (nofu), (2) a hybrid

no-reference video model (hyfu), (3) a full-reference model

(fume), and (4) a hybrid full-reference video quality model

(hyfr). Here, hybrid models use additional data such as

which video codec, framerate, resolution and bitrate of a

given distorted video. Such meta-data is typically available

in the delivered manifest file that is required to imple-

ment the DASH play out. The paper describes the models

in detail, as well as a number of evaluation experiments,

where we show that our models are able to outperform
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FIGURE 1. Video quality model types with their corresponding input data.

other state-of-the-art video quality models. All models follow

the same architecture, thus they share similar or the same

features, depending on the available input data, and use

a machine learning pipeline to predict video quality. The

used machine learning models consist of a feature selection

step with an additional applied random forest step, how-

ever it should be mentioned that the introduced approach

is not limited to the used machine learning algorithms. The

modularity of the provided framework enables changing the

employed machine learning algorithms. Furthermore, the

source code for the features, model architecture,1 pre-trained

models2 and evaluation datasets3 are publicly available to

enable extensions and usage for the research community. The

published framework can be used for various problems in the

context of video quality, e.g. genre classification [26] or other

classification problems [27]. The main idea of the proposed

models, is to evaluate whether such a modular framework can

be used for video quality prediction considering UHD-1/4K.

Moreover, we analyze to which extent meta-data can improve

prediction accuracy, and how center cropping of the videos

can be used to speeding up calculations. In contrast to state-

of-the-art models, we additionally investigate different pre-

diction targets than the usual mean opinion score.

The article is organized as follows. In the next Section II,

we describe the state-of-the-art video quality models and

outline limitations or open questions regarding modern video

streaming applications. Afterwards, in Section III we describe

our proposed models of different types, from no-reference

to full-reference hybrid model instances. All models have in

common that they use pixel-based data to estimate video qual-

ity perceived by end users. To develop more advanced video

quality models, it is required to have valid, highly reliable,

and carefully designed training and validation databases. For

this reason, in the subsequent Section IV we describe the

1https://github.com/Telecommunication-Telemedia-Assessment/quat
2https://github.com/Telecommunication-Telemedia-

Assessment/pixelmodels
3https://github.com/Telecommunication-Telemedia-Assessment/AVT-

VQDB-UHD-1

used datasets, detailing e.g. the video encoding conditions

and corresponding subjective tests. Furthermore, we evaluate

our developed models in several scenarios, e.g. prediction

targets (mean opinion score prediction, quality as a classi-

fication and a multi-instance regression approach) and the

used center cropping. In addition, we compare the model

performance with other state-of-the-art video quality models,

see Section V. Finally, we conclude the article with a review

of our modelling results and of open aspects that are planned

for future work.

II. OVERVIEW OF VIDEO QUALITY MODELS

Image or video quality models are typically divided

into three main categories [7], [78]: no-reference (NR),

reduced-reference (RR) and full-reference (FR), depending

on the input data that is available for quality estimation.

In Figure 1 an overview of the different video quality

model types is shown, where each type has a different

input used to predict a video quality score. For example,

in case of a full-reference model, the distorted and ref-

erence video are fully accessible to the model. On the

other hand, for no-reference models, only the distorted

video or some meta-/bitstream data is used as input for

the model. No-reference models can further be classified

into pixel-based or bitstream-based models. In case of

bitstream-based models, a full decoding of the given video

is not required, consequently only statistics of the data stored

in the bitstream itself can be used. A typical example for a

bitstream-based video quality model is ITU-T P.1203 [36],

[66], [75], where in total four different modes of opera-

tion are distinguished. P.1203 is a bitstream based model

for adaptive streaming, thus it also requires typical input

data of an adaptive video streaming session, i. e., duration

of stalling events, quality switches and segment data. The

four different modes only change the way how segment

data is processed and how a video quality score is predicted

for each segment. In the lowest mode 0, only meta-data is

used (i.e. framerate, codec, bitrate, resolution). In mode 1,

also frame sizes are additionally included, while in mode 3

all bitstream data is available, and for example specifically
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selected QP (Quantization Parameter) values of single video

frames are used to predict segment quality. Mode 2 is similar

to mode 3 except that only a 2%-subset of all frame data is

accessible for prediction of quality. Finally, after applying the

mode-specific prediction of each transmitted video segment,

P.1203 uses these video quality scores in combination with

per-second audio scores, initial loading delay and stalling

event information to aggregate an overall audiovisual quality

score.

In general, two different aspects can be distinguished for

DASH/HAS based video quality estimation. First, how the

per segment video quality, which is usually referred to as

the short-term video quality, is estimated. And as second,

what is the overall audiovisual/video quality after a longer

time including stalling, audio quality and more, referred to

as long-term video quality. For example, ITU-T P.1203 [36]

handles both cases in an integrated framework, where overall

audiovisual quality can be estimated up to 5 minutes of video

duration.

Moreover, recently the ITU-T P.1204 [37] standard has

been approved. Models of this standard consider short-term

video quality including H.264, H.265, and VP9 encoded

videos up to UHD-1/4K resolution. Raake et al. [67] show

that the proposed models can also be used for unknown

datasets. The P.1204 models can be seen as an extension for

the short-term video component of P.1203. In the remainder

of the paper, we focus on the per-segment video quality

estimation aspect of DASH/HAS.

In general, combinations of several model types are possi-

ble, e.g. combining bitstream- and pixel-based models that

are usually referred to as hybrid models. In this article,

we focus on pixel-based models, in addition we also consider

hybrid models, where pixel-based data of a given video is

combined with meta-data. For our models we focus only on

mode 0 meta-data, where higher modes could be considered,

too.

Considering the variety of different DASH/HAS streaming

parameters, video quality depends on several factors, start-

ing from various used video codecs, differently optimized

encoding settings and corresponding bitrate-ladders, to a

large range of video contents that are streamed, in higher

resolutions and framerates. The existing set of models are far

from comprehensive as yet. For example, Barman et al. [7]

identified several open points, e.g. privacy, high model com-

plexity, multiple influence factors on video quality perception

and a limited handling of all of these, and even more. Thus,

it can be concluded that video quality prediction is still a

challenging task, based on a number of different influence

factors that need to be considered in video quality models and

their corresponding development process.

In the following sections, we briefly review some key NR,

RR and FR models. We consider models that are capable

of handling compression artifacts of modern video codecs

especially for higher resolutions (4K or UHD-1) and fram-

erates (up to 60 frames per second), even though not all of

these models were explicitly developed for these conditions.

We also describe some image quality models, which can be

extended or are being used for video quality prediction.

A. NO-REFERENCE MODELS

The first type, no-reference models, are suitable for numer-

ous practical use cases, due to the fact that they do not

require any additional input data other than the distorted

video. On the other hand, pixel-based no-reference models

are usually not able to reach the same prediction performance

as full-reference models, because they cannot compensate

the missing data of the reference video. This reason also

limits some possible applications of pixel-based no-reference

models. As a consequence, for example, no pixel-based

NR-model has so far been standardized by ITU-T SG12 or

the Video Quality Experts Group (VQEG4).

1) BITSTREAM BASED MODELS

As already introduced, ITU-T P.1203 [36], [66], [75], is a

bitstream based no-reference video quality model developed

especially for adaptive streaming use cases. The model is

trained on FHD videos of up to 5 minutes of video duration,

whereas the encoding was performed using several bitrate,

resolution and framerate settings using H.264. Considering

that current video streaming providers, e.g. Netflix, Youtube,

Amazon Prime video, use more recently developed video

codecs for their video streaming and encoding strategies,

P.1203 cannot directly be applied to such new codecs. For

this reason, Rao et al. [68] propose a method to extend P.1203

to modern codecs for mode 0, namely AV1, H.265 and VP9.

Besides inclusion of modern video codecs, the extension also

enables P.1203 to handle higher resolutions and framerates up

to 60 frames per second (fps). The extension only covers the

short-term video quality model of P.1203 that predicts video

segment scores and assumes that the overall audiovisual inte-

gration does not change. Considering that mode 0 models do

not have any knowledge about the underlying content, the

proposed extension can just be seen as a first starting point

for future extensions of the standardization work.

To cover more video codecs, higher resolutions and fram-

erates, the models from the newly standardized ITU-T

P.1204 [37], [67] series can be used, which were developed

for short-term video quality prediction. Here, ITU-T P.1204.3

is a bitstream based no-reference video quality model [39],

with full access to the video bitstream. P.1204.3 uses several

statistics that are extracted from the video bitstream [37],

[70]. For example, statistics about motion vectors, quantiza-

tion parameter, and frame sizes, covering H.264, H.265 and

VP9. The model itself consists of two parts, a parametric part

and a machine learning part. The parametric part is based

on degradation-based modeling, similar to P.1203.1 mode

3 [36], [66], whereas the machine learning part uses random

forest regression with feature selection to predict the resid-

ual not captured by the first, parametric part of the model.

Rao et al. [70] use the AVT-VQDB-UHD-1 dataset [69] to

4https://www.its.bldrdoc.gov/vqeg/vqeg-home.aspx
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perform an additional analysis of the model performance,

with an implementation of the model being made publicly

available.

2) NATURAL SCENE STATISTICS BASED MODELS

Beside bitstream-based no-reference models, pixel-based

models have been proposed in the literature. Two examples

are brisque and niqe, which both are part of scikit-video.5

In scikit-video, only the feature extraction of brisque and

niqe are included, the final model is usually a support vector

machine or regressor (SVM/SVR) [53], [54] which uses the

extracted features as input. Both methods are independent

of distortion-specific assumptions, and focus on measuring

differences in naturalness of the given input image. This is

realized using statistics of normalized luminance coefficients

to measure the differences to undistorted images using a

natural scene statistic model. niqe only extracts one value,

whereas brisque extracts 36 different feature values. Using

the extracted features, it is possible to train well perform-

ing image or video quality models, as it is shown in [22]

for images and [25] for 4K videos. Even for streaming

quality of gaming videos or sessions, these models can be

applied and show promising results [6], [8], [23]. However,

to apply them for such video quality prediction, a suitable

machine learningmodel needs to be trained, where in addition

ground truth values per video frame are required. At the

core, video-specific effects due to motion inside the video

or corresponding masking are not captured in these model.

In general, brisque and niqe can also be used as features

to develop new models, i.e. combined with motion related

measurements. A drawback of such the usage of brisque

and niqe or similar approaches is that a retrained machine

learning model requires a suitable ground truth. In addition,

the features were also not specifically developed to handle

high resolution images or videos. However, it was already

shown that both features in combination show promising

results even in case of 4K video quality prediction [25]. For

this reason we will include a brisque+niqe baseline model

as comparison in our evaluation, see Section V. Another

natural scene statistics based model is BIQI [55]. BIQI is

a no-reference distortion independent image quality metric,

which uses an SVM similar to brisque and niqe for final

score prediction. However, BIQI is only evaluated on low

resolution images based on the LIVE IQA [80] dataset.

3) DNN-BASED MODELS

Beside classical signal driven video quality models, mod-

els based on deep learning can also be used to estimate

video or image quality or encoding optimization [45],

[46], [51]. Most DNN-based quality assessment models

share similar approaches. For example, VeNICE [15], the

models of Bosse et al. [11], [12], Deviq/Deimeq [22], [25],

or Wiedemann et al. [90] all use some variant of local

patch quality estimation. In general, using transfer learning,

5http://www.scikit-video.org

a pre-trained DNN is applied to perform the quality evalua-

tion task on a per-frame basis. The usage of transfer learning

reflects the fact that the ground-truth data typically is too

sparse so as to develop a full DNN for image or video

quality prediction. For example, in case of VeNICE [15], the

VGG16 [81] network is used, similar to Bosse et al. [11],

[12], whose DNN-based quality model also operates with

the VGG network. The model Deviq/Deimeq [22], [25] uses

Xeption or Incpetion. Usually these pre-trained DNNs are

developed for image classification tasks, and are used in the

models as a feature extractor for image quality. In such cases

specific layers of the DNNs are used as features and are

combined or retrained to predict image quality. It was already

analyzed which DNNs are more suitable for image qual-

ity evaluation [22]. However, especially for high-resolution

videos or images, DNN-based processing is time-consuming,

and also retraining is not a straight-forward task, due to the

high amount of data that needs to be handled. Moreover,

it is not completely clear that for a patch-based training the

overall quality score of a frame can be assumed. This is shown

for example in [90], indicating that quality scores for local

patches can be used to estimate global image quality, how-

ever, for some other patch-based models, the opposite con-

clusion is reported. One no-reference model for video quality

is Deviq [25], which handles the mentioned high-resolution

problem using hierarchical sub-images to reduce the overall

number of patches. In contrast to other approaches, where the

last layer of the DNN is replaced by new layers, Deviq’s final

prediction is performed with an approach based on random

forests (RFs) including a feature selection step. The reason

for this is mostly due to the fact that RF models are faster

to train, and that the DNN is only used as feature extractor.

Moreover, a similar approach for no-reference image quality

is Deimeq [22], where the main focus is to analyze which

DNN is most suitable for image quality prediction. It can be

concluded, that the complexity of the DNN has an influence

on the ability to transfer the DNN to another image related

task, mainly because such models are specifically optimized

for the image classification task. Thus, e.g. faster models

like Mobilenetv2 [77] or VGG16 [81] are not fully suitable

for image quality, and on the other hand, complex models

like Xception and Inception are even able to have better

performance than signal based models [22]. Today, DNNs are

used for several image related tasks and are usually able to

outperform traditional methods. However, these DNN-based

models are slower for higher resolution images than usual

approaches, which is why for our models we focus on tradi-

tional signal-based features that perform fast even for higher

than 4K resolution videos.

One of the main problems for frame-based video quality

models is, that it is hard to obtain subjective video qual-

ity scores for individual frames in case of video stream-

ing. A common solution is that image quality models are

developed in a first step and later are applied in similarly

to video quality prediction. However, it is mostly not fully

covered how in such a case motion-related effects change
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video quality perception. On the other hand, subjective tests

and models based on continuously rated quality scores have

been proposed [4], using a slider for the continuous rating

of quality over time. It can be assumed that with this setup,

several influence factors can lead to different quality scores

over time, e.g. if participants are lazy to move the quality

rating slider, or if the current quality decision is too biased

of previously shown frames. Moreover, rating sliders also

cannot directly enable a per-frame quality scoring and hence

model-based estimation, because usual videos have several

frames per second and rating is performed with temporal

delay. For no-reference video quality models, there is another

possibility to get ground truth data on a per frame level. For

example, per frame scores can be estimated using a suitable

full-reference video quality metric, e.g. VMAF [6], [25]. A

drawback of this approach is that the scores are based on a

different model, and thus the overall performance of the new

model depends on the ability of the used full-reference score

to measure quality variation over time.

4) MODELS FOR OTHER USE CASES

Beside classical video streaming, there are other video con-

tents streamed using DASH or HAS, for example 360◦ video

or videos of gaming sessions. Due to the fact that such

scenarios include different properties of the given content,

it is required to develop or use content- or use-case-specific

models. In case of 360◦ video, it was already shown that exist-

ing models like VMAF are able to perform quite well [59],

if the equi-rectangular projection scheme is used, or that

even meta-data and hybrid models can be applied [20]. Simi-

larly for gaming sessions, VMAF has been reported to show

good performance [8]. However, especially in the context of

gaming, full reference models are hard to apply, due to the

specific live-encoding of the gaming content during the gam-

ing session. Thus even though full-reference models could

be used, in most application scenarios they are not feasible,

because users are not desired to use a lot of additional com-

puting resources, so fast no-reference models would be more

suitable.

For example, in [6], Barman et al. uses fifteen signal-based

no-reference features to build video quality models for gam-

ing video streams. The overall pipeline employs per-frame

estimated VMAF-scores as ground truth to train a per-frame

quality prediction component. The aggregation of the indi-

vidual features is performed using a Support Vector Regres-

sion (SVR) approach. Moreover, subjective scores are also

considered for overall video quality estimation. It is shown

that such application- and content-specific models are

able to outperform other no-reference models, and reach

results comparable with full-reference models. Similarly, the

NDNetGaming model [85] proposed by Utke et al. uses

image-based DNNs to predict image quality at a per-frame

level using several patches, where the ground truth for each

frame is based on VMAF-scores, combined using a final

aggregation to a video quality score.

With a similar goal, we adapted one of our mod-

els to the context of gaming QoE. In [23], we pro-

pose a gaming-specific version of our nofu model

(see Section III-D1), which uses a subset of the features

of the original nofu model to take into account the pecu-

liarities of gaming content, and predict video quality in

case of gaming streams. It is shown that nofu is able to

outperform a brisque+niqe retrained baseline model, and

that it achieves promising results in comparison with the

full-referenceVMAF.However, it needs to be noted that espe-

cially gaming videos share similar properties, e.g. computer

generated textures, different motion patterns, static head up

displays. Consequently, it is not clear if such models perform

similarly with general 2D video content.

In addition, bitstream based models can also be applied

to predict the quality of gaming videos. For example,

Rao et al. [71] evaluate the performance of the recently stan-

dardized ITU-T P.1204.3 model and a retrained variant

thereof for several gaming-specific video quality datasets.

In addition to GamingVideoSET and KUGVD, also a Cloud

Gaming Video Dataset (CGVDS) [97] and a dataset based on

Twitch are considered, showing promising results. Moreover,

it was shown that the ITU-T P.1203.1 model can be applied

to gaming videos [97].

All Gaming-QoE models use similar or even the

same underlying dataset, e.g. GamingVideoSET [9] or

KUGVD [6], where the used videos have a maximum reso-

lution of FHD with 30 frames per second. This is a limitation

due to the specific application use case of such models,

because recordings of gaming sessions require more hard-

ware resources, and even many games do not provide higher

resolution textures. However, it shows that no-reference

models in principle can reach good performance in case

of quality prediction for gaming sessions. Moreover, also

models have been proposed to bridge traditional videos and

gaming videos [96], with Zadtootaghaj et al. describing a

model consisting of several steps. Here, for example the

first step trains a convolutional neural network to estimate

blurriness and blockiness, and later it is trained with encoded

videos to fine tune the network. Afterwards, a random forest

model uses the predictions of the neural network to estimate

quality.

B. REDUCED-REFERENCE MODELS

A special case of video quality models are reduced-reference

models. They share properties with full-reference models,

e.g. that they require access to the source, i.e. reference video.

Source video properties are usually extracted before the dis-

torted video is processed. On the other side they are similar

to no-reference models, considering that they only have a

limited knowledge of the source video, thus a no-reference

model could be seen as a reduced reference model with-

out any knowledge of the source video. The approach of

a reduced-reference model is that in a first step the source

video is processed, and as an output, reduced data of the

source video is stored. Such reduced data is based on signal
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features, sampling or similar characterization of the source

video. Accordingly, all models that are based on features

extracted from the reference, and not on full pixel infor-

mation, can be referred to as reduced reference. In general,

reduced-reference models increase the prediction accuracy of

no-reference models, with their inclusion of side information

from the source video. Two examples for such models are

SpeedQA [3] and STRRED [83]. SpeedQA [3] is based on

spatial efficient entropic differencing for quality assessment

and STRRED [83] uses spatial and temporal entropic dif-

ferences. Another reduced-reference video quality model is

ITU-T P.1204.4 [38] that is based on edge statistics of the

distorted and reference video to estimate video quality.

Our focus in this article are no-reference, full-reference and

hybrid models, however some of our features and the model

pipeline can be also used to develop reduced-reference video

quality models.

C. FULL-REFERENCE MODELS

Compared to no-reference models, a full-reference model has

full access to both the distorted and source video sequence

pixel information. The simplest full-reference image qual-

ity model is Peak-Signal-To-Noise-Ratio (PSNR), where a

pure signal-based difference is estimated. It is well known

that PSNR does not match human perception and video

quality evaluation, both in general and especially in case

of higher resolution [25], [69], [87]. Beside the classical

PSNR, a measure that is also used as quality metric in

several applications is an extension of PSNR called the

PSNR-HVS [17]. PSNR-HVS takes properties of the Human

Visual System (HVS) into account. For this, PSNR-HVS is

based on a similar fundamental equation as PSNR, however

the calculations are done blockwise using DCT coefficients

with weighting and correction factors to include contrast per-

ception. With the mentioned extension, PSNR-HVS is able

to outperform PSNR and MS-SSIM in case of image quality

prediction for several distortion types [17]. However, using

PSNR-HVS in case of video does not include specific video

motion distortions, or high resolution related aspects. There

are other extensions of PSNR available, e.g. X-PSNR [29] or

for color CQM [93]. X-PSNR [29] is a low complexity exten-

sion of PSNR, that uses a block-wiseweighting approach, and

CQM [93] is variant of PSNR where the overall score is a

weighted sum of PSNR for luminance and chroma channels.

Most video quality models have their origin in

image quality estimation, such as Structural Similarity

Index Measure (SSIM) [88], [89] or Visual Information

Fidelity (VIF) [79]. In spite of their somewhat better repre-

sentation of the information the HVS extracts from images,

VIF and SSIM also show only low prediction performance in

case of high resolution videos, as reported in [21], [25], [69].

Netflix’s VMAF (Video Multimethod Assessment Fusion)

[50], [57] is a video quality model that is based on a combina-

tion of different image quality models. It is open source and

includes a trained model for 4K video quality prediction [56],

[58]. VMAF is based on two full-reference models, namely

VIF [79] (4 scales) and ADM2/DLM [49], In addition to

per-frame image-based quality features, it also includes a

simple motion estimation feature that is based on differ-

ences to a previously played video frame. VMAF can be

used to estimate 4K video quality, and it shows quite good

prediction accuracy even for newly conducted video quality

tests [25], [69].

As features, VMAF extracts several image quality scores

per frame, and in addition one motion feature. All per-frame

values are later aggregated with a Support Vector Regres-

sion (SVR) model. The SVR is trained to merge all features

into one quality score. The baseline non-4K enabled model

is trained on the publicly available Netflix public dataset,

including several videos up to FHD resolution with 30 frames

per second. In contrast, the 4K videos that are used for

training the 4K model version are not available. Based on

the per-frame video quality scores provided by VMAF, the

overall video quality can be calculated using several meth-

ods, from simple averaging to harmonic mean, or running

several models to further estimate a prediction confidence

interval. Such an approach is suitable for short-term video

quality prediction. In turn, for longer-term video quality esti-

mation, where besides a given set of segment quality levels

also stalling or quality switches can occur, other integration

approaches are required. In general VMAF does not include

such aspects and is therefore less suitable for long-term video

quality prediction.

D. HYBRID MODELS

Besides pure bitstream- or pixel-based video quality models,

combinations of models are possible, that are usually summa-

rized as hybrid models [5], [92]. For example, it is possible

to use a no-reference pixel-based video quality model and

extend the available input by using meta-data that pertains

to bitstream-based models. To describe the additional bit-

stream data, it is possible to use the modes that are defined

for bitstream based models in the series ITU-T P.1203 and

P.1204. For example, part of P.1204 is a hybrid no-reference

mode 0 model (P.1204.5 [72]), which uses meta-data, that

are accessible at the client side, and combines such features

with a pixel-based, no-reference video complexity feature.

The complexity feature uses a recorded version of the played

video and is based on the file-size of the re-encoded record-

ing. In a similar approach Yamagishi et al. [94] proposed a

model for IPTV, extending a meta-data based model by con-

tent complexity, using the Spatial and Temporal Information

(SI, TI) described in [41].

E. SUMMARY

We briefly described several no-, reduced- and full-reference

models.While most of the models were not developed explic-

itly for UHD-1/4K resolution, they can still be applied for

such higher resolutions. Accordingly, different studies have

found that some of these models also show a good prediction

performance. However, it is also clear that models specifi-

cally addressing the target of higher resolutions will perform
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FIGURE 2. General Video Quality Model structure consisting of feature extraction, temporal pooling and machine-learning-based model training or
prediction.

better in predicting subjective quality. In addition, only a

few models, such as VMAF, are capable to predict more

than a pure quality score. For example, VMAF can be used

to predict confidence intervals of several trained predictors

of the model, to further evaluate the prediction accuracy or

the underlying individual user ratings of the given video.

However, there are additional approaches possible, for exam-

ple the prediction of a rating distribution or only a quality

class. Both extensions are possible with our introduce model

framework and will be described later in detail. In addition,

it should be mentioned that our framework includes even

more features and approaches that are used and described

within this paper, to enable researchers to develop models for

various research problems in the context of video quality.

III. PROPOSED VIDEO QUALITY MODELS

To tackle the problem of video quality estimation with dif-

ferent types of available input data, we developed several

pixel-based video quality models. All models behave simi-

larly, moreover, they share specific features and conceptual

parts in a common framework. In Figure 2, the general

structure of the video quality models is illustrated. Usually

the distorted video and reference video have the same input

resolutions, pixel format and framerates, otherwise before

applying our model a conversion is performed to ensure this

condition. First, depending on the given input data that can

be accessed, features are calculated only from the distorted

video (no-reference), from distorted and reference (full-

reference), or including some additional meta-data. In gen-

eral, the features can be categorized into two groups, first,

motion-based features, and second, image-based features. All

implemented features and training code are part of quat6 and

the specific instances are part of pixelmodels.7 Both the gen-

eral framework and the instances are publicly available. Most

features are calculated on a per-frame basis, which leads to

the requirement of pooling to estimate a time-independent set

6https://github.com/Telecommunication-Telemedia-Assessment/quat
7https://github.com/Telecommunication-Telemedia-

Assessment/pixelmodels

of feature values. For this reason we select advanced temporal

pooling, a method that includes several statistical pooling

approaches, and that we already used to solve different video

quality research problems [23], [27].

As a last general step, all pooled features are used to

train a machine learning algorithm. In our case we use a

random forest model (120 trees for a no-reference and 240 for

a full-reference model) with a previously applied feature

selection step using the ExtraTreesRegressor algorithm. The

number of trees for all models has been evaluated using

10-fold-cross validation in several additional training runs.

Our implementation is based on Python 3 and uses scikit-

video8 for video processing and scikit-learn [62] for all

machine learning parts. However, it should be mentioned

that our introduced models are not restricted to the used

machine learning algorithms. We further analyzed different

algorithms, e.g. SVR, Gradient Boosting Regression (GBR),

. . . , and all lead to a similar performance. Here, RF mod-

els showed stable performance for all four model instances.

After training the machine learning model using the subjec-

tive scores included in the database, we are able to analyze

the prediction accuracy of our model. To this aim, we use

several commonly evaluation performance metrics, e.g. for

the MOS prediction scenario, i.e. Pearson Correlation Coef-

ficient (P or PCC), Spearman’s Rank Correlation Coeffi-

cient (S), Kendall Rank Correlation coefficient (K) and root

mean square error (RMSE).

In the following subsection, we describe the individual

parts of our model structure in more detail. We start with

the pixel-based features, describe further details regarding

speedup of calculations, temporal pooling, and finally con-

clude with different instances of our general model pipeline.

A. FEATURES AND MOTIVATION

Considering that video distortions introduced in the video

signal are heavily dependent on specific encoding settings

and the used codec, it is required to also have several features

8http://www.scikit-video.org/stable/
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handling such effects. In addition, also masking effects can

have a strong influence on perceived video quality [73]. To

describe the effects that are the reasons for the final quality

rating of a user, we group our features into two general sets,

namely motion-based (mov) and image-based no-reference

features (img). Further, we include several other features, e.g.

image full-reference features (img-fr). To enable our models

to use bitstream or meta-data, we include bitstream specific

features (bs). Table 1 summarizes all features of our model

pipeline, moreover also references to the source of the given

features are provided. Features marked with own are features

we have developed ourselves. It is noted that each feature

produces either per-sequence values (e.g. in case of bitstream

features) or per-frame values. Further, we added brisque as

additional features in our table, it will only be used for one

specific model.

Some of our own implemented features were already used

in different video quality related research directions, for

example for gaming video quality [23] or automatic estima-

tion of the perceivable differences of UHD and HD [27].

1) PER-FRAME NO-REFERENCE FEATURES

We developed or re-implemented several features that are cal-

culated on a per-frame basis. For example, colorfulness [28],

tone [2], and saturation [2] are features that are already

used in image aesthetics prediction, which we reimplemented

based on the published work. The rationale behind including

aesthetics features is that usual video content is getting more

and more diverse, so especially liking aspects are also influ-

encing user’s perception. Moreover, a similar argumentation

follows for our contrast feature, that we estimate using his-

togram equalization. We use the normalized average differ-

ence before and after correction of the histogram based on the

cumulative distribution function (CDF). Furthermore, spatial

and temporal information are additional factors influencing

video quality, for example comparing UHDwith HD, usually

spatial information is increased. For this, we use our imple-

mentation9 of the SI and TI measure, in the following referred

to as si and ti, that is based on ITU-T Recommendation

P.910 [41].

Beside si or ti, videos are rescaled during encoding to

lower resolutions to save bandwidth, such rescaling intro-

duces degradations in sharpness, or adds additional blurri-

ness. Usually users rate lower, if the images or videos lack

sharpness. For this reason, we implemented a blurriness fea-

ture blur that is based on Laplacian variance. Each frame

is converted to a grayscale image and afterwards a bilateral

filter is applied to remove some noise. As the last step,

a convolution with a 2D Laplacian filter kernel is performed.

Based on the result, we estimate our blurriness score. As

another way to recover some information about rescaling,

we re-implemented an fft feature, that is based on [44]. With

a similar motivation, especially for models that have no

access to the native distorted video resolution, wemeasure the

9https://github.com/Telecommunication-Telemedia-Assessment/SITI

TABLE 1. Overview of all included Features; # of values are either per
frame (/F) or per video sequence (/S); a * marks features that are
re-implemented.

similarity to the rescaled HD frame as uhdhdsim, using PSNR

as criterion. Here, for example a UHD-1/4K frame is rescaled

to HD resolution (half of the input resolution) and upscaled to

4K (to the origin resolution), afterwards PSNR is calculated

for the rescaled and non-rescaled frame. In addition to typical

blurriness degradations, also blockiness can be observed in

case of a badly selected encoding setting or a ‘‘fast’’ preset

of the used encoder, for example in case of livestreaming. To

measure block artifacts introduced due to high or suboptimal

compression as in a live context, we developed a measure for

blockiness. There are already features to measure blockiness

reported in the literature [63], [65], however these features

usually assume a fixed block size and are developed for JPEG

compression. To overcome these limitations, we decided to

develop an own feature, that shares some of the general ideas

of the aforementioned blockiness estimation approaches. In

general our feature checks commonly used block sizes and
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for a given blocksize b it estimated edges of the current frame.

Based on the edges it measuresmean differences in horizontal

and vertical orientation, assuming that if there are blocks

in a frame, that each b-th row/column has a different edge

distribution compared to the overall frame. A more detailed

description is presented in [23].

Video shots or scenes are mostly characterized by includ-

ing some kind of motion, for example a moving object,

or resulting from a moving camera. Hence, we also include

motion-related features in our model pipeline. As a first fea-

ture, we use a motion estimation approach that calculates the

RMSE to the previously played frame. This feature is referred

to as temporal. It shows a similar behavior as ti, however

still some differences can be observed. Moreover, to handle

foreground and background motion, we use a foreground

background segmentation algorithm of OpenCV (see [99],

[100]). Focusing on the foreground object, the percentage of

the moving area is used as motion indicator in our movement

feature. Similar to a video codec, we also use a blockmotion

estimation algorithm – blockmotion, that is part of scikit-

video. In our implementation, we use the SE3SS search

method, and use 10% of the video height as blocksize to

speedup calculations. Moreover, after extraction of moving

blocks, we count, for all directions, how often a moving block

was identified [23], [27].

Similar to what is described in [52], we further developed

motion features with a more global view. To this aim, we use

a sliding window of 60 frames, that usually corresponds to

about 1 second of the given video. This window is then later

handled as a cuboid, where we slide several planes to estimate

motion aspects. For example, the cubrow features handle row

slices of the cuboid, where cubrow.p refers to the used single

pixel p percent height of the cuboid. Accordingly, cubcol is

defined in an analogue way for columns.

We considered videos that include motion. However, some

videos are quite static, and to handle such cases, we include a

staticness measure staticness. For this reason, we calculate a

mean frame based on all currently played frames. If the video

is mostly static, the estimated mean frame includes a lot of

spatial information. That is whywe use, as final feature value,

the SI measure of the current mean frame.

In addition to staticness of the video, we further calculate

the amount of noise within a given video frame as noise. This

feature uses a wavelet-based estimator for noise [16].

To further analyze a given video, we check how many

scene cuts a video shot has. Our feature scene_cuts uses

resized 360p views of the given video frames and performs

a threshold-based detection for scene cuts, similar to the

method implemented in scikit-video, see [60], [95].

All features that we described so far are classical

no-reference features, thus a reference video is not required

to perform the calculation. In case of a full-reference model,

such features can be applied on the distorted and reference

video.Moreover, also differences of feature values comparing

distorted and reference video are considered in our model

pipeline.

2) FULL-REFERENCE FEATURES

To include typical full-reference aspects, we further use

some traditional full-reference image metrics, namely PSNR,

SSIM [88], [89] and VIF [79]. In the development stage,

we used a higher number of full-reference metrics, how-

ever there was no noticeable increase in performance. In

a pure full-reference scenario, where the distorted video is

e.g. recorded with a fixed framerate the model does not

know which framerate the transmitted distorted video has. To

handle this missing information, we developed a framerate

estimation feature fps_est. It compares frames of the distorted

and reference video in a sliding window of w = 60 frames,

assuming that in case of a distorted lower fps, there are

duplicated frames stored. Using RMSE of two consecutive

processed frames for the distorted and references video as

indicator, we check for the given window how many dupli-

cated frames are presented. The final estimated number of

frames is calculated using Equation 1, with ref0 and dis0
corresponding to the vector of RMSE values that are zero. In

the beginning, the window size w is not fixed, and as overall

feature we later pool several statistics so that the feature

fps_est becomes quite robust.

fps(w) = |w| − |dis0| + |ref0| (1)

3) BITSTREAM FEATURES

To handle hybrid mode 0 models, additional bitstream

or meta-data-based features are required. For this reason,

we extract meta-data of a given video file using ffprobe.

Most important meta-data are framerate, bitrate, video height

and width (resolution) and the video codec used. Including

these features, we calculate some additional values, starting

with resolution as height times width, logarithm of resolution,

bits-per-pixel (bpp), see Equation 2, logarithm of bitrate and

framerate, normalized values for framerate, see Equation 3,

and resolution, see Equation 4. Here, the normalization is

based on the maximum values for framerate and resolution.

Most of these additional feature values are inspired by

P.1203, whereas similar calculations are performed in the

mode 0 parametric model part [36], [66].

bpp =
bitrate

framerate · resolution
(2)

framerate_norm =
framerate

60
(3)

resolution_norm =
resolution

2160 · 3840
(4)

B. TEMPORAL POOLING OF FEATURE VALUES

In our machine learning pipeline, we train several models for

video quality prediction. Due to the fact that some of our

features are time-dependent, e.g. having per-frame values,

it is required to transform such features to time-independent

values, using temporal pooling of feature values. In con-

trast to other models, we include more than mean values

as statistics in our pooling strategy, since this enables a

better reflection of the temporal change of feature values.
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The approach taken is similar to the method used in [23],

[27], [70]. For example, let us assume that f is such a per-

frame-estimated feature vector for a given video and a single

feature. In case a feature includes several values per frame,

we convert it to individual vectors and perform for each of the

vectors the following calculations. For f we calculate: mean

value, standard deviation, skewness, kurtosis, inter-quartile

range, quantiles ([0, 1] with 0.1 stepsize), and the last and

first value of f . Here, the last and first values are used to

frame the feature values. In addition, we split the values of

f into 3 equidistant temporal groups, and for each group we

calculate mean and standard deviation. With this method, for

each feature we extract 25 statistical values in total that are

time-independent and are later fed into our machine learning

pipeline.

C. SPEEDUP AND ERROR COMPENSATION

There are several ways to speed up calculation of software

in general. Besides vectorization, parallelization that better

utilizes modern hardware and approximations could be used.

Considering the amount of data for uncompressed 4K video,

it is clear that processing will require cpu-time. For exam-

ple, in case of 4:2:2-10bit 4K uncompressed video, a frame

has a size of ≈ 20 MByte, with usually 60 frames played

in a second. Moreover, classical pixel-based video quality

models are not specifically tuned to be fast. Two possible

types of sampling-based reduction can be performed, e.g.

sub-sampling of frames, and per frame sub-sampling. In this

paper, we consider only the reduction of per-frame informa-

tion, to not interfere with temporal/motion related properties

of the video. Our general idea is based on the approach

presented in [21], where a center crop of the video is used

to estimate video quality.

It is clear that such an approach has a stronger content

dependency than the full-frame calculated model version.

However, for example it was shown [21] that a center crop

of 360p introduces only a rather small error compared to

full-frame estimatedVMAF-scores. The introduced error was

below the error that occurs while repeating a same subjective

test at different labs [64]. Moreover, the models instances

from our framework are able to compensate some center

cropped errors due to the used machine learning model, and

using some more features than would be required.

D. MODEL INSTANCES

Using the introduced general model framework, that includes

various features, it is possible to create several model

instances. Each specific example model instance has a differ-

ent application scope, which we will also highlight in the fol-

lowing description. Our model instances focus on pixel-based

and hybrid models. For all models, as the default we use a

360p center crop. In addition, we evaluate larger crops and

uncropped model variants (see Section V-D).

1) nofu –NO-REFERENCE

The first model instance is a no-reference model, referred to

as nofu. It uses all img,mov and img-nofu features shown in

Table 1. In total 64 feature values per frame are estimated.

The brisque feature that is part of img-nofu is only used

in this model, because here it showed an improvement in

performance, while for the other models no improvement was

found. All other parts of our introduced model pipeline are

the same, such as the temporal pooling method. No-reference

pixel-based video quality models are required in case a ref-

erence video is not accessible, and also additional meta-data

cannot be extracted, for example for a given client session.

Thus, the typical application for no-reference models is qual-

ity estimation for screen recordings of third-party services,

or in case such a model is fast enough for real time quality

monitoring [74]. Example applications include quality mon-

itoring in case of live-streaming of broadcasting channels,

or streaming of gaming sessions. We already successfully

applied a reduced variant of nofu to estimate gaming video

quality [23]. In our evaluation experiments it outperformed

the unmodified VMAF model. For the considered case of

gaming-video streaming prediction, we used a reduced fea-

ture set and a lightweight temporal pooling method, because

gaming videos have different properties compared to the

wider range of common videos.

2) hyfu –HYBRID NO-REFERENCE

As another model instance based on our features, a hybrid

model is proposed, referred to as hyfu. hyfu uses all img,

mov and bitstream bs features listed in Table 1. Thus, hyfu

is an extension of nofu with meta-data-based bitstream fea-

tures, and removing the brisque feature. The main application

of hyfu is client-side video quality estimation if meta-data

can be accessed, using screen recording, while the reference

video is unknown. For example, in case of YouTube, Net-

flix and Amazon Prime Video, it is possible to estimate the

required meta-data based on the DASH manifest file.

3) fume –FULL-REFERENCE

Especially in encoding optimization approaches, the source

video is accessible, and enables the application of

full-reference video quality models. We introduce a model

called fume that is based on all img,mov, img-fr andmov-fr

features described in Table 1. fume is a combination of pure

no-reference pixel-based features with full-reference fea-

tures, similar for example to the combination of full-reference

features with motion features in case of Netflix’s VMAF.

The no-reference features are calculated for the distorted

and source videos, whereas also differences of both fea-

ture values are stored as additional values. It is noted that

the application scope of full-reference models is not lim-

ited to encoding optimization, since also at the production

side the reference video often is available. In addition,

it is also possible to use a high-quality encoded version

of a given video as reference, considering that the result-

ing error for the final prediction is much smaller than the

quality-impact introduced due to lower-bitrate encoding and

processing.
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4) hyfr–HYBRID FULL-REFERENCE

As last model instance, we developed a hybrid full-reference

model called hyfr. It includes all features (img,mov, img-fr,

mov-fr and bs) that are listed in Table 1. hyfr can be applied

to monitoring or encoding optimization tasks, especially in

cases where also knowledge of the underlying bitstream is

accessible, in our case usingmeta-data. Especially to not fully

focus the model on the used encoding schemes, we decided to

only include some basicmeta-data based features as bitstream

features.

5) EXTENSIONS

We described four baseline models, that use our introduced

modelling and feature approach. However, further video qual-

ity models can be developed using the features. For example,

a reduced reference model could perform no-reference fea-

ture extraction on the reference video and use these features

similar to fume, except the full-reference features, here with

differences regarding these no-reference features used for

estimation. Also, other prediction targets or analyses can

be performed. For example, for gaming videos we already

evaluated a nofu variant [23] or an algorithm for classification

of gaming genres [26]. Accordingly, also video encoding

estimation as a classification task can be performed [24].

Moreover, additional bitstream-based features could be used

to enable higher modes of hybrid model variants, for example

mode 3, according to ITU-T P.1203.1 [36] using QP val-

ues, or in addition using motion statistics similar to ITU-T

P.1204.3 [39].

E. PREDICTION TARGETS

For developing video quality prediction models, usually a

set of subjective video quality tests is performed. In such

tests, a number of videos with different levels of distortion

are shown, and after each video, the test user (‘‘subject’’) is

asked to rate the video quality based on a given rating scheme.

In most cases, a single-stimulus test paradigm is used with

subsequent individual videos being shown. Here, in many

tests a 5-point absolute category rating (ACR) scale [35],

[40] is used, where 1 means bad quality and 5 excellent,

however also different other schemes are possible. In total

at least 24 participants are required to yield statistically reli-

able quality scores from such a video quality test, accord-

ing to ITU-R BT.500-13 [35]. In general, mean opinion

scores (MOS) are calculated averaging the individual ratings

for each stimulus v over the subjects. Those MOS values can

be directly used as prediction target in our introduced video

quality pipeline, in the following named asVQmos(v) 7→ float

reflecting a continuous value, so that the resulting model can

be conceived as regression-based. Providing predictions on a

MOS-type scale in a form VQmos(v) is the most common case

for video quality models.

However, even other prediction targets are possible

and will enable a more detailed understanding of the

underlying individual ratings of participants. Preference

could be another prediction target. In this case, pairwise

ratings and a corresponding overall MOS score can be

transformed with high correlations, depending on the

video content, where some additional influences can be

observed [47], [48], [91], [98].

In addition, based on majority or rounded mean or on

median ratings per stimulus v, the given video quality predic-

tion problem can be modeled as a classification task, in the

following noted as VQclass(v) 7→ int . The VQclass variant

of video quality prediction is a different version of VQmos
considering only discrete values. It still can be applied in

cases where users’ acceptance is required or a less granular

quality monitoring is appropriate. For example, if a faster

model with lower accuracy is used, the classification view can

be a first indicator whether quality drops or other technical

problems occurred in a streaming provider scenario. More-

over our classification scenario for quality just represents

any kind of video classification problem using the described

features within our proposed framework.

Another possibility is to model the video quality predic-

tion task as multi-output regression problem. In such a case,

for each video, a distribution of ratings based on individ-

ual subjects’ scores is predicted. To this aim, the following

assumptions are made her, which can be extended depending

on the scope and available subjective data. In a subjective

video quality test with the typical within-subject design, n

participants were asked to rate the quality of the presented

videos using the 5 point ACR scheme. It is noted that this

approach can be extended to other rating schemes as well.

Thus, it follows that for each video in the subjective test, n

ratings are available. We define all ratings for a given video

v as ratings(v), see Equation 5.

ratings(v) = [rating(v, u1), . . . , rating(v, un)], (5)

where rating(v, ui) ∈ [1..5] represents the categorical rating

of user ui for the video v. Using the individual ratings, a dis-

tribution can be calculated counting the frequency of each

possible rating and normalizing it by n, see Equation 6.

prob(v)= [(r, |rating(v, ui) = r|/n); ∀i ∈ 1..n ∧ r ∈ [1..5]]

(6)

If only a specific rating should be analyzed, the notation in

Equation 7 is used.

prob=r (v) = |rating(v, ui) = r|/n; ∀i ∈ 1..n (7)

prob=r (v) is the probability that a given user will rate the

video v with the rating r .

Here, we focus on predicting the value of prob=r (v)

for a given video and all possible ratings r . For exam-

ple, a video v was rated by 3 participants, with the rat-

ings ratings(v) = [2, 5, 3]. In addition, it can be calculated

that prob(v) = [(2, 1/3), (3, 1/3), (5, 1/3)], and respectively

prob=1(v) = prob=4(v) = 0, prob=2(v) = prob=3(v) =

prob=5(v) = 1/3.

We can use these probability values as video qual-

ity prediction targets, in the following referred to as
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VQprop(v) 7→ [prob=1(v), prob=2(v), prob=3(v), prob=4(v),

prob=5(v)]. Our general idea is that for each possible rating

r a separate regression algorithm is trained to predict the

corresponding prob=r (v) values for all possible ratings r =

1..5, meaning the video quality prediction task is modeled

as a multi-output regression problem. It is not required to

always train the same type of regression algorithm, thoughwe

consider the same machine learning method for all possible

ratings r .

IV. SUBJECTIVE VIDEO QUALITY DATASETS

To train the proposed and presented video quality models,

we use the four subjective tests that we conducted as part of

the P.NATS Phase 2 competition that resulted in the ITU-T

Rec. P.1204 series of standards [37], [67]. These will be

referred to as the AVT-PNATS-UHD-1 dataset in the remain-

der of the paper. These models are further validated and

evaluated using the superset of our publicly available dataset

AVT-VQDB-UHD-1 [69]. This superset comprises additional

source videos employed in the tests that cannot be shared.

All tests used the ACR methodology. The test session was

preceded by a visual acuity test conducted for each participant

using Snellen charts, as recommended in ITU-T P.910 [40]

and ITU-R BT.500-13 [35]. A viewing distance of 1.5 × H

was used in all tests, with H being the height of the screen.

The test was conducted in a controlled lab environment fol-

lowing distances, lighting and other conditions according to

ITU-T P.910 [40] and ITU-R BT.500-13 [35], more details

are presented in [69]. The ratings were performed using the

AVRateNG10 software. The suitability of the test participants

was checked by performing outlier detection. A participant

was categorized as an outlier if that participant’s individual

ratings had a Pearson Correlation Coefficient (PCC) lower

than 0.75 with the mean ratings across all participants. This

method has been widely used in literature, most notably for

developing ITU-T Recs. P.1203 and P.1204 [36], [37], [67].

We will briefly describe the conducted tests underlying the

AVT-VQDB-UHD-1 dataset, and also provide an overview

of the AVT-PNATS-UHD-1 dataset that is used to train our

models instances.

A. TRAINING DATASET: AVT-PNATS-UHD-1

Four subjective tests that were designed and con-

ducted within the P.NATS Phase 2 competition form the

AVT-PNATS-UHD-1 dataset and are used to train the pro-

posedmodels. Each of the four tests usedmore than 50 source

contents of 7–9 s duration with 3 sources being common

across all databases. These sources were used in combination

with 5 common encoding conditions also referred to as the

hypothetical reference circuits (HRCs) to form the anchor

conditions across the 4 tests. The rationale behind using such

a high number of sources is to have content variation across

tests so that the models submitted as part of the P.NATS Phase

10https://github.com/Telecommunication-Telemedia-
Assessment/avrateNG

2 competition were capable of handling contents of differ-

ent genres and complexities. The framerates of the source

contents between 24 fps to 60 fps. All tests used HRCs with

framerates in the range from 15 fps to 60 fps with a condition

that the framerate of the encoded video was never higher than

the source framerate. For each HRC, one encoding bitrate

selected from the range 100 kbps to 50000 kbps and one

resolution between 360p and 2160p was selected and several

such HRs are used in all the tests to cover the full range of

possible distortions.

Three different codecs, namely, H.264, H.265 and VP9

were used in all the 4 tests. In addition to the offline encoding

of videos, segments from services such as YouTube and Bit-

movin were used to include real-world encoding settings in

the tests. Due to the high number of sources used in the tests,

a full-factorial test design was infeasible, and hence every

source was repeated only between 3 and 5 times with different

HRCs. All the four tests used a 55’’ LG OLED screen to

present the videos.

The first test in this dataset used 52 sources in combina-

tion with different HRCs, resulting in a total of 187 video

stimuli or processed video sequences (PVSs) being rated

by 27 participants. 2 outliers were detected using the defined

criterion. In the second test, 53 different sources were used

with 187 PVSs being rated by 36 participants, with 2 detected

outliers. For the third test, 52 different sources were encoded

with various HRCs, resulting in 185 different PVSs rated

by 30 participants, with 5 outliers being detected. The fourth

and final test used 53 sources with a total of 191 PVSs that

were rated by 28 participants. Following the defined outlier

criterion, 3 outliers were detected for this test.

FIGURE 3. MOS distribution of all video quality tests used for training.

The quality rating distribution of all the tests is as shown

in Figure 3. Here, it can be observed that mostly high-quality

conditions are included within the test, e.g. the majority

of ratings are between 3.5 and 5.0. Only a few conditions

are rated as bad quality, e.g. with MOS values below 2.0.

To further inspect the individual test subject ratings for

the AVT-PNATS-UHD-1 dataset, we created boxplots for

each possible rating as depicted in Figure 4. The mentioned

probability refers to the VQprop problem formulation, see

Section III-E. Similar to the MOS distribution it can be
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FIGURE 4. Boxplots of individual user ratings and the corresponding
distribution for training.

concluded that high quality ratings are the majority within

this dataset.

B. VALIDATION DATASET: AVT-VQDB-UHD-1

The publicly available AVT-VQDB-UHD-1 [69] dataset

including the sources that could not be shared as part of the

original publication is used to validate and evaluate the pro-

posedmodel. This dataset consists of four different subjective

tests with each test following a full-factorial test design unlike

the training dataset. A total of 17 different sources of 8–10 s

duration were used in the four conducted subjective tests.

It is noted that in our evaluation, due to processing issues,

we excluded stimuli using the 10 s water_netflix sequence

(this holds only for test_1). All the sources have a framerate

of 60 fps. A wide range of encoding conditions have been

used in the tests, with resolutions ranging from 360p to

2160p, framerates between 15 fps and 60 fps and the encoding

bitrates between 200 kbps and 40000 kbps. In the following,

we will briefly present each of the four subjective tests that

make up the AVT-VQDB-UHD-1 dataset. A more detailed

description is presented in [69]. Like in case of the training

dataset, a PCC of 0.75 was used to detect outliers. Test_1, 2

and 3 were tests with different codecs and encoding settings

as in case of the training dataset AVT-PNATS-UHD-1, while

test_4 was conducted to analyze the effect of different fram-

erates on the perceived video quality.

FIGURE 5. MOS distribution of all video quality tests used for validation.

The quality rating distribution is as shown in Figure 5

for all four tests within the AVT-VQDB-UHD-1 dataset. In

contrast to the training database (AVT-PNATS-UHD-1), the

FIGURE 6. Boxplots of individual user ratings and the corresponding
distribution for the dataset used for model validation.

distribution shows that there are more low-quality conditions

included, however the majority of the stimuli are still of high

quality. In Figure 6, boxplots of per-user ratings are shown for

the AVT-VQDB-UHD-1 dataset. The overall dataset is more

balanced considering the different rating groups.

1) TEST_1

In this test, the HRCs were based on varying bitrates across

different resolutions. A total of six different source contents

were used, each of them being encoded at four different res-

olutions, namely, 360p, 720p, 1080p and 2160p. The videos

were encoded using two different bitrates for resolutions from

360p and 720p resolutions and three different bitrates for

resolutions of 1080p and 2160p. In total all videos were

encoded with three different codecs, namely, H.264, H.265

and VP9. All source videos have a framerate of 60 fps and

no framerate variation was included in the test. This resulted

in a total of 180 PVSs, which were rated by 29 participants.

A 65’’ Panasonic screen was used for video play out. There

were no outliers detected for this test.

2) TEST_2

This test follows a bits-per-pixel (bpp) approach for HRC

design with four different bpp values used for the four differ-

ent resolutions employed in the test. As in test_1, four differ-

ent resolutions, namely, 360p, 720p, 1080p and 2160p were

considered and the framerate was kept constant at 60 fps,

which reflects the framerate of the applied source contents. In

total six different source contents were used in this test, out of

which three were repeated from test_1. Owing to the higher

number of HRCs and the usage of four bpp values for each

resolution, only two codecs, namely, H.264 and H.265 were

considered for encoding videos in this test. A total 192 PVSs

were played out on a 55’’ LG OLED screen for each subject.

They were rated by 24 participants, with no outliers being

detected.

3) TEST_3

Test_2 and test_3 together form a subset within the

AVT-VQDB-UHD-1 dataset which follow a bpp approach

to HRC design. Same bpp and resolutions were used as in

test_2 but with H.265 and VP9 codecs to encode the video

with the source contents being the same as in test_2. The

H.265 encoded videos act as the anchor conditions between
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test_2 and test_3 thus enabling the comparison of all three

codecs across the two tests. As in test_2, there were a total

of 192 PVSs in this test. 26 participates took part in the test

and there were no outliers. As in test_2, a 55’’ LG OLED

screen was used to play out the videos.

4) TEST_4

Since test_4 is a test to compare the effect of different fram-

erates on the perceived video quality, the HRC design was

based on a variety of framerates, and hence only one codec,

namely H.264 was used for video encoding. In total eight

different source contents with no repetition from the previous

tests were used in this test. The source contents were encoded

in four different framerates, namely, 15 fps, 24 fps, 30 fps

and 60 fps, along with six different resolutions between 360p

and 2160p. This resulted in a total of 192 PVSs being rated

by 25 participants. In this test, the videos were played out on

the 55’’ OLED screen also used in test_2 and test_3. In test_4,

two outliers were detected using the criterion of 0.75 PCC.

V. EVALUATION

In the following section, we will present the results of the

presented four models, namely nofu, hyfu, fume, and hyfr,

considering different prediction targets.

Moreover, we will perform an in-depth analysis of how

the proposed center cropping approach will affect the model

performance. Our training and validation does not have over-

lapping source videos. This enables a critical view on the per-

formance of our models, because the model will be evaluated

with unknown data.

For training we use all 764 stimuli included in the

AVT-PNATS-UHD-1 dataset. Whereas the validation is

based on the videos of our publicly available database

AVT-VQDB-UHD-1, with a total number of 756 stimuli. The

trained models are part of the open source software to enable

reproducibility of our evaluation.

In the following we will evaluate the performance, for all

models, first for the classification problem, then the regres-

sion problem (classical video quality evaluation), and finally

the distribution prediction (multi-output regression problem).

All three different prediction targets have different applica-

tions. For all models, we use 360p center cropping to speed

up the feature extraction. A more detailed evaluation of the

center crop used will also be performed in this section, even

considering the computation time.

A. CLASSIFICATION PROBLEM: VQclass

In contrast to the regression problem formulation, VQclass
uses rounded MOS values as target. Thus, this problem

formulation is a classification problem and different per-

formance metrics are required, e.g., we consider accuracy,

precision, recall, f1-score (f1) andMatthews correlation coef-

ficient (mcc) to evaluate the final classification models.

In Figures 7, normalized confusion matrices for all mod-

els considering the full validation data are shown. The best

model clearly is hyfr, followed by hyfu, fume. The worst

performing model is nofu, here it is visible that many cases

are wrongly classified. In general, all models have in common

that the quality classes with class = 5 and class = 1 are

hard to predict, which is visible in the shift in the confusion

matrix from the optimal diagonal line. The reason for this is

that in the training dataset such ratings are rare, whereas in

the validation dataset such cases occur more often.

TABLE 2. Performance values for VQclass for all models; sorted by tests
and mcc, rounded to 3 decimal places.

A detailed view of performance values per subjective test

that are included in the AVT-VQDB-UHD-1 dataset is pre-

sented in Table 2. The lowest performing test is test_4, here

models reach amaximummcc of≈ 0.35. In contrast to test_1,

with the best mcc of ≈ 0.52 in case of the hyfr model. The

general problem formulation asVQclass seem to bemore. This

can also be argued by the fact that the underlying video qual-

ity tests were targeted to cover video quality as mean opinion

score and not as classification. Here a specifically designed

test with a reduced number of classes (e.g. only high, medium

and low quality) would lead to a better performance of the

models.

B. REGRESSION PROBLEM: VQmos

As second prediction target, we introduced the quality pre-

diction task as a regression problem VQmos.

In Figure 8, scatter plots for all four models are shown

and in Table 3 a detailed view. For both the scatter plots

and Table 3, a linear fit of the predicted and ground truth

ratings was performed, according to ITU-T P.1401 [33]. The

best model for this task is hyfr, followed by hyfu and fume.

The performance of nofu is the worst, reflecting that the

no-reference video quality prediction task is also the hardest.

An important factor to bementioned here is that the validation

data and encoding is completely unknown to the models, and
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FIGURE 7. Confusion matrices for all models for VQclass.

nofu will perform better if it is specifically trained on the

encoding and content type that is used for prediction. Such

training specific to the application scope can improve the

performance of nofu.We already evaluated such a specialized

model in case of nofu for gaming videos [23], where the

performance of nofu was comparable to the performance of

VMAF. Furthermore, it can be seen that the included mode 0

knowledge (bitrate, framerate, resolution) of the distorted

video is a benefit for developedmodels, increasing the perfor-

mance from e.g. ≈ 0.84 pearson correlation in case of fume

to ≈ 0.92 in case of hyfr, where the only difference between

these two models is the inclusion of such meta-data. Similar

performance boosts can be observed for the models hyfu and

nofu, even though nofu includes one additional no-reference

feature (the inclusion of this specific feature to hyfu showed

no performance improvement).

In addition to the evaluation of our models and because

the usual video quality problem is handled as VQprob, it is

possible to compare our results with different state-of-the-art

models.

In Table 4, performance metrics for the

AVT-VQDB-UHD-1 dataset for VMAF, ADM2, MSSSIM,

SSIM and PSNR are shown. We only considered

full-reference state-of-the-art models, because they are

included in the public implementation of Netflix’s VMAF

and they have already been evaluated for UHD-1/4K content

showing good results. Moreover, even though it is pos-

sible to re-train, for example VMAF, using our training

databases, we only consider unmodified versions of the mod-

els, to enable reproducibility. Further, we used the objective

model values that are included in the AVT-VQDB-UHD-1

dataset, here a similar linear fit was performed to ensure

comparability. The best models for all tests included in the

validation database are VMAF followed by ADM2. VMAF

reaches a pearson correlation of ≈ 0.81 across all tests, and

a maximum value of ≈ 0.94 in case of test_1. In comparison

to VMAF, our best performing model hyfr has a pearson

correlation of ≈ 0.92 for all tests and as best ≈ 0.94 for

test_1. SoVMAF and hyfr have similar performance, except

that VMAF has a higher error in case of test_4, where more

framerate variations are included, which the model was not

specifically developed for. In general, test_4 seems to be

the hardest for all models, and it should be mentioned that

the training data does not cover a similar range of framerate
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FIGURE 8. Scatter plots for all models for VQmos. For each subjective test a linear fit was performed.

variations. It can further be observed that the hybrid models

predict the video quality for test_4 more precisely. However,

comparing all of our models to VMAF, it can be stated that

hyfr, hyfu and fume outperform VMAF considering all four

tests. fume has a pearson correlation of ≈ 0.84 for all tests

compared to VMAF with ≈ 0.81. Comparing fume and

VMAF they are both full-reference models using several

atom features for the overall quality estimation, however

fume includes more temporal specific features, that cover

motion related aspects, where on the contrary VMAF just

includes a basic motion feature similar to ti. The model hyfu

also outperforms VMAF for all tests, without having access

to the source video. Our worst performing model nofu has

a similar performance as PSNR all tests, and also shows

better results for e.g. test_4 compared to other models. The

performance of nofu can even be improved if larger center

crops are used, as it is shown in Figure 10. However, PSNR

is a full-reference metric compared to nofu that just uses the

distorted video for prediction. Thus, the overall performance

of nofu can be considered as relatively good.

C. MULTI-OUTPUT REGRESSION PROBLEM: VQprob
Besides the prediction problems formulated as classifica-

tion VQclass and regression problems VQmos, respectively,

we further introduced the multi-output regression problem

VQprob. Here, for a given video sequence, the prediction con-

sists of several values, one for each possible rating category

(r ∈ [1, 2, 3, 4, 5]). For each rating category, that one value

represents the probability of users selecting that rating.

In Figure 9, for all models the prediction performance

in terms of pearson correlation is shown for each possi-

ble rating r , considering all tests of the validation dataset

AVT-VQDB-UHD-1. Similar to the VQmos problem, the best

model is hyfr, followed by hyfu, fume and nofu. The lowest

performance for prediction for all models is in case of the

rating r = 3. Here, a possible reason may be that the training

database mainly consists of high quality ratings above 3.5 in

terms of MOS.

Additional performance measures are summarized in

Table 5. For each rating target r , we include Pearson, Kendall

and Spearman correlation values with regard to the ground
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TABLE 3. Performance values for VQmos for all models; sorted by test
and pearson, rounded to 3 decimal places.all refers to the linear fit for
each database and calculating the metrics after this normalization thus is
not an average of the individual test performance values.

TABLE 4. Performance values for VQmos for state-of-the-art models;
sorted by test and pearson, rounded to 3 decimal places. all refers to the
linear fit for each database and calculating the metrics after this
normalization thus is not an average of the individual test performance
values.

truth data. The best prediction is clearly the case where

r = 5. This is due to the mainly high quality ratings that

are part of the training and validation datasets. Further, for

such high-quality cases with MOS ≈ 5, almost all subjects

FIGURE 9. Performance across all tests in case of VQprob considering all
four models, with 95% confidence intervals.

must have rated r = 5, to achieve such a high mean rat-

ing. As can be seen from Figure 9, the values for Kendall

and Spearman correlation behave similarly as the Pearson

Correlation does, thus the worst performing prediction tar-

get is r = 3. Here, it should be mentioned that the used

multi-output regression approach trains separate models for

each rating r ∈ [1, 2, 3, 4, 5], for this reason there is no

connection between the individual prediction targets given.

A different machine learning pipeline or algorithm that takes

into account such hidden connections could improve the pre-

diction performance.

TABLE 5. Mean performance values for VQprob for all tests; sorted by
rating and Pearson, rounded to 3 decimal places.

D. CENTER CROP EVALUATION

As mentioned in Section III-C and III-D our model instances

use a center cropped version of the input videos to calculate
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features. This approach is similar to the cencro approach

proposed in [21]. However, in that previous work, several

full-reference models were applied on full-frames, and an

additional evaluation using center cropped frames was per-

formed. In the present paper, we want to further evaluate the

proposed center cropping approach and its impact on the per-

formance and feature calculation speed. In total, we selected

five different center cropping settings namely 240p, 360p,

720p, 1080p and 2160p, where the last setting refers to the

full-frame, thus no center cropping being used. For each of

the center cropping settings, we trained all four models with

the training dataset described in Section IV. In Figure 10, the

performance values for all models and cropping settings are

shown, considering 10-fold-cross validation of the employed

training data. We performed 32 training repetitions. In this

part, we only focus on the evaluation of the VQmos problem

formulation. Similar results can be observed with the other

variants and also using the validation dataset.

FIGURE 10. Prediction performance evaluation of different center
cropping values, based on 32 training runs for each model and each
center cropping value.

First, it is notable that there is only a small improvement

for the models hyfu, fume and hyfr in case of different center

crop values. In contrast to nofu, here the performance can be

slightly improved using a larger center crop. A 360p center

crop for nofu results in a pearson correlation value of around

0.73, whereas the center crop setting of 720p improves it to

0.75, 1080p ≈ 0.76 and 2160p results in 0.76. The worst

performance of around 0.70 is in case of a 240p center

cropping setting. All the other models have nearly the same

rounded performance considering the introduced center crop

variations. However, to have a uniform structure of all models

we decided to also use a 360p center crop for nofu, even if

the performance is slightly lower than a for 720p center crop,

pearson correlation of 0.75 vs. 0.73.

The processing time is an important factor in addition to

the overall performance of all models considering the used

center cropping parameter. For this reason, we measured the

overall model prediction time, including the conversion of

the distorted video to the center cropped variant, the time

required for feature extraction and model prediction time.

Especially the feature extraction time is the major part of the

overall processing time for our introduced model instances.

We selected one video sequence (american footbal, 360p

resolution target encoding resolution, bitrate = 200 kbit/s,

video codec vp9) as test sequence, and measured the overall

processing time of all center crop variants for 32 repetitions,

where each run removes all cached files of the previously

performed run. Different videos will end up with slightly

different processing time that is required because the features

are content dependent. However, the overall connection of

different center crops will be similar, as it has been already

shown in [21]. Here, it should be mentioned that all of our

steps are single core optimized (except the conversion of the

distorted video, here several cores are used). The introduced

and published framework allows for parallel processing con-

sidering different videos in a data parallelization manner. All

measurements were performed on the same computer, with

a Intel Core i7-9700 CPU (3.00 GHz) with 64 GB of main

memory and local file access (SSD).

FIGURE 11. Overall processing time for quality prediction considering
different center cropping values. Shown are mean values and 95%
confidence intervals across 32 repetitions each.

In Figure 11 mean values with 95% confidence inter-

vals for each center cropping parameter and each model are

shown respectively. The fastest two models are clearly the

no-reference models (nofu and hyfr), with the hybrid model

being slightly faster, due to the fact that it does not include

the img-nofu feature. In addition, it clearly can be seen

that there is an exponential relationship between processing

time and used center crop setting, compare also Table 6. For

example, the hyfu model requires about 70 s for 240p and

≈ 2466 s for 2160p, thus 9 times the center cropping height

results in about ≈ 35 times the processing time. The other

models behave similarly across several center crop values. In

general the full-reference models need about four 3-4 times

the processing time, e.g. for hyfr in case of 720p it takes

around 1216 s, compared to ≈ 282 s for hyfu.

Considering the speedup that we can achieve using a cen-

ter crop and the negligible performance reduction for most
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TABLE 6. Mean processing time [s] for each model for different center
crop settings; values are rounded to integers.

of our models (except nofu), we selected a center crop of

360p as the best trade-off between speed and prediction

performance. This conclusion is along with our results of

other full-reference models [21], where a 360p center crop

was able to speedup calculation time significantly, while still

preserving high prediction accuracy of the models.

VI. DISCUSSION

We introduced our proposed framework for video quality

prediction and furthermore instantiated four different models

for three prediction targets.

The first prediction target handles video quality as a clas-

sification task VQclass. Here it is notable, that especially for

this formulation of the quality prediction problem seems to

be hard for our models. A main reason for this is that for such

a formulation a more uniformly distributed training dataset is

required. A more suitable training dataset should also target

classification for video quality, e.g. including only three main

classes, low, medium and high quality. From the analysis of

the used databases it can be seen that the lowest and highest

quality classes are not well predicted and also not represented

frequently enough in the training dataset.

Furthermore, our model nofu has a low performance com-

pared to the other model variants. An example reason for this

is the diversity of the underlying video content, and it was

reported that a more constrained nofu-based model variant

already shows better performance for gaming content [23].

Here the general challenge of pixel-based no-reference video

quality estimation is still an open and hard task, especially

when unknown video content is considered. As second pre-

diction target, we focus on the commonly used problem

formulation, namely video quality as a single continuous

score VQmos, thus our approach considers it as a regression

problem. Here, we show that three of our models (fume,

hyfu and hyfr) are able to outperform state-of-the-art mod-

els, e.g. Netflix’s VMAF, considering the used evaluation

metrics. Even though the model nofu shows a lower overall

performance compared to VMAF, it still shows a comparable

performance to PSNR and SSIM, which are also commonly

used video quality models. The evaluation shows in addition,

that the defined features are capable for the prediction tasks.

As last prediction target, we handle the video quality task

as a multi-output regression problem VQprob, where several

models are trained and predict a distribution of ratings. All

models show similar performance compared to the VQmos
formulation. However, the prediction of individual ratings r

could benefit of knowledge of the other ratings, thus further

analysis is required.

In addition to the three different video quality prediction

variants, we evaluate the used center cropping approach,

enabling us to speed up our feature calculation significantly,

with only a minor increase in prediction error in comparison

to the ground truth subjective scores. It is shown that the

introduced error is comparable to the error that would occur

when a subjective video quality test is repeated in a different

lab, according to [21], [64]. Only the model nofu could

benefit from a larger used center crop, however we decided to

even use for this model a 360p center crop to have a unified

model architecture. Beside the model performance, we also

evaluated the required processing time, and it can be seen that

there is a huge cpu-time saving when center-cropping is used,

this confirms and extends our observations in [21].

VII. CONCLUSION AND FUTURE WORK

We started with the observation that there are only a few

video quality models available and specifically trained for

UHD-1/4K video contents. Moreover generally there is a

wide range of features and subsequent integration approaches

described in the literature, without these being available in a

collection of tools suitable for developing own models. To

overcome these limitations, the paper introduces a general

video quality modelling pipeline, which is made available as

open source. Our model pipeline includes a set of features

that are image- or motion-based, and a temporal feature

pooling method. This allows for the evaluation of several

machine learning algorithms for the generic task of video

quality prediction. Besides the traditional modeling of video

quality using mean opinion scores in a regression scenario,

we described two further approaches, namely a classification

and a multi-output regression variant. Both new variants can

be used to further extend the application of video quality

models, for example considering different applications such

as prediction of uncertainties in user’s ratings or other video

classification applications beyond quality prediction.

Based on the model architecture, we instantiate four dif-

ferent video quality models that are publicly available. Two

out of the four models are pure pixel-based models (a

no-reference and a full-reference model – fume and nofu). In

addition, for each of these we describe a hybrid model exten-

sion, hyfu and hyfr, incorporating additional video metadata

about the codec used, resolution, bitrate and framerate. Such

meta-data is typical accessible during play out of a given

video, while other bitstream related data requires specifically

designed extractors.

To properly train and validate the models, we describe a

set of subjective quality tests conducted by our group that

we used for training and validation, where the validation

database is publicly available. As we further publish the

code of our models and their trained instances, it ensures

that our validation experiments are reproducible. In our eval-

uation, we show that our models have a similar or even

better performance than state-of-the-art models, whereas the
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hybrid models outperform the non-hybrid models. Moreover,

we evaluated three different prediction targets for the underly-

ing video quality estimation problem. For each of the problem

formulations we evaluated four model instances, whereas the

hybrid (hyfr and hyfu) and full-referencemodel (fume) show

the best results. Furthermore, we evaluated the introduced

center cropping approach regarding the prediction error, it is

shown that there is only a small negligible error introduced,

for this reason we used a 360p center crop for all instantiated

models.

Our introduced pipeline can even be used for different

video analyses, as we already showed in several of our

previously conducted work, e.g. video classification [27],

genre classification for games [26], estimation of encoding

parameters [24] or using the center cropping approach for

360◦ video quality [20]. Promising extensions of our models

could include further knowledge of the bitstream itself, sim-

ilar to the P.1204.3 model, where e.g. QP values and motion

statistics are extracted from the bitstream [67], [70]. In addi-

tion, the video quality problem formulations as classification

and multi-output regression tasks need to be further inves-

tigated, e.g. including specifically designed video quality

tests.

ACKNOWLEDGMENT

The authors would like to thank the Deutsche Telekom AG

Team, namely Peter List and Ulf Wüstenhagen, for their

inputs over the course of the work.

REFERENCES

[1] Aomedia. (2020). Av1 Overview. Accessed: Nov. 30, 2020. [Online].

Available: https://aomedia.org/av1-features/

[2] T. O. Aydin, A. Smolic, and M. Gross, ‘‘Automated aesthetic analysis of

photographic images,’’ IEEE Trans. Vis. Comput. Graphics, vol. 21, no. 1,

pp. 31–42, Jan. 2015.

[3] C. G. Bampis, P. Gupta, R. Soundararajan, and A. C. Bovik, ‘‘SpEED-

QA: Spatial efficient entropic differencing for image and video quality,’’

IEEE Signal Process. Lett., vol. 24, no. 9, pp. 1333–1337, Sep. 2017.

[4] C. G. Bampis, Z. Li, I. Katsavounidis, and A. C. Bovik, ‘‘Recurrent and

dynamic models for predicting streaming video quality of experience,’’

IEEE Trans. Image Process., vol. 27, no. 7, pp. 3316–3331, Jul. 2018.

[5] M. Barkowsky, I. Sedano, K. Brunnström, M. Leszczuk, and N. Staelens,

‘‘Hybrid video quality prediction: Reviewing video quality measurement

for widening application scope,’’ Multimedia Tools Appl., vol. 74, no. 2,

pp. 323–343, Jan. 2015.

[6] N. Barman, E. Jammeh, S. A. Ghorashi, and M. G. Martini, ‘‘No-

reference video quality estimation based on machine learning for

passive gaming video streaming applications,’’ IEEE Access, vol. 7,

pp. 74511–74527, 2019.

[7] N. Barman and M. G. Martini, ‘‘Qoe modeling for HTTP adaptive

video streaming–a survey and open challenges,’’ IEEE Access, vol. 7,

pp. 30831–30859, 2019.

[8] N. Barman, S. Schmidt, S. Zadtootaghaj, M. G. Martini, and S. Möller,

‘‘An evaluation of video quality assessment metrics for passive gaming

video streaming,’’ in Proc. 23rd Packet Video Workshop, Jun. 2018,

pp. 7–12.

[9] N. Barman, S. Zadtootaghaj, S. Schmidt, M. G. Martini, and S. Moller,

‘‘GamingVideoSET: A dataset for gaming video streaming applications,’’

in Proc. 16th Annu. Workshop Netw. Syst. Support Games (NetGames),

Jun. 2018, pp. 1–6.

[10] K. Berger, Y. Koudota, M. Barkowsky, and P. Le Callet, ‘‘Subjective qual-

ity assessment comparing UHD andHD resolution in HEVC transmission

chains,’’ in Proc. 7th Int. Workshop Qual. Multimedia Exper. (QoMEX),

May 2015, pp. 1–6.

[11] S. Bosse, D. Maniry, K.-R. Muller, T. Wiegand, and W. Samek, ‘‘Deep

neural networks for no-reference and full-reference image quality assess-

ment,’’ IEEE Trans. Image Process., vol. 27, no. 1, pp. 206–219,

Jan. 2018.

[12] S. Bosse, D. Maniry, K.-R. Muller, T. Wiegand, and W. Samek, ‘‘Neural

network-based full-reference image quality assessment,’’ in Proc. Picture

Coding Symp. (PCS), 2016, pp. 1–5.

[13] Cisco Visual Networking index: Forecast and Trends, 2017–2022.

Accessed: Feb. 17, 2021. [Online]. Available: https://davidellis.ca/wp-

content/uploads/2019/12/cisco-vni-mobile-data-traffic-feb-2019.pdf

[14] Cisco. Cisco Visual Networking Index: Forecast and Methodology,

2015–2020. Accessed: Feb. 17, 2021. [Online]. Available: http://www.

audentia-gestion.fr/cisco/white-paper-c11-738085.pdf

[15] P. P. Dash, A. Wong, and A. Mishra, ‘‘VeNICE: A very deep neural

network approach to no-reference image assessment,’’ in Proc. IEEE Int.

Conf. Ind. Technol. (ICIT), Mar. 2017, pp. 1091–1096.

[16] D. L. Donoho and I. M. Johnstone, ‘‘Ideal spatial adaptation by wavelet

shrinkage,’’ Biometrika, vol. 81, no. 3, pp. 425–455, Sep. 1994.

[17] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, and

M. Carli, ‘‘New full-reference quality metrics based on HVS,’’ in Proc.

2nd Int. Workshop Video Process. Qual. Metrics, vol. 4, 2006, pp. 1–4.

[18] A. E. Essaili, T. Lohmar, and M. Ibrahim, ‘‘Realization and evaluation of

an end-to-end low latency live DASH system,’’ in Proc. IEEE Int. Symp.

Broadband Multimedia Syst. Broadcast. (BMSB), Jun. 2018, pp. 1–5.

[19] O. El Marai, T. Taleb, M. Menacer, and M. Koudil, ‘‘On improving

video streaming efficiency, fairness, stability, and convergence time

through client–server cooperation,’’ IEEE Trans. Broadcast., vol. 64,

no. 1, pp. 11–25, Mar. 2018.

[20] S. Fremerey, S. Göring, R. Rao, R. Huang, and A. Raake, ‘‘Subjective test

dataset and meta-data-based models for 360◦ streaming video quality,’’

in Proc. IEEE 22nd Int. Workshop Multimedia Signal Process. (MMSP),

Sep. 2020, pp. 1–6.

[21] S. Goring, C. Krammer, andA. Raake, ‘‘Cencro–Speedup of video quality

calculation using center cropping,’’ in Proc. IEEE Int. Symp. Multimedia

(ISM), Dec. 2019, pp. 1–8.

[22] S. Goring and A. Raake, ‘‘Deimeq–A deep neural network based hybrid

no-reference image quality model,’’ in Proc. 7th Eur. Workshop Vis. Inf.

Process. (EUVIP), Nov. 2018, pp. 1–6.

[23] S. Göring, R. Rao, and A. Raake, ‘‘nofu—A lightweight no-reference

pixel based video quality model for gaming content,’’ in Proc. 11th Int.

Conf. Qual. Multimedia Exper. (QoMEX), Berlin, Germany, Jun. 2019,

pp. 1–9.

[24] S. Göring, R. Rao, and A. Raake, ‘‘Prenc—Predict number

of video encoding passes with machine learning,’’ in

Proc. 12th Int. Conf. Qual. Multimedia Exper. (QoMEX),

Athlone, Ireland, May 2020, pp. 1–6. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9123108

[25] S. Göring, J. Skowronek, and A. Raake, ‘‘DeViQ–A deep no refer-

ence video quality model,’’ Electron. Imag., Hum. Vis. Electron. Imag.,

vol. 2018, no. 14, pp. 1–6, 2018. [Online]. Available: https://www.

ingentaconnect.com/content/ist/ei/2018/00002018/00000014/art00017

[26] S. Goring, R. Steger, R. Rao Ramachandra Rao, and A. Raake, ‘‘Auto-

mated genre classification for gaming videos,’’ in Proc. IEEE 22nd Int.

Workshop Multimedia Signal Process. (MMSP), Sep. 2020, pp. 1–6.

[27] S. Göring, J. Zebelein, S. Wedel, D. Keller, and A. Raake, ‘‘Analyze

and predict the perceptibility of UHD video contents,’’ Electron.

Imag., vol. 2019, no. 12, p. 215, 2019. [Online]. Available:

https://www.ingentaconnect.com/content/ist/ei/2019/00002019/

00000012/art00009

[28] D. Hasler and S. E. Suesstrunk, ‘‘Measuring colorfulness in natural

images,’’ Proc. SPIE, vol. 5007, pp. 87–96, Jun. 2003.

[29] C. R. Helmrich, M. Siekmann, S. Becker, S. Bosse, D. Marpe, and

T. Wiegand, ‘‘Xpsnr: A low-complexity extension of the perceptually

weighted peak signal-to-noise ratio for high-resolution video quality

assessment,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.

(ICASSP), May 2020, pp. 2727–2731.

[30] Comparison of Quality Assessment of UHD and HD Videos at Two Dif-

ferent Viewing Distances, NTT, Tokyo, Japan, 2017. [Online]. Available:

https://www.itu.int/md/T17-SG12-C-0005/_page.print

[31] HDTV and UHDTV Including HDR-TV Test Materials for Assessment

of Picture Quality, International Telecommunication Union, Geneva,

Switzerland, document ITU-R BT.2245-3, 2017.

31862 VOLUME 9, 2021



S. Göring et al.: Modular Framework and Instances of Pixel-Based Video Quality Models

[32] The Present State of Ultra-High Definition Television, International

Telecommunication Union, Geneva, Switzerland, document ITU-R

BT.2246-6, 2017.

[33] Methods, Metrics and Procedures for Statistical Evaluation, Qualifi-

cation and Comparison of Objective Quality Prediction Models, Int.

Telecommunication Union, document ITU-T-P.1401, 2014.

[34] Recommendation H.266 (08/20)–Versatile Video Coding, ITU Rec.,

ITU-T, 2020.

[35] Recommendation ITU-R BT.500-13–Methodology for the Subjective

Assessment of the Quality of Television Pictures, ITU Rec., 2014.

[36] Recommendation P.1203–Parametric Bitstream-Based Quality Assess-

ment of Progressive Download and Adaptive Audiovisual Streaming Ser-

vices Over Reliable Transport, ITU Rec., 2016.

[37] Recommendation P.1204–Video Quality Assessment of Streaming Ser-

vices Over Reliable Transport for Resolutions up to 4K, ITU Rec., 2019.

[38] Recommendation P.1204.4: Video Quality Assessment of Streaming Ser-

vices Over Reliable Transport for Resolutions Up to 4K With Access to

Full and Reduced Reference Pixel Information, ITU Rec., ITU-T, 2019.

[39] Recommendation P.1204.3: Video Quality Assessment of Streaming Ser-

vices Over Reliable Transport for Resolutions up to 4K With Access to

Full Bitstream Information, ITU Rec., 2019.

[40] Subjective Video Quality Assessment Methods for Multimedia Applica-

tions, document ITU-T.P.910, 2008.

[41] Subjective Video Quality Assessment Methods for Multimedia Applica-

tions. Serie P: Telephone Transmission Quality, Telephone Installations,

Local Line Networks, International Telecommunication Union. Geneva,

document ITU-T P.910, 2008.

[42] P. A. Kara, W. Robitza, A. Raake, and M. G. Martini, ‘‘The label knows

better: The impact of labeling effects on perceived quality of HD and

UHD video streaming,’’ in Proc. 9th Int. Conf. Qual. Multimedia Exper.

(QoMEX), May 2017, pp. 1–6.

[43] I. Katsavounidis. (2018). Dynamic Optimizer—A Perceptual Video

Encoding Optimization Framework. The Netflix Tech Blog. Accessed:

Feb. 17, 2021. [Online]. Available: https://netflixtechblog.com/dynamic-

optimizer-a-perceptual-video-encoding-optimization-framework-

e19f1e3a277f

[44] I. Katsavounidis, A. Aaron, and D. Ronca, ‘‘Native resolution detection of

video sequences,’’ in Proc. SMPTE Annu. Tech. Conf. Exhib., Oct. 2015,

pp. 1–20.

[45] S. Kuanar, C. Conly, and K. R. Rao, ‘‘Deep learning based HEVC in-

loop filtering for decoder quality enhancement,’’ in Proc. Picture Coding

Symp. (PCS), Jun. 2018, pp. 164–168.

[46] S. Kuanar, K. R. Rao, M. Bilas, and J. Bredow, ‘‘Adaptive CU mode

selection in HEVC intra prediction: A deep learning approach,’’ Circuits,

Syst., Signal Process., vol. 38, no. 11, pp. 5081–5102, Nov. 2019.

[47] P. Lebreton, A. Raake, M. Barkowsky, and P. Le Callet, ‘‘Perceptual

preference of S3D over 2D for HDTV in dependence of video quality

and depth,’’ in Proc. IVMSP, Jun. 2013, pp. 1–4.

[48] J. Li, M. Barkowsky, and P. Le Callet, ‘‘Analysis and improvement

of a paired comparison method in the application of 3DTV subjective

experiment,’’ in Proc. 19th IEEE Int. Conf. Image Process., Sep. 2012,

pp. 629–632.

[49] S. Li, F. Zhang, L. Ma, and K. N. Ngan, ‘‘Image quality assessment

by separately evaluating detail losses and additive impairments,’’ IEEE

Trans. Multimedia, vol. 13, no. 5, pp. 935–949, Oct. 2011.

[50] J. Y. Lin, T.-J. Liu, E. C.-H. Wu, and C.-C.-J. Kuo, ‘‘A fusion-based video

quality assessment (FVQA) index,’’ in Proc. Signal Inf. Process. Assoc.

Annu. Summit Conf. (APSIPA), Asia–Pacific, Dec. 2014, pp. 1–5.

[51] D. Liu, Y. Li, J. Lin, H. Li, and F.Wu, ‘‘Deep learning-based video coding:

A review and a case study,’’ ACM Comput. Surv., vol. 53, no. 1, pp. 1–35,

2020.

[52] H. Men, H. Lin, and D. Saupe, ‘‘Spatiotemporal feature combination

model for no-reference video quality assessment,’’ inProc. 10th Int. Conf.

Qual. Multimedia Exper. (QoMEX), May 2018, pp. 1–3.

[53] A. Mittal, A. K. Moorthy, and A. C. Bovik, ‘‘No-reference image quality

assessment in the spatial domain,’’ IEEE Trans. Image Process., vol. 21,

no. 12, pp. 4695–4708, Dec. 2012.

[54] A. Mittal, R. Soundararajan, and A. C. Bovik, ‘‘Making a ‘completely

blind’ image quality analyzer,’’ IEEE Signal Process. Lett., vol. 20, no. 3,

pp. 209–212, Mar. 2013.

[55] A. K. Moorthy and A. C. Bovik, ‘‘A two-stage framework for blind image

quality assessment,’’ in Proc. IEEE Int. Conf. Image Process., Sep. 2010,

pp. 2481–2484.

[56] Netflix. (2018). 4K Support. Accessed: Jul. 9, 2018. [Online]. Available:

https://help.netflix.com/en/node/13444
[57] Netflix. Netflix Vmaf. Accessed: Feb. 17, 2021. [Online]. Available:

https://github.com/Netflix/vmaf
[58] Netflix. (2018). Vmaf 4K Included. Accessed: Jul. 9, 2018. [Online].

Available: https://github.com/Netflix/vmaf
[59] M. Orduna, C. Díaz, L. Muñoz, P. Pérez, I. Benito, and N. García, ‘‘Video

multimethod assessment fusion (VMAF) on 360 VR contents,’’ 2019,

arXiv:1901.06279. [Online]. Available: http://arxiv.org/abs/1901.06279
[60] K. Otsuji and Y. Tonomura, ‘‘Projection-detecting filter for video cut

detection,’’Multimedia Syst., vol. 1, no. 5, pp. 205–210, Mar. 1994.
[61] R. Pantos. (2011). HTTP Live Streaming. [Online]. Available:

https://tools.ietf.org/html/draft-pantos-http-live-streaming-13
[62] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.
[63] C. Perra, ‘‘A low computational complexity blockiness estimation based

on spatial analysis,’’ inProc. 22nd Telecommun. Forum Telfor (TELFOR),

Nov. 2014, pp. 1130–1133.
[64] M. H. Pinson and S. Wolf, ‘‘Comparing subjective video quality testing

methodologies,’’ Proc. SPIE, vol. 5150, pp. 573–582, Jun. 2003.
[65] M. T. Qadri, K. T. Tan, and M. Ghanbari, ‘‘Frequency domain blockiness

measurement for image quality assessment,’’ in Proc. 2nd Int. Conf.

Comput. Technol. Develop., Nov. 2010, pp. 282–285.
[66] A. Raake, M.-N. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten,

‘‘A bitstream-based, scalable video-quality model for HTTP adaptive

streaming: ITU-T P.1203.1,’’ in Proc. 9th Int. Conf. Qual. Multimedia

Exper. (QoMEX), Erfurt, May/Jun. 2017, pp. 1–6. [Online]. Available:

http://ieeexplore.ieee.org/document/7965631/
[67] A. Raake, S. Borer, S. Satti, J. Gustafsson, R. Rao, S. Medagli,

P. List, S. Göring, D. Lindero, W. Robitza, G. Heikkilä, S. Broom,

C. Schmidmer, B. Feiten, U. Wüstenhagen, T. Wittmann,

M. Obermann, and R. Bitto, ‘‘Multi-model standard for bitstream-, pixel-

based and hybrid video quality assessment of UHD/4K: ITU-T P.1204,’’

IEEE Access, vol. 8, pp. 193020–193049, 2020. [Online]. Available:

https://ieeexplore.ieee.org/document/9234526?source=authoralert
[68] R. Rao, S. Göring, N. P. Patrick Vogel, J. J. V. Villarreal,

W. Robitza, P. List, B. Feiten, and A. Raake, ‘‘Adaptive video streaming

with current codecs and formats: Extensions to parametric video quality

model ITU-T P. 1203,’’ Electron. Imag., vol. 2019, no. 10, p. 314,

2019. [Online]. Available: https://www.ingentaconnect.com/content/

ist/ei/2019/00002019/00000010/art00015
[69] R. R. Ramachandra Rao, S. Goring, W. Robitza, B. Feiten, and A. Raake,

‘‘AVT-VQDB-UHD-1: A large scale video quality database for UHD-1,’’

in Proc. IEEE Int. Symp. Multimedia (ISM), Dec. 2019, pp. 1–8. [Online].

Available: https://ieeexplore.ieee.org/document/8959059
[70] R. Rao, S. Göring, W. Robitza, A. Raake, B. Feiten, P. List, and

U. Wüstenhagen, ‘‘Bitstream-based model standard for 4K/UHD: ITU-

T P.1204.3—Model details, evaluation, analysis and open source

implementation,’’ in Proc. 12th Int. Conf. Qual. Multimedia Exper.

(QoMEX), Athlone, Ireland, May 2020, pp. 1–6. [Online]. Available:

https://ieeexplore.ieee.org/document/9123110
[71] R. Rao, S. Göring, R. Steger, S. Zadtootaghaj, N. Barman, S. Fremerey,

S. Müller, and A. Raake, ‘‘A large-scale evaluation of the bitstream-based

video-quality model ITU-T P.1204.3 on gaming content,’’ in Proc. IEEE

22nd Int. Workshop Multimedia Signal Process. (MMSP), Sep. 2020,

pp. 1–6.
[72] Video Quality Assessment of Streaming Services Over Reliable Trans-

port for Resolutions up to 4K With Access to Transport and Received

Pixel Information, International Telecommunication Union, docu-

ment P.1204.5, 2019.
[73] S. Rimac-Drlje, D. Zagar, and G. Martinovic, ‘‘Spatial masking and

perceived video quality in multimedia applications,’’ in Proc. 16th Int.

Conf. Syst., Signals Image Process., Jun. 2009, pp. 1–4.
[74] W. Robitza, A. Ahmad, P. A. Kara, L. Atzori, M. G. Martini, A. Raake,

and L. Sun, ‘‘Challenges of future multimedia QoE monitoring for

Internet service providers,’’ Multimedia Tools Appl., vol. 76, no. 21,

pp. 22243–22266, Nov. 2017, doi: 10.1007/s11042-017-4870-z.
[75] W. Robitza, S. Göring, A. Raake, D. Lindegren, G. Heikkilä, J. Gustafs-

son, P. List, B. Feiten, U. Wüstenhagen, M.-N. Garcia, K. Yamagishi, and

S. Broom, ‘‘HTTP adaptive streaming QoE estimation with ITU-T rec.

P. 1203: Open databases and software,’’ in Proc. 9th ACM Multimedia

Syst. Conf., Amsterdam, The Netherlands, 2018, pp. 466–471.

VOLUME 9, 2021 31863

http://dx.doi.org/10.1007/s11042-017-4870-z


S. Göring et al.: Modular Framework and Instances of Pixel-Based Video Quality Models

[76] Samsung. Future of Display. [Online; 07.09.2018]. Accessed:

Sep. 7, 2018. [Online]. Available: https://news.samsung.com/global/ifa-

docent-series-part-1-tv-as-the-lifestyle-screen-the-future-of-display
[77] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 4510–4520.
[78] M. Shahid, A. Rossholm, B. Lövström, and H.-J. Zepernick, ‘‘No-

reference image and video quality assessment: A classification and review

of recent approaches,’’ EURASIP J. Image Video Process., vol. 2014,

no. 1, p. 40, Aug. 2014, doi: 10.1186/1687-5281-2014-40.
[79] H. R. Sheikh and A. C. Bovik, ‘‘Image information and visual quality,’’

IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2006.
[80] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, ‘‘A statistical evaluation of

recent full reference image quality assessment algorithms,’’ IEEE Trans.

Image Process., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.
[81] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks

for large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online].

Available: https://arxiv.org/abs/1409.1556
[82] R. Sotelo, J. Joskowicz, M. Anedda, M. Murroni, and D. D. Giusto,

‘‘Subjective video quality assessments for 4K UHDTV,’’ in Proc. IEEE

Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Jun. 2017,

pp. 1–6.
[83] R. Soundararajan and A. C. Bovik, ‘‘Video quality assessment by reduced

reference spatio-temporal entropic differencing,’’ IEEE Trans. Circuits

Syst. Video Technol., vol. 23, no. 4, pp. 684–694, Apr. 2013.
[84] K. Spiteri, R. Sitaraman, and D. Sparacio, ‘‘From theory to practice:

Improving bitrate adaptation in the DASH reference player,’’ ACM Trans.

Multimedia Comput., Commun., Appl., vol. 15, no. 2, p. 67, Jul. 2019.
[85] M. Utke, S. Zadtootaghaj, S. Schmidt, S. Bosse, and S. Möller,

‘‘NDNetGaming-development of a no-reference deep CNN for gam-

ing video quality prediction,’’ Multimedia Tools Appl., pp. 1–23, 2020,

doi: 10.1007/s11042-020-09144-6.
[86] G. Van Wallendael, P. Coppens, T. Paridaens, N. Van Kets, W. Van

den Broeck, and P. Lambert, ‘‘Perceptual quality of 4K-resolution video

content compared to HD,’’ inProc. 8th Int. Conf. Qual. Multimedia Exper.

(QoMEX), Jun. 2016, pp. 1–6.
[87] Y.Wang, ‘‘Survey of objective video qualitymeasurements,’’ EMCCorp.,

Hopkinton, MA, USA, 2006, vol. 1748, p. 39.
[88] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality

assessment: From error visibility to structural similarity,’’ IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.
[89] Z. Wang, E. P. Simoncelli, and A. C. Bovik, ‘‘Multiscale structural

similarity for image quality assessment,’’ in Proc. 37th Asilomar Conf.

Signals, Syst. Comput., vol. 2, 2004, pp. 1398–1402.
[90] O. Wiedemann, V. Hosu, H. Lin, and D. Saupe, ‘‘Disregarding the big

picture: Towards local image quality assessment,’’ in Proc. 10th Int. Conf.

Qual. Multimedia Exper. (QoMEX), May 2018, pp. 1–6.
[91] W. Hagen, C. Hold, and A. Raake, ‘‘Listener preference for wave field

synthesis, stereophony, and different mixes in popular music,’’ J. Audio

Eng. Soc., vol. 66, no. 5, pp. 385–396, May 2018.
[92] S. Winkler and P. Mohandas, ‘‘The evolution of video quality measure-

ment: From PSNR to hybrid metrics,’’ IEEE Trans. Broadcast., vol. 54,

no. 3, pp. 660–668, Sep. 2008.
[93] Y. Yalman and I. Ertürk, ‘‘A new color image quality measure based

on YUV transformation and PSNR for human vision system,’’ Turkish

J. Elect. Eng. Comput. Sci., vol. 21, no. 2, pp. 603–612, 2013.
[94] K. Yamagishi, T. Kawano, and T. Hayashi, ‘‘Hybrid Video-Quality-

Estimationmodel for IPTV services,’’ inProc. IEEEGlobal Telecommun.

Conf. (GLOBECOM), Nov. 2009, pp. 1–5.
[95] R. Zabih, J. Miller, and K. Mai, ‘‘A feature-based algorithm for detecting

and classifying scene breaks,’’ in Proc. 3rd ACM Int. Conf. Multimedia,

1995, pp. 189–200.
[96] S. Zadtootaghaj, N. Barman, R. R. R. Rao, S. Goring, M. G. Martini,

A. Raake, and S. Moller, ‘‘DEMI: Deep video quality estimation

model using perceptual video quality dimensions,’’ in Proc. IEEE

22nd Int. Workshop Multimedia Signal Process. (MMSP), Sep. 2020,

pp. 1–6.
[97] S. Zadtootaghaj, S. Schmidt, S. S. Sabet, S. Möller, and C. Griwodz,

‘‘Quality estimation models for gaming video streaming services using

perceptual video quality dimensions,’’ in Proc. 11th ACM Multimedia

Syst. Conf., May 2020, pp. 213–224.
[98] E. Zerman, V. Hulusic, G. Valenzise, R. K. Mantiuk, and F. Dufaux, ‘‘The

relation between MOS and pairwise comparisons and the importance of

cross-content comparisons,’’ Electron. Imag., vol. 2018, no. 14, pp. 1–6,

2018.

[99] Z. Zivkovic, ‘‘Improved adaptiveGaussianmixturemodel for background

subtraction,’’ in Proc. 17th Int. Conf. Pattern Recognit. (ICPR), vol. 2,

Aug. 2004, pp. 28–31.
[100] Z. Zivkovic and F. van der Heijden, ‘‘Efficient adaptive density estimation

per image pixel for the task of background subtraction,’’Pattern Recognit.

Lett., vol. 27, no. 7, pp. 773–780, May 2006.

STEVE GÖRING studied with TU Ilmenau and

graduated the B.Sc. andM.Sc. degrees in computer

science, from 2008 to 2013. He is currently a

Computer Scientist working with the Audiovisual

Technology Group, TU Ilmenau. His is also focus

on data analysis problems for video quality models

and video streams. Before he started 2016 with

the Audiovisual Technology Group, he was work-

ing with the Big Data Analytics Group, Bauhaus

University Weimar. His specializations are data

analytics/machine learning, video quality, and distributed communica-

tion/information systems. His research focus in Weimar was improving

search engines (using axiomatic re-ranking approaches), argumentation

analysis, and analyzing large unstructured datasets using machine learning

approaches.

RAKESH RAO RAMACHANDRA RAO received

the M.Sc. degree in communications engineering

fromRWTHAachen, in 2017, with focus on image

content analysis and millimeter wave transmis-

sion systems. He has been an Electrical Engineer

working with the Audiovisual Technology (AVT),

TU Ilmenau, since 2017. His main focus is on

video quality analysis and modeling. Before join-

ing AVT, he worked as an intern with HEAD

acoustics, where he worked on reference-based

noise estimation. His specializations include video quality and image content

analysis.

BERNHARD FEITEN received the D.Sc. degree

in electronic engineering from Technische Uni-

versität Berlin in the field of psychoacoustics and

audio bit rate reduction. He worked as an Assistant

Professor with the TechnischeUniversität Berlin in

the field of communication science, digital signal

processing, and computer music with ‘‘Elektro-

nisches Studio’’. Since 1996, he has been with

Deutsche Telekom (currently known as Technol-

ogy and Innovation), working as a Senior Expert

and a Project Manager for Innovative Multimedia Services, Quality of

Experience, and Network Analytics. His research and development activities

comprise audio and video coding quality, broadcasting applications, high

quality Internet media distribution and streaming, QoE monitoring, and

optimization.

ALEXANDER RAAKE (Member, IEEE) received

the Dr.-Ing. degree from the Faculty of Elec-

trical Engineering and Information Technology,

Ruhr-Universität Bochum, in 2005, with the

book Speech Quality of VoIP. From 2004 to

2005, he was a Postdoctoral Researcher with

LIMSI-CNRS, Orsay, France. From 2005 to

2015, he held a Senior Researcher, an Assistant,

and later an Associate Professor positions with

TU Berlin’s An-Institut T-Labs, a joint venture

between Deutsche Telekom AG and TU Berlin, heading the Assessment

of IP-based Applications Group. In 2015, he has joined TU Ilmenau as a

Full Professor, where he heads the Audiovisual Technology Group. Since

1999, he has been involved with the ITU-T Study Group 12’s standardization

work on QoS and QoE assessment methods. His research interests include

audiovisual and multimedia technology, speech, audio and video signals,

human audiovisual perception, and Quality of Experience. He is a member

of the Acoustical Society of America, the AES, VDE/ITG, and DEGA.

31864 VOLUME 9, 2021

http://dx.doi.org/10.1186/1687-5281-2014-40
http://dx.doi.org/10.1007/s11042-020-09144-6

