
Modular Grammar Engineering in GF

Aarne Ranta
Department of Computing Science
Chalmers University of Technology and Göteborg University
aarne@cs.chalmers.se

Abstract. The Grammatical Framework GF is a grammar formalism de-

signed for multilingual grammars. A multilingual grammar has a shared rep-

resentation, called abstract syntax, and a set of concrete syntaxes that map

the abstract syntax to different languages. A GF grammar consists of modules,

which can share code through inheritance, but which can also hide information

to achieve division of labour between grammarians working on different mod-

ules. The goal is to make it possible for linguistically untrained programmers

to write linguistically correct application grammars encoding the semantics of

special domains. Such programmers can rely on resource grammars, written by

linguists, which play the rôle of standard libraries. Application grammarians

use resource grammars through abstract interfaces, and the type system of

GF guarantees that grammaticality is preserved. The ongoing GF resource

grammar project provides resource grammars for ten languages. In addition

to their use as libraries, resource grammars serve as an experiment showing

how much grammar code can be shared between different languages.

1. Introduction

1.1. Multilingual grammars

By a multilingual grammar, we mean a grammar that describes multiple
languages sharing a common representation. The term “multilingual
grammar engineering” is ambiguous: it can mean engineering of multi-
lingual grammars, but also just multilingual engineering of grammars,
which are formally unrelated even though developed in parallel.

Multilingual grammars are useful in applications like translation
between languages, and localization, which means porting natural-lan-
guage applications to new languages. The shared representation can
be used to reduce the work needed to add a language. Of course,
developing formally unrelated grammars in parallel can also save work,
since experience gained from one language can be useful in another
one, and code can be shared by the copy-and-paste method. In this
paper, however, we will focus on multilingual grammars with shared
representations.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

multieng3.tex; 19/12/2006; 11:35; p.1

2

Our discussion will use the concepts and notation of GF, Gram-

matical Framework (Ranta, 2004b). The development of GF started in
the Multilingual Document Authoring project at Xerox (Dymetman
et al., 2000). It was from the beginning designed as a formalism for
multilingual grammars: a monolingual grammar is just a special case
of a GF grammar. Formally, a multilingual grammar in GF is a pair

G = < A, {C1, . . . , Cn} >

where A is an abstract syntax and Ci are concrete syntaxes for A. The
abstract syntax is a collection of categories and functions. It defines a
tree language, which is a common representation of the string languages

defined by the concrete syntaxes.
A concrete syntax is given by a method of linearization, which trans-

lates abstract syntax trees into strings (more generally, into records of
strings and features). A multilingual grammar thereby defines a system
of multilingual generation from the shared abstract syntax.

Generation is the primary direction of grammatical description in
GF, and this gives GF grammars a special flavour that differs from
many other grammar formalisms. However, GF is designed in such a
way that linearization is always invertible to a parser, which maps
strings back into abstract syntax trees.

1.2. Interlingua-based translation

It is easy to see what translation means in the context of a multilingual
grammar: it is parsing from one language followed by linearization into
another language. The abstract syntax works as an interlingua, and
there is no need to define transfer in the sense of translation functions
from one language to another.

But how do we manage to construct an interlingua for translation?
The main point is that GF does not claim to have one interlingua.
Instead, GF is a framework for defining interlinguas (i.e. abstract syn-
taxes) and their mappings into different languages (i.e. concrete syn-
taxes). In a typical application of GF, the interlingua is a precise
semantical description of a limited application domain, which enables
meaning-preserving translation in this domain.

1.3. Application grammars and resource grammars

Domain-specific multilingual grammars can give higher translation qual-
ity than general-purpose grammars. But it can be expensive to write
them. Building a grammar of, say, aircraft maintenance manuals in Rus-
sian requires both domain expertise—knowledge of aircraft maintenance—
and linguistic expertise—theoretical knowledge of Russian language.

multieng3.tex; 19/12/2006; 11:35; p.2

3

A grammar for geometric proof systems in Russian requires a very
different domain expertise but a similar linguistic expertise. Aren’t such
combinations of domain and linguistic expertise rare?

One goal of this paper is to show how a division of labour can be
achieved in grammar engineering between domain experts and linguis-
tic experts. This division is based on a distinction between application

grammars and resource grammars.
An application grammar has an abstract syntax expressing the se-

mantics of an application domain. A resource grammar has an abstract
syntax expressing linguistic structures. The concrete syntax of an ap-
plication grammar can be defined as a mapping to the abstract syntax
of the resource grammar: it tells what structures are used for expressing
semantic object, instead of telling what strings are used.

For example, consider an application grammar for mathematical
proofs, defining a predicate saying that a natural number is even. The
concrete syntax for French will say that the predicate is expressed by
using the adjective pair. This is part of the application grammarian’s
domain knowledge; she needs this knowledge to rule out other dictio-
nary equivalents of even, such as lisse. The resource grammar then
defines how adjectival predication works in terms of word order and
agreement, and how the adjective pair is inflected. This knowledge is
expected from the linguist but not from the domain expert.

1.4. The resource grammar library

An application grammarian has access only to the abstract syntax of
the resource grammar. Its concrete syntax is hidden from her, and
the resource grammarian has all responsibility for it. The resource
grammarian can, furthermore, make changes that are automatically
inherited by all application grammars, and will never force to any
manual changes in the applications.

To use software engineering terminology, resource grammars in GF
play the role of standard libraries. The abstract syntax of a resource
grammar is its API, Application Programmer’s Interface.

Like everywhere in software production, standard libraries save work
and improve quality by allocating different subtasks of grammar writing
to different grammarians, and making it possible to reuse code. Recent
efforts in developing GF have therefore centered around resource gram-
mars. The ongoing GF Resource Grammar Project (Ranta, 2002) covers
ten languages.

multieng3.tex; 19/12/2006; 11:35; p.3

4

1.5. Shared representations in resource grammars

In an application grammar, the abstract syntax expressing a semantic
model is the shared representation of different languages. However, it
is even possible to use a common abstract syntax in a multilingual
resource library. What is needed is a category and rule system that
describes pure constituency, and abstracts away from details such as
word order and agreement.

The ongoing GF Resource Grammar Project uses a common API
for the ten languages that it covers. This API contains categories and
functions for syntactic combinations (sentences, verb phrases, etc) and
for some structural words. What is not covered by the common API is
morphology and the major part of the lexicon.

Shared representations of the resource library are very useful for
application grammarians. They make it easy to port applications from
one language to another. At its simplest, a multilingual application
grammar can be implemented as a parametrized module, where the
parameters are the categories and functions of the common API. This
is possible if all target languages use the same syntactic structures to
express the same semantic contents.

Shared representations can also be used to make generalizations
over similar (e.g. genetically related) languages. In the GF Resource
Grammar Project, 75% of the code for French, Italian, and Spanish is
shared in this way.

1.6. The GF language and its module system

The GF grammar formalism is a typed functional programming lan-
guage, in many respects similar to ML (Milner et al., 1990) and Haskell
(Peyton Jones, 2003). A more remote ancestor is LISP (McCarthy,
1960), which is functional but not typed. Like ML and Haskell, GF
permits a powerful programming style by functions and user-defined
data structures, controlled by static type checking. A detailed descrip-
tion of the GF formalism is given in (Ranta, 2004b) and a tutorial
introduction in (Ranta, 2004c). What is not covered in those papers
is the module system, which is a new feature of GF, and the main
technical content of this paper.

A module system is useful both for software engineering and because
of separate compilation. In a typical software development process, only
some modules are changed at a time, and most modules do not need
recompilation. In GF, this means in particular that resource grammar
libraries can be precompiled so that application grammarians only need
to compile modules that they are building themselves.

multieng3.tex; 19/12/2006; 11:35; p.4

5

1.7. The structure of this paper

Section 2 explains how grammars are written in GF, using the module
system of GF. Section 3 introduces the notions of application grammar,
resource grammar, and grammar composition. Section 4 summarizes
the ongoing GF Resource Grammar Project. Section 5 gives examples of
applications that use the resource grammar library. Section 6 discusses
practical issues of grammar engineering. Section 7 gives comparisons
with some related work.

2. Introduction to GF and its module system

GF has three main module types: abstract, concrete, and resource.
Abstract and concrete modules are top-level, in the sense that they
appear in grammars that are used at runtime for parsing and gener-
ation. They can be organized into inheritance hierarchies in the same
way as object-oriented programs, which enables code sharing between
top-level grammars. Resource modules are a means of sharing code in
cross-cutting ways, independently of top-level hierarchies.

2.1. Abstract syntax

An abstract syntax module defines a grammar of abstract syntax trees,
which are the main device of representation of grammatical analysis.
Depending on how the abstract syntax is defined, this representation
can be seen as semantic or syntactic. We start with an example using
a semantic representation, based on propositional logic.

An abstract syntax has two kinds of rules:

cat rules declaring categories

fun rules declaring tree-forming functions

The abstract module Logic introduces one category, propositions, as
well as two functions, conjunction and implication.

abstract Logic = {

cat Prop ;

fun Conj, Impl : Prop -> Prop -> Prop ;

}

As usual in functional programming languages, the colon : is used to
indicate typing and the arrow -> to denote function types. Two-place
functions (such as Conj and Impl) are written as functions whose values
are one-place functions.

As an example of a syntax tree, the one corresponding to the formula
A&B ⊃ B&A is written

multieng3.tex; 19/12/2006; 11:35; p.5

6

Impl (Conj A B) (Conj B A)

Thus function application is written as juxtaposition, and parentheses
are used for grouping.

2.2. Concrete syntax

To define the relation between trees in an abstract syntax and strings in
a target language, concrete syntax modules are used. A concrete syntax
is always of some abstract syntax, which is shown by its module header.
It must contain the following rules:

for each cat in the abstract syntax, a lincat definition giving the
linearization type of that category,

for each fun in the abstract syntax, a lin definition giving the
linearization function for that function.

The following is a concrete syntax of Logic:

concrete LogicEng of Logic = {

lincat Prop = {s : Str} ;

lin Conj A B = {s = A.s ++ "and" ++ B.s} ;

lin Impl A B = {s = "if" ++ A.s ++ "then" ++ B.s} ;

}

Linearization types in GF are record types. The record type {s : Str},
has just one field, with the label s and the type Str of strings (more
precisely: token lists). Labels are used for projection from a record using
the dot (.) operator, so that e.g.

{s = "even"}.s

computes to the string "even". The concatenation operator ++ puts
token lists together.

Following the concrete syntax LogicEng, we can now linearize the
syntax tree

Impl (Conj A B) (Conj B A)

into a record, whose s field contains the string

if A and B then B and A

2.3. Linguistically motivated abstract syntax

Abstract syntax trees that represent semantic structures are usually the
most interesting choice if the goal is to translate between languages.

multieng3.tex; 19/12/2006; 11:35; p.6

7

However, an abstract syntax can also be built in a more traditional
linguistic way. An example is the module Phrase, which introduces
the categories of sentence, noun phrase, verb phrase, transitive verb,
common noun, and determiner, and three functions that put together
trees of these types: verb phrase predication, transitive verb comple-
mentization, and common noun determination.

abstract Phrase = {

cat S ; NP ; VP ; TV ; CN ; Det ;

fun PredVP : NP -> VP -> S ;

fun ComplTV : TV -> NP -> VP ;

fun DetCN : Det -> CN -> NP ;

}

The function PredVP corresponds to the famous phrase structure rule

S → NP VP

This correspondence is exact if the following linearization rule is given:

lin PredVP vp np = {s = np.s ++ vp.s}

Different languages typically have more complex versions of this rule,
adding agreement (Section 2.14) and/or word order variation (Sec-
tion 2.12).

An abstract syntax such as Phrase is usually too close to linguistic
structure to form a good basis for translation, but it can be an excel-
lent way to structure a resource grammar library; Phrase is actually a
subset of the GF Resource Library API (Section 4).

2.4. Multilingual grammars

A multilingual grammar is a system of modules where one abstract
syntax is paired with many concrete syntaxes. For instance, if we give
another concrete syntax,

concrete LogicFin of Logic = {

lincat Prop = {s : Str} ;

lin Conj A B = {s = A.s ++ "ja" ++ B.s} ;

lin Impl A B = {s = "jos" ++ A.s ++ "niin" ++ B.s} ;

}

producing Finnish instead of English, then the three modules Logic,
LogicEng, and LogicFin form a bilingual grammar. The structure of
this grammar is given in Figure 1. A bilingual grammar can obviously
be extended by new languages simply by adding new concrete syntaxes.

multieng3.tex; 19/12/2006; 11:35; p.7

8

concrete LogicEng concrete LogicFin

of \ / of

abstract Logic

Figure 1. The module structure of a simple bilingual grammar.

concrete GeomEng

of / \ **

abstract Geom concrete LogicEng

** \ / of

abstract Logic

Figure 2. The module structure of a simple extended grammar.

However, even for the simple example of Logic, adding a language like
German would pose the problem of word order, and adding French
would pose the problem of mood. We will return to these problems in
Section 2.9.

2.5. Inheritance

The module Logic alone does not generate any propositions (i.e. trees
of type Prop), since it has no functions to form atomic propositions.
The following module, Geom, is an extension of Logic. It inherits all
categories and functions of Logic, and adds some new ones.

abstract Geom = Logic ** {

cat Line, Point ;

fun Parallel, Intersect : Line -> Line -> Prop ;

fun Incident : Point -> Line -> Prop ;

}

Parallel to the extension of the abstract syntax Logic to Geom, the
concrete syntax LogicEng can be extended to GeomEng:

concrete GeomEng of Geom = LogicEng ** {

lin Intersect x y = {s = x.s ++ "intersects" ++ y.s} ;

-- etc

}

The structure of the resulting grammar is given in Figure 2.

2.6. Hierarchies of semantic domains

The abstract syntax Logic can be used as a basis of many other
extensions than Geom. For instance,

multieng3.tex; 19/12/2006; 11:35; p.8

9

abstract Geom abstract Bank

** \ / **

abstract Logic

Figure 3. The module structure of an abstract syntax with extensions.

abstract UserDom abstract SystemDom

** / \ ** ** / \ **

abstract UserGen abstract Domain abstract System

Figure 4. Multiple inheritance in a dialogue system.

abstract Bank = Logic ** {

cat Customer ;

fun HasLoan : Customer -> Prop ;

-- etc

}

can be used as a description language for banks, customers, loans, etc,
sharing the same basic logic as Geom but extending it with a different
vocabulary. The structure of an abstract syntax with different exten-
sions is given in Figure 3. An abstract syntax covers what is often called
a domain ontology or a domain model. Its concrete syntax defines the
terminology and syntax used for expressing facts in the domain. Sharing
modules by inheritance reduces the amount of work needed to build
such systems for new domains.

The module system also permits multiple inheritance. A typical ex-
ample is a dialogue system, with separate grammars for user input
and system replies. Both grammars inherit from a domain semantics,
but also from generic dialogue move grammars that are independent of
domain but different for the user and the system (Figure 4).

2.7. Semantic representation

As a semantic representation formalism, the “zeroth-order” language
shown by the examples above is not very powerful. In full GF, the
abstract syntax has the power of a logical framework with variable
bindings and dependent types (Ranta, 2004b). Thus it is possible to
formalize the syntax and semantics of Montague’s PTQ fragment of
(Montague, 1974) and extend the fragment with anaphoric expres-
sions treated via the Curry-Howard isomorphism (Ranta, 1994; Ranta,
2004a). For instance, the progressive implication needed for analysing
sentences of the type if a man owns a donkey he beats it can be defined
by the abstract syntax rule

multieng3.tex; 19/12/2006; 11:35; p.9

10

fun Impl : (A : Prop) -> (Proof A -> Prop) -> Prop ;

In this paper, however, we focus on the issues of modularity and there-
fore keep the semantic structure as simple as possible.

2.8. Resource modules

A resource module is “pure concrete syntax”, in the sense that it defines
linguistic objects without any reference to abstract trees representing
them. There are two judgement forms occurring in resource modules:
one for parameters and another for auxiliary operations.

2.8.1. Parameters

A parameter type is a finite datatype of values such as number (sin-
gular/plural) and gender (masculine/feminine/neuter). The values can
be complex, i.e. formed by constructors that take other values as ar-
guments. The GF notation for parameter types is shown in the fol-
lowing resource module which gives the complete definition of the
non-composite verb forms of French according to Bescherelle (1997):

resource TypesFre = {

param Number = Sg | Pl ;

param Person = P1 | P2 | P3 ;

param Gender = Masc | Fem ;

param Tense = Pres | Imperf | Passe | Futur ;

param TSubj = SPres | SImperf ;

param NPImper = SgP2 | PlP1 | PlP2 ;

param TPart = PPres | PPasse Gender Number ;

param VForm = Infinitive

| Indicative Tense Number Person

| Conditional Number Person

| Subjunctive TSubj Number Person

| Imperative NPImper

| Participle TPart ;

}

The first six parameter types are simple enumerations of values. The
last type VForm is the most complex one: it defines all of the actually
existing verb forms, whose total count is 1 + 24 + 6 + 12 + 3 + 5 = 51
different forms.

Parameter types are similar to algebraic datatypes in functional pro-
gramming languages. Without algebraic datatypes, complex verb fea-
tures of French would have to be defined in terms of 51 enumerated
forms, which destroys all structure, or as a cross product of the atomic

multieng3.tex; 19/12/2006; 11:35; p.10

11

features number, person, mood, tense, etc. The cross product would
give something like 6 × 4 × 2 × 3 × 2 = 288 forms, where most of the
combinations would never be realized.

In contrast to algebraic datatypes in ML and Haskell, parameter
types in GF may not be recursive or mutually recursive. This implies
that their value sets are finite. This property is crucial for the compila-
tion of GF grammars to efficient parsing and linearization algorithms.

2.8.2. Tables

The main usage of parameters is in tables, which are functions over
parameter types. Since parameter types are finite, these functions can
always be written explicitly as lists of argument-value pairs. Tables are,
of course, a formalization of the traditional idea of inflection tables. A
table is an object of a table type: for instance,

Number => Str

is the type of tables that assign a string to a number. The table

table {Sg => "mouse" ; Pl => "mice"}

is an example object of this type. The operator ! is used for selection,
i.e. application of a table. For instance,

table {Sg => "mouse" ; Pl => "mice"} ! Pl

is an object of type Str, which computes to "mice".
Variables and wild cards can be used instead of constructors as left-

hand sides of table branches. For instance, the table

table {NSg Nom => "Kommunist" ; c => "Kommunisten"}

defines the inflection of the German noun Kommunist by using one
branch for the nominative singular and a common branch for the seven
remaining cases.

2.8.3. Operation definitions

It is tedious and error-prone to repeat code with minor variations, for
instance, to write tables for English regular nouns one by one. What
is more, the grammarian will miss important generalizations if she
does so. The means for eliminating such repetition in GF is operation

definitions. An operation definition introduces a new constant with its
type and definition. For instance, an operation forming regular nouns
in English (or French) is defined as follows:

oper regNoun : Str -> Number => Str = \noun ->

table {Sg => noun ; Pl => noun + "s"} ;

multieng3.tex; 19/12/2006; 11:35; p.11

12

The operation regNoun is defined as a function that can be applied to
strings to yield tables from numbers to strings. As in abstract syntax,
the notation A -> B is used for function types, and function application
is expressed by juxtaposition. The notation \x -> t (with a backslash
before the variable) is used for lambda abstraction. (Also notice the
gluing operator + which combines two tokens into one.)

In GF as in all functional programming, functions are the main
vehicle of generalization, abstraction, and reuse. Since oper definitions
can be of any type, including higher-order types (i.e. functions on func-
tions), it is almost always possible to capture a common feature in two
pieces of code by defining a function. As a rule of thumb, whenever a
functional programmer is tempted to program by copy and paste, she
should try to define a function instead.

In GF, oper definitions belong to resource modules, and can be
used in concrete syntax as auxiliaries (see Section 2.9). The grammar
compiler eliminates them by inlining, and they are hence not present
in runtime grammars. In order for this to be possible, oper definitions
cannot be recursive or mutually recursive. This, however, is not a re-
striction of expressive power, since resource grammars have no recursive
datatypes. (An exception is the type of strings: for them, GF has a
standard library providing some built-in functions.)

As operations are eliminated from runtime grammars, they are a
bit like macros. There is an important difference, however: macros
are expanded in the code by textual replacement, whereas operations
enjoy separate compilation. Macros are, for instance, not type checked
separately, but any type errors in them are reported as type errors in
their use sites. Operations are type checked in the place where they are
defined. Moreover, optimizations can be applied to operations, and are
thereby done once and for all, covering all applications.

2.8.4. Opening resource modules

Resource modules have their own inheritance hierarchies, which are
independent of abstract and concrete syntax hierarchies. However, the
ultimate purpose of resource modules is use in concrete syntax modules.
This is done by opening them. For instance, a French concrete syntax for
Logic may open a resource called TypesFre, which defines parameter
types, and MorphoFre, which defines inflectional patterns.

concrete LogicFre of Logic = open TypesFre, MorphoFre in

{...}

Opening means that the parameters and operations defined in the
resources can be used in the body of LogicFre. It differs from ex-
tension (**) in an important way: the contents of an opened module

multieng3.tex; 19/12/2006; 11:35; p.12

13

are not inherited and hence not exported further. This is essential for
information hiding.

If many modules are opened at the same time, there is a risk of name
clashes. This problem is solved by qualified opening, which means that
imported names have prefixes telling what modules they come from,
e.g. MorphoFre.regAdj.

2.9. Concrete syntax revisited

2.9.1. The Word and Paradigm model of morphology

The Word and Paradigm model is one of the three main approaches to
morphology distinguished by Hockett (1954). Its idea is close to tradi-
tional grammars, in particular those of classical languages. The model
has a straightforward implementation in GF: a paradigm is a function
f from Str to a table, which depends on one or more parameters:

operf : Str → P1 ⇒ · · · ⇒ Pn ⇒ Str = . . .

A word has two interpretations: either it is the string given as argument
to a paradigm; or, as we prefer, a zero-place abstract syntax function.
The latter interpretation is similar to a unique index that identifies a
dictionary lemma. If only one entry corresponds to a word, traditional
dictionaries do not distinguish between the lemma as a string and
the lemma as an identifier. However, if a word occurs with several
paradigms, the corresponding lemmas are often made unique by the
use of a device such as a subindex: for instance, lie1 (n., pl. lies) vs. lie2

(v., past lay) vs. lie3 (v., past lied).
A resource morphology is a complete set of paradigms for a given

language; for instance, the resource morphology of French in the GF Re-
source Grammar Project (Section 4) consists of the 88 Bescherelle verb
conjugations expressed as operations, plus the (much fewer) different
paradigms for nouns and adjectives.

A resource lexicon is a set of words paired with paradigms. The
lexicon can hardly be complete for any language, since new words are
being added all the time, and sometimes old words start to get inflected
with new paradigms.

2.9.2. Typed lexicon

A lexical entry is the definition of the grammatical properties of a word.
In general, it does not consist of just a word and a paradigm, but it
must also give whatever inherent features the word has. For instance,
common nouns in French have a gender as their inherent feature: the
gender is not a part of the paradigm of the noun, but a constant
property of the noun.

multieng3.tex; 19/12/2006; 11:35; p.13

14

Lexical entries can be represented as records. An essential part of a
resource morphology is its type system, telling what types of records
are available. Each such type corresponds to a part of speech, as defined
in purely morphological terms. For instance, here are the definitions of
French nouns, adjectives, and verbs.

Noun = {s : Number => Str ; g : Gender} ;

Adjective = {s : Gender => Number => Str} ;

Verb = {s : VForm => Str} ;

Actually to build a resource lexicon is to define zero-place oper func-
tions of lexical types. To do this in a controlled way, it is advisable to see
the lexical types as abstract data types: their definitions are hidden from
the lexicographer, who thus never writes records and tables explicitly,
but uses operations defined in the resource morphology.

Here is a fragment of a French resource module, MorphoFre, with
some operations that a lexicographer can use. We do not show the
actual definitions of the operations; the user of the module is not sup-
posed to see them, either. The module MorphoFre uses the parameter
type definitions from the module TypesFre (Section 2.8.1 above), but it
does not actually inherit them since its purpose is to hide them. Hence,
TypesFre is just opened (and not inherited) in MorphoFre.

resource MorphoFre = open TypesFre in {

oper Noun, Adjective, Verb : Type ;

oper nReg, nCheval : Str -> Gender -> Noun ;

oper aReg, aMoral : Str -> Adjective ;

oper vAimer, vVenir : Str -> Verb ;

oper masculine, feminine : Gender ;

}

Here is a fragment of a lexicon built by using the resource morphology:

resource LexFre = open MorphoFre in {

oper Contenir : V = vVenir "contenir" ;

oper Egal : A = aMoral "égal" ;

oper Point : N = nReg "point" masculine ;

}

One who builds a lexicon in this way has to know some French: to
recognize which paradigms to use for which words, e.g. that contenir

is “inflected in the same way” as venir. But she need not know the
full details of the paradigms. In addition to the ease of use, hiding the
definitions of parameter types and lexical entry types gives a guarantee
against errors due to manipulating these objects on a low level. The
lexicographer does not get the responsibilities of the morphologist.

multieng3.tex; 19/12/2006; 11:35; p.14

15

2.10. The word-and-paradigm model generalized to syntax

We have spent a long time discussing morphology, lexicon, and the
word-and-paradigm model. But what about syntax? The main idea is
simple: syntax in GF is just a generalization of the word-and-paradigm
model from words to phrases. The generalization goes (1) from lexical
categories to phrasal categories, and (2) from zero-place functions to
any-place functions. In the same way as every abstract lexical object (=
zero-place function) is assigned a record with a paradigm and inherent
features, so every abstract syntax tree (= arbitrarily complex function
application) is assigned a record with a paradigm and inherent features.

For example: French common nouns and adjectival phrases, now of
whatever complexity, have the linearization types

lincat CN = {s : Number => Str ; g : Gender} ;

lincat AP = {s : Gender => Number => Str} ;

The adjectival modification rule

fun ModAdj : CN -> AP -> CN ;

forms complex common nouns: e.g. ModAdj Maison Blanc is linearized

{s = table {

Sg => "maison" ++ "blanche" ;

Pl => "maisons" ++ "blanches"

} ;

g = Fem

}

Since the ModAdj rule is recursive, it is not possible to enumerate the
linearizations of all such phrases. Instead, a linearization rule is a func-
tion from the linearization types of the constituents to the linearization
type of the value. Here is the adjectival modification rule for French,
with gender agreement (from noun to adjective) and inheritance (from
the noun “head” to the whole construction), as the interesting features:

lin ModAdj N A = {

s = table {n => N.s ! n ++ A.s ! N.g ! n} ;

g = N.g

}

multieng3.tex; 19/12/2006; 11:35; p.15

16

2.11. The lexicon-syntax boundary

GF makes no formal distinction between lexicon and syntax. Gram-
mar engineers may want to restore some of this distinction by placing
“lexical” rules in different modules than “syntactic” rules. However,
especially in grammars based on a semantical abstract syntax, it is
not guaranteed that what is lexical in abstract syntax (i.e. zero-place)
is also lexical in concrete syntax (i.e. expressed by one word). In a
multilingual grammar, what is one word in one language may be many
words, or none at all, in another language. Of course, having a single
source for both lexicon and syntax also has the advantage of eliminating
the problem of synchronizing two different components.

In both compilers and NLP systems, lexical analysis is usually sep-
arated from parsing. The main advantage is efficiency: parsing speed
depends on the grammar size, whereas lexing speed is independent of
the lexicon size. The GF grammar compiler achieves this advantage
by removing lexical rules from the runtime parser, and replacing them
with a trie—a non-cyclic finite-state automaton that analyses words in
the way familiar from finite-state morphology (Huet, 2002).

The GF grammar compiler automatically specializes the lexical anal-
yser to the grammar. Hence lexical analysis does not recognize words
that the grammar cannot make use of. Nor does it generate lexical am-
biguity which is irrelevant for the grammar. For instance, in geometry
it may be irrelevant that the noun point can also be analysed as a verb.

2.12. Discontinuous constituents

Records with several string fields can be used for representing discon-

tinuous constituents. For instance, the topological model is a traditional
account of German grammar, where a clause has five parts, called
Vorfeld, Left Bracket, Mittelfeld, Right Bracket, and Nachfeld (Müller,
1999). The record type representing such clauses is

{vf, lbr, mf, rbr, nf : Str}

In the GF Resource Grammar Project (Section 4), we have used a
simplified model, in which a verb phrase has a verb part s and a
complement part s2:

lincat VP = {s : VForm => Str ; s2 : Number => Str} ;

Sentences have a 3-valued parameter for word order, with values for
verb-second, verb-initial, verb-final orders (typically used in main clauses,
questions, and subordinate clauses, respectively). The predication rule
comes out as follows:

multieng3.tex; 19/12/2006; 11:35; p.16

17

lin PredVP np vp =

let subj = np.s ! NPCase Nom ;

verb = vp.s ! VInd np.n np.p ;

compl = vp.s2 ! np.n

in {s = table {

V2 => subj ++ verb ++ compl ;

VI => verb ++ subj ++ compl ;

VF => subj ++ compl ++ verb

}

} ;

Notice the use of local let definitions to avoid multiple computation
and to make the code clearer.

The above predication rule suffices for most generation purposes,
since it generates the “unmarked” word order. For recognition, however,
one might want to have alternative orders as free variants. For instance,
in the verb-second branch, the complement instead of the subject may
come before the verb. This can be expressed in GF by the variants

construction, which introduces free variation between elements. The V2
branch then becomes

V2 => variants {

subj ++ verb ++ compl ;

compl ++ verb ++ subj

}

2.13. Interfaces and their instances

Sometimes different languages have concrete-syntax rules that have the
same structure but operate on different parameter types. One example
is subject-verb agreement: a common rule is that the noun phrase has
some agreement features as inherent features, and the predicate verb
phrase uses these features to instantiate some of its parameters. The
noun phrase itself is inflected in a designated subject case. The following
interface module declares the types of agreement features and cases,
and the subject case, without actually defining them:

interface Agreement = {

param Agr ;

param Case ;

oper subject : Case ;

}

Interface modules are thus similar to resource modules, but without
giving definitions to the constants that they declare.

multieng3.tex; 19/12/2006; 11:35; p.17

18

An instance of an interface looks like an ordinary resource module,
except for the header that indicates the interface whose instance it is:

instance AgreementEng of Agreement = {

param Agr = Ag Number Person ;

param Case = Nom | Acc | Gen ;

oper subject : Case = Nom ;

}

Notice the analogy between abstract and concrete on the top level
and interface and instance on the resource level. As we will see in
Section 3.2, one way to produce interfaces and their instances is by
reuse of top-level grammars.

2.14. Incomplete modules and their completions

An interface module can be opened by another module, which must
then be declared as incomplete, since it uses undefined types and op-
erations. Incomplete modules are similar to parametrized modules in
ML, where they are also known as functors. To give an example, the
following concrete syntax is incomplete since it opens the interface
Agreement:

incomplete concrete PhraseI of Phrase =

open Agreement in {

lincat NP = {s : Case => Str ; a : Agr} ;

lincat VP = {s : Agr => Str} ;

lin PredVP n v = {s = n.s ! subject ++ v.s ! n.a}

}

Complete modules are created by providing instances to interfaces:

concrete PhraseEng = PhraseI with

(Agreement = AgreementEng)

The code contained in PhraseI can thus be shared between concrete
syntaxes, by different instantiations of the interface Agreement. It works
for any language in which the VP receives some agreement features from
the subject and which has a rigid SVO or SOV word order. A further
parametrization can be made to abstract away from word order:

order : Str -> Str -> Str -> Str ; -- interface

order S V O = S ++ V ++ O ; -- SVO instance

order S V O = V ++ S ++ O ; -- VSO instance

multieng3.tex; 19/12/2006; 11:35; p.18

19

2.15. Compilation and complexity

A top-level GF grammar is a system of syntax-tree constructors (the
abstract syntax) and their mappings to linearization functions (the
concrete syntax). A functional programming language is available for
writing grammars at a high level of abstraction. But isn’t such a for-
malism too powerful to be tractable or even decidable? The solution to
this problem is a compiler that takes full GF grammars into a format
that is much simpler than a functional language. This format is called
Canonical GF, GFC (see (Ranta, 2004b) for details).

Runtime applications of GF work with GFC grammars. The time
complexity of linearization in GFC is linear in the size of the tree.
The parsing problem of GFC has recently been reduced to the parsing
problem for Multiple Context-Free Grammars (Seki et al., 1991), by
Ljunglöf 2004. The parsing time is therefore polynomial in the size of
the input, but the exponent depends on the grammar—in particular,
on the number of discontinuous constituent parts.

The grammar compiler performs type-driven partial evaluation, which
means that a canonical data structure is created for every lineariza-
tion rule. An important consequence of this is that discontinuous con-
stituents are only present in the compiled grammar if there are top-level
linearization types that require them; resource modules can freely use
discontinuous constituents without infecting the top-level grammar.

3. Application grammars and resource grammars

3.1. Semantic vs. syntactic structure

Most of the example grammars presented above have abstract syntaxes
that encode semantic models. An abstract syntax encoding syntactic
structure was given in Section 2.3.

The purpose of a semantical abstract syntax is to define the mean-

ingful expressions of the application domain: in geometry, for instance,
one cannot say that a point intersects a line, and this is guaranteed by
the type of the function,

fun Intersect : Line -> Line -> Prop ;

Concrete syntax maps semantic structures into natural language, e.g.

lin Intersect x y = {s = x.s ++ "intersects" ++ y.s} ;

Conversely, the syntax tree that the parser finds for the sentence x

intersects y has the form

multieng3.tex; 19/12/2006; 11:35; p.19

20

Intersect x y

However, another analysis of the sentence arises if a syntactically mo-
tivated grammar is used. If we extend the module Phrase (Section 2.3)
with the transitive verb intersect, we get the tree

PredVP x (ComplTV vIntersect y)

The former tree has more direct semantics than the latter. It is more-
over less sensitive to differences among languages. Assume, for the sake
of argument, that the only way to express this proposition in French is
by using the collective-reflexive construction

x et y se coupent

It is easy to formulate the linearization rule on the semantically built
abstract syntax:

lin Intersect x y =

{s = x.s ++ "et" ++ y.s ++ "se" ++ "coupent"} ;

On the phrase structure level, however, the translation from English
to French would require transfer to another abstract syntax tree, to
something like

PredVP (ConjNP x y) (ReflTV vCouper)

3.2. Grammar composition

The possibility of doing translation without transfer is a strong ar-
gument in favour of a semantically built abstract syntax. Yet it is
not appealing to write linearization rules directly on such a syntax,
because the rules become linguistically ad hoc and repetitive, since
linguistic generalizations are not factored out. They are also hard to
write, since both domain-semantical and linguistic knowledge is needed.
The solution to all these problems is to use grammars of different levels:

application grammars, taking care of semantics;

resource grammars, taking care of linguistic details.

The concrete syntax of an application grammar can then be defined by
mapping into the abstract syntax of the resource grammar. The cate-
gories of the application grammar are given categories of the resource
grammar as linearization types. For instance, geometrical propositions
are linearized to sentences, and points and lines into noun phrases:

lincat Prop = S ; Point, Line = NP ;

multieng3.tex; 19/12/2006; 11:35; p.20

21

The Intersect predicate is linearized into English by using VP pred-
ication and the transitive verb intersect:

lin Intersect x y = PredVP x (ComplTV vIntersect y) ;

In French, a reciprocal (reflexive) construction is used:

lin Intersect x y = PredVP (ConjNP x y) (ReflTV vCouper) ;

As a rule of thumb,

An application grammar should only use applications of resource
grammar functions, never any records, tables, or literal strings.

In other words, the resource grammar’s linearization types should be
abstract data types, and the only access to them should be via the
interface provided by the abstract syntax of the resource grammar.

3.3. Compiling grammar composition

To make it formally correct to use the abstract syntax of one grammar
as the concrete syntax of another one, we define a translation from
pairs of top-level grammar rules into operation (oper) definitions:

{

cat C

lincat C = T
=⇒ oper C : Type = T

{

fun f : A

lin f = t
=⇒ oper f : A = t

Categories are thus translated to type synonyms for their linearization
types, and functions to operations defined in terms of their linearization
rules. It is easy to verify that type correctness is preserved in the derived
oper definitions.

When resource grammar tree constructors are used in an application
grammar, they are computed as oper constants and thereby eliminated.
This is done at compile time by using partial evaluation. One effect
of compilation is that the runtime grammar is minimized to match
just the needs of the application grammar: the whole resource is not
carried around, but just a part of it. For instance, it may be that the
verb vCouper imported from the French resource lexicon to express the
predicate Intersect is only used in the present indicative third person
plural form "coupent". Then the remaining 50 forms are not present
in the runtime grammar. For another example, consider the German
version of the Intersect predicate. The linearization rule can be

lin Intersect x y = PredVP x (ComplTV vSchneiden y) ;

The runtime linearization rule compiled from this is

multieng3.tex; 19/12/2006; 11:35; p.21

22

lin Intersect x y = {s = table {

V2 => x.s ! Nom ++ "schneidet" ++ y.s ! Acc ;

VI => "schneidet" ++ x.s ! Nom ++ y.s ! Acc ;

VF => x.s ! Nom ++ y.s ! Acc ++ "schneidet"

}

}

Even though the resource grammar category VP is discontinuous, verb
phrases are not constituents in the application grammar, and no discon-
tinuous constituents are therefore present at runtime. This means that
the parser has a lower complexity in the compiled application grammar
than in the full resource grammar (Section 2.15).

3.4. Supplementary levels of grammars

We have said that application grammars define semantic structure and
resource grammar define linguistic structure. But there is no fixed set of
structural levels: grammar composition is associative, and any number
of composed grammars can be compiled into one runtime grammar.
Thus grammar composition of GF can be used for multi-phase natural
language generation, where the transition from semantics to text goes
through several levels. Two supplementary levels of representation have
actually been found useful in GF-based projects: language-independent

API:s and derived resources.
The idea of language-independent API:s is that, even though lan-

guages are “put up” in different ways, it is often possible to “see them
as” having the same structure after all. In the multilingual resource
grammar library, it is very useful to have a common API for different
languages, so that the library is easier to learn and to use, and it be-
comes possible to write parametrized modules depending on it. At the
same time, the “native” API of each language can be more fine-grained
and give access to structures specific to that language,

Derived resources abstract away from the “linguistic way of think-
ing” of the the core resource grammar API:s. An example is a predi-
cation library, which is a parametrized module defining functions for
applying n-place verbs and adjectives simultaneously to n arguments.
For instance, such a library has the function

fun predTV : TV -> NP -> NP -> S ;

lin predTV x y = PredVP x (ComplTV vIntersect y) ;

which gives a concise way to linearize two-place predicates, e.g.

lin Intersect = predTV vIntersect ;

multieng3.tex; 19/12/2006; 11:35; p.22

23

The application grammarian does not need to think in terms of sub-
jects, verb phrases, and complements, but just in terms of logical ar-
gument places.

4. The GF Resource Grammar Project

The GF Resource Grammar Project has as its goal to create standard
libraries for GF applications (Ranta, 2002). The latest release covers
seven languages: English, Finnish, French, German, Italian, Russian,
and Swedish. Later work has extended the coverage and added Danish,
Norwegian, and Spanish. Of these languages, Finnish is Fenno-Ugric
and the others are Indo-European. The library aims to give

a complete set of morphological paradigms for each language,

a set of syntactic categories and structures sufficient for generation
of text and speech on different application domains,

a common API for the syntax of all languages involved.

The middle requirement is, of course, vague. In practice, it means
that the library is developed in an application-testing-extension cycle.
The coverage seems to converge towards a syntax similar to the Core
Language Engine CLE (Alshawi, 1992).

The main goal of the Resource Grammar Project is practical: to
enable programmers not trained in linguistics to produce linguistically
correct application grammars. At the same time, resource grammars
are a test case for GF from the linguistic point of view, since they
are sizable general-purpose grammars. Writing a resource grammar is
similar to grammar writing in the traditional sense of linguistics.

4.1. The coverage of the resource library

The current version of the language-independent syntax API has 61
categories and 136 functions. To give a rough idea of what this means
in more familiar terms, the English version expands to 66,2569 context-
free rules, and the Swedish version expands to 86,116 ones. These
context-free projections, however, are not accurate descriptions of the
grammars: the correct number of context-free rules can be infinite, since
GF is not a context-free formalism.

The coverage of morphology modules varies from almost complete
(French, Spanish, Swedish) to fragmentary (Norwegian). The most com-
prehensive esource lexica have been built for Swedish (50,000 lemmas)
and Spanish (12,000).

multieng3.tex; 19/12/2006; 11:35; p.23

24

4.2. Parametrized modules and language families

Languages inside a given family, such as Germanic or Romance, have
similarities that reach from vocabularies related by sound laws to pa-
rameter systems and agreement rules. In the GF resource project, these
similarities have not (yet) been exploited for Germanic languages, but
an experiment has been made for Romance languages. When the French
version had been written, we wanted to see how much of the code could
be reused when writing the Italian version. It was not copy-and-paste
sharing that was interesting (this had been used between German and
Swedish), but inheritance and parametricity. Thus we identified the
reusable parts of the French type system and syntax, and moved them
to separate Romance interface modules. The end result was a grammar
where 75 % of code lines (excluding blanks and comments) in the Italian
and French syntax and type systems belong to the common Romance
modules. No effort was made to share code in morphology and lexicon,
but this could be a sensible project for someone interested in Romance
sound laws.

At a later stage, Spanish was added to the group of Romance lan-
guages, with almost no new parametrization needed. Most recently, the
Swedish grammar was generalized to Scandinavian, through addition
of Danish and Norwegian. In this family, 90 % of syntax code is shared.

5. Application projects

5.1. Multilingual authoring

As an interactive generalization of interlingua-based translation, GF
grammars support multilingual authoring, that is, interactive construc-
tion of abstract syntax trees, from which concrete texts are simultane-
ously obtained in different languages by linearizations (Khegai et al.,
2003). The user of a multilingual authoring system can construct a
document in a language that she does not know while seeing it evolve in
a language she does know. Each authoring system has a limited domain
of application. Pilot projects for such systems cover topics ranging from
mathematical proofs to health-related phrases usable at a visit to a
Doctor. Such a system typically involves 3–7 languages.

5.2. Dialogue systems

A dialogue system is a program that permits human-computer interac-
tion in spoken language (but may also involve other input modes such
as mouse clicks). Dialogue systems need two kinds of grammars: those

multieng3.tex; 19/12/2006; 11:35; p.24

25

used in dialogue management and those used in speech recognition.
Dialogue management grammars are used for parsing the user’s utter-
ances to dialogue moves. Speech recognition grammars help the speech
recognizer to work faster and with less ambiguity when producing text
input to dialogue management grammars.

The GF compiler derives speech recognition grammars in the Nuance
format (Nuance Communications, 2002) automatically from GF gram-
mars (Bringert et al., 2004). Since Nuance grammars are context-free,
these grammars are not completely accurate, but they give conserva-
tive approximations. Moreover, if dialogue management is seen in the
same way as interaction in a multilingual authoring system (Ranta and
Cooper, 2004), it is possible to generate at each state of the dialogue an
optimally restricted Nuance grammar that covers just those utterances
that are meaningful in that state.

5.3. Object-oriented software specifications

Formalized software specifications are becoming more and more im-
portant in large-scale program development. One of the languages that
is widely used is OCL (Object Constraint Language) (Warmer and
Kleppe, 1999). However, even if programmers use formal specifica-
tions, it is natural language that management wants to see and that
contracts with customers are written in. Formal specifications thus
come with an additional cost of keeping informal specifications in syn-
chrony with them. To bridge this gap, the software development system
KeY (Ahrendt et al., 2004) is equipped with a GF-based natural-
language authoring tool (Hähnle et al., 2002). The tool provides au-
tomatic translation of formal specifications into natural language, and
also multilingual authoring for simultaneous construction of the two.

An interesting feature of the KeY grammar is that it is special-
purpose but not closed. It has a core grammar that covers all OCL
structures, but each application also has its own expressions for classes
and methods: it may be bank accounts and withdrawals, or engines and
brakes, etc. The application-specific expressions need not be just words
from a lexicon, but they may be multi-word phrases with agreement
and word-order phenomena. Since OCL grammar extensions are built
by programmers whose training and focus is on formal specifications
and not on natural language, there is urgent need to support grammar
engineering through high-level API:s.

Building a German core grammar for KeY was a substantial project
where a programmer without linguistic training wrote an application
grammar by using the resource grammar library (unpublished “Stu-
dienarbeit” by Hans-Joachim Daniels). The results were encouraging:

multieng3.tex; 19/12/2006; 11:35; p.25

26

the grammar produces correct even though sometimes clumsy German,
is complete for OCL, and completely defined in terms of the resource
grammar API.

6. Practical issues

6.1. Library browsing and syntax editing

Software engineering tools that support library browsing are obviously
useful in resource-based grammar engineering. Syntax editing, which is
the technique used in multilingual authoring applications, can be seen
as a generalization of plain library browsing. The author of an applica-
tion grammar can use syntax editing with a resource grammar to con-
struct linearization rules. In each editing state, a menu is dynamically
created with just those resource functions that are type-correct.

6.2. Grammar writing by parsing

As a step towards automatic application grammar construction, one
can use a resource grammar as a parser. For instance, the linearization
rule of the function

fun Intersect : Line -> Line -> Prop ;

can be built by sending an example sentence to the parser:

x schneidet y

The resource grammar parser builds from this the tree

PredVP x (ComplTV vSchneiden y)

which produces the linearization rule by grammar composition. (If
the parse is ambiguous, the user is prompted to disambiguate.) Thus
the application grammarian need not even look up functions from the
library API, but just send target language strings to the parser! This
procedure of course presupposes that the resource grammar has enough
coverage to parse all input. The lexicon, in particular, may prove insuf-
ficient, since application grammars may use very special vocabulary. In
such cases, it is important that the parser can localize unknown words
and that the library module with lexical paradigms gives good support
for adding new words to the lexicon.

multieng3.tex; 19/12/2006; 11:35; p.26

27

6.3. Compilation of grammars into program modules

If grammars are only usable through an interpreter of the grammar
formalism, their usefulness as software components is limited. There-
fore, the GF grammar compiler is being extended by new back-ends
that produce modules in main-stream programming languages. These
modules must have high-level API:s giving access to grammar-based
functionalities: parsing, generation, and translation. Currently GF can
generate Java programs that perform generation, parsing, translation,
and syntax editing (Bringert, 2005).

7. Related work

7.1. Records vs. feature structures

Like many other formalisms, e.g. PATR (Shieber, 1986) and HPSG
(Pollard and Sag, 1994), GF uses records to represent linguistic in-
formation. In the other formalisms, records are often called feature

structures. Let us compare a GF record with a PATR feature structure,
representing the French noun cheval.

{s = table { {s = "cheval" ;

Sg => "cheval" ; n = Sg ;

Pl => "chevaux"} ;

g = Masc} g = Masc}

The GF record gives the inflection table and the inherent gender of the
noun. The PATR record shows just the singular form, and indicates
the number singular in the same way as the gender. The difference is
explained by the fact that, in GF, records are obtained as linearizations

of trees, whereas in PATR, as parses of strings. In GF, you start from
the abstract object Cheval, and get both the singular and the plural
forms. In PATR, you start from the string "cheval", and thus you
have only the singular form. The PATR record can be obtained as an
instance of the GF record—by selecting the Sg field of the table.

7.2. Modularity in grammar engineering

Since the influential paper of Parnas (1972), information hiding has
been considered the key aspect of modularity in software engineering.
In grammar engineering, information hiding is not a wide-spread idea.
It has even been said that information hiding is the very antithesis
of productivity in grammar writing (Copestake and Flickinger, 2000).

multieng3.tex; 19/12/2006; 11:35; p.27

28

For instance, a feature used in morphology may surprisingly turn out
to be useful in semantics (ibid.). Blocking the view of other modules
hence prevents the working grammarian from finding generalizations.
As a more general argument, Copestake and Flickinger point out that
grammar engineering is still more like research than engineering, and
that normal software engineering ideas do not therefore apply.

The modularity to which (Copestake and Flickinger, 2000) refer
is the traditional division of a grammar to morphology, syntax, and
semantics. In GF, this kind of modularity applies mostly to resource
grammars. It may well be useful to know morphological features in
semantics, but this is no argument against information-hiding between
resource grammars and application grammars. While resource gram-
mar writing may still involve linguistic research, application grammar
writing can be made more like software engineering.

7.3. Grammar specialization

Writing special-purpose grammars is costly, because it requires spe-
cific combinations of competence. On the other hand, special-purpose
grammars are computationally more tractable than general-purpose
grammars, particularly in speech recognition. One way out of this
dilemma has been offered by Rayner et al. in the CLE project (2000):
to extract fragments from large grammars by explanation-based learn-

ing. In brief, this means intersecting the grammar with a corpus. The
GF approach where application grammars are extracted by grammar
composition has the same goal, but uses a different technique.

However, a combination of grammar composition and explanation-
based learning is already implicit in the technique of grammar writing
by parsing (Section 6.2 above). In this method, the “corpus” consists
of all linearization rules of an application grammar given as example
strings. One example per rule is enough, and the corpus is automatically
extended by using linearization with the resource grammar. For in-
stance, if the target language is German and the example is x schneidet

y, also the variants schneidet x y and x y schneidet are recognized, when
occurring in positions that require these word orders. Thus the corpus
that is needed is smaller than in ordinary explanation-based learning.

7.4. Resource grammar libraries

The coverage of the GF Resource Grammar Library is comparable to
the CLE fragment (Alshawi, 1992; Rayner et al., 2000). By this we
mean coverage in the sense of what syntactic structures are included.
Coverage in the sense of parsing corpora has not been compared.

multieng3.tex; 19/12/2006; 11:35; p.28

29

The set of languages covered by the GF resource library is larger
than any other comparable library known to us. The idea of accessing
grammars of different languages through a common API does not seem
to have been considered before.

8. Conclusion

We have shown how the module system of the GF grammar formalism
makes it possible to share code between grammars and to obtain a
division of labour in grammar engineering. Grammars can share code
in various ways: the most important way is an abstract syntax defining
a common semantic representation in a multilingual grammar, but it is
also possible to share large parts of concrete syntax, using inheritance
and parametrized modules.

The practical goal of introducing modularity in grammar engineer-
ing is to make grammars accessible to software engineers and thereby
to improve the quality of natural-language input and output in com-
puter programs when linguists are not available. In addition to resource
grammar libraries and grammar development tools, it is important
that grammars can be compiled into program modules in main-stream
programming languages such as Java.

Acknowledgements

The author is grateful to Robin Cooper and Elisabet Engdahl for stim-
ulating discussions, and to anonymous referees for a multitude of useful
questions. The work was financed from grant 2002-4879, Records, Types

and Computational Dialogue Semantics, from Vetenskapsr̊adet.

References

Ahrendt, W., T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt: 2004, ‘The KeY Tool’.
Software and System Modeling. Online First issue, to appear in print.

Alshawi, H.: 1992, The Core Language Engine. Cambridge, Ma: MIT Press.
Bescherelle: 1997, La conjugaison pour tous. Hatier.
Bringert, B.: 2005, ‘Embedded Grammars’. Master’s Thesis, Department of

Computer Science, Chalmers University of Technology.
Bringert, B., R. Cooper, P. Ljunglöf, and A. Ranta: 2004, ‘Development of multi-

modal and multilingual grammars: viability and motivation’. Deliverable D1.2a,
TALK Project, IST-507802.

multieng3.tex; 19/12/2006; 11:35; p.29

30

Copestake, A. and D. Flickinger: 2000, ‘An open-source grammar development en-
vironment and broad-coverage English grammar using HPSG’. Proceedings of
the Second conference on Language Resources and Evaluation (LREC-2000).

Dymetman, M., V. Lux, and A. Ranta: 2000, ‘XML and Multilingual Document
Authoring: Convergent Trends’. In: COLING, Saarbrücken. pp. 243–249.

Hockett, C. F.: 1954, ‘Two Models of Grammatical Description’. Word 10, 210–233.
Huet, G.: 2002, ‘The Zen Computational Linguistics Toolkit’.

http://pauillac.inria.fr/~huet/
Hähnle, R., K. Johannisson, and A. Ranta: 2002, ‘An Authoring Tool for Informal

and Formal Requirements Specifications’. In: R.-D. Kutsche and H. Weber (eds.):
Fundamental Approaches to Software Engineering, Vol. 2306 of LNCS. pp. 233–
248, Springer.

Khegai, J., B. Nordström, and A. Ranta: 2003, ‘Multilingual Syntax Editing in GF’.
In: A. Gelbukh (ed.): Intelligent Text Processing and Computational Linguistics
(CICLing-2003), Mexico City, February 2003, Vol. 2588 of LNCS. pp. 453–464,
Springer-Verlag.

Ljunglöf, P.: 2004, ‘Grammatical Framework and Multiple Context-Free Grammars’.
In: G. Jaeger, P. Monachesi, G. Penn, and S. Wintner (eds.): Proceedings of
Formal Grammar, Nancy, August 2004. pp. 77–90.

McCarthy, J.: 1960, ‘Recursive Functions of Symbolic Expressions and their
Computation by Machine, part I’. Communications of the ACM 3, 184–195.

Milner, R., M. Tofte, and R. Harper: 1990, Definition of Standard ML. MIT Press.
Montague, R.: 1974, Formal Philosophy. New Haven: Yale University Press.

Collected papers edited by R. Thomason.
Müller, S.: 1999, Deutsche Syntax Deklarativ. Max Niemeyer Verlag.
Nuance Communications: 2002, ‘Nuance’. http://www.nuance.com.
Parnas, D.: 1972, ‘On the Criteria To Be Used in Decomposing Systems into

Modules’. Communications of the ACM 15, 1053–1058.
Peyton Jones, S. (ed.): 2003, Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press.
Pollard, C. and I. Sag: 1994, Head-Driven Phrase Structure Grammar. University

of Chicago Press.
Ranta, A.: 1994, Type Theoretical Grammar. Oxford University Press.
Ranta, A.: 2002, ‘GF Homepage’. www.cs.chalmers.se/~aarne/GF/.
Ranta, A.: 2004a, ‘Computational semantics in type theory’. Mathematics and Social

Sciences 165, 31–57.
Ranta, A.: 2004b, ‘Grammatical Framework: A Type-theoretical Grammar Formal-

ism’. The Journal of Functional Programming 14(2), 145–189.
Ranta, A.: 2004c, ‘Grammatical Framework Tutorial’. In: A. Beckmann and N.

Preining (eds.): ESSLLI 2003 Course Material I, Vol. V of Collegium Logicum.
pp. 1–86, Kurt Gödel Society.

Ranta, A. and R. Cooper: 2004, ‘Dialogue Systems as Proof Editors’. Journal of
Logic, Language and Information.

Rayner, M., D. Carter, P. Bouillon, V. Digalakis, and M. Wirén: 2000, The Spoken
Language Translator. Cambridge: Cambridge University Press.

Seki, H., T. Matsumura, M. Fujii, and T. Kasami: 1991, ‘On Multiple Context-Free
Grammars’. Theoretical Computer Science 88, 191–229.

Shieber, S.: 1986, An Introduction to Unification-Based Approaches to Grammars.
University of Chicago Press.

Warmer, J. and A. Kleppe: 1999, The Object Constraint Language: Precise Modelling
with UML. Addison-Wesley.

multieng3.tex; 19/12/2006; 11:35; p.30

