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We propose a framework for the free field construction of algebras of local observables
which uses as an input the Bisognano–Wichmann relations and a representation of the
Poincaré group on the one-particle Hilbert space. The abstract real Hilbert subspace
version of the Tomita–Takesaki theory enables us to bypass some limitations of the
Wigner formalism by introducing an intrinsic spacetime localization. Our approach works
also for continuous spin representations to which we associate a net of von Neumann
algebras on spacelike cones with the Reeh–Schlieder property. The positivity of the
energy in the representation turns out to be equivalent to the isotony of the net, in the
spirit of Borchers theorem. Our procedure extends to other spacetimes homogeneous
under a group of geometric transformations as in the case of conformal symmetries and
of de Sitter spacetime.
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1. Introduction

Although quantum physics represents one of the most innovative and drastic con-

ceptual changes of view in modern science, the construction of quantum mechanics

and quantum field theory has been fruitfully realized with the guidelines of the

“classical analogue”. This is unsatisfactory, beyond the well known difficulties to

construct a quantum field theory with interaction, if one takes the attitude that

quantum field theory should stand on its own legs [28].

One point where the structure is selfconsistently dictated by quantum principles

is the construction of local observable algebras associated with free fields. We may
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summarize the construction in the following building blocks:

1. The one-particle Hilbert space.

2. Second quantization.

3. Localization.

Point 1 is E. Wigner’s cornerstone analysis of the irreducible unitary repre-

sentations of (the cover of) the Poincaré group. As is well known, the positive

energy representations are classified by the mass m and the spin s if m > 0. When

m = 0 the stabilizer of a non-zero point is isomorphic to the Euclidean group E(2)

which is not compact. Irreducible representations of the Poincaré group induced

by finite-dimensional representations of E(2), namely by representations which are

trivial on the translational part, are labelled by the helicity (a character on the

one-dimensional torus). Irreducible representations of the Poincaré group induced

by infinite-dimensional representations of E(2) are historically called continuous

spin representations (although properly speaking one should talk of helicity rather

than spin). Usually one discards such representations because the corresponding

particles have not been experimentally observed so far, but there is no conceptual

a priori reason not to consider them. As we will explain below, the analysis in this

paper naturally gets into the consideration of the case of continuous spin too.

Point 2 is well described by E. Nelson’s expression: “First quantization is a

mystery, but second quantization is a functor”. Segal’s quantization is indeed an

automatic procedure to get Weyl operators on the Fock space associated with vec-

tors in the one-particle Hilbert space. In particular one gets a von Neumann algebra

out of a real Hilbert subspace of the one-particle space: this is Araki’s lattice of

von Neumann algebras [1, 2]. In this sense free field analysis is basically reduced to

one-particle analysis.

In point 3 the basic principle of locality enters. The definition of local real Hilbert

subspaces, hence of local von Neumann algebras, requires however one more step.

One possibility is to take the functions localized in a region of the configuration

spacetime and then get the real Hilbert space in the momentum space. That this

procedure is not entirely intrinsic may be seen from the fact that it is not possible

to extend it to the case of continuous spin [45].

The purpose of this note is to show how a net of local algebras may be canoni-

cally associated with any positive energy (anti)-unitary representation of the proper

Poincaré group. This construction relies on the idea of modular covariance, namely

the identification of some one-parameter subgroups of the Poincaré group with some

modular groups constructed via the Tomita–Takesaki theory. In this way a net of

standard subspaces of the representation space may be canonically defined directly

in the Wigner one-particle space. Then the second quantization functor produces

the net of local von Neumann algebras. Such a net coincides with the one generated

by the free Bose field of mass m and spin s when the corresponding irreducible re-

presentation of the proper Poincaré group is considered. This construction reveals

the deep connection between the positivity of the energy and the isotony property
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of the net, and reflects the relation between the cyclicity of the vacuum for the

intersection of two wedges and the existence of a PCT operator in terms of the

Tomita modular conjugations, cf. [22]. Our analysis is related to [5, 35].

In other words, the Bisognano–Wichmann theorem tells us what the Tomita

operator associated with a wedge region W should be. Since it is a second quanti-

zation operator [15], it is determined by the operator SW on the one-particle Hilbert

space H. According to Bisognano–Wichmann

SW = JW∆
1/2
W (1.1)

is made up by the boosts unitaries ∆it
W and the PCT anti-unitary that are canoni-

cally associated with the given (anti)-unitary irreducible representation of the

proper Poincaré group. We may then reverse the point of view and define SW
by formula (1.1) in terms of the Poincaré group representation, hence define the

real subspace

KW ≡ {ξ : SW ξ = ξ} .

This procedure is, of course, general and can be performed for any unitary repre-

sentation of the Poincaré group, including those with continuous spin, where the

construction of the corresponding Wightman fields is not possible [45].

The von Neumann algebra R(W ) is then defined by

R(W ) = {V (ξ) : ξ ∈ KW }′′ ,

where V is the representation of the Weyl commutation relations on the Fock space

over H. If O is a region of the spacetime obtained as intersection of wedges, we may

then define

R(O) ≡
⋂
W⊃O

R(W )

(intersection over all wedges containing O). By a classical result the vacuum vector

Ω is cyclic for R(O) if O is a double cone, for any irreducible representation of

finite helicity. By an intrinsic analysis in terms of Poincaré group representations,

we shall show that, in case of continuous spin, Ω is cyclic for R(O) if O is a space-

like cone. But Reeh–Schlieder property for double cones is not to be expected in

this case [30].

Our analysis extends to spacetimes with a group of symmetries, where a suitable

notion of “wedge region” can be defined, in particular to any such wedge one would

associate a one-parameter group of symmetries and a time-reversing reflection, both

giving rise to modular objects in the unitary representations. The precise context is

explained in Sec. 5, cf. also [12, 25] for related notions of wedge. Relevant situations

are those given by the Minkowski spacetime (or the covering of its Dirac–Weyl

compactification) with conformal symmetries, by the circle with Möbius transfor-

mations, and by the (d-dimensional) de Sitter spacetime with the isometry group

SO(d, 1).
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Preliminary versions of this article have been circulating since a few years. The

concept of modular localization has then found different applications in papers by

B. Schroer and collaborators, see [16] and references therein.

2. Basic Preliminaries

Let us recall some basic geometrical and analytical facts. The most important

geometrical setting we consider is Minkowski spacetime, but we shall abstract our

procedure to extend it to more general spaces and to discuss some other examples.

The Minkowski spacetime is the real manifold Rd ≡ R × Rd−1 of dimension

d ≥ 2, equipped with the metric

〈x, y〉 = x0y0 −
d−1∑
i=1

xiyi , ∀x, y ∈ Rd .

This makes Minkowski space a Lorentzian manifold and we consider the time

orientation fixed once and for all. As a result the Minkowski spacetime is divided

into subregions called spacelike, timelike and lightlike corresponding respectively to

〈x, x〉 < 0, 〈x, x〉 > 0, and 〈x, x〉 = 0.

By theorems of Zeeman, the group of diffeomorphisms of the Minkowski space

preserving the causal structure is the semidirect product of R×L with the transla-

tions, where R acts as the group of dilations and L is the full homogeneous Lorentz

group. On the other hand the group of isometries of the Minkowski space is the

Poincaré group P , the semidirect product L n Rd, where Rd corresponds to the

spacetime translations:

(Λ, a) ◦ (Λ′, b) = (Λ · Λ′, a+ Λ · b) , with Λ,Λ′ ∈ L, a, b ∈ Rd .

The full Poincaré group P is simply connected, non connected, non compact, and

perfect. It admits a splitting into connected components

P = P↑+ ∪ P
↓
+ ∪ P

↑
− ∪ P

↓
− .

where the ± corresponds to det(g) = ±1, namely selects those transformations

which preserve or change the orientation, and the up/down arrow corresponds to

〈x, gx〉 ≷ 0, namely selects those transformations which preserve or change the time

orientation.

We shall be mainly concerned with the proper part of the Poincaré group,

i.e. P+ = P↑+ ∪ P
↓
+.

Let then P+ 3 g → U(g) be a strongly continuous (anti-)unitary representation

on the Hilbert space H, i.e.,

U(g) is

{
unitary if g ∈ P↑+
antiunitary if g ∈ P↓+ .
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We select now a particular class of causally complete subregions in Minkowski

spacetime which are left globally invariant by suitable one-parameter velocity trans-

formations. It is traditional to call them wedge regions and we denote the set of

wedges by W . As usual, W ′ denotes the causal complement of W . Each wedge is a

Poincaré transform of the wedge W1 = {x ∈ Rd : x1 > |x0|}. It is possible to assign

to each wedge a one parameter group of transformations ΛW and a time-reversing

reflection RW satisfying

(a) Reflection covariance. For anyW ∈ W , RW mapsW ontoW , RW (W ) = W ′

and RgW = gRW g
−1, g ∈ P+.

(b) Λ-covariance. For any W ∈ W , ΛW (t) mapsW ontoW , ΛW (t)(W ) = W and

ΛgW (t) = gΛW (t)g−1, t ∈ R, g ∈ P↑+, ΛgW (t) = gΛW (−t)g−1, t ∈ R, g ∈ P↓+.

Indeed, since the action of P+ is transitive on the family W , it is enough to choose

ΛW1 and RW1 to determine the whole assignment. Moreover, setting P↑+(W ) :=

{g ∈ P↑+ : gW = W}, properties (a) and (b) imply that ΛW is in the center of

P↑+(W ), while RW commutes with P↑+(W ).

ΛW1 is chosen as the (rescaled) boosts preserving W1, namely

ΛW1 : R 3 t→ ΛW1(t) =



cosh(2πt) − sinh(2πt) 0 . . . 0

− sinh(2πt) cosh(2πt) 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


∈ L↑+ .

The element RW1 in P+ is the reflection w.r.t. the edge of the wedge W1, and is

given by

RW1(x0, x1, . . . , xd−1) = (−x0,−x1, x2, . . . , xd−1) .

Let us fix a unitary representation U of P+ on a Hilbert space H. With W ∈ W
a wedge, let HW be the self-adjoint generator of U(ΛW (t)) and define

∆W := exp(HW )

JW := U(RW ) .

Proposition 2.1. The following facts hold true:

(i) ∆W is a densely defined, closed, positive non-singular linear operator on H;

(ii) JW is an antiunitary operator on H and J2
W = 1;

(iii) JW∆WJ
−1
W = ∆−1

W .

Proof. (i) and (ii) are obvious. Concerning (iii), let us observe that RW commutes

with ΛW (t) which implies that JW∆it
WJ
−1
W = ∆it

W , but from the anti-unitarity of

JW we have that JWHWJ
−1
W = −HW , hence the thesis.
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These properties allow us to introduce and discuss the properties of the following

operator

SW := JW∆
1/2
W : H → H ,

indeed, denoting by R and D the range and the domain, we have:

Proposition 2.2. SW is a densely defined, antilinear, closed operator on H with

R(SW ) = D(SW ) and S2
W ⊂ 1.

Proof. Density and closedness follow from the corresponding property of ∆W

in Proposition 2.1(i), antilinearity from the antilinearity of JW . Now, R(SW ) ⊂
D(SW ) ≡ D(∆

1/2
W ), indeed by Proposition 2.1(iii) we have that JW∆

1/2
W x =

∆
−1/2
W JWx ∈ D(∆

1/2
W ). But we get immediately that S2

W = JW∆
1/2
W JW∆

1/2
W =

∆
−1/2
W ∆

1/2
W ⊂ 1 and therefore if x ∈ D(SW ) then x = SW (SWx) ∈ R(SW ), so we

can conclude.

Let us now define real subspaces of H associated with any W ∈ W, KW =

{h ∈ D(SW ) : SWh = h}. Recall that an R-linear subspace G in H is said to be

standard whenever the following holds:

G ∩ iG = {0} , (2.1)

G+ iG = H . (2.2)

Proposition 2.3. Each KW is an R-linear closed and standard subspace in H, SW
is the Tomita operator of KW , namely D(SW ) = KW+iKW and SW (h+ik) = h−ik,
h, k ∈ KW . In particular we have:

∆it
WKW = KW

JWKW = K′W ,

where K′W := {h ∈ H : Im(h, k) = 0 ∀ k ∈ KW } is the symplectic complement of

KW .

Proof. The R-linearity and subspace property of any KW is obvious. Note first

than any x ∈ D(SW ) can be written as x = h + ik where h respectively k have

the form

h =
x+ SWx

2
, k = i

−i(x− SWx)
2

.

By the preceding Proposition both terms belong to KW . Hence KW+iKW = D(SW )

which is dense, so (2.2) is fulfilled, and if x ∈ KW ∩ iKW then x = SWx and

ix = SW ix = −iSWx = −ix, therefore x ≡ 0, and (2.1) holds too.
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The graph norm on D(SW ) is, for x = h+ ik where h, k ∈ KW ,

‖h+ ik‖2SW = ‖h+ ik‖2 + ‖SW (h+ ik)‖2

= ‖h+ ik‖2 + ‖h− ik‖2

= 2(‖h‖2 + ‖k‖2) .

Therefore D(SW ) with the graph norm is KW ⊕ iKW , hence the closedness of KW
follows from that of SW .

Proposition 2.4. The representation U acts covariantly on the family {KW : W ∈
W}, namely,

U(g)KW = KgW , g ∈ P↑+ . (2.3)

Proof. From properties (a) and (b) it follows that

U(g)∆it
WU(g)∗ = ∆it

gW and U(g)JWU(g)∗ = JgW

which imply that

U(g)SWU(g)∗ = SgW ,

hence the thesis.

Note that Eq. (2.3) holds true also for g ∈ P↓+ due to Proposition 2.3 and the

following theorem.

Theorem 2.5. Let U be a (anti-) unitary representation of P+ and W 7→ KW the

above defined map. Then wedge duality holds, namely

KW ′ = K′W .

Moreover, the following are equivalent :

(i) The spaces KW are factors, namely KW ∩ K′W = {0}.
(ii) The representation U does not contain the trivial representation.

(iii) The net is irreducible, namely ⋂
W∈W

KW = {0} .

Proof. Observe that SK′ = S∗K = JK∆
−1/2
K . Since RW ′ = RW and ΛW ′(t) =

ΛW (−t), we get the first statement. Let us prove the equivalences.

(ii) ⇒ (i). We have KW ∩ KW ′ = KW ∩ K′W = {x : U(ΛW (t))x = x =

JWx, ∀ t ∈ R}. If such a space contains a non-zero x then the matrix coefficient

(x, U(g)x) does not vanish at infinity. By the vanishing of the matrix coefficient

theorem for semisimple Lie groups (cf. e.g. [46]) the representation must admit an

invariant vector.
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(i) ⇒ (iii). This follows directly by the first statement.

(iii) ⇒ (ii). Decompose U |P↑+ as U0 ⊕ I where I is the trivial representation

(with some multiplicity) and U0 does not contain the trivial representation. The

commutation relations between ∆it and J imply that any J decomposes accordingly,

namely has no anti-diagonal terms. Hence any space KW decomposes as KW =

K0
W ⊕ KIW . We have U I(ΛW (t)) = I, and, given two wedges W1,W2, J

I
W1
JIW2

=

U I(RW1RW2) = I, namely KIW is independent of W . Therefore⋂
W∈W

KW ⊃ 0⊕KI .

Irreducibility implies KI = 0, namely U = U0.

Remark 2.6. Let us note that the construction of the net KW requires a repre-

sentation of P+, or, equivalently, a representation of P↑+ and a PCT operator.

More precisely we need an anti-unitary involution J satisfying JU(g)J =

U(RgR), for some space-time reflection R. Such involution does not necessarily

exist in any representation. However, given a representation U of P↑+ on H, a re-

flection R and an anti-unitary involution C on H, we may set

Ũ(g) =

(
U(g) 0

0 CU(RgR)C

)
, g ∈ P↑+ , Ũ(R) =

(
0 C

C 0

)
.

Clearly Ũ gives rise to a (anti)-unitary representation of P+ on H⊕H.

Moreover, if U |P↑+ is irreducible, then the anti-unitary involution U(RW ) is

unique up to a phase, that does not depends on W by covariance. Hence the family

{KW } depends only on U |P↑+ up to unitary equivalence.

It is known (see e.g. [41]) that a PCT operator exists for an irreducible represen-

tation of P↑+ (on R4) if and only if the representation is induced by a self-conjugate

representation of the stabilizer of a point, which is always the case, except for the

finite non-zero helicity representations.

3. Inclusions of Real Subspaces and Wedges

Proposition 3.1. Let K1, K2 be standard subspaces of the Hilbert space H, and

assume that UK1 = K2, with U unitary on H. Then K2 ⊂ K1 iff ∆
1/2
1 U∗ ⊂

J1U
∗J1∆

1/2
1 .

Proof. The following equivalences hold:

K2 ⊂ K1 ⇔ S2 ⊂ S1

⇔ UJ1∆
1/2
1 U∗ ⊂ J1∆

1/2
1

⇔ ∆
1/2
1 U∗ ⊂ J1U

∗J1∆
1/2
1 .
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The following theorem is a one-particle analogue of results in [8, 43]. It is related

to the positive energy criterion in [4].

Theorem 3.2. Let K be a standard space in the Hilbert space H and U(a) = eiaH

a one-parameter group of unitaries on H satisfying

∆itU(a)∆−it = U(e∓2πta) (3.1)

JU(a)J = U(−a) , (3.2)

where J and ∆ are the modular conjugation and operator associated with K.

The following are equivalent :

(i) U(a)K ⊂ K for a ≥ 0;

(ii) ±H is positive.

Proof. By replacing K with K′ it suffices to prove the case H positive. The impli-

cation (i) ⇒ (ii) was proved in [43].

(ii) ⇒ (i). Let us observe that the spectrum of H is acted upon by the group

∆it and by J , with {0} and (0,∞) being the invariant subsets. The corresponding

eigenspaces are henceforth invariant under the action of ∆it and J , as a consequence

K is decomposed in a direct sum of respectively the H = 0 and the H > 0 parts.

Hence the thesis may be proven in the two cases separately. When H = 0 isotony

trivially holds.

In the following we assume that H > 0. By Proposition 3.1, together with

Eq. (3.2), we get

U(a)K ⊂ K ⇔ ∆1/2U(a)∗ ⊂ U(a)∆1/2 . (3.3)

Let K = logH (it exists since H > 0), and M the generator of ∆it/2π . It is easy

to see that eiµK and eiλM satisfy Weyl’s commutation relations, i.e.,

eiλMeiµK = eiλµeiµKeiλM .

According to von Neumann’s theorem every representation of the Weyl’s commuta-

tion relations is equivalent to a multiple of the Heisenberg representation. Then the

relation on the right hand side of (3.3) can be checked in just one representation.

Because of the equivalence (3.3), it is enough to verify the inclusion U(a)K ⊂ K,

a > 0, in one non-trivial representation.

An example is provided by the one-particle space of the conformal field theory

on the line corresponding to lowest weight representations of PSL(2,R). Taking K
as the standard space associated with the right half-line (0,∞), and U(t) as the

translations, the relations in the hypothesis are verified [10], and the mentioned

inclusion of subspaces hold by isotony.

Remark 3.3. Condition (3.2) is not needed for the implication (i) ⇒ (ii) in the

above theorem, see [13]. However the condition is necessary for the converse impli-

cation. Indeed, given J , ∆ and U as in the theorem, and assuming positivity of the
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generator of U(a), one may choose a unitary V which commutes with ∆, anticom-

mutes with J and does not commute with U(a), e.g. V = (∆ + i)(∆ − i)−1, and

then replace J with V J , the space K being redefined accordingly. Now property

(i) in the theorem above cannot hold, since, by the result of Borchers [8], it would

imply condition (3.2) for the new J , against the hypothesis.

Let us denote byH the cone in the Lie algebra of P↑+ consisting of the generators

of future-pointing light-like or time-like translations. As is known, a unitary repre-

sentation of P↑+ has positive energy if the corresponding self-adjoint generators are

positive. Given two wedges W0 ⊂W , we shall say that W0 is positively included in

W whenever W0 can be obtained by W via a suitable translation exp(a0h), a0 ≥ 0,

such that ±h ∈ H , where we denoted by exp the exponential map from the Lie

algebra to the Lie group, and

ΛW (t) exp(ah)ΛW (−t) = exp(e∓2πtah)

RW exp(ah)RW = exp(−ah)
a, t ∈ R .

The following is a well known geometric fact:

(c) Positive inclusion. Any inclusion of wedges is the composition of finitely

many positive inclusions.

Theorem 3.4. Let U be a (anti-)unitary representation of P+, W1 ⊂ W2 wedges.

Then KW1 ⊂ KW2 iff U is a positive energy representation.

Proof. Follows immediately from (c) and Theorem 3.2.

Since causally complete convex regions are intersections of wedges, the map

W → KW extends to causally complete, convex regions C via

KC =
⋂
W⊃C

KW , (3.4)

and to general causally complete regions via

KO =
∨
C⊂O
KC , (3.5)

where C are convex and causally complete. Let us observe that isotony for wedges

implies that (3.4) is consistent with the original definition of KW .

Denote by K the family of all convex causally complete regions. Let us point out

he following fact (see e.g. [40]):

(d) Wedge separation. For any space-like separated O1,O2 ∈ K there exists a

wedge W such that O1 ⊂W and O2 ⊂W ′.

Corollary 3.5. Let U be a positive energy representation of P+. Then the map

O → KO is a local Poincaré covariant net of real vector spaces, i.e., isotony holds
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and if O1 ⊂ O′2 then KO1 ⊂ K′O2
. If O is a convex causally complete region then

Haag duality holds, namely KO′ = K′O.

Proof. The first part of the statement holds by definition.

Let us fix O0 ∈ K. If O0 is a wedge, then duality has been proved in Theorem 2.5.

If O0 is not a wedge, then its space-like complement is not convex, hence, by (d),

we have the following chain of identities:

K′O′0 =

 ∨
O⊂O′0
O∈K

KO


′

=

 ∨
W ′⊂O′0
W∈W

KW ′


′

=
⋂

W ′⊂O′0
W∈W

K′W ′ =
⋂

W⊃O0
W∈W

KW = KO0 .

Therefore Haag duality holds.

Remark 3.6. (1) A net of von Neumann algebras may be obtained via second

quantization:

R(O) = {V (h) : h ∈ KO}′′

where V (h) are the Weyl unitaries on the Bosonic Fock space eH. Weyl unitaries

may be defined via

V (h)e0 = e−
1
4‖h‖

2

e
i√
2
h
, h ∈ H

V (h)V (k) = e−
i
2 Im(h,k)V (h+ k) , h, k ∈ H

where the coherent vectors eh are defined by eh =
⊕∞

n=0
h⊗n√
n!

. Coherent vectors

turn out to form a total set in eH (see e.g. [19, p. 32]), hence the V (h)’s are well

defined unitaries. The standard property of KO is equivalent to the Reeh–Schlieder

property for R(O) (cf. [1, 15, 33]).

(2) If U is the irreducible representation of mass m and spin s the map O →
R(O) gives the net of local observable algebras for the free field of mass m and

spin s. In fact, for these nets the one-particle version of the Bisognano–Wichmann

theorem holds, i.e.,

JW = U(RW )

∆it
W = U(ΛW (t))

where JW and ∆W are the Tomita operators of the real space KW of vectors

localized in W . This means that KW is effectively reconstructed in terms of the

representation U . Moreover, it was shown by Araki [2] that the map O → KO is an

isomorphism of complemented lattices

(∩,∪, space-like complement)
 (∩,∨, symplectic complement)
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if O is connected, causally complete, with piecewise C1 boundary. This shows that

KO is also reconstructed in terms of the representation U .

Three questions arise for the subspaces of the described net O → KO: the

standard property, the III1 factor property (see [3]), namely the fact that the cor-

responding second quantization algebra is a type III1 factor, and the intersection

property (for convex causally complete regions), namely

C =
⋂
i∈I

Wi ⇒ KC =
⋂
i∈I
KWi . (3.6)

When wedge regions are concerned, we proved the standard property, the intersec-

tion property and the factor property for irreducible nets. The III1 factor property

(for irreducible nets) and the other properties are proved for space like cones in

Sec. 4.

4. Intersections and Cyclicity

Proposition 4.1. Let Kj , j ∈ J , a family of standard subspaces of a Hilbert space

H, o a distinguished element of J . Then
⋂
j∈J Kj is standard if and only if the

space

{x ∈ H : x ∈ D(SjSo) & SjSox = x,∀ j ∈ J } (4.1)

is dense.

Proof. Since Ko is standard,
⋂
j∈J Kj is standard if and only if

⋂
j∈J Kj +

i
⋂
j∈J Kj is dense. We contend that the last subspace can be equivalently written

as the expression in (4.1).

Indeed, if x ∈ Kj for all j ∈ J , then Sjx = Sox = x for all j ∈ J . Since

range and domain of the S operators coincide, Sox belongs to the domain of Sj
and SjSox = x, j ∈ J . Hence x belongs to the space in (4.1). Such a space being

complex linear, it contains also i
⋂
j∈J Kj .

Conversely, if x ∈ D(SjSo) and SjSox = x ∀ j ∈ J , then, ∀ j ∈ J , x ∈ D(Sj),

hence it can be written as x = hj + ikj with hj , kj ∈ Kj , and Sox = Sjx.

Therefore we get Sox = Sjx = Sj(hj+ikj) = hj−ikj , hence 1
2 (x+Sox) = hj and

1
2i (x− Sox) = kj , namely hj and kj are independent of j and belong to

⋂
j∈J Kj .

Recalling the definition in Eq. (3.4), we get the following.

Proposition 4.2. Let U be a (anti-)unitary representation of P+ on the Hilbert

space H, C a convex, causally complete region, W a wedge containing C, and G(C) =

{g ∈ P↑+ : gW ⊃ C}. Then KC is standard iff, denoting by T (g) the operator

∆−1/2U(Rg−1R)∆1/2, g ∈ P↑+,

{x ∈ H : x ∈ D(T (g)) & T (g)x = U(g−1)x,∀ g ∈ G(C)} (4.2)
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is dense, where ∆ and R refer to the wedge W .

Also, given two subsets G1,G2 of P↑+,
⋂
G1
KgW =

⋂
G2
KgW iff

{x ∈ H : x ∈ D(T (g)) & T (g)x = U(g−1)x,∀ g ∈ G1}

= {x ∈ H : x ∈ D(T (g)) & T (g)x = U(g−1)x,∀ g ∈ G2} . (4.3)

Proof. Since the action of P↑+ is transitive on the wedges, the first statement

immediately follows by the previous proposition. The second statement follows by

the proof of the previous proposition.

Now we may tackle the main questions concerning convex, causally complete

regions in the Minkowski space in this approach, namely the standard property

(2.1), (2.2), the III1 factor property and intersection property (3.6).

Since local algebras (and local subspaces) are not defined in terms of local fields,

the classical Reeh–Schlieder argument does not apply. However, Proposition 4.2

shows that the standardness for a given region (or family of regions) is a property

of the representation U , hence group theoretic techniques may be applied.

Intersection property instead has to do with the definition in Theorem 3.4.

Though the local space of a given convex causally complete region C is defined as

the intersection of the spaces of all wedges containing it, just a few of them may be

enough to determine C. Would the corresponding intersection of local spaces give

rise to the same space? Again, because of the absence of local fields, the answer is

not trivial, and the group theoretic approach may do the job.

Lemma 4.3. Let U be a (anti-)unitary positive energy representation of P+ on the

Hilbert space H, C a convex, causally complete region. Assume that the representa-

tion U (restricted to P↑+) decomposes as
∫ ⊕

Uλdµ(λ). Then KUC is standard if and

only if KUλC is standard for µ-almost all λ.

Given Wj , j ∈ J , such that C =
⋂
j∈J Wj , then KUC =

⋂
j∈J KUWj

if and only if

KUλC =
⋂
j∈J K

Uλ
Wj

for µ-almost all λ.

Proof. By Proposition 4.2, both properties depend only on U |P↑+ . The thesis

follows by (4.2) and (4.3).

Theorem 4.4. Let U be a (anti-)unitary positive energy representation of P+ on

the Hilbert space H, C a spacelike cone. Then the standard property and the inter-

section property hold. If U does not contain the trivial representation, then the type

III1 factor property holds too.

Proof. Let us prove the standard property. Clearly we may assume that the vertex

of the space-like cone lies at the origin of the coordinates.

Lemma 4.3 shows that is enough to check the density of the space in (4.2) for all

the irreducible positive energy representations. Since this property is known for the
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positive mass representations and for the zero mass, finite helicity representations,

we only have to verify it for the so called continuous spin representations.

Let us now denote by F(C) the set of wedges containing C. Given a wedge in

F(C), we may consider the family of wedges parallel to the given one and still be-

longing to F(C). The intersection of all such wedges is clearly a wedge in F(C) whose

edge contains the vertex of C, namely the origin. Because of isotony (Theorem 3.4),⋂
W∈F(C)

KW =
⋂

W∈F0(C)
KW ,

where F0(C) denotes the subset consisting of wedges whose edge contains the origin.

Then, fixing a wedge W in F0(C) and setting G0(C) = {g ∈ P+ : gW ∈ F0(C)},
the complex span of the space

⋂
W∈F0(C)KW is given by

{x ∈ H : x ∈ D(T (g)) & T (g)x = U(g−1)x,∀ g ∈ G0(C)} , (4.4)

namely only the Lorentz subgroup is involved. Therefore the standard property has

only to be checked on the restriction to the Lorentz group of the given continuous

spin representation U . Theorem A.1 concludes the proof.

Let us now prove the intersection property. Again by isotony, we may re-

strict to the intersection of wedges whose edge contains the origin. If G1,G2 are

two subsets of L↑+ such that
⋂
g∈G1

gW =
⋂
g∈G2

gW = C, then the equality⋂
g∈G1

KgW =
⋂
g∈G2

KgW is equivalent to relation (4.3). Then the proof goes on as

for the previous case.

We finally prove the III1 factor property. It has been proved in [18] that if 1 is

in the spectrum of ∆, but not in the point spectrum, then the second quantization

algebra is a type III1 factor. Clearly the property 1 ∈ σ(∆)\σp(∆) is stable under

direct sums and quasi-equivalence. Then, by the proof of Theorem A.1, it is enough

to show this property for the finite spin representations. Indeed this shows the

property for the regular representation of L↑+, hence for the restriction to L↑+ of

the continuous spin representations of P↑+, since they are quasi-equivalent to the

regular representation.

Now we follow [17], where it is shown (Theorem 3.6) that ∆ can be written as

a functional calculus of a selfadjoint operator B via the function t+1
t−1 , showing in

particular that 1 6∈ σp(∆). Moreover, using the explicit formula for B, one concludes

that B is unbounded, hence 1 is in the spectrum of ∆.

Now we prove the standard property for light-like strips, namely for regions given

by W ∩ W ′ + a, where a is a lightlike vector parallel to W , namely such that

W + a ⊂ W . Such property is motivated by the proof of the spin and statistics

property for spacetimes with bifurcated Killing horizon given in [25 Sec. 4.2].

Theorem 4.5. Let W and a be as above and assume the spacetime dimension

is d 6= 2. For any positive energy (anti-)unitary representation of P+, KW∩W ′+a
is standard.
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Proof. Clearly any wedge containing L = W ∩W ′ + a either contains W or con-

tains W ′ + a. Then, by isotony (Theorem 3.4),⋂
W⊃L

KW = K ∩ KW ′+a .

Let us assume for the moment that U is the trivial representation. Then transla-

tions and boosts act trivially, namely KW ′+a = KW ′ = KW , since SW ′ = S∗W = SW .

Therefore we may assume that U does not contain the trivial representation, namely

U does not have invariant vectors. Since d 6= 2, the vanishing of the matrix

coefficient theorem applies (cf. e.g. [46, Proposition 2.3.5]), hence the spectrum

of the generator of any light-like translation is strictly positive, i.e. zero is not an

eigenvalue.

As explained before, the standard property is equivalent to the density of the

space

{x ∈ D(∆1/2U(τ((a))∆1/2) : U(τ((a))∆1/2U(τ((a))∆1/2x = x} , (4.5)

where τ(a) denotes the translation by a. This property clearly depends only on the

restriction of the representation of the Poincaré group to the subgroup P1 generated

by boosts and light-like translations with strictly positive generator (relative to the

wedge W ). As the logarithm of the generator of translations and the generator of

the boosts give rise to (and are determined by) a representation of the CCR in one

dimension, the strictly positive energy representations of P1 have a simple structure:

they are always a multiple of the unique irreducible representation. Therefore the

density of the space in (4.5) holds either always or never, and hence can be checked

in the irreducible case. But this is the case of the current algebra on the circle,

where cyclicity holds by conformal covariance.

Now we show that some form of the intersection property holds for double

cones too.

Let C be a diamond generated by a relatively open convex subregion Ω of some

space-like hyperplane G. For any ξ ∈ ∂Ω, let us consider the family F(ξ) of the

half-spaces in G tangent to Ω at ξ, namely the half-spaces containing Ω and whose

boundary contains ξ. Being parametrized by the normal vectors at ξ, they have a

linear structure, and clearly form a closed convex set. Let us denote by F∗(ξ) its

extreme points, and by F∗(Ω) the union
⋃
x∈∂ΩF∗(ξ). Clearly Ω =

⋂
h∈F∗(Ω) h. We

shall call F∗(Ω) the minimal family for Ω. Analogously, denoting withWh the wedge

generated by the space-like half-space h, we shall call F∗(C) = {Wh : h ∈ F∗(Ω)}
the minimal family for C. Clearly when C is the intersection of a finite number of

wedges Wi, the minimal family F∗(C) consists only of (some) Wi.

Theorem 4.6. Let C be a diamond generated by a relatively open convex subregion

Ω of some space-like hyperplane G, F∗(C) its minimal family. Then

KC =
⋂

W∈F∗(C)
KW .
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Proof. Let W be a wedge containing C. Then W ∩ G ⊃ Ω. Since W ∩ G is a cone

given by the intersection of (at most) two half spaces h1, h2 of G, then, by the

intersection property for space-like cones, one gets KW ⊃ KWh1
∩Wh2

⊃ KC and

KWh1
∩KWh2

= KWh1
∩Wh2

. Therefore

KC =
⋂

h∈F(Ω)

KWh
.

Then, again by the intersection property for space-like cones, for any point ξ ∈ ∂Ω,

we may replace
⋂
h∈F(ξ)KWh

with
⋂
h∈F∗(ξ)KWh

, since
⋂
h∈F(ξ)Wh is a spacelike

cone, and the proof is completed.

Theorem 4.7. The following pair of classes can be put in one-to-one correspon-

dence:

(i) Positive energy representations of P+.

(ii) Local nets of closed real vector spaces on K satisfying modular covariance,

namely ∆it
WKO = KΛW (t)O, and standard property for the space-like cones.

Proof. The map from (i) to (ii) has been illustrated above. The inverse map has

been constructed in [11], getting a representation of the universal covering of P↑+.

It has been shown in [22] that such representation is indeed a representation of P↑+,

and extends to a representation of P+.

Remark 4.8. Let U be a unitary representation of P↑+ on a Hilbert space H which

is finite direct sum of irreducible representations each with strictly positive mass. As

recently shown in [36], if F : W ∈ W → FW is a net of standard real subspaces of

H and U acts covariantly on F , namely U(g)FW = FgW , then FW is the standard

subspace associated with W and U .

5. Free Nets on Different Spacetimes

In this section we discuss various extensions of the previous construction to different

spacetimes. We begin with a general setting.

Let M be a globally hyperbolic spacetime, G a (Lie) group of transformations

acting on it (e.g. isometries, or conformal transformations), G+ the subgroup of

orientation preserving transformations, G↑ the subgroup of time-preserving trans-

formations, G↑+ their intersection.

Assume it is possible to choose a triple (W , R,Λ) where W is a family of open,

causally complete subregions, called wedges, stable under the action of G+, R :

W → RW is a map from W to time-reversing reflections in G+, Λ : W → ΛW is a

map fromW to one-parameter subgroups of G↑+ satisfying the following properties:

(a) Reflection covariance. For anyW ∈ W , RW mapsW ontoW , RW (W ) = W ′

and RgW = gRW g
−1, g ∈ G+.
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(b) Λ-covariance. For any W ∈ W , ΛW (t) mapsW ontoW , ΛW (t)(W ) = W and

ΛgW (t) = gΛW (t)g−1, t ∈ R, g ∈ G↑+, ΛgW (t) = gΛW (−t)g−1, t ∈ R, g ∈ G↓+.

Remark 5.1. Properties (a) and (b) imply that RW ′ = RW and ΛW ′(t) =

ΛW (−t). Moreover, if gW = W , then g commutes with ΛW and RW , namely

ΛW belongs to the center of the stabilizer G↑+(W ) = {g ∈ G↑+ : gW = W} and RW
commutes with G↑+(W ).

If G↑+ acts transitively on W , then the assignments W → ΛW , W → RW are

determined by the choice of a one parameter subgroup in the center of the stabilizer

of one wedge W0, and by the choice of a reflection commuting with G↑+(W0).

In many cases, e.g. Minkowski spacetime with Poincaré symmetry in dimension

d 6= 3, or Minkowski with conformal symmetry in any dimension, or de Sitter

spacetime in dimension d 6= 3, the center of G↑+(W ) is one-dimensional, hence ΛW
is fixed up to rescaling.

Given a (anti)-unitary representation U of G+, we can reproduce the analysis in

Sec. 2: Set ∆W = U(ΛW (−i)), JW = U(RW ) (the above normalization at t = −i is

conventional, as we could arbitrarily rescale ΛW . The positive energy condition, see

below, will fix the normalization). Clearly JW is a self-adjoint antiunitary, and ∆

is strictly positive. By (a) and (b), RW = RΛW (t)W = ΛW (t)RWΛW (−t), namely

RW and ΛW commute. Therefore JW∆WJW = ∆−1
W , and, setting SW = JW∆

1/2
W ,

we easily obtain that SW is closed, densely defined and satisfies S2
W ⊂ I.

Set KW = {ξ ∈ D(SW ) : SW ξ = ξ}. It turns out that KW is a standard space,

and that the representation U acts geometrically on the family: U(g)KW = KgW .

Moreover, essential duality holds: K′W = KW ′ .
Let B be the family of regions that are intersections of wedges, and set KB =⋂

W⊃B KW , B ∈ B. If we assume W to be a subbase for the topology of M , then

B forms a base, hence any open set O is a union of elements in B. Then we may

define KO =
∨
B⊂O KB. G-covariance follows as in Sec. 2.

Proposition 5.2. The following properties hold :

(i) {KW ,W ∈ W} is a covariant family of real subspaces, namely KgW = U(g)KW ,
g ∈ G+, moreover KW is standard and KW ′ = K′W .

(ii) {KB, B ∈ B} is a covariant net of real subspaces, namely B1 ⊂ B2 implies

KB1 ⊂ KB2 , and KgB = U(g)KB, g ∈ G+.

Remark 5.3. As in Remark 2.6, giving a representation of G+ is equivalent to

giving a representation of G↑+ together with some sort of PCT, namely an anti-

unitary involution J satisfying JU(g)J = U(RgR), for some reflection R.

Notice that the net B → KB, B ∈ B, is not necessarily local. Also, it is not

necessarily true that KB = KW if B = W , namely it may happen that
⋂
W⊃W0

KW
is strictly smaller than KW , since we did not prove wedge isotony. We need further

assumptions to solve these two problems.
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Let H be a convex cone in the Lie algebra of G, and let us denote by exp the

exponential map from the Lie algebra to G↑+. If W0 ⊂ W are wedges, we shall say

that W0 is positively included in W w.r.t. the cone H if there is a one parameter

subgroup exp(ah) of G↑+, depending onW0 and W , with exp(a0h)W = W0 for some

a0 ≥ 0, such that ±h ∈ H , and

ΛW (t) exp(ah)ΛW (−t) = exp(e∓2πtah)

RW exp(ah)RW = exp(−ah)
a, t ∈ R .

Let us assume the following:

(c) Positive inclusion. Any inclusion of wedges is the composition of finitely

many positive inclusions.

(d) Wedge separation. For any space-like separated O1,O2 ∈ B there exists a

wedge W such that O1 ⊂W and O2 ⊂W ′.

We shall say that a (anti)-unitary representation of G+ is positive if, whenever

h ∈ H , the self-adjoint generators in the representation space of the one-parameter

groups U(exp(ah)) are positive.

Theorem 5.4. Assume the triple (W , R,Λ) satisfies assumptions (a), (b), (c),

(d), and let U be a (anti)-unitary positive representation of G+. Then wedge isotony

holds, namely W1 ⊂W2 implies KW1 ⊂ KW2 , the net B → KB, B ∈ B, is local and

extends the net W → KW , W ∈ W. Moreover, for any B ∈ B such that B′ 6∈ B,
Haag duality holds :

K′B = KB′ .

If G↑+ is a simple Lie group with finite center and U does not contain the trivial

representation, the net is irreducible. If moreover the closure of {ΛW (t) : t ∈ R} in

G↑+ is not compact, the local space KW is a factor.

Proof. Wedge isotony follows by property (c), locality of B 7→ KB follows by

property (d). If B′0 6∈ B then KB′0 =
⋃
B⊂B′0

KB, hence Haag duality follows as in

Corollary 3.5. The assumption of non-compactness for the closure of Λ(t) allows us

to use the vanishing of the matrix coefficients theorem as in Theorem 2.5 to prove

the factoriality.

Let us observe that, if the positivity in the previous statement is a non-trivial

requirement, namely if there are wedges included one in another, then Λ and exp(ah)

give rise to a representation of the ax+ b group, namely the requirement that the

closure of {ΛW (t) : t ∈ R} in G↑+ is not compact is automatically satisfied. For

the same reason, also the assumption on the finiteness of the center is unnecessary

(cf. [23]).

Let us discuss a toy example satisfying the general scheme presented above,

where the last statement of the previous theorem does not apply. Let M = S2 ×
R, where S2 is the unit sphere in R3, with the induced Lorentzian metric, and



August 22, 2002 16:25 WSPC/148-RMP 00138

Modular Localization and Wigner Particles 777

G+ = SO(3)×RoZ2, where SO(3) acts on the sphere, R gives time-translations,

and the Z2 element implements the orientation preserving space-time reflection (PT

transformation). We also set W to be the family of diamonds with base a hemi-

sphere (at time t). Clearly the stabilizer G↑+(W ) is one-dimensional, and, since two

hemispheres included one in the other coincide, no positivity is needed. Therefore

the parametrization of the groups ΛW may be fixed arbitrarily. Also, the action

of G+ is transitive, hence we may fix a wedge W0 as the causal completion of

{(t, x, y, z) : x2 + y2 + z2 = 1, t = 0, z > 0} and assign

ΛW0(θ) =


1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1

 ,

RW0(t, x, y, z) = (−t, x, y,−z). In any faithful irreducible representation of G↑+, the

generator of ΛW0 has a one-dimensional kernel, therefore the corresponding space

KW0 is not a factor. More precisely it is a tensor product of a continuous abelian von

Neumann algebra and of a type I∞ factor (cf. [18]). However the net is irreducibile.

In such a generality, it is not possible to prove important properties, such as the

standard property, the intersection property, or the factor property, for elements of

B. We now discuss this structure in specific spacetimes.

5.1. Conformal group

In the following the conformal group on the Minkowski spacetime M of dimension

d ≥ 1 (with M = R if d = 1) is the group generated by the Poincaré group (“ax+b”

group if d = 1) and the relativistic ray inversion map. The conformal group is

isomorphic to PSO(d, 2). If d > 2, this is the group of local diffeomorphisms (defined

out of meager sets) which preserve the metric tensor up to non-vanishing functions;

its universal covering acts globally and transitively on the universal covering of the

Dirac–Weyl compactification of M . If d = 2, the Dirac–Weyl compactification is a

two-torus, and only the time-covering is considered, namely the conformal group

acts on the cylinder spacetime with non compact time curves. In the d = 1 case

the identity component of PSO(d, 2) is isomorphic to PSL(2,R) and we consider

its action on S1. For details see [10].

If d ≥ 2 a wedge is any conformal transformed of (the lift of) a wedge in the

Minkowski space, in particular Poincaré-wedges, double cones, future cones and

past cones give rise to conformal wedges. The maps R and Λ are here the lifts

of those defined on Minkowski spacetime. If d = 1 wedges are proper intervals,

the reflection associated with the upper semi-circle maps z ∈ S1 to its complex

conjugate z̄, and Λ is the (lift of the) one parameter subgroup of PSL(2,R) of

(Cayley transformed) dilations.

Then, we may consider (anti-)unitary representations of these groups, and check

that properties (a), (b) and (c) hold true, the cone H being generated by the Lie
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algebra generators of lightlike translations and their conjugates under the action of

the conformal group. In this case wedges form already a base for the topology, so

it is enough to consider the net on wedges. Hence assumption (d) is not needed.

An analogue of Theorem 5.4 holds true here.

Theorem 5.5. Let the spacetime be the universal covering of the compactified

Minkowski space Sd−1×R for d ≥ 2 and S1 if d = 1. Let U be a (anti-)unitary pos-

itive representation of the universal cover of PSO(d, 2) which does not contain the

trivial representation. Then,W 3W → KW is a local conformal net for which Haag

duality holds. The standard and the III1 factor properties are satisfied. Moreover,

the family is irreducible.

Proof. Haag duality, conformal covariance and standard property follow by

Proposition 5.2(i), wedge-isotony, factor property and irreducibility follow by

Theorem 5.4, and locality follows by wedge isotony and wedge-duality. III1 factor

property follows as in [23, Proposition 1.2].

The one-dimensional conformal case is extensively studied in [26] and we refer to

that paper for further details. We recall that all the nets corresponding to irreducible

representations of PSL(2,R) are subsystems (nth derivatives) of the same net on

R (the U(1) current algebra) which is their common dual net.

5.2. de Sitter spacetime

Since the d-dimensional de Sitter spacetime dSd may be defined as the hyperboloid

x2
0 + 1 =

∑d
i=1 x

2
i in Md+1, the wedges can be defined as the intersection of this

hyperboloid with the wedges in Md+1 whose edges contains the origin.

The natural symmetry group of dSd is the Lorentz group L+ = SO(d, 1), and

the maps R, Λ are assigned here as in the Minkowski spacetime. Then properties

(a), (b), and (d) immediately follow from the corresponding properties for the

Minkowski spacetime. Property (c) instead is trivially satisfied, since two wedges

W1 ⊂W2, whose edge contain the origin, coincide.

Intersections of wedges, namely elements of B, correspond to spacelike cones in

the Minkowski space, therefore the standard property and the intersection property

on the d-dimensional de Sitter spacetime can be studied applying the techniques

of the preceding section. But we can also rely on the direct analysis by Bros and

Moschella [9].

Let us recall that the irreducible representations of the group SO(d, 1), d ≥ 2,

belong to three classes, usually called principal series representations, complemen-

tary series representations, and discrete series representations (cf. e.g. [42, 38]). The

first class corresponds to representations appearing in the direct integral decompo-

sition of the regular representation, the second one to representations not appearing

in the direct integral decomposition of the regular representation. Concerning the

third class however, the name “discrete series” is not always appropriate, namely
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it is not always true that they are irreducible direct summands of the regular re-

presentation. Indeed, applying a result of Harish–Chandra, it turns out that this

fact is possible if and only if d is even (see [38]). The exact determination of the

direct-summand representations, namely the recognition of the discrete series as

opposed to the “mock discrete series” is well known for the two-covering SL(2,R)

of SO(2, 1) [32], implying that there are not mock discrete series representations

for SO(2, 1). This problem has been solved in [14] for d = 4 and in [39] for a general

d = 2m, m ≥ 2.

Theorem 5.6. Let {K(B) : B ∈ B} be the net of local real vector subspaces associ-

ated to a representation U of the Lorentz group SO(d, 1). If U is a subrepresentation

of the regular representation, then the standard property, the intersection property

and the factor property hold. If U is a representation in the principal or comple-

mentary series of the Lorentz group SO(d, 1), then the mentioned properties hold.

Proof. The restriction of a representation from the Poincaré group to the Lorentz

group gives a map from nets KM on the Minkowski space Md to nets KS on the

de Sitter space defined as KS(B) = KM (C(B)), where C(B) is the spacelike cone

in Md generated by the region B in Sd−1 and the origin. We may rephrase results

in the previous section saying that the standard property, the intersection property

and the factor property hold for regions B given as intersections of wedges in the

regular representation of the Lorentz group.

By Theorem A.1, cf. also Remark A.8, the properties hold for all subrepresenta-

tions. Since the regular representation decomposes as direct integral of the principal

series representations, the standard and the intersection properties hold for almost

all values of the parameter labeling the principal series.

However, we may use the analysis in [9], where it is shown that a class of free

fields may be constructed, corresponding to the principal, respectively complemen-

tary series of the representations of L↑+. In [9] the authors prove the Reeh–Schlieder

and Bisognano–Wichmann properties for the free fields corresponding to the prin-

cipal series, and state that these results extend to the complementary series. By

the Bisognano–Wichmann property, such free fields necessarily give rise to the nets

constructed as above for the corresponding representations. Therefore the standard

property follows by the Reeh–Schlieder property and the intersection property is

trivially satisfied since the local algebras are generated by local fields.

Thus, concerning the principal and complementary series, the standard and

intersection properties are consequence of the Reeh–Schlieder in [9]. Yet the above

proof goes beyond that, by showing the same properties to hold in the dSd models

associated with the discrete series, d even. Discrete series representations have been

explicitly excluded in the analysis in [9], and the result that such representations

give rise to (free) nets of local algebras on the de Sitter space-time seems to be not

known before our analysis. This will be discussed in detail in [27].
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Appendix A. Restricting the Poincaré Group Representations

to the Lorentz Subgroup

We give here an analysis of the representations of the Lorentz and Poincaré groups

needed in the paper. We treat explicitly the (3 + 1)-dimensional case, however the

analysis extends to any dimension, as explained in Remark A.8.

If G is a locally compact group, we shall denote by λG its left regular repre-

sentation. If H ⊂ G is a closed subgroup and π is a unitary representation of H ,

we shall denote by IndH↑G(π) the representation of G induced by π in the sense

of Frobenius, Wigner and Mackey; we shall refer to the books [46, 31, 34] for the

theory of induced representations.

Let us recall that the irreducible representations of P↑+ are induced represen-

tations Ind
F↑P↑+

(η), where F = F (p) is the stabilizer of some point p ∈ R4, P↑+
acting on the subgroup R4 by conjugation, and η is an irreducible representation

of F . We often identify R4 with its dual R̂4. When p varies in a given P↑+-orbit the

corresponding induced representations are equivalent, therefore they are labelled by

m = pµpµ. Whenm > 0 the stabilizer is isomorphic to SO(3)nR4, therefore positive

mass m representations are completely described by the spin s. When m = 0 and

we choose p0 > 0 (to have positive energy), the stabilizer is isomorphic to the Eu-

clidean group E(2). The representations which are trivial on the E(2)-translations

are the so-called finite-helicity representations, and are completely labelled by Z.

The others are called continuous-spin representations.

The other cases, namely p = 0 andm < 0, correspond respectively to null energy

(trivial translations) and non positive energy.

In the following we shall say that a property P for representations of a group

G is stable if “P is true for π” implies “P is true for all representations unitarily

equivalent to π” and

P is true for π ≡ π1 ⊕ π2 ⇔ P is true for π1 and π2 . (A.1)

Theorem A.1. Assume that P is a stable property for the representations of L↑+.

The following are equivalent :

(i) P is true for the restriction to L↑+ of the positive mass representations.

(ii) P is true for the restriction to L↑+ of the continuous spin representations.

(iii) P is true for the restriction to L↑+ of the massless finite helicity representations.

(iv) P is true for λL↑+
.

The proof of this theorem requires some steps.

Lemma A.2. Let π = IndF↑P↑+
(η) be an irreducible representation of P↑+ as above,

F = F (p0). Then

π|L↑+ = Ind
E↑L↑+

(η|E) ,

where E is the stabilizer, in L↑+, of p0.
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Proof. Let us denote by X the orbit of p0 under the adjoint action of P↑+ on the

subgroup R4, or equivalently the homogeneous space P+/F (p0), and let ν be the

P↑+-invariant measure on X . If η is a representation of F acting on the Hilbert space

Hη of η, π can be defined as

(π(g)ξ)(p) = η(α(g, p))ξ(g−1p) ,

where g ∈ P↑+, p ∈ X , ξ ∈ L2(X,Hη, dν), and α is an F -valued cocycle of the

form α(g, p) = s(p)−1gs(g−1p), where s is a Borel section, namely a Borel map

s : X → P↑+ satisfying s(p)p0 = p.

By definition, R4 acts trivially on itself, hence F = E n R4 with R4 acting

trivially on X , therefore we may choose s to be a L↑+-valued section. As a conse-

quence, α : L↑+ ×X is E-valued, namely the restriction to L↑+ of π is by definition

the representation induced by η|E .

If ρ and σ are representations, we shall write ρ = σ if ρ is unitary equivalent

to σ and ρ ≈ σ if ρ is quasi equivalent to σ, namely ρ ⊗ ι = σ ⊗ ι, where ι is the

identity representation on `2(N).

Lemma A.3. Let H be a locally compact group isomorphic to the Euclidean group

E(2). If π is an irreducible unitary representation of H and π has non-trivial re-

striction to the subgroup R2, then π = πq ≡ IndR2↑H(q) where q 6= 0 is a character

q ∈ R̂2.

We have λH =
∫ ⊕
R̂2 πqdq.

Proof. E(2) is the semidirect product E(2) = R2 o T, where T acts on the plane

R2 by rotations. The action of E(2) on R̂2 by dual conjugation factors through the

action of T and is smooth. The stabilizer Hq of a point q ∈ R̂2 is E(2) (iff q = 0) or

Hq = R2. By Mackey’s theorem every irreducible representation π of H is induced

from an irreducible representation ρ of Hq with ρ|R2 = dim(ρ)q.

Thus either q = 0 and π acts trivially on R2, or q 6= 0 and π = πq.

The rest is now clear by induction at stages because

λH = Ind
R2↑H

(λR2) = Ind
R2↑H

(∫ ⊕
R̂2

qdq

)
=

∫ ⊕
R̂2

Ind
R2↑H

(q)dq =

∫ ⊕
R̂2

πqdq .

Proposition A.4. Let G be a locally compact group and H ⊂ G a closed subgroup

isomorphic to the Euclidean group E(2). Then

λG =

∫ ⊕
R̂2

Ind
H↑G

(πq)dq .

Proof. Immediate by the Lemma A.3 because

λG = Ind
H↑G

(λH) = Ind
H↑G

(∫ ⊕
R̂2

πqdq

)
=

∫ ⊕
R̂2

Ind
H↑G

(πq)dq .
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We shall denote by πm,s the irreducible representation of massm > 0 and spin s ∈ N
of the Poincaré group P↑+ and by π

L↑+
m,s its restriction to the Lorentz subgroup L↑+.

By definition, the continuous spin representations σq of P↑+ are the ones induced

by the representations πq of H = E(2)nR4 in Lemma A.3, where H is the stabilizer

in P↑+ of a point p with 〈p, p〉 = 0, p0 > 0. We shall denote by σ
L↑+
q the restriction

of σq to L↑+. By Lemma A.2 we have σ
L↑+
q = IndR2↑L↑+

(q).

Lemma A.5. λL↑+
=
∫ ⊕
R̂2 σ

L↑+
q dq.

Proof. Immediate by Lemmas A.2, A.3 and Proposition A.4.

Lemma A.6. For any given m > 0 we have

λL↑+
≈
⊕
s∈N

π
L↑+
m,s .

Proof. Denote by ρs the representation of SO(3) of spin s. By Lemma A.2, π
L↑+
m,s ≈

IndSO(3)↑L↑+
(ρs), in particular π

L↑+
m,s is independent of m > 0.

We have ⊕
s∈N

π
L↑+
m,s =

⊕
s∈N

Ind
SO(3)↑L↑+

(ρs) = Ind
SO(3)↑L↑+

(⊕
s∈N

ρs

)

≈ Ind
SO(3)↑L↑+

(λSO(3)) ≈ λL↑+ .

The following lemma is a particular case of the subgroup theorem of Mackey

(cf. e.g. [34, Chap. II, Theorem 1]) when the subgroup G2 coincides with the group

G. We give a proof here for the convenience of the reader.

Lemma A.7. Let H be a closed subgroup of G, η a representation of H and g0 an

element of G normalizing H. Then

Ind
H↑G

(η) = Ind
H↑G

(ηg0) ,

where ηg0(h) ≡ η(g−1
0 hg0), h ∈ H.

Proof. Let us denote by X the homogeneous space G/H , and let ν be a G-quasi-

invariant measure on X , that for simplicity we assume to be invariant. Setting

π = IndH↑G(η), namely

(π(g)ξ)(p) = η(α(g, p))ξ(g−1p) ,
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where g ∈ G, p ∈ X , ξ ∈ L2(X,Hη, dν), and α is an H-valued cocycle α(g, p) =

s(p)−1gs(g−1p), with s : X → G a Borel section satisfying s(p)p0 = p.

Hence πg0 is given by

(πg0(g)ξ)(p) = η(g−1
0 α(g, p)g0)ξ(g

−1p) = η(g−1
0 s(p)−1gs(g−1p)g0)ξ(g

−1p)

= η(αg0 (g, p))ξ(g−1p) , (A.2)

where the cocycle αg0(g, p) = g−1
0 s(p)−1gs(g−1p)g0 = sg0(p)−1gsg0(g−1p) is

associated with the map sg0(p) = s(p)g0. Clearly sg0 : X → G is a Borel sec-

tion for the different quotient map g → gg−1
0 p0. As the stabilizer of p0 coincides

with the stabilizer of g−1
0 p0, the statement follows by the uniqueness of the induced

representation.

Proof (of Theorem A.1). (i) ⇔ (iv): By Lemma A.6, property P holds for the

representations π
L↑+
m,s iff it holds for the regular representation, by stability.

(ii) ⇔ (iv): If p 6= 0 has zero mass, the stabilizer E(p) in L↑+ does not change

replacing p with λp, λ > 0. Therefore all elements in L↑+ moving p to some of its

multiples normalizes the stabilizer of p. For such a g,

πq(g
−1hg) = πgq(h) , h ∈ E(p) .

Note that every p-orbit in R̂2 (except {0}) can be reached by some g with the

property g : p 7→ λp. Therefore the σ
L↑+
q ’s are all equivalent, by Lemma A.7. Then,

by Lemma A.5, σ
L↑+
q is a subrepresentation of the regular representation, hence

property P holds by stability. The converse is also true by stability.

(iii)⇔ (iv): The argument is again similar to the above ones. Let χn ∈ T̂, n ∈ Z
be the characters of T. The finite helicity representations are the representations

of the Poincaré group induced by the representations αn ≡ IndT↑E(2)(χn) of E(2).

Their restrictions to L↑+ are IndE(2)↑L↑+
(αn). Then, by induction at stages,

⊕
n

Ind
E(2)↑L↑+

(αn) =
⊕
n

Ind
T↑L↑+

(χn) = Ind
T↑L↑+

(⊕
n

χn

)
= Ind
T↑L↑+

(λT) = λL↑+
,

and the statement follows by stability.

Remark A.8. Although the proof of Theorem A.1 has been written for the 4-

dimensional case, it extends to the case of the Poincaré group P↑+(d) acting on the

d-dimensional Minkowski space, d ≥ 2. Indeed the continuous spin representations

are present only when d ≥ 4, therefore the property (ii) is void for dimension ≤ 3.

When d ≥ 4, the stabilizer of a light-like point is the Euclidean group E(d − 2),

whose irreducible representations are parametrized by vectors in Rd−2 (and vectors

with the same length give equivalent representations). This can be found e.g. in
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[42], or proved by induction where the first step is given by Lemma A.3 and the

induction step follows by the Mackey theorem [46, Theorem 7.3.1]. Therefore all

the above analysis applies.
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[14] J. Dixmier, Représentations intégrables du groupe de De Sitter, Bull. Soc. Math.
France 89 (1961) 9–41.

[15] J. P. Eckmann and K. Osterwalder, An application of Tomita’s theory of modular
Hilbert algebras: Duality for free Bose fields, J. Funct. Anal. 13 (1973) 1–22.

[16] L. Fassarella and B. Schroer, Wigner particle theory and local quantum physics,
hep-th/0112168.

[17] F. Figliolini and D. Guido, The Tomita operator for the free scalar field, Ann. Inst.
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