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1 Introduction

A modular graph function is a function associated to a certain Feynman graph for a two-

dimensional conformal field theory on a torus with complex structure τ . It is invariant

under transformations of τ by the modular group SL(2,Z). Modular graph functions may

be decomposed into even and odd pieces depending on their parity under τ → −τ̄ , and

their loop order is given by the number of loops of the corresponding Feynman graph. The
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weight w of a modular graph function is half of the degree of homogeneity in the momenta

of the graph, and provides a grading on the ring of such functions. One-loop modular graph

functions are always even and, for weight w, reduce to real analytic Eisenstein series Ew.

The origin of modular graph functions at higher loop order may be traced back to string

theory. The analytic structure of the genus-one superstring amplitude for four strings was

analyzed in [1], and the low-energy expansion was organized in terms of modular functions

in [2, 3]. A systematic study of modular graph functions was initiated in [4, 5] where they

were shown to obey a system of differential and algebraic identities and in [6] where they

were shown to be intimately related to single-valued elliptic polylogarithms. Further iden-

tities were derived in [7–10]. A key ingredient in the construction of these identities is the

Laurent polynomial in Im (τ) of the modular graph function. It governs the leading behav-

ior at the cusp τ → i∞ and was obtained in closed form for an infinite class of even two-loop

modular graph functions in [11], and for all graphs with four or fewer vertices in [12].

Modular graph forms, which associate an SL(2,Z) non-holomorphic modular form to a

certain type of (decorated) graph, were introduced in [13–15], where a systematic method

was developed to construct all the identities between them. An alternative construction

in terms of Eichler type integrals was developed in [16]. The underlying nature of these

identities remains to be fully uncovered, but it is already clear that they generalize to

modular graph forms some of the algebraic identities which exist between multiple zeta

values (see for example [17–22]). Direct connections between modular graph functions and

single-valued elliptic polylogarithms were obtained in [6, 23–25]. The role of multiple zeta

values in string amplitudes has been investigated extensively in [26–30]. Generalizations of

modular graph functions for Heterotic string amplitudes were studied in [31–33]. Higher

genus modular graph functions were introduced and analyzed in [34, 35], building on earlier

studies of special cases in [36–38], and further developed in [39–41].

In the present paper, we shall obtain the Fourier series, including constant and non-

constant Fourier modes, of arbitrary two-loop modular graph functions, thereby gener-

alizing the results of [11]. The coefficients of the Fourier modes involve odd zeta values

as well as a novel generalization of divisor sums. We also construct the Poincaré series

of all two-loop modular graph functions in terms of a sum over Γ∞\PSL(2,Z), with Γ∞

the Borel subgroup of PSL(2,Z), compute the corresponding seed functions, prove absolute

convergence of the series, and outline the generalization to arbitrary weight and loop order.

The Fourier and Poincaré series expansions provide all the tools needed to evaluate

integrals of two-loop modular graph functions over the fundamental domain of PSL(2,Z),

as well as the Petersson inner product between modular graph functions, using the Rankin-

Selberg-Zagier methods. Some of these integrals are needed to evaluate the contributions

to the genus-one string amplitudes which are analytic in the external momenta [2, 4].

Finally, we investigate the space Aw of odd two-loop modular graph functions of weight

w, and show that Aw consists entirely of cuspidal functions, namely modular functions

which have exponential decay near the cusp. Using the techniques of holomorphic subgraph

reduction and the sieve algorithm developed in [13–15] we produce a lower bound on the

dimension of Aw by exhibiting families of linearly independent odd modular graph functions

at each weight. For w ≤ 4 the space Aw is empty, while for 5 ≤ w ≤ 11 the lower bound is

saturated and we exhibit an explicit basis for Aw.

– 2 –
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Organization. In section 2, we review the definition and basic properties of general

modular graph functions and forms, define their parity under τ → −τ̄ , discuss the one-loop

and two-loop cases, and prove some basic decomposition formulas for two-loop modular

graph functions. In section 3, we obtain the Poincaré series for general modular graph

functions, compute the seed functions for the two-loop case and prove absolute convergence

of the series. In section 4 we carry out the calculation of the Fourier series expansion for

arbitrary two-loop modular graph functions. In section 5 we simplify the result for the

constant Fourier mode, and extract the expansion for the non-constant Fourier modes. In

section 6, we review the holomorphic subgraph reduction procedure and sieve algorithm,

construct infinite families of linearly independent two-loop odd modular graph functions,

and produce a lower bound for the dimension of the space Aw of odd modular graph

functions of weight w. Finally, in section 7 we discuss the action of the Laplace operator

on two-loop odd modular graph functions and study Petersson inner products between

them. Technical details of the calculations and some explicit formulas for complicated

expansion coefficients are relegated to the appendices.
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2 Modular graph functions and forms

In this section, we shall review the definitions and basic properties of modular graph

functions and forms, define even and odd modular graph functions, exhibit the action of

differential operators, and illustrate the cases of one and two loops.

2.1 Definitions and basic properties

A decorated connected graph (Γ, A,B) with V vertices and R edges is defined as follows.

The connectivity matrix Γ of the graph has components Γv r where the index v = 1, · · · , V
labels the vertices of the graph and the index r = 1, · · · , R labels its edges. No edge is

allowed to begin and end on the same vertex. When edge r contains vertex v we have

Γv r = ±1, while otherwise we have Γv r = 0. The decoration (A,B) of the graph is defined

as follows,

A = [a1, · · · , , aR] a = a1 + · · ·+ aR

B = [b1, · · · , , bR] b = b1 + · · ·+ bR (2.1)

where ar, br ∈ C with ar − br ∈ Z for all r = 1, · · · , R. The pair (ar, br) is associated with

edge r, while a, b are associated with the full decorated graph.

– 3 –
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To a decorated graph (Γ, A,B) we associate a complex-valued function on the Poincaré

upper half plane H, defined by the following Kronecker-Eisenstein sum,

CΓ
[

A

B

]

(τ) =
(τ2
π

) 1
2
a+ 1

2
b ∑

p1,...,pR∈Λ′

R
∏

r=1

1

(pr)ar (p̄r)br

V
∏

v=1

δ

(

R
∑

s=1

Γv s ps

)

(2.2)

whenever this sum is absolutely convergent. The momentum lattice is given by Λ = Z+τZ

for τ ∈ H with Λ′ = Λ\{0}. The momenta pr depend holomorphically on H. We refer to ar
and br as the exponents of respectively holomorphic and anti-holomorphic momenta. The

Kronecker δ-symbol equals 1 when its argument vanishes and 0 otherwise. The number of

loops L is the number of independent momenta, given by L = R − V + 1. The domain

of absolute convergence of the sums in (2.2) is given by a system of inequalities on the

combinations Re (ar+br), beyond which the functions C of (2.2) may be defined by analytic

continuation in the variables ar + br.

The function CΓ in (2.2) vanishes whenever the integer a − b is odd, or whenever

the graph Γ becomes disconnected upon severing a single edge. A function CΓ associated

with a connected graph Γ which is the union of two graphs Γ = Γ1 ∪Γ2 whose intersection

Γ1∩Γ2 consists of a single vertex factorizes into the product CΓ1CΓ2 with the corresponding

partitions of the exponents. Henceforth, we shall assume that a − b is even, and that the

graph Γ remains connected upon the removal of any single edge or vertex.

Under SL(2,Z), the functions defined in (2.2) transform as follows,

CΓ
[

A

B

]

(

ατ + β

γτ + δ

)

=

(

γτ + δ

γτ̄ + δ

) 1
2
a− 1

2
b

CΓ
[

A

B

]

(τ) (2.3)

where α, β, γ, δ ∈ Z and αδ − βγ = 1. The modular weight of CΓ is given by the pair

(a−b
2 , b−a

2 ) which has integer entries since a−b is even. For a 6= b, the function CΓ transforms

as a non-holomorphic modular graph form. For a = b the function CΓ is SL(2,Z)-invariant

and referred to as a modular graph function of weight1 w = a = b.

A modular graph form is invariant under permutations of its vertices and its pairs of

exponents (ar, br). It obeys a momentum conservation identity at each vertex v = 1, · · · , V ,

R
∑

r=1

Γv r CΓ
[

A− Sr

B

]

=

R
∑

r=1

Γv r CΓ
[

A

B − Sr

]

= 0 (2.4)

The R-dimensional array Sr is defined to have zeroes in all slots except for the r-th,

Sr = [0r−1, 1, 0R−r] (2.5)

where 0ℓ stands for an array of ℓ zeros. The momentum conservation identities provide

linear algebraic relations between modular graph forms of the same modular weight.

1This weight is not to be confused with the modular weight, which vanishes for a = b.
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2.2 Graphical representation

Though it will not be used much in the present work, we now briefly review the graphical

representation of modular graph functions and forms. The generating function of modular

graph functions with N vertices is given as follows,

BN (sij |τ) =
N
∏

k=1

∫

Σ

d2zk
τ2

exp





∑

1≤i<j≤N

sij G(zi − zj |τ)



 (2.6)

where Σ is a torus with complex structure modulus τ and G(zi − zj |τ) is the scalar Green

function on Σ, given as a Fourier sum by

G(z|τ) =
′
∑

p∈Λ

τ2
π|p|2 e

2πi(nα−mβ) (2.7)

for z = α+ βτ . Modular graph functions may be represented by Feynman graphs on Σ as

follows. We begin by representing a Green function graphically by an edge in a Feynman

diagram,

zi zj
= G(zi − zj |τ) (2.8)

The integration over the position of a vertex z on which r Green functions end is denoted by

an unmarked filled black dot, in contrast with an unintegrated vertex zi which is represented

by a marked unfilled white dot. The basic ingredients in the graphical notation are depicted

in the graph below,

· · ·

z1 z2 zr−1 zr
=

∫

Σ

d2z

τ2

r
∏

i=1

G(z − zi|τ) (2.9)

For our purposes, we will be interested only in those cases in which all positions on the torus

have been integrated over, and hence all nodes in the diagrams are filled and unmarked.

More generally, modular graph forms may be obtained by considering derivatives of the

scalar Green functions, which given rise to differing exponents (ar, br) for the holomorphic

and anti-holomorphic momenta pr, p̄r. These exponents are represented graphically by

decorated edges as follows,

ar, br ≈ (pr)
−ar(p̄r)

−br (2.10)

As a simple example, for Γ1r = 1 and Γ2r = −1, r = 1, 2, 3, one has

• •

a1, b1

CΓ
[

a1 a2 a3
b1 b2 b3

]

= • •a2, b2•

a3, b3

•

a3, b3

(2.11)

– 5 –
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2.3 Modular graph functions of even and odd parity

Parity is an anti-holomorphic automorphism of the upper half plane τ → −τ̄ under which

an arbitrary modular graph form transforms by swapping the arrays A and B,

CΓ
[

A

B

]

(−τ̄) = CΓ
[

B

A

]

(τ) (2.12)

thereby swapping the modular weights ( a−b
2 , b−a

2 ) and ( b−a
2 , a−b

2 ). For a = b it is consis-

tent to decompose an arbitrary modular graph function into even and odd modular graph

functions CΓ = SΓ +AΓ which satisfy,

SΓ

[

A

B

]

(−τ̄) = SΓ

[

A

B

]

(τ) AΓ

[

A

B

]

(−τ̄) = −AΓ

[

A

B

]

(τ) (2.13)

We note that whenever A = B we have A = 0. When the exponents ar, br are all integers,

the parity operation on CΓ is equivalent to complex conjugation of CΓ.

2.4 Action of differential operators

The choice made for the exponent of the τ2 prefactor in the definition of (2.2) ensures

the canonical normalization in which the modular weight vanishes for a = b. For a 6= b,

however, there is no such canonical normalization available, and the action of differential

operators is made more convenient by changing normalization to modular forms C+
Γ and

C−
Γ of respective modular weights (0, b− a) and (a− b, 0) defined as follows,

C±
Γ

[

A

B

]

(τ) = (τ2)
±a−b

2 CΓ
[

A

B

]

(τ) (2.14)

The action of the first order operator ∇ = 2iτ22 ∂τ on modular graph forms C+
Γ is simple

since no connection is required, and the same is true for the action of ∇ = −2iτ22 ∂τ̄ on

modular graph forms C−
Γ . The action of the operators ∇ and∇may be expressed as follows,

∇C+
Γ

[

A

B

]

=
R
∑

r=1

ar C+
Γ

[

A+ Sr

B − Sr

]

∇C−
Γ

[

A

B

]

=
R
∑

r=1

br C−
Γ

[

A− Sr

B + Sr

]

(2.15)

where the row matrix Sr was defined in (2.5). The operator ∇ maps modular graph forms

of modular weight (0, b− a) to those of modular weight (0, b− a− 2), and similarly for ∇.

The Laplace-Beltrami operator on modular graph functions is the Laplace operator on

H given by ∆ = 4τ22 ∂τ̄∂τ and maps the space of modular graph functions into itself,

(∆ + a) CΓ
[

A

B

]

=

R
∑

r,s=1

arbs CΓ
[

A+ Sr − Ss

B − Sr + Ss

]

(2.16)

The action of the Laplace-Beltrami differentials on modular graph forms may be defined

analogously, but will not be needed in this paper. Since the operator ∆ commutes with

parity τ → −τ̄ , it maps even into even, and odd into odd modular graph functions. The

explicit formula for these actions may be obtained by simply substituting C on both sides

of the equality in (2.16) by either SΓ or AΓ.

– 6 –
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2.5 One-loop modular graph forms and Eisenstein series

The combinatorial complexity of modular graphs forms increases rapidly with the number

of loops. At one loop, the number of vertices equals the number of edges, so that all vertices

are bivalent. The case V = R = 1 is excluded since the edge begins and ends on the same

vertex. For V = R ≥ 2 all one-loop modular graphs forms are given for ar − br ∈ Z by,

C
[

a1 a2
b1 b2

]

= (−)a2+b2 C
[

a 0

b 0

]

(2.17)

where a, b are given by (2.1). The non-holomorphic Eisenstein series Es is defined by,

Es(τ) =
∑

p∈Λ′

τ s2
πs |p|2s =

∑

m,n∈Z

(m,n) 6=(0,0)

τ s2
πs|mτ + n|2s (2.18)

The Fourier series of Es for s ∈ C is given by,

Es(τ) =
2ζ(2s)

πs
τ s2 +

2Γ(s− 1
2)ζ(2s− 1)

Γ(s)πs− 1
2 τ s−1

2

+
4
√
τ2

Γ(s)

∞
∑

N=1

N s− 1
2σ1−2s(N)Ks− 1

2
(2πNτ2)

(

e2πiNτ1 + e−2πiNτ1
)

(2.19)

where K is the modified Bessel function and σz(N) =
∑

0<d|N dz is the divisor sum. The

Poincaré series representation of Es is given by

Es(τ) =
2ζ(2s)

Γ(s)

∑

γ∈Γ∞\SL(2,Z)

(Imγ(τ))s (2.20)

The one-loop modular graph forms of (2.17) may all be expressed in terms of Es.

There are no odd modular graph functions to one-loop order, and the Eisenstein series are

the only even modular graph functions to one-loop order. Successive application of the

derivatives ∇ and ∇ to Es produces all one-loop modular graph forms,

∇k Es =
Γ(s+ k)

Γ(s)
C+

[

s+ k 0

s− k 0

]

∇k
Es =

Γ(s+ k)

Γ(s)
C−

[

s− k 0

s+ k 0

]

(2.21)

For integer s = k ≥ 2 the derivative is proportional to a holomorphic Eisenstein series G2k,

∇kEk(τ) =
Γ(2k)

Γ(k)
(τ2)

2kG2k(τ) G2k(τ) =
∑

p∈Λ′

1

πk p2k
(2.22)

For integer s the Fourier series of Es simplifies and may be recast as follows,

Ek(τ) = − B2k

(2k)!
(−4πτ2)

k +
4 (2k − 3)! ζ(2k − 1)

(k − 2)! (k − 1)! (4πτ2)k−1

+
2

(k − 1)!

∞
∑

N=1

Nk−1σ1−2k(N)Pk(4Nπτ2)
(

qN + q̄N
)

(2.23)

where q = e2πiτ , B2k are the Bernoulli numbers, and Pk(x) is a polynomial in 1/x given by,

Pk(x) =
k−1
∑

m=0

(k +m− 1)!

m! (k −m− 1)!xm
(2.24)
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2.6 Two-loop modular graph forms

Two-loop modular graph forms are given by the following Kronecker-Eisenstein sum,

C
[

a1 a2 a3
b1 b2 b3

]

=
∑

p1, p2, p3∈Λ′

τw2 δp1+p2+p3,0

πw pa11 pa22 pa33 p̄b11 p̄b22 p̄b33
(2.25)

where the weight w is given by,

2w = a+ b = a1 + a2 + a3 + b1 + b2 + b3 (2.26)

For ar, br ∈ Z with r = 1, 2, 3, the sum is absolutely convergent provided ar+br+as+bs ≥ 3

for any pair r 6= s, which requires w ≥ 3. Furthermore, we shall restrict attention to the case

where all exponents are non-negative, as is natural from the point of view of string theory.

The space of modular graph forms thus obtained contains forms that are effectively one-

loop. Forms with br = 0 and ar ≥ 2 are proportional to holomorphic modular forms G2w.

When both exponents of a given momentum vanish, we may use the algebraic reduction

relation of [13, 14] to relate the form to one-loop forms,

C
[

a1 a2 0

b1 b2 0

]

= C
[

a1 0

b1 0

]

C
[

a2 0

b2 0

]

− (−)a2+b2C
[

a 0

b 0

]

(2.27)

where a = a1 + a2 and b = b1 + b2. Finally, when two anti-holomorphic exponents vanish,

holomorphic subgraph reduction may be used to relate the form to a one-loop form, as will

be reviewed in more detail in section 6.

The following proposition provides a systematic decomposition of two-loop modular

graph forms into a reduced set of such forms,

Proposition 2.1. Two-loop modular graph forms with ar + as + br + bs ≥ 3 for all r 6= s

and a1, a2, b1, b2 ≥ 1 admit the following decomposition,

C
[

a1 a2 a3
b1 b2 b3

]

=

a1
∑

k=1

Λk(a1, a2)

b1
∑

ℓ=1

Λℓ(b1, b3) C
[

a− k 0 k

0 b− ℓ ℓ

]

+ (1 ↔ 2) (2.28)

+

a1
∑

k=1

Λk(a1, a2)

b3
∑

ℓ=1

Λℓ(b3, b1) C
[

k 0 a− k

0 b− ℓ ℓ

]

+ (1 ↔ 2)

where the term (1 ↔ 2) is obtained from the preceding term by swapping the pairs (a1, b1)

with (a2, b2) leaving (a3, b3) unchanged, and Λ is proportional to a binomial coefficient,

Λk(a1, a2) = (−)a1+a2+k
(

a1 + a2 − k − 1

a2 − 1

)

(2.29)

Odd (resp. even) two-loop modular graph functions admit the same decomposition with the

symbol C replaced by A (resp. S) on both sides of the equality.

To prove the proposition, we perform a partial fraction decomposition of the holomor-

phic factor of the summand in terms of the momentum variable p3 = −p1−p2, and obtain,

1

pa11 pa22 pa33
=

a1
∑

k=1

Λk(a1, a2)

pk1 p
a−k
3

+

a2
∑

k=1

Λk(a2, a1)

pk2 p
a−k
3

(2.30)
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Using the restriction br ≥ 0, the anti-holomorphic factor of the summand multiplying the

first sum in (2.30) may be decomposed as follows,

1

p̄b11 p̄b22 p̄b33
=

b1
∑

ℓ=1

Λℓ(b1, b3)

p̄ℓ1 p̄
b−ℓ
2

+

b3
∑

ℓ=1

Λℓ(b3, b1)

p̄ℓ3 p̄
b−ℓ
2

(2.31)

while the factor multiplying the second term in (2.30) is given by (2.31) with the indices

1 and 2 swapped. The resulting decomposition is then given by (2.28). Symmetrization

under τ → −τ̄ then immediately gives the final statement.

Corollary 2.2. For a1 + b1, a2 + b2 ≥ 3, we have the decomposition,

C
[

a1 a2 0

b1 b2 0

]

=

a1
∑

k=1

Λk(a1, a2) C
[

a− k k 0

0 b1 b2

]

+ (1 ↔ 2) (2.32)

where a = a1 + a2.

The proof is an immediate consequence of proposition 2.1 obtained by setting

a3 = b3 = 0.

Corollary 2.3. For k, ℓ, a− k, b− ℓ ≥ 1, and a+ b− k− ℓ ≥ 3, the reduced modular graph

forms are related by the reflection formula,

C
[

a− k k 0

0 ℓ b− ℓ

]

=

a−k
∑

m=1

Λm(a− k, k) C
[

m a−m 0

0 b− ℓ ℓ

]

+
k
∑

m=1

Λm(k, a− k) C
[

m a−m 0

ℓ b− ℓ 0

]

(2.33)

The proof proceeds by partial fraction decomposition of the holomorphic momenta onto p3.

The modular graph functions appearing on the last line of corollary 2.3 may be expressed

in terms of one-loop functions using the algebraic reduction formula of (2.27) and in turn

may be expressed in terms of Eisenstein series and their derivatives using (2.21).

3 Poincaré series for two-loop modular graph functions

In this section, we shall construct the Poincaré series for two-loop modular graph functions

with respect to the coset Γ∞\Γ with Γ = PSL(2,Z), and outline the generalization of the

construction to higher loop orders.

3.1 Poincaré series for two loops

For integer exponents we use proposition 2.1 to recast an arbitrary modular graph function

of weight w = a = b as a linear combination of modular graph functions of the form,

Cu,v;w(τ) = C
[

u 0 w − u

0 v w − v

]

(τ) (3.1)
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where u, v, w are integers satisfying 1 ≤ u, v ≤ w−1. We furthermore restrict to u+v > 2,

lest the functions be divergent. These functions satisfy the complex conjugation condition

Cu,v;w = (Cv,u;w)∗. Their Kronecker-Eisenstein sum is given as follows,

Cu,v;w(τ) =
∑

mr,nr∈Z

(mr,nr) 6=(0,0)

τw2
πw

(

m2τ + n2

m1τ + n1

)u(m2τ̄ + n2

m3τ̄ + n3

)v δm,0δn,0
|m2τ + n2|2w

(3.2)

where m = m1 +m2 +m3, n = n1 + n2 + n3 and the Kronecker δm,0δn,0 restricts the sum

to contributions for which m = n = 0.

We shall obtain the Poincaré series for a generalization of the functions Cu,v;w where

u, v are positive integers but w is analytically continued to C. This generalization will be

useful when we evaluate Petersson inner products of modular graph functions.

Theorem 3.1. The Poincaré series for Cu,v;w(τ) with respect to Γ∞\Γ for u, v ∈ N with

u+ v > 2, and w ∈ C with Re (w) > 1+ 1
2 max(u, v), is absolutely convergent and given by,

Cu,v;w(τ) =
∑

g∈Γ∞\Γ

Λu,v;w(gτ) (3.3)

where the seed function Λu,v;w(τ) is given by,

Λu,v;w(τ) = ℓw(4πτ2)
w + (−)u+vΛ′

u,v;w(τ)

ℓw =

[u/2]
∑

k=0

4(−)u+v
(

u+v−2k−1
v−1

)

(2π)2w
ζ(2k)ζ(2w − 2k) + (u ↔ v)

Λ′
u,v;w(τ) =

∑

m 6=0

∑

µ∈Z

∑

n 6=0

τw2
πw

(−)unu+v

|n|2w (mτ + µ)u (mτ̄ + µ+ n)v
(3.4)

We shall prove theorem 3.1 with the help of two lemmas, of which the first is standard [42].

Lemma 3.2. For every pair (m2, n2) ∈ Z2 \ {(0, 0)} there exists a unique pair (0, n) and

a unique g ∈ Γ∞\Γ, such that we have the following matrix relation,

(m2 n2) = (0 n)g g =

(

α β

γ δ

)

α, β, γ, δ ∈ Z (3.5)

with αδ − βγ = 1 and n = ± gcd(m2, n2). The unique solution is given by γ = m2/n and

δ = n2/n such that δ > 0 if n2 6= 0 and γ > 0 if n2 = 0.

To prove lemma 3.2, we show that the equations m2 = nγ, n2 = nδ, and αδ − βγ =

1 have a unique solution given the conditions of the lemma. Since (m2, n2) 6= 0 and

gcd(γ, δ) = 1, we have n = ± gcd(m2, n2) where the greatest common divisor is defined to

be positive. The sign may be fixed by using g ∈ Γ which allows us to choose δ > 0 if n2 6= 0

and γ > 0 if n2 = 0. Thus γ and δ are determined uniquely. The group Γ∞ is given by,

Γ∞ =

{(

1 ν

0 1

)

, ν ∈ Z

}

(3.6)
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Acting to the right on (0, n) leaves (0, n) invariant. Acting to the left on g transforms

α → α+ νγ and β → β + νδ for ν ∈ Z mapping all solutions of the equation αδ − βγ = 1

for given γ, δ, into one another. Therefore, the coset element g ∈ Γ∞\Γ is unique. This

completes the proof of lemma 3.2.

Lemma 3.3. The following Poincaré series representation is absolutely convergent2 for

ai ∈ R with ai + aj > 1 for all 1 ≤ i 6= j ≤ 3,

Ca1,a2,a3(τ) = C
[

a1 a2 a3
a1 a2 a3

]

(τ) =
(2π)2aca
2ζ(2a)

Ea(τ) +
∑

g∈Γ∞\Γ

λa1,a2,a3(gτ) (3.7)

a = a1 + a2 + a3. The modular graph function Ca1,a2,a3 was defined in (2.25). The seed

function λa1,a2,a3(τ) is given by,

λa1,a2,a3(τ) =
∑

m,n 6=0

∑

µ∈Z

τa2
πan2a2 |mτ + µ|2a1 |mτ + µ+ n|2a3 (3.8)

and ca is independent of τ and was given in equation (1.20) of [11].

To prove lemma 3.3, we use the results and the notations of lemma 3.2 to obtain,

|m2τ + n2|2
τ2

=
n2

τ ′2

m2τ + n2

mrτ + nr
=

n

m′
rτ

′ + n′
r

τ ′ = gτ =
ατ + β

γτ + δ
(3.9)

where (mr, nr) 6= (0, 0) for r = 1, 3, n 6= 0, and subject to the conditions m′
1 + m′

3 = 0,

and n′
1 + n + n′

3 = 0. Parametrizing these variables by n, m′
1 = −m′

3 = m, n′
1 = µ,

and n′
3 = −n− µ, and substituting these results into the Kronecker-Eisenstein sum which

defines Ca1,a2,a3 in (2.25), we prove the Poincaré series representation of lemma 3.3. To

prove that the Poincaré series is absolutely convergent, we use the fact that for ai ∈ R,

each term in the Kronecker-Eisenstein sum defining Ca1,a2,a3 in (2.25) is real and positive.

Recasting this sum in the form of a Poincaré series simply amounts to a rearrangement

of the infinite series, which is always permitted by Tonelli’s theorem since all terms are

positive. This completes the proof of lemma 3.3.

To prove the Poincaré series representation of theorem 3.1, we use lemma 3.2 and the

decomposition formula (3.9) of the Kronecker-Eisenstein sum into orbits under Γ∞\Γ to

derive (3.4), in parallel with the derivation of λ in lemma 3.3. To prove absolute convergence

of the Poincaré series (3.3), we bound the series as follows,
∣

∣

∣

∣

Cu,v;w − (2π)2wℓw
2ζ(2w)

Ew

∣

∣

∣

∣

≤
∑

g∈Γ∞\Γ

λa1,a2,a3(gτ) (3.10)

where λa1,a2,a3(τ) was defined in (3.8) and a1, a2, a3 are given in terms of u, v, w by a1 =
1
2u,

a3 = 1
2v, a2 = Re (w) − a1 − a3. The left-hand side of (3.10) is the Poincaré series

over Λ′
u,v;w(τ). Since the assumptions of theorem 3.1 include u + v > 2 and Re (w) >

1 + 1
2 max(u, v), it follows that ai + aj > 1 and by lemma 3.3 the series in λa1,a2,a3(τ) is

absolutely convergent. This completes the proof of theorem 3.1.

2We thank Axel Kleinschmidt and Daniele Dorignoni for bringing their work on Poincaré series of

modular graph functions in [43, 44] to our attention, and for questions on convergence that led the authors

to the proof of absolute convergence included here.
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3.2 Calculating the seed function for integer w

Throughout this paper we shall use the following partial fraction decomposition formula,

1

(µ+ x)u(µ+ y)v
=

u
∑

k=1

(−)v
(

u+v−k−1
u−k

)

(µ+ x)k(x− y)u+v−k
+

v
∑

k=1

(−)u
(

u+v−k−1
v−k

)

(µ+ y)k(y − x)u+v−k
(3.11)

for u, v ∈ N. We shall now derive an explicit formula for the seed function Λu,v;w(τ). Its

first contribution involves the coefficient ℓw which is given by the m = 0 term,

ℓw =
(−)v

(2π)2w

∑

n 6=0

∑

µ 6=0,−n

1

n2w−u−vµu(µ+ n)v
(3.12)

The summation over µ in (3.12) may be carried out using the partial fraction decomposition

of the µ-dependent factors with x = 0 and y = n in (3.11). For integer w, the remaining

sum over n gives even ζ-values resulting in the formula for ℓw in (3.4). We may express

the even zeta-values ζ(2k) in terms of Bernoulli numbers B2k using the relation,

ζ(2k) =
1

2
(2π)2k(−)k+1 B2k

(2k)!
(3.13)

and obtain the following equivalent formula,

ℓw =

[u/2]
∑

k=0

(

u+ v − 2k − 1

v − 1

)(−)u+v+wB2kB2w−2k

(2k)!(2w − 2k)!
+ (u ↔ v) (3.14)

This expression agrees with the result (−)wcw found for even u and v in [11], and generalizes

that result for all u, v. The second contribution Λ′ is evaluated using the following lemma.

Lemma 3.4. For integer w, the function Λ′
u,v;w(τ) is given by,

Λ′
u,v;w(τ)= 2

(−τ2)
w

πw

u
∑

k=1

(

u+v−k−1

v−1

)

∞
∑

m=1

Φ2w−u−v;u+v−k(2mτ2)ϕk(q
m)+(u↔ v)∗ (3.15)

where q = e2πiτ and the notation (u ↔ v)∗ stands for the complex conjugate of the preceding

term in which u and v have been swapped. The functions ϕk and Φa;b are defined for integer

k, a, b with k ≥ 2 and a+ b ≥ 2 by the following infinite sums,

ϕk(e
2πiz) =

∑

µ∈Z

ik

(z + µ)k
Φa;b(z) =

∑

n 6=0

(−i)a+b

na(n− iz)b
(3.16)

while for k = 1 one has ϕ1(q) = π 1+q
1−q . Explicit formulas for ϕk will be given in (3.19)

and (3.20) and for Φa;b in (3.21).

The powers of i are included to give the functions simple conjugation properties,

ϕk(e2πiz) = ϕk(e
−2πiz̄) Φa;b(z) = Φa;b(z̄)

ϕk(e
−2πiz) = (−)kϕk(e

2πiz) Φa;b(−z) = (−)a+bΦa;b(z) (3.17)
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In particular, the functions ϕk and Φa;b are real functions of their respective argument.

The proof of lemma 3.4 proceeds by first computing the sum over µ ∈ Z using the standard

partial fraction decomposition formula of (3.11) with u, v ∈ N, x = mτ , and y = mτ̄ + n,

and expressing the result of the summation in terms of ϕk,

∑

µ∈Z

(−)v

(mτ + µ)u (mτ̄ + µ+ n)v
=

u
∑

k=1

(−i)k
(

u+v−k−1
v−1

)

(2miτ2 − n)u+v−k
ϕk(q

m) + (u ↔ v)∗ (3.18)

Importantly, the factor ϕk(q
m) is independent of n which allows us to express the sum

over m in terms of the function Φa;b(2mτ2) defined above, and this gives the expression

in (3.15).

3.3 Evaluating the functions ϕk and Φa;b(z)

The functions ϕk(q) for k ≥ 2 may be expressed as derivatives of the function ϕ1(q),

ϕk(q) =
(−i)k−1

Γ(k)

∂k−1

∂zk−1
ϕ1(q) ϕ1(q) = π

1 + q

1− q
(3.19)

Their Fourier series expansion for |q| < 1 is obtained as follows,

ϕk(q) = πδk,1 +
(2π)k

Γ(k)

∞
∑

p=1

pk−1 qp (3.20)

To evaluate the function Φa;b(z) for integer a, b ≥ 1 we perform first the sum over n,

using the partial fraction decomposition formula (3.11) for µ = n, x = 0, y = −iz, u =

a, v = b, together with the definition of the function ϕk. We find,

Φa;b(z) =

[a/2]
∑

α=0

(−)a+α 2ζ(2α)
(

a+b−2α−1
β−1

)

za+b−2α
+

b
∑

β=1

(−)a
(

a+b−β−1
a−1

)

ϕβ(e
−2πz)

za+b−β
(3.21)

The contribution from α = 0 in the sum over α arises from the subtraction required to

exclude the m = 0 term when recasting the sum over n in terms of the function ϕβ . Despite

the appearance of poles at z = 0 in the individual terms of the sum in (3.21), the function

Φa;b(z) is analytic near z = 0 and, for a, b ≥ 1 with z in the unit disc |z| < 1, is given by

the following Taylor expansion,

Φa;b(z) = −(2π)a+b
∞
∑

k=0

Γ(k + b)Ba+b+k

Γ(b)Γ(a+ b+ k + 1)k!
(−2πz)k (3.22)

The Ba+b+k vanish for a + b + k odd since we have a + b + k ≥ 2. The expression (3.22)

confirms the earlier observation that Φa;b(z) is a real function of z with parity (−)a+b.

We stress that both ϕk and Φa;b are elementary functions of their argument.
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3.4 Analytic continuation in w

The multiple summation for the seed function in theorem 3.1 is absolutely convergent for

u, v ∈ N, Re (2w−u) > 2, and Re (2w−v) > 2, and the result may be analytically continued

in w to all of C minus some poles. For w ∈ C\N, the decomposition of lemma 3.4 in terms

of elementary functions Φa;b is no longer available. Instead we have,

Λ′
u,v;w = 2

τw2
πw

u
∑

k=1

(

u+ v − k − 1

v − 1

)

∞
∑

m=1

ϕk(q
m)Υw,k,u+v(2mτ2)

+ 2
τw2
πw

v
∑

k=1

(

u+ v − k − 1

u− 1

)

∞
∑

m=1

ϕk(q̄
m)Υw,k,u+v(2mτ2) (3.23)

where Υ is given by,

Υw,k,ℓ(z) =
∑

n 6=0

iknℓ

|n|2w(n− iz)ℓ−k
(3.24)

For integer w we recover the expressions given in (3.4), but for arbitrary w ∈ C we can no

longer use partial fraction decomposition to simplify Υ. Its Taylor series expansion,

Υw,k,ℓ =
∞
∑

m=[(k+1)/2]

2(−)mΓ(ℓ− 2k + 2m)

Γ(ℓ− k)Γ(2m+ 1− k)
ζ(2w + 2m− 2k)z2m−k (3.25)

is valid for all w ∈ C.

3.5 Higher loops

We shall generalize the construction of Poincaré series to higher loops and focus on the

case of dihedral modular graphs functions whose Kronecker-Eisenstein sum is given by,

C
[

a1 · · · aR
b1 · · · bR

]

=
∑

p1,··· ,pR∈Λ′

τw2 δp1+···+pR,0

πw pa11 · · · paRR p̄b11 · · · p̄bRR
(3.26)

Here, the number of loops is R − 1 and we have w = a = b with a, b defined in (2.1). We

single out any one of the momentum edges, say pR = mRτ + nR, and apply lemma 3.2 to

the pair (mR, nR). In matrix notation, we thus recast the pair as follows,

(mR nR) = (0 n)g g =

(

α β

γ δ

)

α, β, γ, δ ∈ Z (3.27)

with αδ− βγ = 1 and n = ± gcd(mR, nR). The unique solution is given by γ = mR/n and

δ = nR/n such that δ > 0 if nR 6= 0 and γ > 0 if nR = 0. By generalizing the arguments

used in the two-loop case, we thus have,

C
[

a1 · · · aR
b1 · · · bR

]

(τ) =
∑

g∈Γ∞\PSL(2,Z)

Λ

[

a1 · · · aR
b1 · · · bR

]

(gτ) (3.28)
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The seed function Λ is given by,

Λ

[

a1 · · · aR
b1 · · · bR

]

(τ) =
∑

p1,··· ,pR−1∈Λ′

∑

n 6=0

τw2
πwnaR+bR

δp1+···+pR−1+n,0

pa11 · · · paR−1

R−1 p̄b11 · · · p̄bR−1

R−1

(3.29)

Effectively the sum over pR in C is replaced by a sum over pR = (0 n) with n 6= 0 in Λ.

4 Fourier series for two-loop modular graph functions

In this section we shall evaluate the Fourier series expansion of an arbitrary two-loop modu-

lar graph function with integer exponents. As in the previous section we use proposition 2.1

to reduce this calculation to evaluation of the Fourier series of the reduced modular graph

functions Cu,v;w(τ), defined in (3.1), for u, v, w ∈ N. We require u+ v ≥ 3, 2w−u ≥ 3, and

2w − v ≥ 3 to ensure convergence of the Kronecker-Eisenstein series which define Cu,v;w
in (3.2), and these conditions require w ≥ 3. The Fourier decomposition of Cu,v;w(τ) is

given by the following theorem.

Theorem 4.1. The two-loop modular graph function Cu,v;w with integer exponents

u, v, w ∈ N admits the following Fourier series expansion,

Cu,v;w(τ) = Lu,v;w(τ2) +

∞
∑

N=1

Q(N)
u,v;w(τ2)(qq̄)

N +
∞
∑

N=1

(

F (N)
u,v;w(τ2)q

N + F (N)
v,u;w(τ2)q̄

N
)

(4.1)

Here, the functions occurring in the constant Fourier mode, Lu,v;w(τ2) and Q(N)
u,v;w(τ2),

are real-valued Laurent polynomials in τ2. The functions F (N)
u,v;w(τ2) occurring in the non-

constant Fourier modes are real-valued functions which have an expansion in powers of qq̄,

F (N)
u,v;w(τ2) = F (N)

u,v;w(τ2) +
∞
∑

L=1

G(N,L)
u,v;w (τ2)(qq̄)

L (4.2)

where F
(N)
u,v;w(τ2) and G

(N,L)
u,v;w (τ2) are real-valued Laurent polynomials in τ2. The degrees of

these Laurent polynomials are given as follows,

degLu,v;w = (w, 1− w)

degQ(N)
u,v;w = (w − 2, w − β+ − 1)

degF (N)
u,v;w = (w − 1, w − ℓ+ − γ+)

degG(N,L)
u,v;w = (w − 2, w − ℓ+ − β+) (4.3)

where β+, ℓ+, and γ+ are defined as

β+ = max (w + |u− v| − 1, u+ v − 1)

ℓ+ = max (w − u, u)

γ+ = max (u+ v, 2w − u− v − ǫ) (4.4)

Explicit formulas for these Laurent polynomials will be given in subsequent sections.

– 15 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
6

Corollary 4.2. An immediate corollary of theorem 4.1 is obtained for odd two-loop modular

graph functions with integer exponents defined by Au,v;w(τ) = Cu,v;w(τ)− Cv,u;w(τ). Their

Fourier expansion is given by,

Au,v;w(τ) =
∞
∑

N=1

(

F (N)
u,v;w(τ2)−F (N)

v,u;w(τ2)
)

(

qN − q̄N
)

(4.5)

so that Au,v;w(τ) is a cuspidal function with exponential decay at the cusp.

4.1 Decomposition of the Kronecker-Eisenstein sum

To prove theorem 4.1 and calculate the coefficient functions in the Fourier series (4.1), we

start from the Kronecker-Eisenstein sum representation of Cu,v;w, given by,

Cu,v;w =
′
∑

(mr,nr)

τw2 δm1+m2+m3,0 δn1+n2+n3,0

πw (m1τ + n1)u(m2τ̄ + n2)v(m3τ + n3)w−u(m3τ̄ + n3)w−v
(4.6)

and decompose the sum according to the vanishing of the summation variables mr,

Cu,v;w =
4
∑

k=0

C(k)
u,v;w (4.7)

The individual terms correspond to the following assignments of mr and nr,

C(0)
u,v;w mi = 0 ni 6= 0 i = 1, 2, 3

C(1)
u,v;w m1 = 0 m2,m3 6= 0 n1 6= 0

C(2)
u,v;w m2 = 0 m3,m1 6= 0 n2 6= 0

C(3)
u,v;w m3 = 0 m1,m2 6= 0 n3 6= 0

C(4)
u,v;w mi 6= 0 i = 1, 2, 3 (4.8)

We shall show that the Fourier series decompositions of the functions C(k)
u,v;w may be com-

puted in terms of the functions Φa;b and ϕk defined in (3.16). The calculation of C(0)
u,v;w was

already carried out when we evaluated the coefficient ℓw in (3.12), and the result is given by,

C(0)
u,v;w = ℓw(4πτ2)

w (4.9)

with ℓw given explicitly in the second equation of (3.4). The remaining functions C(k)
u,v;w are

considerably more involved and are the focus of the subsequent subsections.

4.2 Calculation of C(1)
u,v;w and C(2)

u,v;w

The function C(2)
u,v;w is related to C(1)

u,v;w by swapping the summation variables (m1, n1) with

(m2, n2) or equivalently by simultaneous complex conjugation and swapping u and v,

C(2)
u,v;w(τ) = C(1)

v,u;w(τ)
∗ (4.10)
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an operation that will be denoted by (u ↔ v)∗ throughout. We begin by evaluating C(1)
u,v;w,

and express the sum in terms of the independent variables m = m3, n = n3, and n1,

C(1)
u,v;w =

τw2
πw

∑

m 6=0

∑

n1 6=0

∑

n

(−)v

nu
1(mτ̄ + n+ n1)v (mτ + n)w−u (mτ̄ + n)w−v

(4.11)

It is natural to perform first the summation over n. Since the denominator has three

different factors involving n, we need to perform a double partial fraction decomposition.

Performing first the partial fraction decomposition on the last two factors for the variable

n we find,

C(1)
u,v;w =

τw2
πw

(−)u+v
∑

m 6=0

(

w−u
∑

k=1

(

2w−u−v−k−1
w−u−k

)

(2mτ2)2w−u−v−k
Ku,v;k +

w−v
∑

k=1

(

2w−u−v−k−1
w−v−k

)

(2mτ2)2w−u−v−k
Lu,v;k

)

(4.12)

where the functions K and L are given by,

Ku,v;k =
∑

n1 6=0

∑

n

(−i)u+v−k

nu
1 (mτ̄ + n+ n1)v(mτ + n)k

Lu,v;k =
∑

n1 6=0

∑

n

(−i)u+v+k

nu
1 (mτ̄ + n+ n1)v(mτ̄ + n)k

(4.13)

Throughout, the dependence of Ku,v;k and Lu,v;k on m and τ will be understood but

not exhibited. The factors of i have been inserted to make them real functions of their

arguments.

To compute Ku,v;k, we carry out a partial fraction decomposition in n, and then sum

over n in terms of the function ϕk defined in (3.16). The sum over n1 may then be carried

out in terms of the functions Φa;b defined in (3.16), and we find,

Ku,v;k =

k
∑

ℓ=1

(

v + k − ℓ− 1

k − ℓ

)

Φu;v+k−ℓ(2mτ2)ϕℓ(q
m) + (v ↔ k)∗ (4.14)

To compute Lu,v;k, we carry out a partial fraction decomposition in n and express the sum

over n in terms of the functions ϕk,

Lu,v;k = (−i)u+v−k
∑

n1 6=0

(

v
∑

ℓ=1

(−i)−ℓ
(

v+k−ℓ−1
v−ℓ

)

nu+v+k−ℓ
1

ϕℓ(q̄
m) +

k
∑

ℓ=1

(−i)ℓ
(

v+k−ℓ−1
k−ℓ

)

nu+v+k−ℓ
1

ϕℓ(q̄
m)

)

(4.15)

The sum over n1 vanishes unless u+v+k−ℓ is even. Thus we change summation variables

from ℓ to u+ v + k − ℓ = 2j, so that the sum becomes,

(−)kLu,v;k =

[u+v+k−1
2

]
∑

j=[u+k+1
2

]

2(−)j
(

2j − u− 1

k − 1

)

ζ(2j)ϕu+v+k−2j(q̄
m) + (−)u+v+k(v ↔ k) (4.16)

Note that the ℓ = 1 contribution, which is given by the j = [u+v+k−1
2 ] contribution in the

above sum, cancels exactly so that every term has a non-constant Fourier mode.
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Collecting both contributions C(1)
u,v;w + C(2)

u,v;w, we find,

C(1)
u,v;w + C(2)

u,v;w =
∑

m 6=0

w−u
∑

k=1

(−)u+vτw2
(

2w−u−v−k−1
w−u−k

)

πw(2mτ2)2w−u−v−k

(

Ku,v;k + L∗
v,u;k

)

+ (u ↔ v)∗ (4.17)

The functions Ku,v;k and Lu,v;k involve ϕk, Φa;b, and factors that are power behaved in τ2.

As will be shown in the subsequent section, the infinite sum over m may be performed for

the terms that are purely power behaved in τ2. For the exponential terms the values of m

will label the powers in q and q̄ and, for a given assignment of powers of q and q̄, the sums

over m will reduce to finite sums.

4.3 Calculation of C(3)
u,v;w

Expressing the sum in terms of the independent summation variables m = m1, n = n3,

and n1, this contribution becomes,

C(3)
u,v;w =

τw2
πw

∑

m 6=0

∑

n 6=0

∑

n1

(−)v

(mτ + n1)u (mτ̄ + n1 + n)v n2w−u−v
(4.18)

Carrying out the partial fraction decomposition in n1, summing over n1 in terms of the

function ϕk, and expressing the sum over n in terms of the function Φa;b, we find,

C(3)
u,v;w =

τw2
πw

u
∑

k=1

(−)u+v+w
(

u+ v − k − 1

u− k

)

∑

m 6=0

Φ2w−u−v;u+v−k(2mτ2)ϕk(q
m) + (u ↔ v)∗

(4.19)

4.4 Calculation of C(4)
u,v;w

For C(4)
u,v;w none of the summation variables mr vanish. We shall use independent continuous

variables to abbreviate the m-dependence by letting m1τ → α, m2τ̄ → β, and m3τ → γ,

and recast the sum over mr in terms of a function Ωu,v;w of the continuous variables α, β, γ,

C(4)
u,v;w =

∑

m1,m2,m3 6=0

τw2
πw

δm1+m2+m3,0Ωu,v;w

(

m1τ,m2τ̄ ,m3τ,m3τ̄
)

(4.20)

where the function Ω is defined by,

Ωu,v;w(α, β, γ, γ̄) =
∑

n1,n2,n3

δn1+n2+n3,0

(α+ n1)u(β + n2)v(γ + n3)w−u(γ̄ + n3)w−v
(4.21)

The partial fraction decomposition of the last two factors in the denominator with respect

to n3 may be expressed in terms of a family of functions Ψu,v,k defined by,

Ψu,v,k(α, β, γ) =
∑

n1,n2,n3

δn1+n2+n3,0

(α+ n1)u(β + n2)v(γ + n3)k
(4.22)

The function Ψu,v,k(α, β, γ) is invariant under all six permutations of the pairs (u, α), (v, β),

and (k, γ). In terms of Ψ, the function Ω may be expressed as follows,

Ωu,v;w(α, β, γ, γ̄) =
w−u
∑

k=1

(−)w+v
(

2w−u−v−k−1
w−u−k

)

(γ − γ̄)2w−u−v−k
Ψu,v,k(α, β, γ)

+

w−v
∑

k=1

(−)w+v+k
(

2w−u−v−k−1
w−v−k

)

(γ − γ̄)2w−u−v−k
Ψu,v,k(α, β, γ̄) (4.23)
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To calculate the function Ψ, we use the following observation,

Ψu,v,k(α, β, γ) =
(−)u+v+k−1

Γ(u)Γ(v)Γ(k)
∂u−1
α ∂v−1

β ∂k−1
γ Ψ1,1,1(α, β, γ) (4.24)

Ψ1,1,1 is readily evaluated by partial fraction decomposition and summation in the variables

n1 and n2, and we find,

Ψ1,1,1(α, β, γ) = −ϕ1(e
2πiα)ϕ1(e

2πiβ) + ϕ1(e
2πiβ)ϕ1(e

2πiγ) + ϕ1(e
2πiγ)ϕ1(e

2πiα) + π2

α+ β + γ
(4.25)

The successive derivatives may be obtained using a trinomial expansion for Leibniz’s rule,

and we find the following expression,

Ψu,v;k(α, β, γ) = −
π2
(

u+v+k−3
u−1,v−1,k−1

)

(α+ β + γ)u+v+k−2

+

u
∑

a=1

v
∑

b=1

(−i)a+b
(

u+v+k−a−b−1
u−a,v−b,k−1

)

(α+ β + γ)u+v+k−a−b
ϕa(e

2πiα)ϕb(e
2πiβ)

+

v
∑

b=1

k
∑

c=1

(−i)b+c
(

u+v+k−b−c−1
u−1,v−b,k−c

)

(α+ β + γ)u+v+k−b−c
ϕb(e

2πiβ)ϕc(e
2πiγ)

+

k
∑

c=1

u
∑

a=1

(−i)c+a
(

u+v+k−c−a−1
u−a,v−1,k−c

)

(α+ β + γ)u+v+k−c−a
ϕa(e

2πiα)ϕc(e
2πiγ) (4.26)

where we use the following notation for the trinomial coefficients,

(

a+ b+ c

a, b, c

)

=
(a+ b+ c)!

a! b! c!
(4.27)

Substituting the expression for Ψu,v,k into Ω and substituting the original values for the

continuous variables α = m1τ , β = m2τ̄ , and γ = m3τ , we find,

Ωu,v;w =

w−u
∑

k=1

u
∑

a=1

v
∑

b=1

(−)b+v
(

2w−u−v−k−1
w−u−k

)(

u+v+k−a−b−1
u−a,v−b,k−1

)

ϕa(q
m1)ϕb(q̄

m2)

(−m2)u+v+k−a−bm2w−u−v−k
3 (2τ2)2w−a−b

(4.28)

+

w−u
∑

k=1

v
∑

b=1

k
∑

c=1

(−)b+v
(

2w−u−v−k−1
w−u−k

)(

u+v+k−b−c−1
u−1,v−b,k−c

)

ϕb(q̄
m2)ϕc(q

m3)

(−m2)u+v+k−b−cm2w−u−v−k
3 (2τ2)2w−b−c

+

w−u
∑

k=1

k
∑

c=1

u
∑

a=1

(−)v
(

2w−u−v−k−1
w−u−k

)(

u+v+k−c−a−1
u−a,v−1,k−c

)

ϕa(q
m1)ϕc(q

m3)

(−m2)u+v+k−c−am2w−u−v−k
3 (2τ2)2w−c−a

+
w−u
∑

k=1

(−)vπ2
(

2w−u−v−k−1
w−u−k

)(

u+v+k−3
u−1,v−1,k−1

)

(−m2)u+v+k−2m2w−u−v−k
3 (2τ2)2w−2

+ ([u,m1, a] ↔ [v,m2, b])
∗

where the conjugation instruction ([u,m1, a] ↔ [v,m2, b])
∗ applies to the entire expression

and leaves w, c,m3 unchanged. As was the case already for the functions C(i)
u,v;w, and as we
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shall show explicitly in subsequent sections, the infinite sums over mr for r = 1, 2, 3 may

be performed for the terms that are purely power behaved in τ2. For the exponential terms

the values of mr will control the powers in q and q̄ and, for a given assignment of powers

of q and q̄, the sums over mr will reduce to finite sums.

5 The Fourier coefficient functions

In this section, we shall present the results for all the Fourier modes of Cu,v;w in theorem 4.1.

The details of the calculations of the Laurent polynomial Lu,v;w(τ2) will be relegated to

appendices A and B. Likewise, the details of the calculations of the exponential contri-

butions, including the Laurent polynomials Q(N)
u,v;w, F

(N)
u,v;w, and G

(N,L)
u,v;w , will be relegated

to appendix C. Various coefficients in the Laurent polynomials F
(N)
u,v;w and G

(N,L)
u,v;w involve

rational numbers given by lengthy expressions of finite sums and will be presented in ap-

pendix D. In the present section, we shall summarize all of these results.

5.1 Decomposition of the functions ϕk and Φa;b

To extract the Fourier coefficient functions from the formulas for Cu,v;w(τ) computed in

the previous section, we decompose the elementary functions ϕk and Φa;b into parts which

are purely Laurent polynomial in τ2 and parts which are exponential,

ϕk(q
m) = (2π)kε(m)k

(

1

2
δk,1 + ϕ̂k(q

|m|)

)

Φa;b(2mτ2) = ε(m)a+b
(

Φ
(0)
a;b(2|m|τ2) + Φ

(1)
a;b(2|m|τ2)

)

(5.1)

where the sign function ε(m) is defined by,

ε(m) =











+1 for m > 0

0 for m = 0

−1 for m < 0

(5.2)

The functions appearing in (5.1) are given as follows,

ϕ̂k(q
|m|) =

1

Γ(k)

∞
∑

p=1

pk−1qp|m|

Φ
(0)
a;b(2|m|τ2) = 2

[a/2]
∑

α=0

(−)a+αζ(2α)
(

a+b−2α−1
b−1

)

(2|m|τ2)a+b−2α
+

(−)aπ
(

a+b−2
a−1

)

(2|m|τ2)a+b−1

Φ
(1)
a;b(2|m|τ2) =

b
∑

β=1

(−)a Γ(a+ b− β)

Γ(b− β + 1)Γ(a)

(2π)β ϕ̂β(e
−4π|m|τ2)

(2|m|τ2)a+b−β
(5.3)

We have taken this opportunity to expose the dependence on the sign of the summation

variable m for all functions involved.
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5.2 The Laurent polynomial Lu,v;w

The Laurent polynomial Lu,v;w of Cu,v;w is given by the following theorem.

Theorem 5.1. The Laurent polynomial Lu,v;w of Cu,v;w is given as follows,

Lu,v;w(τ2) = ℓw(4πτ2)
w +

w−2
∑

k=0

ℓ2k−w+1
ζ(2w − 2k − 1)

(4πτ2)w−2k−1
+

ℓ2−w

(4πτ2)w−2
(5.4)

The coefficient ℓw ∈ Q arises solely from C(0)
u,v;w and was given in (3.4). The coefficients

ℓ2k−w+1 ∈ Q arise from C(i)
u,v;w with i = 1, 2, 3 and are given by,

ℓ2k−w+1 = 2θ
([u

2

]

− k
) (−)v+1B2k

(

2w−2k−2
w−u−1

)(

u+v−1−2k
u−2k

)

(2k)!
+ (u ↔ v)

+ 2θ

([

2w − u− v

2

]

− k

)

(−)w+1B2k

(

2w−2k−2
2w−u−v−2k

)(

u+v−2
v−1

)

(2k)!
(5.5)

where B2k are the Bernoulli numbers and the symmetrization u ↔ v applies only to the first

line. The Heaviside θ-function is defined such that θ(x) = 1 for x ≥ 0 and zero otherwise.

The coefficient ℓ2−w arises from C(i)
u,v;w with i = 1, 2, 3, 4 and is given as follows,

ℓ2−w = ζ(2w − 2)
(

u+ v − 2

u− 1

)

[

(−)v
(

2w − 3

w − u− 1

)

+
1

2
(−)w

(

2w − 3

u+ v − 2

)

]

+ 2(−)v
w+v
∑

k=u+v+1

(

2w − k − 1

w + v − k

)Γ(k − 2) ζ(k − 2, 2w − k)

Γ(u)Γ(v)Γ(k − u− v)
+ (u ↔ v) (5.6)

where the symmetrization (u ↔ v) applies to the entire expression. The combination of

multiple zeta values in the second term and even zeta values in the first may be simplified

and gives ℓ2−w as a bilinear combination of odd zeta values whose total weight is 2w − 2,

ℓ2−w =
w−3
∑

k=1

λk ζ(2k + 1) ζ(2w − 2k − 3) λk ∈ Q (5.7)

with the coefficients λk given in proposition 5.2.

The double zeta value ζ(s, t) in the first expression for ℓ2−w is defined by,

ζ(s, t) =

∞
∑

m,n=1

1

(m+ n)snt
(5.8)

We note that the validity of the form of the expression given for ℓ2−w in (5.7) was proven

for the two-loop modular graph functions Ca,b,c in [11], and may be proven by the same

methods in the case of the functions Cu,v;w. However, the expressions for the coefficients

λk can be obtained only upon assuming the validity of a conjecture. The coefficients in the

bilinear combination of odd zeta values given in conjecture 1.4 of [11] was obtained with the

help of an identity between rational numbers given in conjecture 6.2 of that paper, which

was verified to high order by MAPLE. Applying conjecture 6.2 of [11] to the expression

for ℓ2−w, we obtain the following expression for the coefficients λk.
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Proposition 5.2. (Obtained by assuming the validity of conjecture 6.2 of [11].)

The coefficients λk in the Laurent series for Cu,v;w are given as follows,

λk =(−)wδw,v+1
θ(w−z−1−ǫ)θ

([

w−u
2

]

−w+z+1
)

Γ(2w−3)

Γ(u)Γ(v)Γ(2w−u−v−1)

+2(−)v
θ(w−k−3+ǫ)θ(k−z+1−ǫ)θ([w−u

2 ]+z−k−1)Γ(2w−2k−3)Γ(2k+1)

Γ(w+v−2k−2)Γ(w−v)Γ(u)Γ(v)Γ(2k−u−v+3)

−(−)v
[w−u

2
]

∑

m=ǫ

θ(w−z−m−2+ǫ)Γ(2w−2z−2m−1)

Γ(w−u−2m+ǫ)Γ(w−v)Γ(u)Γ(v)Γ(2m+1−ǫ)

×
2w−2z−3
∑

n=2m

En−2m(0)Γ(2k+1)Γ(2z+n−1)

Γ(2w−2z−n−1)Γ(2k−2w+2z+n+3)Γ(n−2m+1)

+(u↔ v) (5.9)

where z = [(u+ v)/2], ǫ = u+ v (mod 2), and En(0) are Euler polynomials evaluated at 0.

The Euler polynomials En(t) (not to be confused with the Eisenstein series Es(τ)) may

be defined by the following generating function,

2 ext

ex + 1
=

∞
∑

n=0

En(t)
xn

n!
(5.10)

The proof of theorem 5.1 is given in appendix A, while the proof of proposition 5.2, assuming

the validity of conjecture 6.2 of [11], is given in appendix B.

5.3 Generalized divisor sum functions

In the calculation of non-constant exponential contributions to Cu,v;w to which we next turn,

we shall encounter a generalization of the standard divisor functions σs(N) =
∑

0<n|N ns.

We introduce these generalized divisor sums now. For M,N ∈ N and A,B,C ∈ Z, we

introduce the following generalized divisor function,

VA,B,C(M,N) =
∑

m|M
m 6=0

∑

n|N
n 6=0,−m

ε(m)ε(n)

mA−1nB−1(m+ n)C
(5.11)

In contrast to the standard divisor sum, the summation here is carried out over both

positive and negative divisors m,n. The function VA,B,C(M,N) vanishes when A+B +C

is an odd integer since the summand is then odd under the reversal of the signs of both m

and n. To account for this property in a systematic manner, we introduce the function,

In =
1

2
(1 + (−)n) (5.12)

which vanishes for n odd and equals 1 for n even. A more explicit formula for VA,B,C(M,N)

may be obtained by separating the contributions from positive and negative m,n,

VA,B,C(M,N)=
∑

0<m|M

2IA+B+C

mA−1







∑

0<n|N

1

nB−1(m+n)C
+
∑

0<n|N
n 6=m

(−)B

nB−1(m−n)C






(5.13)

– 22 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
6

5.4 The exponential part of the constant Fourier mode Q(N)
u,v;w

We now proceed to the calculation of the exponential part of the constant Fourier mode.

To obtain this, we retain the contributions with identical powers of q and q̄ in Cu,v;w,
namely all terms of the form (qq̄)N . The calculation of the exponential contributions will

be carried out in appendix C, and the contributions to Q(N)
u,v;w are organized in appendix D.

The result may be stated in the form of the following theorem.

Theorem 5.3. The exponential part of the constant Fourier mode of Cu,v;w is given by,

Q(N)
u,v;w(τ2) =

w−u+v−1
∑

β=1

Nβ−1(J
(1)
u,v;w(β,N) + J

(3)
u,v;w(β,N))

Γ(β)(4πτ2)w−β−1

+
u+v−1
∑

β=1

Nβ−1Ju,v;w(β,N)

Γ(β)(4πτ2)w−β−1
+ (u ↔ v) (5.14)

where the symmetrization in u, v applies to both lines. The coefficients are all rational

functions, and are given by,

J (1)
u,v;w(β,N) = 2(−)vσ2−2w(N)

w+v
∑

k=1

(

2w − k − 1

w + v − k

)(

k − β − 2

u− 1

)(

k − u− 2

v − 1

)

× [θ(β − v)θ(k − β − u− 1) + θ(v − β − 1)θ(k − u− v − 1)]

J (2)
u,v;w(β,N) =

w+v
∑

k=u+v+1

min(β,u)
∑

a=max(1,β−v+1)

(

k − β − 2

u− a, v + a− β − 1, k − u− v − 1

)

× (−)a+v
(

β − 1

β − a

)(

2w − k − 1

w + v − k

)

Va,k−a,2w−k(N,N)

J (3)
u,v;w(β,N) =

min(w−u,β)
∑

c=max(1,β−v+1)

w+v−c
∑

k=u+v

(

k + c− β − 2

u− 1, v − β + c− 1, k − u− v

)(

2w − k − c− 1

w + v − k − c

)

× (−)v
(

β − 1

β − c

)(

4 Ik σ1−k(N)σ1−2w+k(N)− 2σ2−2w(N)
)

Ju,v;w(β,N) = J (2)
u,v;w(β,N) + (−)wσ2−2w(N)

(

2w − β − 2

u+ v − β − 1

)(

u+ v − 2

u− 1

)

(5.15)

The functions VA,B,C(M,N) and In appearing above were defined in subsection 5.3.

5.5 The non-constant Fourier modes F (N)
u,v;w and G(N,L)

u,v;w

The full expressions for the non-constant Fourier modes G
(N,L)
u,v;w and F

(N)
u,v;w are more involved

than those of Lu,v;w and Q(N)
u,v;w. They are obtained in appendix D, with the final result

summarized in the following theorem.

Theorem 5.4. The non-constant Fourier modes G
(N,L)
u,v;w and F

(N)
u,v;w are given by

G(N,L)
u,v;w (τ2) =

k+
∑

k=k−

ℓ+
∑

ℓ=1

β+
∑

β=1

Wk,ℓ,β
u,v;w(N,L)

(4πτ2)w−ℓ−β

F (N)
u,v;w(τ2) =

k+
∑

k=k−

ℓ+
∑

ℓ=1





Mk,ℓ
u,v;w(N)

(4πτ2)w−ℓ−1
+

γ+
∑

γ=0

Hk,ℓ,β
u,v;w(N)

(4πτ2)w−ℓ−γ



 (5.16)
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where

k− = 1 + u+ v

k+ = max (w + u,w + v)

ℓ+ = max (w − u, u)

β+ = max (w + |u− v| − 1, u+ v − 1)

γ+ = max (u+ v, 2w − u− v − ǫ) (5.17)

and ǫ = u + v (mod 2). The coefficients Wk,ℓ,β
u,v;w(N,L) are given in (D.18), while the

coefficients Hk,ℓ,β
u,v;w(N) are defined implicitly by (D.29). Both are rational numbers for all

integer-valued arguments and indices. The function Mk,ℓ
u,v;w(N) is shown in (D.26) and

gives rational multiples of odd zeta values.

This completes the calculation of the full Fourier expansion for general two-loop modu-

lar graph functions, all of which may be constructed from Cu,v;w. In the following subsection

we illustrate these results by means of an explicit example.

5.6 An example: C2,1,1

We now illustrate our results for the familiar case of two-loop modular graph functions

Ca,b,c. To utilize the results of the previous sections, we must first recast these modular

graph functions in terms of the basis Cu,v;w. One finds for example

C2,1,1 = C2,2;4 −
3

2
(C2,3;4 + C3,2;4) (5.18)

It is known that C2,1,1 has the following Laurent polynomial [14],

CL
2,1,1 =

2y4

14175
+

ζ(3)

45
y +

5ζ(5)

12y
− ζ(3)2

4y2
+

9ζ(7)

16y3
(5.19)

with y = πτ2. Using Mathematica, one verifies that theorem 5.1 reproduces this result,

L2,2;4 −
3

2
(L2,3;4 + L3,2;4) = CL

2,1,1 (5.20)

The exponential part of the Fourier series of C2,1,1 can be obtained by exploiting the

following differential equation,

(∆− 2)C2,1,1 = 9E4 − E2
2 (5.21)

as well as the known Fourier expansion (2.23) of the non-holomorphic Eisenstein series.

Let us define the coefficients of the Fourier expansion as C
(M,N)
2,1,1 , such that,

C2,1,1(τ) =
∞
∑

M,N=0

C
(M,N)
2,1,1 (τ2)q

M q̄N (5.22)

We begin by obtaining the exponential part of the constant Fourier mode, denoted by

Q(N) in (4.1). The only contribution of the form (qq̄)N to the right-hand side of (5.21)
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comes from E2
2 , as can be seen from (2.23). Using the latter formula gives the following

differential equation for C
(N,N)
2,1,1 ,

(

τ22 ∂
2
τ2 − 2

)

(

C
(N,N)
2,1,1 (τ2)(qq̄)

N
)

= −8N2σ−3(N)2P2(4πNτ2)
2(qq̄)N (5.23)

Restricting to solutions involving only powers of τ2, one finds

C
(N,N)
2,1,1 = −8

σ−3(N)2

(4πτ2)2
(5.24)

In other words, we expect from (5.18) that

Q(N)
2,2;4(τ2)−

3

2

(

Q(N)
2,3;4(τ2) +Q(N)

3,2;4(τ2)
)

= −8
σ−3(N)2

(4πτ2)2
(5.25)

Using Mathematica, one may check that this is indeed the result given by theorem 5.3.

One may now similarly proceed to obtain the non-constant contributions. For exam-

ple, the Laplace equation (5.21) together with appropriate boundary conditions yields the

following results,

C
(1,0)
2,1,1 =

y

45
+

1

3
+

11

12y
+

9

8y2
− ζ(3)

2y2
+

9

16y3

C
(2,0)
2,1,1 =

y

40
+

31

16
+

385

128y
+

1033

512y2
− 9ζ(3)

16y2
+

1161

2048y3

C
(2,1)
2,1,1 = − 9

16y2
(5.26)

One may check that these are consistent with the results of theorem 5.4 for F (1), F (2), and

G(1,1) respectively, and that the first line is consistent with equation (5.7) of [4].

6 The space of odd two-loop modular functions

In this section, we shall study the space Aw of odd two-loop modular graph functions

of weight w. They are cuspidal functions with exponential decay at the cusp. Using

holomorphic subgraph reduction and the sieve algorithm studied in [13–15], we shall exhibit

a subspace of Aw consisting of functions which may be expressed in terms of Eisenstein

series, construct two other linearly independent subspaces, and use these results to give a

lower bound on the dimension of Aw. Finally, we shall show that Aw is trivial for w ≤ 4

and that the lower bound is saturated for 5 ≤ w ≤ 11.

6.1 Odd two-loop modular graph functions

Odd two-loop modular graph functions may be obtained from general two-loop modular

graph functions by taking their parity odd part,

A
[

a1 a2 a3
b1 b2 b3

]

= C
[

a1 a2 a3
b1 b2 b3

]

− C
[

b1 b2 b3
a1 a2 a3

]

(6.1)
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where the total exponents a, b, defined by,

a = a1 + a2 + a3 b = b1 + b2 + b3 (6.2)

are equal to one another and the weight w is given by w = a = b. We shall impose the

following restrictions in order to obtain a space on which differential operators, such as the

Laplace operator, act consistently,

Aw =

{

A
[

a1 a2 a3
b1 b2 b3

]

,

{

ar, br ≥ 0, ar + as + br + bs ≥ 3 for r 6= s

at most one ar and at most one br vanishes

}}

(6.3)

The following theorem is an immediate consequence of the structure of the Fourier series for

two-loop modular graph functions given in the preceding section, and in particular follows

from the reality of the Laurent polynomial Lu,v;w.

Theorem 6.1. All odd two-loop modular graph functions in Aw are cuspidal functions.

The exponential suppression at the cusp of odd modular graph functions allows us to

introduce the Petersson inner product on the space A =
⊕

w Aw, which is defined by,

〈A1|A2〉 =
∫

M
dµA1(τ)

∗A2(τ) dµ =
i

2τ22
dτ ∧ dτ̄ (6.4)

for A1,A2 ∈ A and where M is a fundamental domain M = H/PSL(2,Z).

Using proposition 2.1 all odd two-loop modular graph functions may be expressed as

linear combinations of the following functions, for which we adopt a convenient notation,

Au,v;w = −Av,u;w = A
[

u 0 w − u

0 v w − v

]

(6.5)

Without loss of generality, we restrict the range of parameters to 1 ≤ u < v ≤ w − 1.

This restriction gives a trivial upper bound on the dimension dimAw ≤ 1
2(w − 1)(w − 2).

However, many linear relations exits between the functions of (6.5), and one readily shows

A1,2;3 = A1,2;4 = A1,3;4 = A2,3;4 = 0 so that

dimA3 = dimA4 = 0 (6.6)

To investigate the spaces Aw with w ≥ 5, we shall use holomorphic subgraph reduction

and the sieve algorithm, which we review in the next two subsections.

6.2 Holomorphic subgraph reduction

A systematic sieve algorithm was developed in [13, 14] to prove identities between modular

graph forms. The key ingredient is the use of the Cauchy-Riemann operator ∇ = 2iτ22 ∂τ to

relate identities between modular graph forms to identities between holomorphic Eisenstein

series, using holomorphic subgraph reduction.

Applying the Cauchy-Riemann operator to an odd modular graph function will produce

a modular graph form. Thus, we shall need to work on a larger space, of two-loop modular
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graph forms given by the Kronecker-Eisenstein sums of (2.25). For independent total

exponents a, b ≥ 2, we define the spaces,

V(a,b) =

{

C+

[

a1 a2 a3
b1 b2 b3

]

,

{

ar, br ≥ 0, ar + as + br + bs ≥ 3 for r 6= s

at most one ar and at most one br vanishes

}}

(6.7)

while for a = 1 or b = 1, we define the spaces as follows,

V(a,1) =

{

C+

[

a 0

1 0

]

, a ≥ 5

}

V(1,b) =

{

C+

[

1 0

b 0

]

, b ≥ 5

}

(6.8)

The restriction that at most one ar and at most one br is allowed to vanish provides a self-

consistent truncation, and guarantees that the Laplace operator maps V(a,a) to itself [13, 14].

The spaces V(a,b) for a, b ≥ 2 and a+ b ≥ 6 also contain one-loop modular graph functions

and products of one-loop modular graph functions as was shown in (2.27).

The operator ∇ acts as follows on an arbitrary two-loop modular graph form

C+ ∈ V(a,b),

∇C+

[

a1 a2 a3
b1 b2 b3

]

=
3
∑

i=1

ai C+

[

ai + 1 ai′ ai′′

bi − 1 bi′ bi′′

]

(6.9)

where (i, i′, i′′) is a cyclic permutation of (1, 2, 3). The operator ∇ maps V(a,b) to forms

of weight (a + 1, b − 1), but these forms do not necessarily belong to V(a+1,b−1). Indeed,

an exponent with value −1 can occur in the entry i of the lower row of exponents when

the corresponding exponent bi vanishes. Given the definition of V(a,b), this means that

the other two lower exponents bi′ , bi′′ are non-zero so that the momentum conservation

identities of (2.4) can be used to convert the modular form with a negative entry into

modular forms whose entries are all non-negative. These modular forms, however, still do

not necessarily belong to V(a+1,b−1) since two zeros may appear in the lower row. This is

the point where holomorphic subgraph reduction enters, as the Kronecker-Eisenstein sum

now contains a holomorphic subgraph sum which, for the case of two-loops, may be reduced

as follows,

(−)a0C+

[

a1 a2 a3
0 0 b

]

=

[a1/2]
∑

k=2

(

a0 − 1− 2k

a1 − 2k

)

G2k C+

[

a− 2k 0

b 0

]

+ (a1 ↔ a2) (6.10)

−
(

a0

a1

)

C+

[

a 0

b 0

]

+
(

a0 − 2

a1 − 1

)

{

G2C+

[

a− 2 0

b 0

]

+ C+

[

a− 1 0

b− 1 0

]}

where we have used the notation a0 = a1 + a2. The form G2k is defined by G2k(τ) =

(τ2)
2kG2k(τ) for k ≥ 2 while G2 = τ22G2 is the non-holomorphic modular covariant weight

two Eisenstein series. It was shown in [13, 14] that ∇ applied to any form in V(a,b) produces

linear combinations of modular graph forms in which the last two terms on the right side

in (6.10) cancel, so that G2 never appears in the range ∇V(a,b).
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6.3 The sieve algorithm

The sieve algorithm, developed in [13], can be stated simply and explicitly for two-loop

graphs. Holomorphic subgraph reduction shows that the range ∇V(a,b) contains modular

graph forms of weight (a + 1, b − 1) which do not belong to V(a+1,b−1). Those modular

graph forms belong to the space C(a+1,b−1) specified by the following lemma.3

Lemma 6.2. For a− b ∈ 2Z and a, b ≥ 2 the following sum is direct,

C(a,b) =

[a/2]
⊕

k=2

{

G2k C+

[

a− 2k 0

b 0

]}

(6.11)

We shall prove the lemma by showing that the asymptotics near the cusp, given by

a Laurent series up to exponential corrections, are linearly independent. The Laurent

series in τ2 may be obtained by combining the asymptotics of (2.23) with the first equation

in (2.21) when a ≥ b, and with the second equation of (2.21) when a ≤ b. The result may

be combined into the following expression which is valid in both cases,

C+

[

a 0

b 0

]

= νaτ
a
2 + νbτ

1−b
2 +O(e−2πτ2) (6.12)

where νa, νb 6= 0. The asymptotics of G2k = (τ2)
2kG2k is given by τ2k2 in view of (2.22),

so that the asymptotics of the term with summation index k in (6.11) is proportional to

ν ′aτ
a
2 + ν ′bτ

1+2k−b
2 where ν ′a, ν

′
b 6= 0. The linear independence of the terms in τ1+2k−b

2 then

shows linear independence of the full functions, which proves the lemma.

6.3.1 The sieve

From the definition of C(a,b) it is clear that V(a,b) ∩ C(a,b) = 0, so that ∇ acts as follows,

∇ : V(a,b) → V(a+1,b−1) ⊕ C(a+1,b−1) (6.13)

We define an ordered set of subspaces of C(a,b), or sieve,

V(a,b) ⊃ V(1)
(a,b) ⊃ V(2)

(a,b) ⊃ · · · ⊃ V(b−1)
(a,b) (6.14)

by the following iterative procedure. Starting with n = 1, we define V(1)
(a,b) to be the maximal

subspace of V(a,b) whose range under ∇ has vanishing component along C(a+1,b−1),

∇ : V(1)
(a,b) → V(a+1,b−1) (6.15)

The process may be repeated to define V(1)
(a+1,b−1) to be the maximal subspace of V(a+1,b−1)

on which the range of ∇ has vanishing component along C(a+2,b−2) by,

∇ : V(1)
(a+1,b−1) → V(a+2,b−2) (6.16)

3The space V0
(a,b) used in [13] will be denoted by C(a,b) in this paper for the sake of greater clarity.
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In turn the space V(1)
(a+1,b−1) allows us to define V(2)

(a,b) as the maximal subspace of V(1)
(a,b)

on which the range of ∇ is entirely inside V(1)
(a+1,b−1) so that the range of ∇2 on V(2)

(a,b) has

vanishing component along C(a+2,b−2),

∇ : V(2)
(a,b) → V(1)

(a+1,b−1) ∇2 : V(2)
(a,b) → V(a+2,b−2) (6.17)

For the general case, we continue the iterative process by defining V(n)
(a,b) to be the maximal

subspace of V(n−1)
(a,b) on which the range of ∇n has zero component along C(a+n,b−n),

∇n : V(n)
(a,b) → V(a+n,b−n) (6.18)

The process ends when n = b − 1 because it follows from the definition (6.7) that V(a,1)

vanishes for even a and is one-dimensional for odd a generated by ∇w−1Ew with 2w−1 = a.

6.3.2 Direct sum decomposition

Of fundamental importance in the application of the sieve algorithm are the difference

spaces U (n)
(a,b) defined by the following direct sum decompositions,

V(a,b) = U (1)
(a,b) ⊕ V(1)

(a,b)

V(n−1)
(a,b) = U (n)

(a,b) ⊕ V(n)
(a,b) 2 ≤ n ≤ b− 1 (6.19)

Therefore, we have,

∇kV(n−1)
(a,b) ⊂ V(n−1−k)

(a+k,b−k) k ≤ n− 1

∇nV(n−1)
(a,b) ⊂ V(a+n,b−n) ⊕∇nU (n)

(a,b) (6.20)

These relations do not define the elements in the spaces U (n)
(a,b) uniquely, but we achieve

uniqueness by requiring,

∇nU (n)
(a,b) ⊂ C(a+n,b−n) (6.21)

Thus, the subspaces U (n)
(a,b) collect the obstruction to ∇ mapping to V(a,b) spaces. For the

special case of modular graph functions with a = b = w the sieve reduces to,

V(w,w) ⊃ V(1)
(w,w) ⊃ V(2)

(w,w) ⊃ · · · ⊃ V(w−1)
(w,w) (6.22)

The Eisenstein series Ew belongs to each space in the sieve Ew ∈ V(n)
(w,w) for all 0 ≤ n ≤ w−1.

6.4 Odd modular graph functions from Eisenstein series

An important subspace of odd two-loop modular graph functions of weight w is constructed

from the following two-loop modular graph functions of weight w = a1 + a2 = b1 + b2,

A
[

a1 a2 0

b1 b2 0

]

= C
[

a1 a2 0

b1 b2 0

]

− C
[

b1 b2 0

a1 a2 0

]

(6.23)
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Convergence of the sums which define the modular graph functions in (2.25) requires a1 +

b1 ≥ 3 and a2+ b2 ≥ 3. Using the decomposition of corollary 2.2, these functions are linear

combinations of the functions Au,v;w with the range for u, v defined in (6.5). Applying the

algebraic reduction formulas of (2.27) to A, we find,

A
[

a1 a2 0

b1 b2 0

]

= C
[

a1 0

b1 0

]

C
[

a2 0

b2 0

]

− C
[

b1 0

a1 0

]

C
[

b2 0

a2 0

]

(6.24)

If a1 + b1 is an odd integer, and thus a2 + b2 is also odd, each factor on the right side

of (6.24) vanishes and the resulting A is zero. Assuming now that a1 + b1 is even and,

without loss of generality, that a1 ≥ b1, we define the following combinations,

a1 + b1 = 2w1 a1 − b1 = 2k

a2 + b2 = 2w2 b2 − a2 = 2k (6.25)

where k ≥ 0, and w = w1 + w2 with w1, w2 ≥ 2. We use the expressions of (2.21) for

one-loop modular graph functions in terms of derivatives of Eisenstein series to simplify A
as follows,

A
[

a1 a2 0

b1 b2 0

]

=
Γ(w1)Γ(w2)

Γ(w1 + k)Γ(w2 + k)
Pk(w1, w2) (6.26)

where the function P is given as follows,

Pk(w1, w2) = τ−2k
2

(

∇kEw1 ∇
k
Ew2 −∇kEw2 ∇

k
Ew1

)

(6.27)

Manifestly, the function Pk(w1, w2) vanishes for k = 0 and is odd under swapping w1 and

w2. Thus we shall assume k ≥ 1 and w1 > w2. We have A ∈ Aw whenever none of

the exponents a1, a2, b1, b2 vanishes or, in this case, we have Pk(w1, w2) ∈ Aw whenever

k + 1 ≤ w2 < w1. We define the corresponding subspace as follows,

A(1)
w =

{

Pk(w1, w2) with w = w1 + w2 and 1 ≤ k < w2 < w1

}

(6.28)

Note that Pw2(w1, w2) does not belong to Aw but instead belongs to C(w,w) defined in (6.11).

6.5 The spaces A
(2)
w and A

(3)
w

We now introduce two further subspaces A
(2)
w ,A

(3)
w ⊂ Aw, defined as follows,

A(2)
w =

{

Au,u+1;w with 1 ≤ u ≤
[

w − 3

2

]}

A(3)
w =

{

Au,u+1;w with

[

w − 1

2

]

≤ u ≤ w − 5

}

(6.29)

The following subsections will rely on the following theorem, proven in appendix E.

Theorem 6.3. The spaces A
(i)
w , i = 1, 2, 3 are linearly independent.
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6.6 Bounds on the dimension of Aw

The construction of the subspaces A
(1)
w , A

(2)
w , and A

(3)
w , and theorem 6.3 allow us to put a

lower bound on dimAw. Together with the upper bound given after (6.5), we have,

Theorem 6.4. The dimension of the space Aw for w ≥ 5 is bounded by

3
∑

i=1

dimA(i)
w ≤ dimAw ≤ 1

2
(w − 1)(w − 2) (6.30)

where

dimA(1)
w =

[w−1
2

]
∑

w2=2

(w2 − 1) =
1

2

[

w − 1

2

] [

w − 3

2

]

(6.31)

and

dimA(2)
w =

[

w − 3

2

]

dimA(3)
w =

{

w − 5−
[

w−3
2

]

w ≥ 8

0 otherwise
(6.32)

Explicit computation shows that this lower bound is saturated for w ≤ 11, while

for w ≥ 12 there are additional contributions. We find the following values for dimAw

for w ≤ 12,

dimA5 = 2 dimA6 = 2 dimA7 = 5

dimA8 = 6 dimA9 = 10 dimA10 = 11

dimA11 = 16 dimA12 = 18 (6.33)

In the next subsection we illustrate this explicit computation for the simplest case of A5.

6.7 Constructing a basis for dimA5

To make the discussion of this section more concrete, we illustrate here the construction

of a basis for A5 using holomorphic subgraph reduction and the sieve algorithm. By

definition (6.3), the space A5 is generated by the following six functions,

Au,v;5 1 ≤ u < v ≤ 4 (6.34)

The unique weight five P-function P1(2, 3) is a linear combination of the above functions.

We shall now use the sieve algorithm to construct all linear relations between the functions

Au,v;w. To this end we apply ∇ repeatedly until we produce a modular form G2k = τ2k2 G2k

proportional to the holomorphic Eisenstein series G2k for k ≥ 2. Applying ∇ once,

we obtain,

∇A1,2;5, ∇A2,3;5 ∈ V(6,4) (6.35)
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as well as

∇A1,3;5 − 3G4 C+ [ 2 0
4 0 ] ∈ V(6,4)

∇A1,4;5 − 3G4 C+ [ 2 0
4 0 ] ∈ V(6,4)

∇A2,4;5 − 3G4 C+ [ 2 0
4 0 ] ∈ V(6,4)

∇A3,4;5 + 3G4 C+ [ 2 0
4 0 ] ∈ V(6,4) (6.36)

Retaining A1,4;5 as a first basis function of A5, we take linear combinations A1,3;5 −A1,4;5,

A2,4;5 − A1,4;5, and A3,4;5 + A1,4;5 whose image under ∇ is in V(6,4) in view of (6.36).

Applying ∇2 to these functions, and ∇ to the forms in (6.35), we obtain,

∇2(A1,3;5 −A1,4;5) + 6G4E3 ∈ V(7,3)

∇2(A2,4;5 −A1,4;5) + 6G4E3 ∈ V(7,3)

∇2(A3,4;5 +A1,4;5) + 6G4E3 ∈ V(7,3)

∇2A1,2;5 + 6G4E3 ∈ V(7,3)

∇2A2,3;5 + 18G4E3 ∈ V(7,3) (6.37)

Retaining A1,2;5 as a second basis vector of A5 (which is independent of A1,4;5 by the sieve

algorithm), we take linear combinations of all the other double derivative expressions to

eliminate the G4E3 term, and to obtain combinations which belong to V(7,3). The further

application of ∇ produces the following results for k = 3, 4,

∇k(A1,3;5 −A1,4;5 −A1,2;5) ∈ V(5+k,5−k)

∇k(A2,4;5 −A1,4;5 −A1,2;5) ∈ V(5+k,5−k)

∇k(A3,4;5 +A1,4;5 −A1,2;5) ∈ V(5+k,5−k)

∇k(A2,3;5 − 3A1,2;5) ∈ V(5+k,5−k) (6.38)

By inspection of its definition in (6.7), the space V(9,1), which enters above for k = 4, is

one-dimensional and generated by ∇4E5. However, E5 is even and thus the left side of

each line in (6.38) must vanish for k = 4. Each equation above then states that ∇4A = 0

for the corresponding A. Lemma 1 of [13] implies in each case that A must be constant.

Since there are no constant odd functions, A must vanish identically, and we obtain the

identities,

A1,3;5 = A1,2;5 +A1,4;5 A2,3;5 = 3A1,2;5

A2,4;5 = A1,2;5 +A1,4;5 A3,4;5 = A1,2;5 −A1,4;5 (6.39)

One may use similar means to show that P1(2, 3) = 6A1,4;5. The differential equation

satisfied by A1,2;5 in the fourth line of (6.37) and by A1,4;5 in the second line of (6.36)

imply the linear independence of these functions. Therefore we conclude that dimA5 = 2,

and we may take A1,2;5 and A1,4;5 as a basis.
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6.8 Speculations on a basis for w ≥ 12

For weight 12, the dimensions of A
(1)
12 , A

(2)
12 , A

(3)
12 are respectively 10, 4, and 3, adding

up to 17, one fewer than the result of explicit calculation. The missing subspace may be

generated, for example, by the function A4,7;12. For weights w > 12, no systematic pattern

could yet be proven. However, preliminary checks done up to weight 20 using Mathematica

indicate that the following space may be a candidate for the missing subspace for higher

weights,

A(4)
w =

{

A
[

u 0 w − u

0 v w − v

]

∣

∣

∣
1 ≤ γ ≤ γmax,

[

w + 1

2

]

≤ v ≤ w − 6

}

(6.40)

where γ and γmax are defined as follows,

u =

[

w + 1

2

]

− 3 + γ γmax(v, w) = min

{

w − v − 5, v −
[

w + 1

2

]

+ 1

}

(6.41)

Functions in this set would be expected to produce holomorphic Eisenstein series either at

order ∇u or ∇w−v, and it can be shown that only the latter occurs. However, a complete

proof of linear independence has remained elusive.

Assuming linear independence, the dimension of the space A
(4)
w is given by,

dimA(4)
w =

[w/2]
∑

n=6

min
{

n− 5,
[w

2

]

− n+ 1
}

=

[

(w−8)
2

]

∑

n=2

[n

2

]

(6.42)

which would lead to the following full dimension of Aw,

dimAw =

4
∑

i=1

dimA(i)
w (6.43)

giving up to weight w ≤ 20 the following speculated predictions,

dimA13 = 24 dimA14 = 26 dimA15 = 33

dimA16 = 36 dimA17 = 44 dimA18 = 47

dimA19 = 56 dimA20 = 60 (6.44)

It would be interesting to establish a complete formula for the dimension at all weights.

7 Inner product of modular graph functions

The Petersson inner product 〈f |g〉 of modular functions f, g is defined by [45],

〈f |g〉 =
∫

M
dµ f(τ)∗g(τ) dµ =

i

2τ22
dτ ∧ dτ̄ (7.1)

where M is the fundamental domain for PSL(2,Z) in the upper half τ -plane H. The

Petersson inner product defines the space L2(M) of modular functions which are square

– 33 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
6

integrable on M. The Petersson inner product may also be defined for modular forms, but

we shall not consider this case here. Clearly, the inner product vanishes when f is an even

modular function and g is an odd modular function. Therefore, it suffices to consider the

inner product between modular functions which are both even or both odd.

In this section, we shall investigate the Petersson inner product involving one-loop

and two-loop modular graph functions, and evaluate the product by applying the Rankin-

Selberg-Zagier method [46–48] to the Poincaré and Fourier series obtained in preceding

sections (see also [49] for a useful reference in the physics literature). It will be convenient

to consider the cases of even and odd modular graph functions separately. Of considerable

use will be the action of the Laplace-Beltrami operator on modular graph functions, which

we shall summarize in the next subsection.

7.1 The Laplace operator acting on Cu,v;w

The Eisenstein series are eigenfunctions of the Laplace operator ∆ = 4τ22 ∂τ̄∂τ on H,

∆Es = s(s− 1)Es (7.2)

The action of the Laplace operator on two-loop modular graph functions was studied

extensively in [4] for a special class of even functions. Here we shall need a generalization

to the functions Cu,v;w which include both even and odd functions and is given by,

∆Cu,v;w =
(

w2 + 2uv − uw − vw − w
)

Cu,v;w + uv Cu+1,v+1;w

+ u(2v − w) Cu+1,v;w + v(2u− w) Cu,v+1;w

+ u(v − w) Cu+1,v−1;w + v(u− w) Cu−1,v+1;w (7.3)

The indices u, v are integer-valued, but we shall allow w ∈ C, subject to the convergence

conditions given earlier.

The Laplace operator ∆ is invariant under parity τ → −τ̄ and (7.3) is invariant under

interchange of u and v for fixed w. Therefore, the symmetric and anti-symmetric parts of

Cu,v;w, respectively denoted Su,v;w ∈ Sw and Au,v;w ∈ Aw, separately obey (7.3).

The odd two-loop modular graph functions Pk(s, t) for k ∈ N and s, t ∈ C defined

in (6.26) and expressed in terms of bilinears in derivatives of Eisenstein series in (6.27),

Pk(s, t)(τ) = τ−2k
2

(

∇kEs∇̄kEt −∇kEt∇̄kEs

)

(7.4)

satisfy a particularly simple system of Laplace eigenvalue equations given by,

∆Pk(s, t) = Pk+1(s, t) + (s2 + t2 − s− t− 2k2)Pk(s, t)

+ (s− k)(t− k)(s+ k − 1)(t+ k − 1)Pk−1(s, t) (7.5)

The validity of this formula may be verified by direct calculation, and it will be convenient

to set P0(s, t) = 0. A particularly useful property of the system (7.5) is that it allows us

to express Pk+1 in terms of a linear combination of ∆Pk and Pℓ with ℓ < k.

Restricting attention to s, t ∈ N, the system (7.5) truncates in the following sense. For

1 ≤ k < t < s, the functions Pk(s, t) belong to the space A
(1)
w , but Pt(s, t) is no longer
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an element of A
(1)
w because it may be reduced to a combination of holomorphic Eisenstein

series. Truncating the system to 1 ≤ k < t < s and treating the function Pt(s, t) as an

inhomogeneous term, we find the following system of differential equations,

∆Pk(s, t)−
t−1
∑

ℓ=1

MkℓPℓ(s, t) = δk,t−1Pt(s, t) (7.6)

The entries of the matrix M are given by (7.5) and its spectrum obeys the theorem below.

Theorem 7.1. The eigenvalues of the matrix M have multiplicity one and are found to be,

(s+ t− 2n)(s+ t− 1− 2n) n = 1, · · · , t− 1 (7.7)

The theorem is a special case of a result which was proven in section 5.3 of [14].

7.2 Petersson inner product on odd modular graph functions

Odd modular graph functions do not exist at one loop order. The space of odd two-loop

modular graph functions is denoted A =
⊕

w Aw and is the direct sum of the spaces Aw of

functions of weight w. In view of theorem 6.1 all odd two-loop modular graph functions are

cuspidal functions with exponential decay at the cusp so that A ⊂ L2(M). The Petersson

inner product between any pair of odd modular graph functions is convergent and may be

calculated in terms of Poincaré and Fourier series by Rankin-Selberg methods.

In this section we shall investigate the Petersson inner product between odd two-loop

modular graph functions and show how the product is evaluated concretely between Au,v;w

and Pk(s, t). The Poincaré series of Au,v;w(τ) with respect to Γ∞\PSL(2,Z) is given by,

Au,v;w(τ) =
∑

g∈Γ∞\PSL(2,Z)

ΛA
u,v;w(gτ) (7.8)

where ΛA
u,v;w(τ) = Λu,v;w(τ) − Λv,u;w(τ) and Λu,v;w(τ) is given in equation (3.4) of theo-

rem 3.1. The Fourier series of Au,v;w(τ) is given in (4.5). Using standard Rankin-Selberg,

we have,

〈Au1,v1;w1 |Au2,v2;w2〉 = 2

∞
∑

N=1

∫ ∞

0

dτ2
τ22

F (N)
u1,v1;w1

(τ2)

∫ 1

0
dτ1(q̄

N − qN )ΛA
u2,v2;w2

(τ) (7.9)

For w2 ∈ C, we use equation (3.23) to express the seed function and carry out the integral

over τ1 to obtain the theorem below.

Theorem 7.2. The inner product between two odd modular graph functions Au1,v1;w1 with

Fourier coefficients F and Au2,v2;w2 with Poincaré series seed Υ, is given by,

〈Au1,v1;w1 |Au2,v2;w2〉 = 8

u
∑

k=1

(

u2 + v2 − k − 1

v2 − 1

)

∞
∑

N=1

∑

0<m|N

(2π)kNk−1

Γ(k)mk−1

∫ ∞

0
dτ2 τ

w2−2
2

× e−4πNτ2 F (N)
u1,v1;w1

(τ2)Υw2,k,u2+v2(2mτ2)− (u ↔ v) (7.10)

The integral over τ2 is absolutely convergent for sufficiently large Re (w2).
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7.2.1 The inner product of P with A

The evaluation simplifies for the special case of the odd modular graph functions Pk(s, t).

Consider the Petersson inner product of Pk(s, t) with Au,v;w given by,

〈Pk(s, t)|Au,v;w〉 =
∫

M
dµPk(s, t)(τ)Au,v;w(τ) (7.11)

The inner product with functions Pk(s, t) for k > 1 may be expressed in terms of inner

products involving only P1(s, t) with the help of the Laplace equations for both func-

tions, and the self-adjointness of the Laplace operator on the space of odd modular graph

functions,

〈∆Pk(s, t)|Au,v;w〉 = 〈Pk(s, t)|∆Au,v;w〉 (7.12)

For any k ≥ 1 and fixed s, t, we abbreviate Pk = Pk(s, t) and obtain the following recursion

relations on the index k,

〈Pk+1|Au,v;w〉 = uv〈Pk|Au+1,v+1;w〉 (7.13)

− (s− k)(t− k)(s+ k − 1)(t+ k − 1)〈Pk−1|Au,v;w〉
{

w2 + 2uv − w(1 + u+ v)− s2 − t2 + s+ t+ 2k2
}

〈Pk|Au,v;w〉
+ u(2v − w) 〈Pk|Au+1,v;w〉+ v(2u− w) 〈Pk|Au,v+1;w〉
+ u(v − w) 〈Pk|Au+1,v−1;w〉+ v(u− w) 〈Pk|Au−1,v+1;w〉

which proves the assertion.

To evaluate the Petersson inner product 〈P1(s, t)|Au,v;w〉 we use the expression for

P1(s, t) in terms of Eisenstein series (6.27). We express the Eisenstein series Es in terms of

its Poincaré series and express Et in terms of its Fourier series expansion (2.19). We shall

keep s ∈ C but restrict t ∈ N. Finally, we use the fact that Au,v;w is cuspidal and unfold

the Poincaré series using standard Rankin-Selberg,

〈P1(s, t)|Au,v;w〉 =
16 s ζ(2s)

πs−1Γ(t)

t−1
∑

k=0

Γ(t+ k)

(4π)kΓ(t− k)k!

∞
∑

N=1

N t−kσ1−2t(N)

×
∫ ∞

0
dτ2 τ

s−k−1
2

∫ 1

0
dτ1
(

q̄N − qN
)

Au,v;w(τ) (7.14)

The Fourier series decomposition of Au,v;w, given in (4.5), then produces the theorem below.

Theorem 7.3. The inner product of P1(s, t) with the odd modular graph function Au,v;w

whose Fourier coefficients are F (N)
u,v;w −F (N)

v,u;w is given as follows,

〈P1(s, t)|Au,v;w〉 =
32 s ζ(2s)

πs−1Γ(t)

t−1
∑

k=0

Γ(t+ k)

(4π)kΓ(t− k)k!

∞
∑

N=1

N t−kσ1−2t(N)

×
∫ ∞

0
dτ2 τ

s−k−1
2 e−4πNτ2

(

F (N)
u,v;w(τ2)−F (N)

v,u;w(τ2)
)

(7.15)

The integral over τ2 is absolutely convergent for sufficiently large Re (s).
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Explicit formulas may be obtained in terms of the coefficientsWk,ℓ,β
u,v;w(N,L),Mk,ℓ

u,v;w(N),

and Hk,ℓ,β
u,v;w(N) of the Laurent polynomials which define F (N)

u,v;w using theorem 5.4. The in-

tegral over τ2 of a term proportional to τν2 in these Laurent polynomials is given by,

∫ ∞

0
dτ2 τ

s−k+ν−1
2 e−4πNτ2 =

Γ(s− k + ν)

(4πN)s−k+ν
(7.16)

which shows that the sum over N will converge absolutely for Re (s) sufficiently large.

7.3 Petersson inner product on even modular graph functions

Even modular graph functions at one-loop order consist of non-holomorphic Eisenstein

series Es. The space of even modular graph functions at two-loop order will be denoted

S =
⊕

w Sw and is the direct sum of the spaces Sw of functions of weight w. Even

modular graph functions, either at one or two loops, generically grow as positive powers of

τ2 near the cusp, and are not in L2(M). Zagier has extended the use of the Rankin-Selberg

method to functions of power-growth near the cusp in terms of “renormalized” Petersson

integrals [48]. For applications to string theory, however, it is more useful to consider the

regularized integrals defined on the cut-off domain

ML = M∩ {τ2 < L} (7.17)

7.3.1 Producing even cuspidal functions from Es and Cu,v;w

We begin by defining the operator ∆k in terms of the Laplace-Beltrami operator ∆ mapping

the space of modular functions into itself by,

∆k =
k
∏

ℓ=1

(∆− ℓ(ℓ− 1)) ∆ = τ22
(

∂2
τ1 + ∂2

τ2

)

(7.18)

An alternative expression for ∆k may be obtained in terms of the first order operators,

∇ = +2iτ22 ∂τ ∇ : (0, n) → (0, n− 2)

∇ = −2iτ22 ∂τ̄ ∇ : (n, 0) → (n− 2, 0) (7.19)

where (m,n) is modular weight. The operator ∆k satisfies,

∆k = ∇k
τ−2k
2 ∇k = ∇kτ−2k

2 ∇k
(7.20)

We have ∆1 = ∆, and its action on a monomial τ s2 is given by,

∆kτ
s
2 = λk(s)τ

s
2 λk(s) =

k
∏

ℓ=1−k

(s− ℓ) (7.21)

The following lemma follows from the observation that the operator ∆w annihilates an

arbitrary Laurent polynomial in τ2 of degrees (w, 1− w).

Lemma 7.4. The modular functions ∆w(Ew1Ew2) with w1 + w2 ≤ w, and ∆wCu,v;w1 for

w1 ≤ w are cuspidal functions.
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Lemma 7.4 is a special case of a much more general lemma which we include below.

Lemma 7.5. An arbitrary genus-one modular graph function C of weight w has a Laurent

polynomial of degree (w, 1−w) and an associated cuspidal function ∆wC whose integral is

given in terms of the coefficient c1 of τ2 in its Laurent polynomial by the following formula,

∫

M
dµ∆wC = (−)w w! (w − 1)! c1 (7.22)

The statement that a modular graph function of weight w has a Laurent polynomial of

degree (w, 1− w) was proven long ago in [6], so that we have,

C(τ) =
w
∑

k=1−w

ckτ
k
2 +O(e−2πτ2) (7.23)

In view of (7.21) we have ∆wτ
k
2 = 0 for all 1−w ≤ k ≤ w. It follows that ∆wC is a cuspidal

function with exponential decay at the cusp. The integral of the cuspidal function ∆wC
reduces to the contribution localized at the cusp only. Expressing the integral as a limit

of the integral over the cutoff domain ML defined in (7.17), we see that it reduces to a

contribution from the boundary of ML,

∫

M
dµ∆wC = lim

L→∞

∫

ML

dµ∆wC = lim
L→∞

∫ 1

0
dτ1

(

∂τ2∆
′
wC
)∣

∣

∣

τ2=L
(7.24)

where the operator ∆′
w is defined by,

∆′
w =

w
∏

ℓ=2

(

∆− ℓ(ℓ− 1)
)

(7.25)

We have ∆′
wτ

k
2 = 0 for all k 6= 0, 1 in the range 1 − w ≤ k ≤ w. For the remaining

terms, k = 0, 1, we see that ∆′
w1 is a constant, which does not contribute to (7.24), and

∆′
wτ2 = (−)w−1w! (w − 1)! τ2 with the help of which (7.22) is readily established.

7.3.2 Calculation of the regularized inner product of Es with Cu,v;w

Consider a two-loop modular graph function Cu,v;w(τ) of weight w. Its Laurent polynomial

has degree (w, 1− w). We wish to evaluate the integral,

Iu,v;w(s, L) =

∫

ML

dµEs(τ)Cu,v;w(τ) (7.26)

by relating it to the following integral,

Iu,v;w(s) =

∫

M
dµEs(τ)∆wCu,v;w(τ) (7.27)

In view of lemma 7.4, the function ∆wCu,v;w is cuspidal and the integral Iu,v;w(s) is therefore

absolutely convergent for sufficiently large Re (s). The integral Iu,v;w(s) is readily evaluated
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by standard Rankin-Selberg in terms of the constant Fourier mode of Cu,v;w, whose Laurent
polynomial part cancels out, and we are thus left with,

Iu,v;w(s) =
2ζ(2s)

πs

∞
∑

N=1

∫ ∞

0
dτ2 τ

s−2
2 ∆w

(

Q(N)
u,v;w(τ2)e

−4πNτ2
)

(7.28)

The integral is convergent for sufficiently large Re (s), and we may use the self-adjointness

of ∆w to move ∆w onto τ s−2
2 to obtain the following final expression,

Iu,v;w(s) =
2ζ(2s)λw(s− 2)

πs

∞
∑

N=1

∫ ∞

0
dτ2 τ

s−2
2 Q(N)

u,v;w(τ2)e
−4πNτ2 (7.29)

The expression for the Laurent polynomial coefficient functions Q(N)
u,v;w(τ2) of the exponen-

tial part of the constant Fourier mode was given in (5.14) of theorem 5.3.

To work out the relation between the integrals Iu,v;w(s, L) and Iu,v;w(s) we start from,

λw(s) Iu,v;w(s, L) =

∫

ML

dµ (∆wEs(τ))Cu,v;w(τ) (7.30)

We use formula (7.20) and carry out successive integrations by parts making sure to collect

all the contributions from the boundary of ML at τ2 = L, and we derive the following

relation for two arbitrary modular functions f, g,

∫

ML

dµ(∆wf)g −
∫

ML

dµf(∆wg) (7.31)

=
w−1
∑

k=0

(−)k
∫ 1

0
dτ1

[

(∇w−k−1
τ−2w
2 ∇wf)∇k

g + (∇w−k−1τ−2w
2 ∇w

g)∇kf
]∣

∣

∣

τ2=L

Substituting f = Es and g = Cu,v;w, evaluating ∆w on Es, and partitioning the integration

domain M in Iu,v;w into ML and its complement, gives the theorem below.

Theorem 7.6. The regularized inner product integral Iu,v;w(s, L) is given in terms of the

convergent integral Iu,v;w(s) by,

λw(s)Iu,v;w(s, L) = Iu,v;w(s)−
∫ ∞

L

dτ2
τ22

∫ 1

0
dτ1Es(∆wCu,v;w)

+

w−1
∑

k=0

(−)k
∫ 1

0
dτ1

[

(∇w−k−1
τ−2w
2 ∇wEs)∇kCu,v;w

+ (∇w−k−1τ−2w
2 ∇wCu,v;w)∇kEs

]∣

∣

∣

τ2=L
(7.32)

Up to corrections of order O(e−4πL) the second term on the right side may be neglected,

while in the remaining sum we may replace Es and Cu,v;w by their respective Laurent poly-

nomial parts thereby resulting in a finite sum of powers of L.
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7.4 Summations over N

The calculation of Petersson inner products for both odd-odd or even-even arrangements

of modular graph functions involves infinite-range summations, for which we shall now

provide some useful formulas. We begin by recalling the well-known results given in [50],

∞
∑

N=1

σa(N)

N s
= ζ(s)ζ(s− a)

∞
∑

N=1

σa(N)σb(N)

N s
=

ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
(7.33)

We shall also need sums involving the generalized divisor function VA,B,C(M,N) defined

for A,B,C ∈ Z and M,N ∈ N in (5.11). We shall assume that A + B + C is even, since

otherwise the sum vanishes, and we compute by manner of example the following sum

which is required in the integration of the constant Fourier mode,

WA,B,C(s) =

∞
∑

N=1

1

N s
VA,B,C(N,N) (7.34)

We choose Re (s) large enough so that the sum is absolutely convergent. Substituting the

definition of V into the summand, we obtain,

WA,B,C(s) =

∞
∑

N=1

1

N s

∑

m,n|N
m,n,m+n 6=0

ε(m)ε(n)

mA−1nB−1(m+ n)C
(7.35)

Both positive and negative m and n contribute to the sum. Denoting by k = gcd(m,n) > 0

the greatest positive common divisor of m and n, we may decompose m,n as follows,

m = kµ n = kν gcd(µ, ν) = 1 ν 6= −µ (7.36)

Since m and n both divide N , clearly k must divide N , and we write N = kM with M > 0.

The summations over k and M are now independent of the summations over µ and ν and

may be carried out in terms of the ζ-function,

WA,B,C(s) = ζ(s)ζ(s+A+B + C − 2)
∑

gcd(µ,ν)=1
µ,ν,µ+ν 6=0

ε(µ)ε(ν)

µA−1νB−1(µ+ ν)C
(7.37)

Rescaling µ → m = kµ and ν → n = kν for k ∈ N and then summing over k allows us to

recover a simplified sum in m and n without divisor conditions,

WA,B,C(s) =
ζ(s)ζ(s+A+B + C − 2)

ζ(A+B + C − 2)

∑

m 6=0

∑

n 6=0,−m

ε(m)ε(n)

mA−1nB−1(m+ n)C
(7.38)

Since the summand is invariant under (m,n) → (−m,−n) we sum over m > 0 upon

including a factor of 2. Furthermore, for fixed m, the sum over n is given by the function

SB−1,C(m), which is defined and evaluated in equation in (C.15) of appendix C.4,

WA,B,C(s) =
2ζ(s)ζ(s+A+B + C − 2)

ζ(A+B + C − 2)

∞
∑

m=1

SB−1,C(m)

mA−1
(7.39)
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Evaluating the sums over m with the help of the formulas given in appendix C.4, we find,

(−)B−1
∞
∑

m=1

SB−1,C(m)

mA−1
=

B−1
∑

j=3

(−)j
(

B + C − j − 2

C − 1

)

ζsv(j)ζ(A+B + C − 2− j)

+

C
∑

j=3

(

B + C − j − 2

B − 2

)

ζsv(j)ζ(A+B + C − 2− j)

−
(

B + C − 1

B − 1

)

ζ(A+B + C − 2)

− 2

C
∑

j=1

(

B + C − j − 2

B − 2

)

ζ(A+B + C − 2− j, j) (7.40)

Note that in the first two lines above, the second ζ-factor is an odd zeta-value since the

first factor is non-zero only when j is odd, and by assumption A+B + C − 2 is even.

7.5 Example: the inner product of Es with ∆4C2,1,1

In this final subsection, we shall evaluate the Petersson inner product of Es with ∆4C2,1,1,

f(s) =

∫

M
dµEs∆4C2,1,1 (7.41)

Lemma 7.4 guarantees that ∆4C2,1,1 is a cuspidal function so that the above integral is

absolutely convergent for sufficiently large Re (s), and may be analytically continued to

a meromorphic function in C. We shall evaluate f(s) in two different ways. First, by

expressing Es as a Poincaré series for the coset Γ∞\Γ and evaluating f(s) in terms of

an integral over the constant Fourier mode of ∆4C2,1,1. The latter is obtained from the

expression for the constant Fourier mode of C2,1,1 in subsection 5.6. Second, by using

the differential equation for C2,1,1 and Zagier’s integral formula for the product of three

Eisenstein series [48].

7.5.1 Calculation by Poincaré and Fourier series

With the help of the Poincaré series representation for Es, we may express f(s) in terms

of an integral of the constant Fourier mode of ∆4C2,1,1,

f(s) = cs

∫ ∞

0
dτ2 τ

s−2
2

∫ 1

0
dτ1∆4C2,1,1 (7.42)

where the asymptotics of the Eisenstein series is expressed as follows,

Es(τ) = csτ
s
2 + c̃sτ

1−s
2 +O(e−2πτ2) , cs =

2ζ(2s)

πs
, c̃s =

2Γ(s− 1
2)ζ(2s− 1)

Γ(s)πs− 1
2

(7.43)

Using the expression for the constant Fourier mode of C2,1,1 given in (5.22) and (5.24), and

the absolute convergence of the integral for sufficiently large Re (s) to interchange the sum

and integration, we find,

f(s) = −8cs

∞
∑

N=1

σ−3(N)2
∫ ∞

0
dτ2 τ

s−2
2 ∆4

(

e−4πNτ2

(4πτ2)2

)

(7.44)
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Since the integrand falls off exponentially near the cusp, we may integrate ∆4 by parts for

sufficiently large Re (s) which brings out a factor of the function λ4(s) defined in (7.21).

Carrying out the remaining integral over τ2 we have,

f(s) = −8λ4(s) cs
Γ(s− 3)

(4π)s−1

∞
∑

N=1

σ−3(N)2

N s−3
(7.45)

Using Ramanujan’s formula on the second line of (7.33) for a = b = −3 and the expression

for cs gives the following result,

f(s) = −32λ4(s)
Γ(s− 3)

(2π)2s−1
ζ(s)2 ζ(s+ 3) ζ(s− 3) (7.46)

We note that f(s) has a simple pole at s = 1, whose residue gives the integral of the

cuspidal function ∆4C2,1,1 by Rankin-Selberg.

The value of the residue may be obtained from (7.46) and equals −16πζ(3)/5, which

also equals −4! 3! c1 where c1 is the coefficient of the τ2-term in the Laurent expansion

of C2,1,1 given in (5.19). This result is in agreement with the general formula (7.22) of

theorem 7.5 for the integral of such cuspidal functions for the special case of C = C2,1,1.

7.5.2 Calculation by Zagier’s integral for triple product of Eisenstein series

In the second calculation, we use the differential equation for C2,1,1 in (5.21) and

∆E4 = 12E4 to recast f(s) as follows,

f(s) = −
∫

M
dµEs∆(∆− 6)(∆− 12)E2

2 (7.47)

We cannot integrate by parts over the domain M because the Eisenstein series have poly-

nomial growth at the cusp. Hence we shall consider the integral over a cut-off domain ML,

introduced in (7.17), for arbitrary L ≫ 1,

f(s) = lim
L→∞

fL(s) fL(s) = −
∫

ML

dµEs∆(∆2 − 18∆ + 72)E2
2 (7.48)

We may now evaluate this integral via theorem 7.6. In fact, the current example is simple

enough that we may rederive the result of (7.32) explicitly as follows. Integrating (7.48)

by parts while keeping track of the boundary contributions at τ2 = L, we find,

fL(s) =

∫ 1

0
dτ1

[

F ∂τ2Es − Es ∂τ2F
]

τ2=L
− λ4(s)

(s+ 1)(s− 2)

∫

ML

dµEsE
2
2 (7.49)

where F is given by,

F =
(

(∆− 6)(∆− 12) + s(s− 1)(∆− 18) + s2(s− 1)2
)

E2
2 (7.50)

The power-behaved terms in the combination F are τ42 , τ2 and τ−2
2 , while Es has the power-

behaved terms τ s2 and τ1−s
2 . Thus, the power-behaved terms in the first term in (7.49) are

given by a linear combination of Ls+3, Ls, Ls−3, L4−s, L1−s, and L−2−s.
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The evaluation of the integral over ML in (7.49) was given in [48], and takes the form,

∫

ML

dµEsE
2
2 = cs c

2
2

Ls+3

s+ 3
+ 2 cs c2 c̃2

Ls

s
+ cs c̃

2
s

Ls−3

s− 3
+ (s → 1− s) (7.51)

+
32Γ(s− 3)(s+ 1)(s− 2)

(2π)2s−1
ζ(s+ 3) ζ(s− 3) ζ(s)2 +O(e−2πL)

where the instruction to add the contribution from s → 1 − s applies only to the first

line. Omitting contributions to fL(s) which are exponentially suppressed as a function

of L, using the Laurent polynomials of E2 and Es to evaluate the power-behaved terms

of F, we readily establish that the first integral in (7.49) precisely cancels all the power-

behaved terms in the contribution from the integral in (7.51). The remaining term on the

second line of (7.51) equals the result (7.46) computed using Poincaré and Fourier series

and Rankin-Selberg.

A Proof of theorem 5.1

To evaluate the Laurent polynomial Lu,v;w and thereby prove theorem 5.1, we decompose

Lu,v;w into contributions L(k)
u,v;w from C(k)

u,v;w for k = 0, 1, 2, 3, 4, so that,

Lu,v;w =

4
∑

k=0

L(k)
u,v;w (A.1)

To obtain L(k)
u,v;w, we decompose the functions ϕk and Φa;b entering C(k)

u,v;w with the help

of the decomposition formulas (5.1) and (5.3) and retain for L(k)
u,v;w only the contributions

proportional to ϕ̂k and Φ
(0)
a;b. Clearly we have,

L(0)
u,v;w = C(0)

u,v;w = ℓw(4πτ2)
w (A.2)

with ℓw given in (3.4), which produces the first term in (5.4).

A.1 Calculation of L(1)
u,v;w + L(2)

u,v;w

No contributions to L(1)
u,v;w+L(2)

u,v;w arise from the terms involving Lu,v;k since this function

has only exponential contributions. The contribution from the function Ku,v;k reduces to

Ku,v;k = 2π
(

v + k − 2

v − 1

)

Φ
(0)
u;v+k−1(2|m|τ2) ε(m)u+v+k +O(e−2πτ2) (A.3)

where Φ
(0)
u;v+k−1 was given in (5.3). The sum over m may be carried out in terms of even

and odd ζ-values, and we obtain,

L(1)
u,v;w+L(2)

u,v;w =

w−u
∑

k=1

[u/2]
∑

α=0

4(−)v+α
(

2w−u−v−k−1
w−u−k

)(

u+v+k−2−2α
v−1,k−1,u−2−2α

)

(2π)2α(4πτ2)w−1−2α
ζ(2α)ζ(2w−2α−1)

+
w−u
∑

k=1

(−)v
(

2w−u−v−k−1
w−u−k

)(

v+k−2
v−1

)(

u+v+k−3
u−1

)

(4πτ2)w−2
ζ(2w−2)+(u↔ v) (A.4)
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Symmetrization (u ↔ v) applies to the entire expression. The sum over k in the first line

may be performed using a variant of Gauss’ formula, valid for c ∈ N and a, b ∈ C,

c−1
∑

k=1

Γ(a− k)Γ(b+ k)

Γ(c− k)Γ(k)
=

Γ(b+ 1)Γ(a+ 1− c)Γ(a+ b)

Γ(c− 1)Γ(a+ b+ 2− c)
(A.5)

and we obtain,

L(1)
u,v;w + L(2)

u,v;w = 4

[u/2]
∑

α=0

(−)v+αζ(2α)ζ(2w − 2α− 1)
(

2w−2α−2
w−u−1

)(

u+v−1−2α
v−1

)

(2π)2α(4πτ2)w−1−2α

+
(−)v

(4πτ2)w−2
ζ(2w − 2)

(

u+ v − 2

u− 1

)(

2w − 3

w − u− 1

)

+ (u ↔ v) (A.6)

where the addition of (u ↔ v) again applies to the entire preceding expression. The first

term contributes to ℓ2k−w+1 in (5.5) while the second contributes to ℓ2−w in (5.6).

A.2 Calculation of L(3)
u,v;w

The contribution L(3)
u,v;w is given by,

L(3)
u,v;w = 2π

τw2
πw

(−)u+v+w
(

u+ v − 2

v − 1

)

∑

m 6=0

Φ
(0)
2w−u−v;u+v−1(2|m|τ2) (A.7)

Carrying out the sum over m in terms of even and odd zeta values gives,

L(3)
u,v;w = 4

(

u+ v − 2

v − 1

)

[(2w−u−v)/2]
∑

α=0

(−)w+αζ(2α)ζ(2w − 2α− 1)
(

2w−2α−2
u+v−2

)

(2π)2α(4πτ2)w−1−2α

+ (−)w
(

u+ v − 2

v − 1

)(

2w − 3

u+ v − 2

) ζ(2w − 2)

(4πτ2)w−2
(A.8)

The first term contributes to ℓ2k−w+1 in (5.5) while the second contributes to ℓ2−w in (5.6).

A.3 Calculation of L(4)
u,v;w

The contribution L(4)
u,v;w arises from the fourth term in Ω of (4.28), as well as from the re-

maining terms with a = b = c = 1. Collecting these terms up to exponential contributions,

Ωu,v;w =

w+v
∑

k=u+v+1

(−)vπ2
(

2w−k−1
w+v−k

)(

k−3
u−1,v−1,k−u−v−1

)

(ε(m1)−ε(m2))(ε(m1)+ε(m3))

(−m2)k−2m2w−k
3 (2τ2)2w−2

(A.9)

+
w+u
∑

k=u+v+1

(−)uπ2
(

2w−k−1
w+u−k

)(

k−3
u−1,v−1,k−u−v−1

)

(ε(m2)−ε(m1))(ε(m2)+ε(m3))

(−m1)k−2m2w−k
3 (2τ2)2w−2

Summing now over m1,m2,m3 to obtain L(4)
u,v;w, we use the symmetry under the simulta-

neous sign reversal of m1,m2,m3 to set m1 > 0 upon including an overall factor of 2. In

the first sum, we then need m3 > 0 and set −m2 = m1 +m3, while in the second sum m1
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and m2 are interchanged. The sums over m1 and m3 in the first term and over m2 and m3

in the second term give the multiple zeta values defined in (5.8),

L(4)
u,v;w = 2(−)v

w+v
∑

k=u+v+1

(

2w−k−1
w+v−k

)(

k−3
u−1,v−1,k−u−v−1

)

(4πτ2)w−2
ζ(k − 2, 2w − k) + (u ↔ v) (A.10)

This contribution accounts for the entire multiple zeta value part of ℓ2−w in (5.6).

B Proof of proposition 5.2

We start from the expression obtained for ℓ2−w in theorem 5.1, and use a key result of [11]

that expresses the odd-odd MZVs in terms of even-even MZVs plus a function T which is

a bilinear combination of odd zeta values with rational coefficients. For N ≥ 1, we have,

ζ(2M−1,2N+1)=−T (M,N)+ζ(2M−1)ζ(2N+1)−ζ(2M+2N) (B.1)

+

N−1
∑

n=0

E2n+1(0)Γ(2M+2n)

(2n+1)!Γ(2M−1)
ζ(2M+2n,2N−2n)

−
N−1
∑

n=0

E2n+1(0)Γ(2M+2n)

(2n+1)!Γ(2M−1)

(

ζ(2M+2n)ζ(2N−2n)−ζ(2M+2N)
)

Here En(0) is the Euler polynomial evaluated at zero argument. For N ≥ 1, the function

T (M,N) evaluates as follows,

T (M,N)=

M+N−2
∑

α=1

ζ(2α+1)ζ(2M+2N−2α−1)

2N−1
∑

n=0

1

2
En(0)

(

2α

2N−n

)(

2M+n−2

n

)

−
M+N−1
∑

α=1

ζ(2α)ζ(2M+2N−2α)

2N−1
∑

n=0

1

2
En(0)

(

2α−1

2N−n

)(

2M+n−2

n

)

(B.2)

Eliminating all odd-odd MZVs from ℓ2−w using MAPLE for w ≤ 18 and the above formulas,

we find that ℓ2−w is given by a bilinear sum of odd zeta values, with integer coefficients λk,

ℓ2−w =
w−3
∑

k=1

λk ζ(2k + 1)ζ(2w − 2k − 3) (B.3)

This result proceeds via the cancellation of the MZVs ζ(u+v+k−2, 2w−u−v−k) for each

value of k for which u+v+k is even, obtained by eliminating all odd-odd MZVs using (B.1).

The cancellation takes place as if the even-even MZVs were independent variables, even

though they do obey the Euler relation,

ζ(s, t) + ζ(t, s) = ζ(s)ζ(t)− ζ(s+ t) (B.4)

and are thus not necessarily independent. Below we shall exhibit the formulas required for

the cancellation separately for u+ v even or odd.

– 45 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
6

For u + v = 2z even, the contributions with even-even MZVs are obtained from the

even k contributions in (5.5) and are given by,

Xe
u,v;w = 2(−)v

[w−u
2

]
∑

k=1

(

2w − u− v − 2k − 1

w − u− 2k

)(

u+ v + 2k − 3

u− 1, v − 1, 2k − 1

)

× ζ(2z + 2k − 2, 2w − 2z − 2k) + (u ↔ v) (B.5)

while the contributions from eliminating odd-odd MZVs are given by,

XT
u,v;w =2(−)v

w−z−1
∑

k=1

2k−1
∑

ℓ=1

θ

(

2

[

w−u

2

]

−2k+ℓ+1

)

ζ(2z+2k−2,2w−2z−2k)

×
(

2w−u−v−2k+ℓ−1
w−u−2k+ℓ

)(

u+v+2k−ℓ−3
u−1,v−1,2k−ℓ−1

)

Eℓ(0)Γ(u+v+2k−2)

Γ(ℓ+1)Γ(u+v+2k−ℓ−2)
+(u↔ v) (B.6)

Recognizing the contribution Xe
u,v;w as being the same as the ℓ = 0 part of XT would be,

we see that the cancellation term-by-term in k of the coefficients of the even-even MZVs

is equivalent to the cancellation of the following sums,

Xe
u,v;w+XT

u,v;w =2

w−z−1
∑

k=1

Yu,v;w,k
Γ(u+v+2k−2)

Γ(u)Γ(v)
ζ(2z+2k−2,2w−2z−2k) (B.7)

with Yu,v;w,k given by,

Yu,v;w,k =(−)v
2k−1
∑

ℓ=0

θ
(

2
[

w−u
2

]

−2k+ℓ+1
)

Eℓ(0)Γ(2w−u−v−2k+ℓ)

Γ(w−u−2k+ℓ+1)Γ(w−v)Γ(2k−ℓ)Γ(ℓ+1)
+(u↔ v) (B.8)

The constraint arising from the Heaviside θ-function is automatically satisfied in view of the

first Γ-function in the denominator. We have checked using MAPLE that Yu,v;w,k vanishes

for all w ≤ 52 with 1 ≤ u ≤ w − 2, 2 ≤ v ≤ u, and 1 ≤ k ≤ w − z − 1. An analytical proof

of the vanishing of Yu,v;w,l is an open problem, as was the case with its analogue in [11].

Hopefully, such proof may be achieved using the algorithmic techniques of [51].

It remains to analyze the case of N = 0, for which we have

ζ(2M − 1, 1) =
1

2
(2M − 1)ζ(2M)− 1

2

2M−3
∑

n=1

ζ(n+ 1)ζ(2M − 1− n) (B.9)

This contains only bilinears in odd zeta values and terms which belong to π2w−2Q. The

sum of all terms proportional to π2w−2Q in ℓ2−w are known to cancel by the generalization

of theorem 1.2 of [11], and they were verified to vanish by MAPLE. The remaining terms

are then all bilinear in odd zeta values and arise from the second term on the first line

of (B.1), the first line of contributions to T in (B.2), and from the term on the second line

of (B.9). The coefficients λk are then found to be given by the formula in proposition 5.2

for u+ v even. A corresponding calculation establishes proposition 5.2 for u+ v odd.

– 46 –



J
H
E
P
0
4
(
2
0
1
9
)
1
3
6

C Calculation of exponential contributions

In this section, we shall evaluate the contributions which are exponentially suppressed near

the cusp. The key formulas separating the exponential contributions in ϕk and Φa;b are

given in (5.1) and (5.3). There are no exponential contributions arising from C(0)
u,v;w. The

exponential contribution arising from C(i)
u,v;w will be denoted by E(i)

u,v;w for i = 1, 2, 3, 4.

C.1 Calculation of E(1)
u,v;w + E(2)

u,v;w

The exponential contributions E(1)
u,v;w + E(2)

u,v;w arising from the combination C(1)
u,v;w + C(2)

u,v;w

given in (4.17) take the following form,

E(1)
u,v;w + E(2)

u,v;w = (−)v
w−u
∑

k=1

(

2w − u− v − k − 1

w − u− k

)(

E(K)
u,v;w;k + Ē(L)

v,u;w;k

)

+ (u ↔ v)∗ (C.1)

The contribution E(K)
u,v;w;k arises from the term involving Ku,v;k, which was evaluated

in (4.14), and may be decomposed as follows,

E(K)
u,v;w;k =

v
∑

ℓ=1

(

v + k − ℓ− 1

v − ℓ

) [

Ξ
(1)
u,v;k;ℓ + Ξ

(2)
u,v;k;ℓ + Ξ

(3)
u,v;k;ℓ

]

+ (v ↔ k)∗ (C.2)

where we have defined

Ξ
(1)
u,v;k;ℓ = δℓ,1

v+k−1
∑

β=1

(

u+v+k−β−2
u−1

)

(4πτ2)w−β−1

∞
∑

N=1

Nβ−1

Γ(β)
qN q̄Nσ2−2w(N) (C.3)

Ξ
(2)
u,v;k;ℓ = 4

[u2 ]
∑

α=0

(−)αζ(2α)
(

u+v+k−ℓ−2α−1
u−2α

)

(2π)2α(4πτ2)w−2α−ℓ

∞
∑

N=1

N ℓ−1

Γ(ℓ)
q̄Nσ1+2α−2w(N)

+

(

u+v+k−ℓ−2
u−1

)

(4πτ2)w−ℓ−1

∞
∑

N=1

N ℓ−1

Γ(ℓ)
q̄Nσ2−2w(N)

Ξ
(3)
u,v;k;ℓ =

v+k−ℓ
∑

β=1

2
(

u+v+k−ℓ−β−1
u−1

)

(4πτ2)w−β−ℓ

∞
∑

N1,N2=1

Nβ−1
1 N ℓ−1

2

Γ(β)Γ(ℓ)
qN1 q̄N1+N2σ2−2w

(

gcd(N1, N2)
)

The contribution E(L)
u,v;w;k arises from the term involving Lu,v;k which was evaluated in (4.16),

and is given as follows,

(−)kE(L)
u,v;w;k =

[u+v+k−1
2 ]
∑

j=[u+k+1
2 ]

4 (−)v+j
(

2j−u−1
k−1

)

ζ(2j)

(4πτ2)w−u−v−k(2π)2j

∞
∑

N=1

Nu+v+k−2j−1σ1+2j−2w(N)

Γ(u+ v + k − 2j)
q̄N

+ (−)u+k(v ↔ k) (C.4)

C.2 Calculation of E(3)
u,v;w

The exponential contribution E(3)
u,v;w arising from C(3)

u,v;w given in (4.19) takes the form,

E(3)
u,v;w = (−)w

u
∑

k=1

(

u+ v − k − 1

u− k

) [

Π
(1)
u,v;k +Π

(2)
u,v;k +Π

(3)
u,v;k

]

+ (u ↔ v)∗ (C.5)
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where we have defined

Π
(1)
u,v;k = δk,1

u+v−1
∑

β=1

(

2w−β−2
u+v−β−1

)

(4πτ2)w−β−1

∞
∑

N=1

Nβ−1

Γ(β)
qN q̄Nσ2−2w(N) (C.6)

Π
(2)
u,v;k =

[ 2w−u−v
2 ]
∑

α=0

4(−)αζ(2α)
(

2w−2α−k−1
u+v−k−1

)

(2π)2α(4πτ2)w−k−2α

∞
∑

N=1

Nk−1

Γ(k)
qNσ1+2α−2w(N)

+

(

2w−k−2
2w−u−v−1

)

(4πτ2)w−k−1

∞
∑

N=1

Nk−1

Γ(k)
qNσ2−2w(N)

Π
(3)
u,v;k =

u+v−k
∑

β=1

2
(

2w−k−β−1
u+v−k−β

)

(4πτ2)w−k−β

∞
∑

N1,N2=1

Nβ−1
1 Nk−1

2

Γ(k)Γ(β)
qN1+N2 q̄N1σ2−2w

(

gcd(N1, N2)
)

C.3 Calculation of E(4)
u,v;w

Recall that C(4)
u,v;w is given by,

C(4)
u,v;w =

∑

mr 6=0

τw2
πw

δm1+m2+m3,0Ωu,v;w

(

m1τ,m2τ̄ ,m3τ,m3τ̄
)

(C.7)

where Ω was given in (4.28). The sum over the m-variables is carried out by partitioning

the contributions according to the decomposition of the ϕ-functions. The terms with two

Kronecker δ-symbols have already been counted towards the Laurent series.

The contributions with a single Kronecker δ require the following sums,

Σ
(2)
1 (B,C; a, b) =

∑

mr 6=0

(−)Bδm,0

2mB
2 m

C
3

(

δa,1ε(m1)ε(m2)
bϕ̂b(q̄

|m2|) + δb,1ε(m2)ε(m1)
aϕ̂a(q

|m1|)
)

Σ
(3)
1 (B,C; b, c) =

∑

mr 6=0

(−)Bδm,0

2mB
2 m

C
3

(

δb,1ε(m2)ε(m3)
cϕ̂c(q

|m3|) + δc,1ε(m3)ε(m2)
bϕ̂b(q̄

|m2|)
)

Σ
(4)
1 (B,C; c, a) =

∑

mr 6=0

(−)Bδm,0

2mB
2 m

C
3

(

δc,1ε(m3)ε(m1)
aϕ̂a(q

|m1|) + δa,1ε(m1)ε(m3)
cϕ̂c(q

|m3|)
)

(C.8)

These contributions are all harmonic in q. Each function vanishes by mr → −mr symmetry

of the summation unless the sum of all four of its arguments is even, so for example in

Σ
(2)
1 (B,C; a, b) one must have B + C + a+ b even.

The contributions without Kronecker δ require the following sums,

Σ
(2)
0 (B,C; a, b) =

∑

mr 6=0

δm,0

(−m2)BmC
3

ε(m1)
aε(m2)

bϕ̂a(q
|m1|)ϕ̂b(q̄

|m2|)

Σ
(3)
0 (B,C; b, c) =

∑

mr 6=0

δm,0

(−m2)BmC
3

ε(m2)
bε(m3)

cϕ̂b(q̄
|m2|)ϕ̂c(q

|m3|)

Σ
(4)
0 (B,C; c, a) =

∑

mr 6=0

δm,0

(−m2)BmC
3

ε(m3)
cε(m1)

aϕ̂c(q
|m3|)ϕ̂a(q

|m1|) (C.9)
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In terms of these functions, we have,

E(4)
u,v;w =

w+v
∑

k=u+v+1

(

2w − k − 1

w + v − k

)

∑

i=2,3,4

∑

j=0,1

(−)vR(i,j)
u,v;w,k + (u ↔ v)∗ (C.10)

where we have the following expressions for j = 0, 1,

R(2,j)
u,v;w,k =

u
∑

a=1

v
∑

b=1

(−)b
(

k−a−b−1
u−a,v−b,k−u−v−1

)

(4πτ2)w−a−b
Σ
(2)
j (k − a− b, 2w − k; a, b)

R(3,j)
u,v;w,k =

v
∑

b=1

k−u−v
∑

c=1

(−)b
(

k−b−c−1
u−1,v−b,k−u−v−c

)

(4πτ2)w−b−c
Σ
(3)
j (k − b− c, 2w − k; b, c)

R(4,j)
u,v;w,k =

k−u−v
∑

c=1

u
∑

a=1

(

k−c−a−1
u−a,v−1,k−u−v−c

)

(4πτ2)w−c−a
Σ
(4)
j (k − c− a, 2w − k; a, c) (C.11)

C.4 Harmonic sums and single-valued zeta-values

The functions Σ
(i)
1 for i = 2, 3, 4 may be evaluated in terms of harmonic sums, sums over

harmonic sums, and single-valued zeta-values, which we shall briefly discuss first. The

basic harmonic sum Hn(m) satisfies the following relations,

Hn(m) =
m
∑

ℓ=1

1

ℓn
Hn(m) = Hn(m− 1) +

1

mn
(C.12)

as well as Hn(0) = 0 and Hn(∞) = ζ(n). The double zeta-value ζ(k, n) may be expressed

in terms of the following sum over harmonic sums,

∞
∑

m=1

Hn(m− 1)

mk
= ζ(k, n) (C.13)

The single-valued ζ-values were introduced in [22], and may be defined as follows,

ζsv(n) =

{

2ζ(n) n ∈ 2N+ 1

0 otherwise
(C.14)

As we shall see below, they arise very naturally in the exponential part of Cu,v;w. Though
we will not need them for our current work, we note in passing that extensions of the

single-valued projection to MZVs of higher depth exist as well [22].

We may apply these definitions to evaluating the ubiquitous sum defined by,

Sa,b(m) =
∑

n 6=0,−m

ε(n)

na(m+ n)b
(C.15)

Partial fraction decomposition in n and summation over n, using the sums,

∑

n 6=0,−m

ε(n)

nj
= ζsv(j) +

(−)jε(m)

mj
j ≥ 2

∑

n 6=0,−m

(

ε(n)

m+ n
− ε(n)

n

)

= −2H1(m− 1) (C.16)
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gives the following result,

(−)aSa,b(m) =

a
∑

j=3

(−)j
(

a+b−j−1
b−1

)

ζsv(j)

ma+b−j
+

b
∑

j=3

(

a+b−j−1
a−1

)

ζsv(j)

ma+b−j

+

(

a+b
a

)

ma+b
− 2

b
∑

j=1

(

a+b−j−1
a−1

)

Hj(m)

ma+b−j
(C.17)

C.5 Calculation of Σ
(i)
1 for i = 2, 3, 4

To compute the sum of the term proportional to δa,1 in the summand of Σ
(2)
1 (B,C; a, b),

given in (C.8), we use mr → −mr symmetry to choose m = m2 > 0, so that the term

becomes,

δa,1(−)B+C
∞
∑

m2=1

∑

m1 6=0,−m2

ε(m1)ϕ̂b(q̄
m2)

mB
2 (m1 +m2)C

(C.18)

The sum over m1 may be carried out in terms of the function S0,C(m2) defined in (C.17),

and upon setting N = pm and eliminating the sum over p in favor of a sum over N , we find,

δa,1(−)B+C
∞
∑

N=1

N b−1

Γ(b)
q̄N

∑

0<m|N

S0,C(m)

mB+b−1
(C.19)

For given N , the sum is over a finite number of values of m. For each value of m, the

contribution is a sum of a rational number and a rational number times an odd zeta-value.

To compute the sum of the term proportional to δb,1 in the summand of Σ
(2)
1 (B,C; a, b),

we use mr → −mr symmetry to choose m = m1 > 0, so that this term becomes,

δb,1(−)B+C
∞
∑

m=1

∑

m2 6=0,−m

ε(m2)ϕ̂a(q
m)

mB
2 (m+m2)C

(C.20)

The sum over m2 may be carried out in terms of SB,C(m) and putting all together, we find,

Σ
(2)
1 (B,C; a, b) = δa,1(−)B+C

∞
∑

N=1

N b−1

Γ(b)
q̄N

∑

0<m|N

S0,C(m)

mB+b−1

+ δb,1(−)B+C
∞
∑

N=1

Na−1

Γ(a)
qN

∑

0<m|N

SB,C(m)

ma−1
(C.21)

The computation of Σ
(3)
1 (B,C; b, c) gives,

Σ
(3)
1 (B,C; b, c) = δb,1

∞
∑

N=1

N c−1

Γ(c)
qN
(

(−)Bζsv(B)σ1−C−c(N) + σ1−B−C−c(N)
)

(C.22)

+ δc,1(−)B
∞
∑

N=1

N b−1

Γ(b)
q̄N
(

ζsv(C)σ1−B−b(N) + (−)Cσ1−B−C−b(N)
)

while the computation of Σ
(4)
1 (B,C; c, a) gives,

Σ
(4)
1 (B,C;c,a)=

∞
∑

N=1

qN



δa,1
N c−1

Γ(c)

∑

0<m|N

S0,B(m)

mC+c−1
+δc,1

Na−1

Γ(a)

∑

0<m|N

SC,B(m)

ma−1



 (C.23)
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C.6 Calculation of Σ
(i)
0 for i = 2, 3, 4

Calculating the functions Σ
(i)
0 for i = 2, 3, 4 given in (C.9) involves the generalized di-

visor functions VA,B,C(M,N) introduced in subsection 5.3 and which we recall here for

convenience,

VA,B,C(M,N) =
∑

m|M
m 6=0

∑

n|N
n 6=0,−m

ε(m)ε(n)

mA−1nB−1(m+ n)C
(C.24)

Recall that VA,B,C(M,N) = 0 for odd A + B + C. To account for this property in a

systematic manner, we introduced the function,

In =
1

2
(1 + (−)n) (C.25)

which vanishes for n odd and equals 1 for n even. A more explicit formula for VA,B,C(M,N)

is given in (5.13).

C.6.1 Calculation of Σ
(2)
0 (B,C; a.b)

To calculate Σ
(2)
0 (B,C; a.b), we choose independent summation variables m1,m2 and ex-

pand the ϕ̂-functions using (5.3),

Σ
(2)
0 (B,C; a.b) =

∞
∑

p1,p2=1

∑

m2 6=0

∑

m1 6=0,−m2

(−)B+C ε(m1)
aε(m2)

b

mB
2 (m1 +m2)C

pa−1
1 pb−1

2

Γ(a)Γ(b)
qp1|m1|q̄p2|m2|

(C.26)

Changing variables from (p1, p2) to (N1, N2) with N1 = p1|m1|, N2 = p2|m2|, and we find,

Σ
(2)
0 (B,C; a, b) = (−)B+C

∞
∑

N1,N2=1

Na−1
1 N b−1

2

Γ(a)Γ(b)
qN1 q̄N2Va,B+b,C(N1, N2) (C.27)

C.6.2 Calculation of Σ
(3)
0 (B,C; b, c)

Choosing independent summation variables m2,m3 and solving for m1 = −m2 −m3,

Σ
(3)
0 (B,C; b, c) = (−)BTB,b(q̄)TC,c(q)− 2(−)b

∞
∑

m2=1

ϕ̂b(q̄
m2)ϕ̂c(q

m2)

mB+C
2

(C.28)

where TB,b(q) is given by,

TB,b(q) =
∑

m2 6=0

ε(m2)
bϕ̂b(q

|m2|)

mB
2

(C.29)

This quantity vanishes unless B + b is even, in which case it may be simplified as follows,

TB,b(q) = 2 Ib+B

∞
∑

N=1

N b−1

Γ(b)
qNσ1−B−b(N) (C.30)
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The last sum may be evaluated by expanding ϕ̂k using (5.3) and changing summation

variables from p1, p2 to N1 = p2m2 and N2 = p1m2. Putting all together, we find,

Σ
(3)
0 (B,C; b, c) =

∞
∑

N1,N2=1

N c−1
1 N b−1

2

Γ(b)Γ(c)
qN1 q̄N2

(

4(−)BIb+BIc+Cσ1−B−b(N2)σ1−C−c(N1)

− 2(−)bσ2−B−C−b−c(gcd(N1, N2))
)

(C.31)

C.6.3 Calculation of Σ
(4)
0 (B,C; c, a)

Choosing independent variables m1,m3 and expanding the ϕ̂-functions,

Σ
(4)
0 (B,C; c, a) =

∞
∑

p1,p2=1

∑

m1 6=0

∑

m3 6=0,−m1

pa−1
1 pc−1

2

Γ(a)Γ(c)

ε(m1)
aε(m3)

c

(m1 +m3)BmC
3

qp1|m1|+p2|m3| (C.32)

Change variables from p1, p2 to N1 = p1|m1| and N2 = p2|m3|,

Σ
(4)
0 (B,C; c, a) =

∞
∑

N1,N2=1

Na−1
1 N c−1

2

Γ(a)Γ(c)
qN1+N2Va,C+c,B(N1, N2) (C.33)

where VA,B,C was defined in (C.24), and takes rational values.

C.7 Calculation of R
(i,1)
u,v;w,k for i = 2, 3, 4

For i = 2 we use Σ
(2)
1 (B,C; a, b) given by (C.21) with B = k− a− b, C = 2w− k and thus

B + C = 2w − a− b. Substituting this result in gives,

R(2,1)
u,v;w,k = −

v
∑

b=1

(

k−b−2
u−1,v−b,k−u−v−1

)

(4πτ2)w−b−1

∞
∑

N=1

N b−1

Γ(b)
q̄N

∑

0<m|N

S0,2w−k(m)

mk−2
(C.34)

+

u
∑

a=1

(−)a
(

k−a−2
u−a,v−1,k−u−v−1

)

(4πτ2)w−a−1

∞
∑

N=1

Na−1

Γ(a)
qN

∑

0<m|N

Sk−a−1,2w−k(m)

ma−1

For i = 3 we use Σ
(3)
1 (B,C; b, c) given by (C.21) with B = k − b− c, C = 2w − k and thus

B + C = 2w − b− c. Substituting this result in gives,

R(3,1)
u,v;w,k =

k−u−v
∑

c=1

(

k−c−2
u−1,v−1,k−u−v−c

)

(4πτ2)w−c−1

∞
∑

N=1

N c−1

Γ(c)
qN
(

ζsv(k−c−1)σ1−2w+k−c(N)−σ2−2w(N)
)

+

v
∑

b=1

(

k−b−2
u−1,v−b,k−u−v−1

)

(4πτ2)w−b−1

∞
∑

N=1

N b−1

Γ(b)
q̄N
(

ζsv(2w−k)σ2−k(N)−σ2−2w(N)
)

(C.35)

For i = 4 we use Σ
(4)
1 (B,C; c, a) given by (C.21) with B = k− c− a, C = 2w− k and thus

B + C = 2w − c− a. Substituting this result in gives,

R(4,1)
u,v;w,k =

k−u−v
∑

c=1

(

k−c−2
u−1,v−1,k−u−v−c

)

(4πτ2)w−c−1

∞
∑

N=1

N c−1

Γ(c)
qN

∑

0<m|N

S0,k−c−1(m)

m2w−k+c−1

+
u
∑

a=1

(

k−a−2
u−a,v−1,k−u−v−1

)

(4πτ2)w−a−1

∞
∑

N=1

Na−1

Γ(a)
qN

∑

0<m|N

S2w−k,k−a−1(m)

ma−1
(C.36)
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C.8 Calculation of R
(i,0)
u,v;w,k for i = 2, 3, 4

For i = 2 we use Σ
(2)
1 (B,C; a, b) given by (C.21) with B = k− a− b, C = 2w− k and thus

B + C = 2w − a− b. Substituting this result in gives,

R(2,0)
u,v;w,k =

u
∑

a=1

v
∑

b=1

(−)a
(

k−a−b−1
u−a,v−b,k−u−v−1

)

(4πτ2)w−a−b

∞
∑

N1,N2=1

Na−1
1 N b−1

2

Γ(a)Γ(b)
qN1 q̄N2Va,k−a,2w−k(N1, N2)

(C.37)

For i = 3 we use Σ
(3)
1 (B,C; b, c) given by (C.21) with B = k − b− c, C = 2w − k and thus

B + C = 2w − b− c. Substituting this result in gives,

R(3,0)
u,v;w,k =

v
∑

b=1

k−u−v
∑

c=1

(

k−b−c−1
u−1,v−b,k−u−v−c

)

(4πτ2)w−b−c

∞
∑

N1,N2=1

N c−1
1 N b−1

2

Γ(b)Γ(c)
qN1 q̄N2 (C.38)

×
(

4 Ik−c σ1−k+c(N2)σ1−2w+k−c(N1)− 2σ2−2w(gcd(N1, N2))
)

For i = 4 we use Σ
(4)
1 (B,C; c, a) given by (C.21) with B = k− c− a, C = 2w− k and thus

B + C = 2w − c− a. Substituting this result in gives,

R(4,0)
u,v;w,k =

k−u−v
∑

c=1

u
∑

a=1

(

k−c−a−1
u−a,v−1,k−u−v−c

)

(4πτ2)w−c−a

∞
∑

N1,N2=1

Na−1
1 N c−1

2

Γ(a)Γ(c)
qN1+N2Va,2w−k+c,k−c−a(N1, N2)

(C.39)

D Fourier coefficients of exponential contributions

In this appendix, we shall use the results of section 4 and appendix C to compute explicitly

the exponential contributions to the two-loop modular graph functions Cu,v;w considered in

this paper. We begin with the calculation of the exponential contributions to the constant

Fourier mode in subsection D.1 and then proceed to evaluating the non-constant Fourier

modes in subsections D.2 and D.3.

D.1 Calculation of Q(N)
u,v;w(τ2)

We begin by obtaining the exponential part of the constant Fourier mode Q(N)
u,v;w(τ2). There

is no contribution to Q(N)
u,v;w(τ2) from C(0)

u,v;w. The contribution from C(1)
u,v;w + C(2)

u,v;w is,

(−)v
w+v
∑

k=u+v+1

k−u−1
∑

β=1

2
(

2w−k−1
w+v−k

)(

k−β−2
u−1

)(

k−u−2
v−1

)

Γ(β)(4πτ2)w−β−1

∞
∑

N=1

Nβ−1qN q̄Nσ2−2w(N)

+ (−)u
w+u
∑

k=u+v+1

k−v−1
∑

β=1

2
(

2w−k−1
w+u−k

)(

k−β−2
v−1

)(

k−v−2
u−1

)

Γ(β)(4πτ2)w−β−1

∞
∑

N=1

Nβ−1qN q̄Nσ2−2w(N) (D.1)

while the contribution from C(3)
u,v;w is given by,

2(−)w
u+v−1
∑

β=1

(

2w−β−2
u+v−β−1

)(

u+v−2
u−1

)

Γ(β)(4πτ2)w−β−1

∞
∑

N=1

Nβ−1qN q̄Nσ2−2w(N) (D.2)
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The contribution from C(4)
u,v;w arises only from R(i,0)

u,v;w,k for i = 2, 3 and is given by,

w+v
∑

k=u+v+1

u
∑

a=1

v
∑

b=1

(−)a+v
(

k−a−b−1
u−a,v−b,k−u−v−1

)(

2w−k−1
w+v−k

)

(4πτ2)w−a−b

∞
∑

N=1

Na+b−2

Γ(a)Γ(b)
qN q̄NVa,k−a,2w−k(N,N)

+
w+v
∑

k=u+v+1

v
∑

b=1

k−u−v
∑

c=1

(−)v
(

k−b−c−1
u−1,v−b,k−u−v−c

)(

2w−k−1
w+v−k

)

(4πτ2)w−b−c

∞
∑

N=1

N b+c−2

Γ(b)Γ(c)
qN q̄N

×
(

4 Ik−c σ1−k+c(N)σ1−2w+k−c(N)− 2σ2−2w(N)
)

+ (u ↔ v) (D.3)

Thus Q(N)
u,v;w(τ2), defined in (4.1), is given by,

Q(N)
u,v;w(τ2)=σ2−2w(N)

w+v
∑

k=1+u+v

v+k−1
∑

β=1

Nβ−1
2(−)v

(

2w−k−1
w+v−k

)(

k−β−2
u−1

)(

k−u−2
v−1

)

Γ(β)(4πτ2)w−β−1

+σ2−2w(N)

u+v−1
∑

β=1

Nβ−1
(−)w

(

2w−β−2
u+v−β−1

)(

u+v−2
u−1

)

Γ(β)(4πτ2)w−β−1

+

w+v
∑

k=1+u+v

u
∑

a=1

v
∑

b=1

(−)a+v
(

k−a−b−1
u−a,v−b,k−u−v−1

)(

2w−k−1
w+v−k

)

(4πτ2)w−a−b

Na+b−2

Γ(a)Γ(b)
Va,k−a,2w−k(N,N)

+
w+v
∑

k=1+u+v

v
∑

b=1

k
∑

c=1

(

k−b−c−1
u−1,v−b,k−u−v−c

)(

2w−k−1
w+v−k

)

(4πτ2)w−b−c

N b+c−2

Γ(b)Γ(c)

×(−)v
(

4Ik−cσ1−k+c(N)σ1−2w+k−c(N)−2σ2−2w(N)
)

+(u↔ v) (D.4)

We may now simplify this as follows. In the first term of (D.4), the summations over k, β

may be interchanged and, introducing the function

J (1)
u,v;w(β,N) = 2(−)vσ2−2w(N)

w+v
∑

k=1

(

2w − k − 1

w + v − k

)(

k − β − 2

u− 1

)(

k − u− 2

v − 1

)

(D.5)

× [θ(β − v)θ(k − β − u− 1) + θ(v − β − 1)θ(k − u− v − 1)]

the first line becomes,

w−u+v−1
∑

β=1

Nβ−1J
(1)
u,v;w(β,N)

Γ(β)(4πτ2)w−β−1
(D.6)

Likewise in the third term of (D.4), we may change variables from b to β = a+ b− 1, and

introduce the function,

J (2)
u,v;w(β,N) =

w+v
∑

k=u+v+1

min(β,u)
∑

a=max(1,β−v+1)

(

k − β − 2

u− a, v + a− β − 1, k − u− v − 1

)

× (−)a+v
(

β − 1

β − a

)(

2w − k − 1

w + v − k

)

Va,k−a,2w−k(N,N) (D.7)
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The third line then becomes,

u+v−1
∑

β=1

Nβ−1J
(2)
u,v;w(β,N)

Γ(β)(4πτ2)w−β−1
(D.8)

In the fourth term we change variables from b to β = b+ c− 1, and introduce the function,

J (3)
u,v;w(β,N) =

min(w−u,β)
∑

c=max(1,β−v+1)

w+v−c
∑

k=u+v

(

k + c− β − 2

u− 1, v − β + c− 1, k − u− v

)(

2w − k − c− 1

w + v − k − c

)

× (−)v
(

β − 1

β − c

)(

4 Ik σ1−k(N)σ1−2w+k(N)− 2σ2−2w(N)
)

(D.9)

The fourth term then becomes,

w−u+v−1
∑

β=1

Nβ−1J
(3)
u,v;w(β,N)

Γ(β)(4πτ2)w−β−1
(D.10)

Assembling all the pieces gives the result quoted in (5.14).

D.2 Calculation of G(N,L)
u,v;w (τ2)

We now obtain the coefficients G
(N,L)
u,v;w (τ2) in the Fourier expansion, defined in (4.2). There

are no contributions from C(0)
u,v;w. The contribution from C(1)

u,v;w + C(2)
u,v;w is given by,

2σ2−2w (gcd(L,N))



(−)v
w−u
∑

k=1

k
∑

ℓ=1

v+k−ℓ
∑

β=1

(

2w−u−v−k−1
w−u−k

)(

v+k−ℓ−1
k−ℓ

)(

u+v+k−ℓ−β−1
u−1

)

Γ(ℓ)Γ(β)(4πτ2)w−β−ℓ
Lβ−1N ℓ−1

+ (−)u
w−v
∑

k=1

u
∑

ℓ=1

u+k−ℓ
∑

β=1

(

2w−u−v−k−1
w−v−k

)(

u+k−ℓ−1
u−ℓ

)(

u+v+k−ℓ−β−1
v−1

)

Γ(ℓ)Γ(β)(4πτ2)w−β−ℓ
Lβ−1N ℓ−1



 (D.11)

The contribution from C(3)
u,v;w is given by,

2σ2−2w (gcd(L,N)) (−)w
u
∑

k=1

u+v−k
∑

β=1

(

u+v−k−1
u−k

)(

2w−k−β−1
u+v−k−β

)

Γ(k)Γ(β)(4πτ2)w−k−β
Lβ−1Nk−1 (D.12)

The contributions from C(4)
u,v;w arise from R(i,0)

u,v;w,k for i = 2, 3 and are given respectively by,

w+v
∑

k=1+u+v

u
∑

a=1

v
∑

b=1

(−)a+v
(

2w−k−1
w+v−k

)(

k−a−b−1
u−a,v−b,k−u−v−1

)

Γ(a)Γ(b)(4πτ2)w−a−b
(L+N)a−1Lb−1Va,k−a,2w−k(L+N,L)

+

w+u
∑

k=1+u+v

u
∑

a=1

v
∑

b=1

(−)b+u
(

2w−k−1
w+u−k

)(

k−a−b−1
u−a,v−b,k−u−v−1

)

Γ(a)Γ(b)(4πτ2)w−a−b
(L+N)a−1Lb−1Vb,k−b,2w−k(L,L+N)

(D.13)
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and

w+v
∑

k=1+u+v

v
∑

b=1

k−u−v
∑

c=1

(

2w−k−1
w+v−k

)(

k−b−c−1
u−1,v−b,k−u−v−c

)

Γ(b)Γ(c)(4πτ2)w−b−c
(L+N)c−1Lb−1

× (−)v [4 Ik−c σ1−k+c(L)σ1−2w+k−c(L+N)− 2σ2−2w (gcd(L,L+N))]

+

w+u
∑

k=1+u+v

u
∑

b=1

k−u−v
∑

c=1

(

2w−k−1
w+u−k

)(

k−b−c−1
v−1,u−b,k−u−v−c

)

Γ(b)Γ(c)(4πτ2)w−b−c
(L+N)b−1Lc−1

× (−)u [4 Ik−c σ1−k+c(L+N)σ1−2w+k−c(L)− 2σ2−2w (gcd(L,L+N))] (D.14)

The total result can be written in an abridged form as follows,

G(N,L)
u,v;w (τ2) =

k+
∑

k=k−

ℓ+
∑

ℓ=1

β+
∑

β=1

Wk,ℓ,β
u,v;w(N,L)

(4πτ2)w−β−ℓ
(D.15)

where

k− = 1 + u+ v

k+ = max(w + u,w + v)

ℓ+ = max(w − u, u)

β+ = max (w + |u− v| − 1, u+ v − 1) (D.16)

To express the coefficients Wk,ℓ,β
u,v;w(N,L) in a form as simple as possible, we shall adopt

the convention whereby binomial and trinomial coefficients vanish if any one of their lower

entries is a negative integer,
(

A

B1, · · · , Br

)

= 0 if −Bi ∈ N (D.17)

for any i = 1, · · · , r, or if −A ∈ N. For all integer arguments/indices, the coefficients

Wk,ℓ,β
u,v;w(N,L) are rational numbers. They are given by the following lengthy expression,

Wk,ℓ,β
u,v;w(N,L) = 2Lβ−1N ℓ−1σ2−2w (gcd(L,N))

×
[

(−)v

(

2w−k−1
w+v−k

)(

k−u−ℓ−1
k−u−v−ℓ

)(

k−ℓ−β−1
k−ℓ−β−u

)

Γ(ℓ)Γ(β)
+ (−)u

(

2w−k−1
w+u−k

)(

k−v−ℓ−1
u−ℓ

)(

k−ℓ−β−1
k−ℓ−β−v

)

Γ(ℓ)Γ(β)

+(−)wδk−u−v,1

(

u+v−ℓ−1
u−ℓ

)(

2w−ℓ−β−1
u+v−ℓ−β

)

Γ(ℓ)Γ(β)

]

+ Lβ−1(L+N)ℓ−1

[

(−)ℓ+v
(

2w−k−1
w+v−k

)(

k−ℓ−β−1
u−ℓ,v−β,k−u−v−1

)

Γ(ℓ)Γ(β)
Vℓ,k−ℓ,2w−k(L+N,L)

+
(−)β+u

(

2w−k−1
w+u−k

)(

k−ℓ−β−1
u−ℓ,v−β,k−u−v−1

)

Γ(ℓ)Γ(β)
Vβ,k−β,2w−k(L,L+N)

]

+ Lβ−1(L+N)ℓ−1

[(

2w−k−1
w+v−k

)(

k−ℓ−β−1
u−1,v−β,k−u−v−ℓ

)

Γ(ℓ)Γ(β)
Vk,ℓ
u,v;w(L,L+N)

+

(

2w−k−1
w+u−k

)(

k−ℓ−β−1
v−1,u−ℓ,k−u−v−β

)

Γ(ℓ)Γ(β)
Vk,β
v,u;w(L+N,L)

]

(D.18)
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where we have defined

(−)vVk,ℓ
u,v;w(L,M) = 4 Ik−ℓ σ1−k+ℓ(L)σ1−2w+k−ℓ(M)− 2σ2−2w (gcd(L,M)) (D.19)

This gives the result cited in the first line of theorem 5.4.

D.3 Calculation of F (N)
u,v;w(τ2)

We now calculate the coefficients F
(N)
u,v;w(τ2) in the Fourier expansion, defined in (4.2).

There are no contributions from C(0)
u,v;w. The contribution from C(1)

u,v;w + C(2)
u,v;w is given by,

F (N)(12)
u,v;w (τ2)=

(−)v
w−u
∑

k=1

k
∑

ℓ=1

(

2w−u−v−k−1
w−u−k

)(

v+k−ℓ−1
k−ℓ

)

Γ(ℓ)
N ℓ−1






4

[u2 ]
∑

α=0

(−)αζ(2α)
(

u+v+k−ℓ−2α−1
u−2α

)

(2π)2α(4πτ2)w−2α−ℓ
σ1+2α−2w(N)

+

(

u+v+k−ℓ−2
u−1

)

(4πτ2)w−ℓ−1
σ2−2w(N)







+(−)u
w−v
∑

k=1

u
∑

ℓ=1

(

2w−u−v−k−1
w−v−k

)(

u+k−ℓ−1
u−ℓ

)

Γ(ℓ)
N ℓ−1






4

[ v2 ]
∑

α=0

(−)αζ(2α)
(

u+v+k−ℓ−2α−1
v−2α

)

(2π)2α(4πτ2)w−2α−ℓ
σ1+2α−2w(N)

+

(

u+v+k−ℓ−2
v−1

)

(4πτ2)w−ℓ−1
σ2−2w(N)







+4

w−u
∑

ℓ=1

(−)v+u

(4πτ2)w−u−v−ℓ







[u+v+ℓ−1

2 ]
∑

j=[ 1+v+ℓ

2 ]

(−)j+ℓ
(

2w−u−v−ℓ−1
w−u−ℓ

)(

2j−v−1
ℓ−1

)

Γ(u+v+ℓ−2j)

ζ(2j)

(2π)2j
Nu+v+ℓ−2j−1σ1+2j−2w(N)

+ (−)v(u↔ ℓ)






(D.20)

Note that (u ↔ ℓ) applies only to the portion in brackets on the penultimate line.

The contribution from C(3)
u,v;w is

F (N)(3)
u,v;w (τ2)=

(−)w
u
∑

ℓ=1

(

u+v−ℓ−1
u−ℓ

)

Γ(ℓ)
N ℓ−1







[ 2w−u−v

2 ]
∑

α=0

4(−)αζ(2α)
(

2w−2α−ℓ−1
u+v−ℓ−1

)

(2π)2α(4πτ2)w−ℓ−2α
σ1+2α−2w(N)+

(

2w−ℓ−2
2w−u−v−1

)

(4πτ2)w−ℓ−1
σ2−2w(N)







(D.21)

The contributions from C(4)
u,v;w come fromR(i,1)

u,v;w,k for i = 2, 3, 4, as well as fromR(4,0)
u,v;w,k.

They can be written collectively as

F (N)(4)
u,v;w (τ2) =

k+
∑

k=k−

ℓ+
∑

ℓ=1

Mk,ℓ
u,v;w(N)

(4πτ2)w−ℓ−1
+

w+v
∑

k=k−

k−u−v
∑

ℓ=1

u
∑

β=1

Hk,ℓ,β
u,v;w(N)

(4πτ2)w−ℓ−β
(D.22)
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where k−, k+, and ℓ+ are as defined in (D.16) and

Mk,ℓ
u,v;w(N) =

(−)v
(

2w−k−1
w+v−k

)(

k−ℓ−2
u−1,v−1,k−u−v−ℓ

)

Γ(ℓ)
N ℓ−1µ(1) k,ℓ

u,v;w (N)

+
(−)v

(

2w−k−1
w+v−k

)(

k−ℓ−2
u−ℓ,v−1,k−u−v−1

)

Γ(ℓ)
N ℓ−1µ(2) k,ℓ

u,v;w (N)

+
(−)u

(

2w−k−1
w+u−k

)(

k−ℓ−2
u−ℓ,v−1,k−u−v−1

)

Γ(ℓ)
N ℓ−1µ(3) k,ℓ

u,v;w (N) (D.23)

Note that we are utilizing the convention put forth in (D.17). The µ
(i) k,ℓ
u,v;w (N) for i = 1, 2, 3

are defined by,

µ(1) k,ℓ
u,v;w (N) = ζsv(k − ℓ− 1)σ1−2w+k−ℓ(N)− σ2−2w(N) +

∑

0<m|N

S0,k−ℓ−1(m)

m2w−k+ℓ−1

µ(2) k,ℓ
u,v;w (N) =

∑

0<m|N

S2w−k,k−ℓ−1(m)

mℓ−1
+ (−)ℓ

∑

0<m|N

Sk−ℓ−1,2w−k(m)

mℓ−1

µ(3) k,ℓ
u,v;w (N) = ζsv(2w − k)σ2−k(N)− σ2−2w(N)−

∑

0<m|N

S0,2w−k(m)

mk−2
(D.24)

We have also defined

Hk,ℓ,β
u,v;w(N) = θ(N − 2)

(−)v
(

2w−k−1
w+v−k

)(

k−ℓ−β−1
u−β,v−1,k−u−v−ℓ

)

Γ(ℓ)Γ(β)

×
N−1
∑

N1=1

Nβ−1
1 (N −N1)

ℓ−1Vβ,2w−k+ℓ,k−ℓ−β(N1, N −N1) (D.25)

where again we are using the convention of (D.17).

The coefficients Mk,ℓ
u,v;w(N) evaluated on integer-valued indices and arguments are lin-

ear combinations of rational numbers and rational multiples of odd zeta values. Odd zeta

values naively appear in all µ
(i) k,ℓ
u,v;w (N) for i = 1, 2, 3. However, there are actually no odd

zeta values arising from µ
(3) k,ℓ
u,v;w (N), since the factor of ζsv(2w − k) appearing in (D.24)

cancels against the zeta value arising from the definition of S0,2w−k(m), see (C.17). Hence

we obtain contributions from only the first two lines of (D.24), which are given by

Mk,ℓ
u,v;w(N) =

2(−)v
(

2w−k−1
w+v−k

)

Γ(k − ℓ− 1)

Γ(v)Γ(ℓ)Γ(k − v − ℓ)
N ℓ−1 (D.26)

×





(

k − v − ℓ− 1

k − u− v − ℓ

)

σ1−2w+k−ℓ(N)ζsv(k − ℓ− 1)

+(−)k
(

k − v − ℓ− 1

u− ℓ

)







k−ℓ−1
∑

j=3

(

2w − ℓ− j − 2

2w − k − 1

)

ζsv(j)σ2+j−2w(N)

−
2w−k
∑

j=3

(

2w − ℓ− j − 2

k − ℓ− 2

)

ζsv(j)σ2+j−2w(N)











Once again, we are working with the convention of (D.17).
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Finally, we find,

F (N)
u,v;w(τ2) =

k+
∑

k=k−

ℓ+
∑

ℓ=1





Mk,ℓ
u,v;w(N)

(4πτ2)w−ℓ−1
+

γ+
∑

γ=0

Hk,ℓ,β
u,v;w(N)

(4πτ2)w−ℓ−γ



 (D.27)

where

γ+ = max (u+ v, 2w − u− v − ǫ) (D.28)

ǫ = u + v (mod 2) and the function Hk,ℓ,γ
u,v;w(N) is obtained by combining Hk,ℓ,β

u,v;w(N) with

the rational portions of Mk,ℓ
u,v;w(N), i.e. Mk,ℓ

u,v;w(N) −Mk,ℓ
u,v;w(N), as well as with the con-

tributions from (D.20) and (D.21), such that

k+
∑

k=k−

ℓ+
∑

ℓ=1

γ+
∑

γ=0

Hk,ℓ,β
u,v;w(N)

(4πτ2)w−ℓ−γ
= F (N)(12)

u,v;w (τ2) + F (N)(3)
u,v;w (τ2)

+
w+v
∑

k=k−

k−u−v
∑

ℓ=1

u
∑

β=1

Hk,ℓ,β
u,v;w(N)

(4πτ2)w−ℓ−β
+

k+
∑

k=k−

ℓ+
∑

ℓ=1

Mk,ℓ
u,v;w(N)−Mk,ℓ

u,v;w(N)

(4πτ2)w−ℓ−1
(D.29)

For all integer-valued indices and arguments Hk,ℓ,β
u,v;w(N) is a rational number.

E Proof of theorem 6.3

In this appendix we prove theorem 6.3. To do so we proceed in two parts. We first prove the

linear independence of the spaces A
(1)
w and A

(2)
w , and then move on to the more complicated

case of A
(3)
w . Both parts are proven by means of holomorphic subgraph reduction and the

sieve algorithm.

E.1 Independence of A(1)
w and A

(2)
w

As reviewed in section 6.3, the sieve algorithm involves determining the order in ∇ at which

the first holomorphic Eisenstein series appears. It is easy to see that for Pk(w1, w2) ∈ A
(1)
w ,

the first holomorphic Eisenstein series appears at order∇w2−k, so that Pk(w1, w2)∈V(w2−k)
(w,w) .

On the other hand, elements of A
(2)
w have u + 1 < w − u − 1, and hence the lowest

entry in the exponent matrix of Au,u+1;w ∈ A
(2)
w is u. As a result, we have,

Au,u+1;w ∈ V(u)
(w,w) for all Au,u+1;w ∈ A(2)

w (E.1)

That is, upon application of the Cauchy-Riemann operator to elements of A
(2)
w , the first

possible appearance of a holomorphic Eisenstein series is at order ∇u. The holomorphic

Eisenstein series in question appears through algebraic reduction identities (2.27), and one

finds by explicit computation that,

∇uAu,u+1;w = −(−1)u
Γ(2u+ 1)

Γ(u+ 1)
G2u+1 C+

[

w − u− 1 0

w − u 0

]

+ . . . (E.2)
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where the ellipsis represents elements of V(w+u,w−u). However, since 2u + 1 is odd, this

holomorphic Eisenstein series vanishes. So we in fact have the stricter statement that,

Au,u+1;w ∈ V(u+1)
(w,w) ⊂ V(u)

(w,w) for all Au,u+1;w ∈ A(2)
w (E.3)

This means that we may proceed to ∇u+1, where one obtains the following holomorphic

Eisenstein series via algebraic reduction,

∇u+1Au,u+1;w = (−1)u
Γ(2u+ 2)

Γ(u)
G2(u+1)Ew−u−1 + . . . (E.4)

The ellipsis represents elements of V(w+u+1,w−u−1). We are now in a position to prove the

first part of the theorem. We begin by assuming a linear relation of the form

[w−1
2 ]
∑

w2=2

w2−1
∑

k=1

α(w2, k)Pk(w − w2, w2) +

[w−3
2 ]
∑

u=1

β(u)Au,u+1;w = 0 (E.5)

and then apply ∇ to it. Since Aw ⊂ V(w,w), we have

∇ : Aw → V(w+1,w−1) ⊕ C(w+1,w−1) (E.6)

Applying ∇ to (E.5) produces only elements of V(w+1,w−1), except for when it acts on

Pw2−1(w − w2, w2), in which case it produces

[w−1
2

]
∑

w2=2

α(w2, w2 − 1)τ2−2w2
2 ∇w2Ew2∇

w2−1
Ew−w2 ∈ C(w+1,w−1) (E.7)

By the sieve algorithm, all terms not in V(w+1,w−1) must cancel, so (E.5) requires the above

to vanish. The form ∇w2Ew2 is proportional to G2w2 by (2.22) so that all the terms for

different values of w2 must be linearly independent of one another, and we must have

α(w2, w2 − 1) = 0 for all 2 ≤ w2 ≤ [w−1
2 ]. Given these cancellations, the range of the sum

over k in (E.5) now effectively has upper limit w2 − 2. By construction, for these values of

k and w2, the image of ∇ on each term in (E.5) belongs to V(w+1,w−1), and we may now

proceed to ∇2,

∇2 : Aw → V(w+2,w−2) ⊕ C(w+2,w−2) (E.8)

In addition to the contributions coming from Pw2−2(w − w2, w2), there will now be a

contribution towards C(w+2,w−2) coming from an element of A
(2)
w as well. In particular, the

image of ∇2 on each term of the abridged (E.5) is in V(w+2,w−2), except for the images of

Pw2−2(w − w2, w2) and A1,2;w, which have,

[w−1
2 ]
∑

w2=3

α(w2, w2 − 2)G2w2∇
w2−2

Ew−w2 + β(1)G4Ew−2 ∈ C(w+2,w−2) (E.9)

For simplicity, we have absorbed unimportant factors of Gamma functions and τ2 into

α(w2, w2−2) and β(1). For this expression to vanish, we require α(w2, w2−2) = β(1) = 0.

Having eliminated the elements of C(w+2,w−2), one may then move on to order ∇3. Iterating

this argument, one inductively shows that all coefficients must vanish, and thus that all

elements of A
(1)
w and A

(2)
w are independent.
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E.2 Independence of A(1)
w , A(2)

w , and A
(2)
w

We shall now prove the linear independence of A
(3)
w analogously to the case of A

(2)
w . The

additional complication is that the holomorphic Eisenstein series which arise do so via

holomorphic subgraph reduction in addition to algebraic reduction. In particular, note

that for any Au,u+1;w ∈ A
(3)
w , by definition w − u − 1 ≤ u + 1. Restricting temporarily to

the case u 6=
[

w−1
2

]

, it follows that w− u− 1 is the lowest element in the exponent matrix,

and hence,

Au,u+1;w ∈ V(w−u−1)
(w,w) for all Au,u+1;w ∈ A(3)

w (E.10)

or equivalently

∇w−u−1Au,u+1;w ∈ V(2w−u−1,u+1) ⊕ C(2w−u−1,u+1) (E.11)

The elements of C(2w−u−1,u+1) arise via holomorphic subgraph reduction, and are computed

in closed form in lemma F.1 of appendix F, which yields

∇w−u−1Au,u+1;w =
w−1
∑

ℓ=w−u

H1(ℓ)Gℓ C+
ℓ +

2(w−u)−1
∑

ℓ=w−u

H2(ℓ)Gℓ C+
ℓ + · · · (E.12)

when v = u+ 1. C+
ℓ is defined by,

C+
ℓ = C+

[

2w − u− ℓ− 1 0

u+ 1 0

]

(E.13)

The ellipsis in (E.12) represent elements of V(2w−u−1,u+1), while the functions H1(ℓ), H2(ℓ),

and C+
ℓ are obtained from (F.12) and (F.3) by setting v = u+ 1,

H1(ℓ) =
(−)w

Γ(w − u)

w−u−1
∏

j=1

(ℓ− j)

w−u−1
∏

k=1

(w + k − ℓ− 1)

H2(ℓ) =
(−)u+1

Γ(u)

w−u−1
∏

j=1

(ℓ− j)
u−1
∏

k=1

(2w − 2u+ k − ℓ− 1) (E.14)

Importantly, we have noted that u ≤ w−5 in the definition of A
(3)
w implies that w−u−1 ≥ 4,

and then we have used (E.14) to obtain the lower bounds on the sums in (E.12). Each

individual term in the remaining sums has non-vanishing coefficient.

We reemphasize that these are only the contribution arising from holomorphic sub-

graph reduction. As long as u 6=
[

w−1
2

]

, this is in fact all of the contributions. However,

for u =
[

w−1
2

]

one would expect an additional holomorphic Eisenstein series Gw produced

via algebraic reduction. For w odd this term is vanishing and the distinction is unimpor-

tant, whereas for w even we must take it into account. For w ∈ 4N, the case of u = w
2 is

also exceptional, since (E.12) vanishes. For the moment, we take u >
[

w
2

]

to avoid these

complications, returning to them at the end of the proof.
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We now focus on the terms in (E.12) with the holomorphic Eisenstein series of lowest

weight. We may begin by assuming that w − u ∈ 2N + 1. If this is the case, then (E.12)

has a term containing a holomorphic Eisenstein series Gw−u+1 with coefficient

H1(w − u+ 1) +H2(w − u+ 1) = (−)u+1(w − u)
Γ(w − 1)

Γ(u)
(E.15)

which is non-vanishing. Hence the lowest weight holomorphic Eisenstein series is Gw−u+1.

In the case of w−u ∈ 2N, one begins by considering the case ℓ = w−u, to which both

sums contribute. However, in this case H1(w − u) +H2(w − u) vanishes. Thus one moves

on to ℓ = w − u + 2. There is always a contribution towards this term from the second

sum in (E.12), since u ≤ w− 5 implies that 2(w− u)− 1 ≥ w− u+4. If the first sum does

not contribute to this term, then the coefficient is automatically non-vanishing. If the first

sum does contribute, one finds

H1(w − u+ 2) +H2(w − u+ 2) =
1

2
(−1)u+1(w − 2u)

Γ(w − 2)Γ(w − u+ 2)

Γ(u)Γ(w − u)
(E.16)

which is non-vanishing for u >
[

w
2

]

. Thus the lowest weight holomorphic Eisenstein series

produced is Gw−u+2.

With this information, we may now begin to prove linear independence of A
(1)
w , A

(2)
w ,

and A
(3)
w . This is done in the same manner as before: we begin by writing a tentative linear

combination, now including the additional contributions due to elements of A
(3)
w ,

[w−1
2 ]
∑

w2=2

w2−1
∑

k=1

α(w2, k)Pk(w − w2, w2) +
w−5
∑

u=1

β(u)Au,u+1;w = 0 (E.17)

At any order n < 4 in ∇, the elements of A
(3)
w do not give rise to elements of C(w+n,w−n),

and one may proceed exactly as in the first part of the proof. On the other hand, at each

order 4 ≤ n <
[

w−1
2

]

in ∇ there is a single element of A
(3)
w which is in V(n)

(w,w), namely

Aw−n−1,w−n;w.
4 By the reasoning of the previous paragraphs, this function produces ele-

ments of C(w+n,w−n) which include terms proportional to Gn+2 (n even) or Gn+3 (n odd).

At the same order ∇n, only Pw2−n(w − w2, w2) ∈ A
(1)
w and An−1,n;w ∈ A

(2)
w contribute ele-

ments of C(w+n,w−n). Since the former requires w2 ≥ n+1, the lowest weight holomorphic

Eisenstein series which it can produce is G2(n+1), while the latter contributes only a term

containing G2n. Because n ≥ 4, these are necessarily of higher weight than Gn+2 or Gn+3,

thus proving linear independence for all functions in V(n)
(w,w) for n <

[

w−1
2

]

.

We now turn to the remaining cases of n =
[

w−1
2

]

and, if w is even, n = w
2 . In fact, as

mentioned before it is only when w is even that exceptional phenomena occur, and hence

we focus on the case of w even for the remainder of the proof. We consider separately

the cases of w /∈ 4N and w ∈ 4N. If w /∈ 4N, the result (E.12) for n =
[

w−1
2

]

= w
2 − 1

is unchanged, but the case of n = w
2 must be modified slightly: upon application of ∇w

2

to Aw
2
−1,w

2
;w, one not only produces elements of C(3w/2,w/2) via holomorphic subgraph

4The upper bound on n is equivalent to the earlier bound u >
[

w
2

]

.
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reduction as per (E.12), but also a term via algebraic reduction. In particular, a term

proportional to Gw is produced by applying algebraic reduction to the image of ∇w
2 on the

Cw
2
,w
2
−1;w contained in Aw

2
−1,w

2
;w. This new contribution cancels the term proportional to

Gw in the second sum of (E.12), and we are left with

∇w
2 Aw

2
−1,w

2
;w =

w−2
∑

ℓ=w/2+1

(H1(ℓ) +H2(ℓ))Gℓ C+
ℓ + . . . (E.18)

When w ∈ 4N, one must make the same modification (E.18) to the case n = w
2 . But

there is also a more subtle modification in the case of n = w
2 −1. Naively, we would assume

that ∇w
2
−1Aw

2
,w
2
+1;w ∈ V(3w/2−1,w/2+1)⊕C(3w/2−1,w/2+1). However, from (F.13) we see that

for these choices of w and u all elements of C(3w/2−1,w/2+1) in (E.12) cancel, and we must

proceed to the next order in ∇ to obtain the first holomorphic Eisenstein series. That is,

we actually have

Aw
2
,w
2
+1;w ∈ V(w/2)

(w,w) for all Aw
2
,w
2
+1;w ∈ A(3)

w and w ∈ 4N (E.19)

and hence Aw
2
,w
2
+1;w contributes non-holomorphic Eisenstein series at the same order in ∇

as Aw
2
−1,w

2
;w. The elements of C(3w/2,w/2) appearing upon application of ∇w/2 to Aw

2
,w
2
+1;w

are obtained in appendix G, with the final results given by (G.12).

To complete the proof of independence, we return to our tentative linear combina-

tion (E.17) and show that all coefficients must vanish at orders ∇w
2
−1 and ∇w

2 for w ∈ 2Z.

If w /∈ 4Z, the proof proceeds as before for ∇w
2
−1, and we need special consideration only

for ∇w
2 . Note that there is no contribution from A

(1)
w or A

(2)
w at this order (since these

by definition have vanishing intersection with V(w/2)
(w,w)), but there is a non-vanishing con-

tribution (E.18) from A
(3)
w . The coefficient β

(

w
2 − 1

)

in the linear combination must then

vanish, completing the proof for w /∈ 4Z.

For w ∈ 4Z, there are no contributions from elements of A
(3)
w at order ∇w

2
−1. Instead,

there are two contributions at order ∇w
2 , namely from Aw

2
−1,w

2
;w and Aw

2
,w
2
+1;w. As before,

there are no contributions from elements of A
(1)
w or A

(2)
w at this order. Note that Aw

2
−1,w

2
;w

produces elements of C(3w/2,w/2) as dictated by (E.18), while Aw
2
,w
2
+1;w produces elements

of C(3w/2,w/2) as dictated by (G.12). The contributions from (E.18) can be seen to be

proportional to the first term of the first line of (G.12). The proof is then completed by

noting that (G.12) has remaining non-zero terms.

F Holomorphic subgraph reduction

We begin with the following lemma.

Lemma F.1. For 1 ≤ u < v ≤ w−1 and w−v < u, the lowest order ∇-derivative on Au,v;w

which yields a holomorphic subgraph is ∇w−v, with the contribution from holomorphic

subgraph reduction given by,

∇w−vAu,v;w =
w+u−v
∑

ℓ=4

H1(ℓ)Gℓ C+
ℓ +

2w−u−v
∑

ℓ=4

H2(ℓ)Gℓ C+
ℓ + · · · (F.1)
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The ellipsis represents terms in V(2w−v,v) and the functions Hi(ℓ) are given by,

H1(ℓ) =
(−)w Γ(ℓ) Γ(2w − v − ℓ)

Γ(w − u)Γ(ℓ+ v − w)Γ(w + u− v − ℓ+ 1)

H2(ℓ) =
(−)v Γ(ℓ) Γ(2w − v − ℓ)

Γ(u)Γ(ℓ+ v − w)Γ(2w − u− v − ℓ+ 1)
(F.2)

We have used the following abbreviation,

C+
ℓ = C+

[

2w − v − ℓ 0

v 0

]

(F.3)

To prove this, we begin by noting that the conditions 1 ≤ u < v ≤ w−1 and w−v < u

imply w− v < w− u and w− v < v. Hence w− v is the smallest non-zero exponent in the

modular graph function Au,v;w and as such ∇nAu,v;w ∈ V(w+n,w−n) for all n < w − v. The

first possible appearance of a holomorphic subgraph is at n = w − v.

The holomorphic subgraph reduction contribution to the derivative ∇w−vAu,v;w arises

solely from the first term in (6.1). Focusing on this term, repeated use of (6.9) gives

∇w−vAu,v;w =
w−v
∑

m=0

(

w − v

m

)

Γ(w + u− v −m)Γ(w − u+m)

Γ(u)Γ(w − u)

× C+

[

u+ w − v −m 0 w − u+m

−w + v +m v w − v −m

]

+ · · · (F.4)

where the ellipses represents terms in V(2w−v,v). The only holomorphic subgraph contri-

bution arises from the following rearrangement using the momentum conservation identi-

ties (2.4),

C+

[

u+ w − v −m 0 w − u+m

−w + v +m v w − v −m

]

= (−)w+v+mC+

[

u+ w − v −m 0 w − u+m

0 v 0

]

+ · · ·

(F.5)

which in turn may be evaluated using the holomorphic subgraph reduction formula of (6.10).

The second line of (6.10) does not contribute, since the first term does not yield a holo-

morphic subgraph and the part in brackets cancels. Putting the pieces together, we find,

∇w−vAu,v;w =
w−v
∑

m=0

(

w+u−v−m
∑

ℓ=4

h1(m, ℓ)Gℓ C+
ℓ +

w−u+m
∑

ℓ=4

h2(m, ℓ)Gℓ C+
ℓ

)

+ . . . (F.6)

where the ellipses represents terms in V(2w−v,v) and the functions hi(m, ℓ) are given by,

h1(m, ℓ) = (−1)w+m

(

w − v

m

)

Γ(w + u− v −m)Γ(2w − v − ℓ)

Γ(u)Γ(w − u)Γ(w + u− v −m− ℓ+ 1)

h2(m, ℓ) = (−1)w+m

(

w − v

m

)

Γ(w − u+m)Γ(2w − v − ℓ)

Γ(u)Γ(w − u)Γ(w − u+m− ℓ+ 1)
(F.7)
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Next, we interchange the summation over m and ℓ in (F.6) to obtain

∇w−vAu,v;w =
u
∑

ℓ=4

(

w−v
∑

m=0

h1(m, ℓ)

)

Gℓ C+
ℓ +

w+u−v
∑

ℓ=u+1

(

w+u−v−ℓ
∑

m=0

h1(m, ℓ)

)

Gℓ C+
ℓ (F.8)

+
w−u
∑

ℓ=4

(

w−v
∑

m=0

h2(m, ℓ)

)

Gℓ C+
ℓ +

2w−u−v
∑

ℓ=w−u+1

(

w−v
∑

m=ℓ−w+u

h2(m, ℓ)

)

Gℓ C+
ℓ + · · ·

The sums over m are proportional to hypergeometric functions evaluated at unit argument

and may be evaluated using Gauss’s formula,

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
(F.9)

and the reflection product formula for Γ-functions,

Γ(1− z)Γ(z) =
π

sinπz
(F.10)

with the final result being

w−v
∑

m=0

h1(m, ℓ) =

w+u−v−ℓ
∑

m=0

h1(m, ℓ) = H1(ℓ)

w−v
∑

m=0

h2(m, ℓ) =
w−v
∑

m=ℓ−w+u

h2(m, ℓ) = H2(ℓ) (F.11)

Having proven lemma F.1, we have the following simple corollary,

Corollary F.2. For the range of parameters u, v, w indicated in lemma F.1, the functions

Hi(ℓ) are polynomials in ℓ of respective degrees 2w − u − v − 1 and w + u − v − 1. Their

only zeros in ℓ within their respective summation ranges in (F.1) are w− v simple zeros at

the integers {1, 2, · · · , w − v}.
By inspection of (F.2), it is clear that for the ranges of u, v, w assumed in lemma F.1,

the functions H1(ℓ) and H2(ℓ) factorize as follows,

H1(ℓ) =
(−)w

Γ(w − u)

w−v
∏

j=1

(ℓ− j)
w−u−1
∏

k=1

(w + u− v + k − ℓ)

H2(ℓ) =
(−)v

Γ(u)

w−v
∏

j=1

(ℓ− j)

u−1
∏

k=1

(2w − u− v + k − ℓ) (F.12)

Within their respective summation ranges in (F.1), namely 4 ≤ ℓ ≤ w+u−v for H1(ℓ) and

4 ≤ ℓ ≤ 2w−u−v for H2(ℓ), the second products in both lines of (F.12) are non-vanishing.

Thus the only zeros are w−v simple zeros at the integers ℓ ∈ {1, 2, · · · , w−v}, as claimed.

For the particular case of w even and u = w
2 , the above expressions for H1(ℓ) and

H2(ℓ) exhibit the following relation,

H2(ℓ) = (−)vH1(ℓ) for w = 2u (F.13)

In the case that v = u+1 ∈ 2N+1, all elements of C(2w−v,v) cancel from the right-hand side

of (F.1) and the sieve algorithm requires that we proceed to the next order in ∇ to identify

the first holomorphic subgraph. This is more involved, and is discussed in appendix G.
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G A special case

As discussed after corollary F.2, for w ∈ 4N, u = w
2 , and v = u+1 all elements of C(2w−v,v)

cancel from the right-hand side of (F.1). In this case the sieve algorithm demands that

we proceed to the next order in ∇, i.e. ∇w−v+1 = ∇w
2 , to obtain the first holomorphic

Eisenstein series. In other words, Aw
2
,w
2
+1;w ∈ V(w/2)

(w,w) for w ∈ 4N. Obtaining the elements

of C(3w/2,w/2) explicitly in this case is more involved than in appendix F, but follows the

same strategy.

We consider Au,v;w = Cu,v;w−Cv,u;w and focus on the first term on the right-hand side.

In order to identify all elements of C(3w/2,w/2), at each order in ∇ it no longer suffices to

keep only the terms with the smallest lower right entry in the exponent matrix. Instead, we

must also keep terms with next-to-smallest lower right entry, since these may still produce

holomorphic Eisenstein series after the remaining ∇ are applied. The terms with next-to-

smallest lower right entry at level ∇s arise from terms with smallest lower right entry at

order ∇s−1. In particular, from (F.4) and (F.5) we see that the terms with smallest lower

right entry at order ∇s−1 are

∇s−1Cu,v;w =

s−1
∑

m=0

(−1)m+s−1

(

s− 1

m

)

Γ(u+ s− 1−m)Γ(w − u+m)

Γ(u)Γ(w − u)

× C+

[

u+ s− 1−m 0 w − u+m

0 v w − v − s+ 1

]

+ . . . (G.1)

The terms of next-to-smallest lower right entry at order ∇s are then obtained by applying

∇ to the above and keeping only the terms which, via momentum conservation identities,

subtract 1 from the bottom center entry of the exponent matrix, producing the modular

graph form,

−(u+ s− 1−m) C+

[

u+ s−m 0 w − u+m

0 v − 1 w − v − s+ 1

]

+ . . . (G.2)

where we have neglected terms which do not have next-to-smallest lower right entry. Then

in order to identify the elements of C(w+n,w−n) produced by these functions at order ∇n,

we may consider only the terms for which, upon application of ∇, the value of the lower

right entry is reduced (i.e. we may neglect any functions which have further subtractions

on the bottom center entry, since such terms cannot produce any holomorphic Eisenstein

series at order ∇n). In particular, by the same reasoning as for (F.4), it follows that

∇n−sC+

[

u+ s−m 0 w − u+m

0 v − 1 w − v − s+ 1

]

=

n−s
∑

r=0

(−1)r+n−s

(

n− s

r

)

Γ(u−m+ n− r)Γ(w − u+m+ r)

Γ(u+ s−m)Γ(w − u+m)

× C+

[

u−m+ n− r 0 w − u+m+ r

0 v − 1 w − v − n+ 1

]

+ . . . (G.3)
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are the terms which must be kept. Hence the elements of C(w+n,w−n) coming from functions

which experienced the single subtraction on their bottom center entry at order ∇s can be

obtained by considering the elements of C(w+n,w−n) produced by

∇n−s∇sCu,v;w =

s−1
∑

m=0

n−s
∑

r=0

(−1)r+n+m

(

n− s

r

)(

s− 1

m

)

Γ(u−m+ n− r)Γ(w − u+m+ r)

Γ(u)Γ(w − u)

× C+

[

u−m+ n− r 0 w − u+m+ r

0 v − 1 w − v − n+ 1

]

+ . . . (G.4)

Finally, in order to capture all holomorphic Eisenstein series arising in this way, we must

sum over all s in the range 1 ≤ s ≤ n− 1. Specifying that n = w− v+1, w ∈ 4Z, u = w/2

and v = u+ 1, the complete set of elements of C(3w/2,w/2) are contained in

∇w/2Cw
2
,w
2
+1;w =

w/2−1
∑

s=1

s−1
∑

m=0

w/2−s
∑

r=0

g̃(s,m, r, ℓ) C+

[

w −m− r w/2 +m+ r 0

0 0 w/2

]

+ . . .

(G.5)

where we have defined

g̃(s,m, r, ℓ) = (−1)m+r

(

w/2− s

r

)(

s− 1

m

)

Γ(w −m− r)Γ(w/2 +m+ r)

Γ(w/2)2
(G.6)

We may then use holomorphic subgraph reduction (6.10) to obtain the final result,

∇w/2Cw
2
,w
2
+1;w =

w/2−1
∑

s=1

s−1
∑

m=0

w/2−s
∑

r=0

{

w−m−r
∑

ℓ=4

g1(s,m, r, ℓ)Gℓ C+

[

3w/2− ℓ 0

w/2 0

]

+

w/2+m+r
∑

ℓ=4

g2(s,m, r, ℓ)Gℓ C+

[

3w/2− ℓ 0

w/2 0

]







+ . . . (G.7)

where we have defined

g1(s,m, r, ℓ) =

(

3w/2− ℓ− 1

w −m− r − ℓ

)

g̃(s,m, r, ℓ)

g2(s,m, r, ℓ) =

(

3w/2− ℓ− 1

w/2 +m+ r − ℓ

)

g̃(s,m, r, ℓ) (G.8)

This is the contribution towards C(3w/2,w/2) at order ∇w/2 coming from Cw
2
,w
2
+1;w in,

Aw
2
,w
2
+1;w = Cw

2
,w
2
+1;w − Cw

2
+1,w

2
;w (G.9)

When calculating the total contribution to C(3w/2,w/2) from the full odd modular graph

function, we must also consider contributions coming from Cw
2
+1,w

2
;w. These include ele-

ments of C(3w/2,w/2) coming from algebraic subgraph reduction, as well as from holomorphic
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subgraph reduction since u = w
2 . The terms arising from algebraic subgraph reduction are

found to be of the form

∇w/2Cw
2
+1,w

2
;w

∣

∣

∣

alg.red.
=

Γ(w)

Γ(w/2 + 1)
Gw+1 C+

[

w/2− 1 0

w/2 0

]

+ . . . (G.10)

But since we are considering w even, the holomorphic Eisenstein series in this case vanishes.

Thus we have only the contribution coming from holomorphic subgraph reduction, which

follows directly from (F.1) and is

∇w/2Cw
2
+1,w

2
;w =

w+1
∑

ℓ=4

H ′
1(ℓ)Gℓ C+′

ℓ +

w−1
∑

ℓ=4

H ′
2(ℓ)Gℓ C+′

ℓ + · · · (G.11)

whereH ′
1(ℓ), H

′
2(ℓ), and C+′

ℓ are obtained from (F.2) and (F.3) by first interchanging u ↔ v,

and then substituting the required values for u and v. Adding (G.7) and (G.11) then gives

the total contribution to C(3w/2,w/2) for the special functions (E.19), which is

∇w/2Aw
2
,w
2
+1;w =−

w−2
∑

ℓ=w/2+2

(

H ′
1(ℓ)+H ′

2(ℓ)
)

GℓC+′

ℓ −H ′
1(w)GwC+

w
′

+

w/2−1
∑

s=1

s−1
∑

m=0

w/2−s
∑

r=0







w−m−r
∑

ℓ=4

g1(s,m,r,ℓ)GℓC+

[

3w/2−ℓ 0

w/2 0

]

+

w/2+m+r
∑

ℓ=4

g2(s,m,r,ℓ)GℓC+

[

3w/2−ℓ 0

w/2 0

]







+. . .

(G.12)

for w ∈ 4N. The dots represent elements of V(3w/2,w/2). Note that we have used the fact

that H ′
1

(

w
2

)

+H ′
2

(

w
2

)

= 0.
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