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Modular Neural Networks for Low-Power Image

Classification on Embedded Devices

ABHINAV GOEL, SARA AGHAJANZADEH, and CALEB TUNG, Purdue University
SHUO-HAN CHEN, National Taipei University of Technology

GEORGE K. THIRUVATHUKAL, Loyola University Chicago

YUNG-HSIANG LU, Purdue University

Embedded devices are generally small, battery-powered computers with limited hardware resources. It is

di�cult to run deep neural networks (DNNs) on these devices, because DNNs perform millions of operations

and consume signi�cant amounts of energy. Prior research has shown that a considerable number of a DNN’s

memory accesses and computation are redundant when performing tasks like image classi�cation. To reduce

this redundancy and thereby reduce the energy consumption of DNNs, we introduce the Modular Neural

Network Tree architecture. Instead of using one large DNN for the classi�er, this architecture uses multiple

smaller DNNs (called modules) to progressively classify images into groups of categories based on a novel

visual similarity metric. Once a group of categories is selected by a module, another module then continues

to distinguish among the similar categories within the selected group. This process is repeated over multiple

modules until we are left with a single category. The computation needed to distinguish dissimilar groups

is avoided, thus reducing redundant operations, memory accesses, and energy. Experimental results using

several image datasets reveal the e�ectiveness of our proposed solution to reduce memory requirements by

50% to 99%, inference time by 55% to 95%, energy consumption by 52% to 94%, and the number of operations

by 15% to 99% when compared with existing DNN architectures, running on two di�erent embedded systems:

Raspberry Pi 3 and Raspberry Pi Zero.

CCS Concepts: •Computingmethodologies→Neural networks; Computer vision; •Computer systems

organization → Embedded systems; • Hardware → Power and energy;
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1 INTRODUCTION

Cameras are widely deployed in many embedded systems (called Internet of Video Things [1]),

and there is a need to improve the e�ciency of computer vision running on embedded devices

with limited hardware resources [2–6]. This article analyzes and tackles the problems associated

with performing image classi�cation on embedded devices. Image classi�cation is a supervised

learning problem: assigning a single label from a set of categories (objects to identify in images)

to every input image, such as a dog or a car. Recent advances in deep neural networks (DNNs)

trained on millions of images have achieved high accuracy for image classi�cation [7]. However,

most DNNs are designed for scenarios where computational resources are abundant [8]. They are

not suitable for devices where energy e�ciency is critical, such as drones and wearable devices

[2, 9–12].

Most DNNs, like VGG [13] and ResNet [7], have monolithic architectures as seen in Figure 1.

Such an architecture is a single DNN responsible for identifying and processing all features asso-

ciated with all categories to make decisions. The DNN has to perform many di�erent tasks that

require a large number of neurons and layers. However, when processing each image, only a small

number of these neurons have signi�cant activations [14], thus leading to redundancies. These

redundancies increase the energy consumption of the DNN signi�cantly. We propose the Modu-

lar Neural Network Tree (MNN-Tree) architecture as a method to reduce these redundancies and

perform image classi�cation on embedded devices.

The proposed method �rst �nds the visual similarity between di�erent categories using a novel

similarity metric. Similar categories are grouped into entities called super-groups. Similar super-

groups are then grouped into larger super-groups, creating a hierarchy in the form of a tree. The

MNN-Tree architecture uses several small DNNs, called modules, responsible for classifying be-

tween di�erent super-groups. For an input image, once a module selects a super-group, another

module further classi�es among the children of the super-group. The modules associated with

other super-groups are not used during the inference of that image. By doing so, only a small

subset of the modules are used during inference, thus avoiding redundant operations. Figure 2

illustrates the MNN-Tree architecture, where the categories are dog, cat, car, and truck. Dog and

cat form a super-group, called animals. Car and truck are grouped into another super-group for

vehicles.

We propose a novel method to measure the visual similarity between categories of a dataset,

called the averaged softmax likelihood (ASL). The similarity metric computes the output (softmax)

of a DNN for a category X , averaged over all input images belonging to another category Y . The

DNN’s softmax output is used to quantify the confusion between categories. A high softmax output

for categoryX (when inputs are from categoryY ) indicates that the DNN frequently gets confused

between the two visually similar categories. ASL groups all categories that are visually similar into

a single super-group automatically, whereas existing hierarchical clustering techniques are lim-

ited to grouping a �xed number of categories at each level. Our experiments show that ASL can

be used to build hierarchies with the MNN-Tree architecture for lower energy consumption and

faster image classi�cation. We show that MNN-Tree built using ASL achieves 4.2% to 17.2% higher

accuracy than existing hierarchical image classi�ers. The proposed MNN-Tree is also evaluated

against monolithic DNN architectures such as VGG, ResNet, and DenseNet on di�erent embed-

ded devices. Experimental results show that the MNN-Tree architecture has a 50% to 99% smaller

DNN model size, 52% to 94% lower energy consumption, 55% to 95% lower inference time, and

15% to 99% fewer operations when compared with existing monolithic DNN architectures on a

Raspberry Pi 3 and a Raspberry Pi Zero. Furthermore, by testing the MNN-Tree on the Extended

MNIST (EMNIST), SVHN, CIFAR-10, CIFAR-100, and ImageNet datasets, we see a negligible loss to

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.



Modular Neural Networks for Low-Power Image Classification on Embedded Devices 1:3

Fig. 1. Convolutional DNN. A single monolithic architecture classifies images into their corresponding
categories.

Fig. 2. The proposed solution (MNN-Tree architecture). The input image is processed incrementally using
small DNNs. A�er detecting the type of images, finer classifications are made. If an animal is detected in the
image, only the DNN for classifying cats and dogs is used. The computation for distinguishing trucks and
cars is avoided.

the classi�cation accuracy when compared with the state-of-the-art monolithic DNNs. This work

makes the following contributions:

(1) The article proposes amethod for constructing theMNN-Tree by grouping visually similar

categories automatically. The method works consistently for di�erent image datasets.

(2) We propose a novel visual similarity metric to �nd and group similar categories. This

metric can build super-groups of di�erent sizes in an MNN-Tree. This is an improvement

on clustering techniques that are limited to grouping a �xed number of categories at each

level of the hierarchy (e.g., the hierarchical K-means clustering algorithm).

(3) TheMNN-Tree reduces redundant computation andmemory accesses, thus saving energy

when compared with existing monolithic DNN architectures.

(4) Our experiments demonstrate that the proposed architecture consistently outperforms

other hierarchical architectures in terms of accuracy on popular image datasets. We also

provide a detailed explanation of why existing solutions do not perform well.

(5) We implement the proposed method on two popular embedded devices and show consis-

tent improvements in terms of lower energy consumption and shorter inference time.

The rest of the article is organized as follows. Section 2 provides background on DNNs (Sec-

tion 2.1) and discusses the current techniques used to perform low-power computer vision (Sec-

tion 2.2) and hierarchical image classi�cation (Section 2.3). Section 3 presents the MNN-Tree archi-

tecture in greater detail. The motivation behind using the MNN-Tree is explained in Section 3.1.

Section 3.2 describes the proposed similarity metric for �nding visually similar categories. Sec-

tion 3.3 describes the algorithm used for building the MNN-Tree. Section 3.4 explains the method

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.
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Table 1. Comparison of Di�erent Techniques on the CIFAR-10 Dataset

Method
Decision Naive Bayes’ K-Nearest Random DNNs

Tree Classi�er Neighbors Forests ResNet CondenseNet

Test Accuracy 0.272 0.290 0.417 0.491 0.931 0.966

Note: It can be seen that DNNs outperform the other techniques signi�cantly in accuracy.

used to train each module. Section 3.5 describes how image classi�cation is performed with the

proposed technique. Section 4 presents the experimental results. Section 4.1 and Section 4.2 focus

on dataset con�gurations and the experimental setup, respectively. Section 4.3 compares MNN-

Tree with the existing monolithic DNNs, and Section 4.4 compares MNN-Tree with hierarchical

image classi�ers. Section 4.5 describes experiments on di�erent embedded devices. Section 4.6

puts forward potential extensions of the proposed method. Section 5 concludes the article. The

examples, source code, and DNN models are available on GitHub [15].

2 BACKGROUND AND RELATEDWORK

This section provides a background on DNNs and discusses the existing methods for low-power

and hierarchical computer vision. For clarity, we divide this section into three subsections. A short

introduction to DNNs and a comparison with other image classi�cation techniques is provided in

Section 2.1. Section 2.2 describes di�erent techniques to reduce the computation associated with

monolithic DNNs. Section 2.3 explains related work with hierarchical image classi�cation.

2.1 Deep Neural Networks

DNNs are a class ofmachine learning algorithms that can achieve high accuracy onmany computer

vision tasks [16, 17]. DNNs use the back-propagation algorithm to train parameters and require

large amounts of training data to achieve high accuracy. DNNs generally contain several layers

(convolution (conv) and fully connected (FC)). The output of each layer is called an activation

map or a feature map. These feature maps are �ltered versions of the input image. They highlight

speci�c attributes of the image such as shapes, textures, and colors. Each layer performs matrix

multiplications between the previous layer’s feature map and the DNN parameters to create more

complex feature maps. Because of the large number of feature maps constructed for each image,

DNNs are generally computationally expensive and require high-performance computers for low

latency. Consequently, embedded deviceswith limited resources are not ideal for performing image

classi�cation [2].

Decision trees [18], clustering algorithms [19], and Naive Bayes’ classi�ers [20] have signi�-

cantly lower computational requirements when compared with DNNs [21]. However, our experi-

mental results show that the accuracy obtainedwith these approaches is poorwhen comparedwith

the accuracy obtained by DNNs, as reported in Table 1. The Decision Tree and Naive Bayes’ clas-

si�ers obtain 27.2% and 29.0% accuracy, respectively. The low accuracy is due to over�tting, as the

trained models do not generalize well to the testing set. K-Nearest Neighbors obtains 41.7% accu-

racy withK = 30 (K refers to the number of neighbors used in the algorithm), and Random Forests

obtains 49.1% accuracy when using 512 trees. DNNs such as ResNet [7] and CondenseNet [22] ob-

tain greater than 93% accuracy on the same dataset. This vast di�erence in accuracy is attributed to

the depth of DNNs. As a result, the rest of this article focuses on reducing the energy consumption

associated with running DNNs on embedded devices.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.
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2.2 Low-Power DNNs

Bianco et al. [23] use accuracy density to measure the tradeo� between DNN accuracy and com-

putational cost. Using this metric, the low-power DNN techniques can be broken into four major

directions [24].

2.2.1 Parameter Pruning and�antization. To reduce the energy consumption in DNNs, recent

research has looked into the tradeo� between accuracy and the number of memory accesses. Bina-

rized neural networks [25] constrain the parameters to either +1 or –1; each parameter is a single

bit. Some techniques approximate or quantize DNN parameters to reduce the required amounts of

memory [2, 26–28]. Jiang et al. [29] use approximate computing and parallel processing for lower

DNN energy consumption.

2.2.2 Bo�leneck Filters. Bottleneck �lters replace large convolutional �lters with compact

blocks of small �lters to improve the inference speeds. SqueezeNet [30] and MobileNet [31] are

micro-architectures that use bottleneck layers to reduce the number of parameters. Similarly,

Szegedy et al. [32] use two 1 × 1 �lters to approximate 3 × 3 �lters in large DNNs.

2.2.3 Low-Rank Factorization. Sironi et al. [33], Denton et al. [34], and Jaderberd et al. [35] use

tensor decompositions to estimate the informative parameters to obtain lower memory require-

ments. Zhong et al. [36] and Li et al. [37] use reduced matrix representations with hardware and

software accelerators for low-latency applications. Low-rank factorizations are di�cult to imple-

ment as they involve decomposition operations that are computationally expensive on low-power

devices [38].

2.2.4 Knowledge Distillation. Knowledge distillation techniques build smaller DNNs with the

information from a larger DNN using a student-teacher training paradigm [39]. Ba et al. [40] com-

press a large DNN by training each layer of a small DNN to mimic the activations of the large

DNN.

All of the techniques reduce the memory requirements, but they are still monolithic architec-

tures with redundancies (i.e., using a single DNN to classify all categories at once). In contrast, this

work proposes a hierarchy of several small DNNs to eliminate redundancies for image classi�ca-

tion.

2.3 Hierarchical Image Classifiers

This section describes the approaches for hierarchical image classi�cation. There are four major

techniques to quantify the similarity between categories for building hierarchies for computer

vision. Some of the techniques are summarized in Table 2. However, they fail to achieve high

classi�cation accuracy or high inference speed. To understand the reasons, we conduct several

experiments in Section 4.4.

2.3.1 Distances Between Feature Vectors. Guérin et al. [41] use DNNs to extract features from

image categories. Furthermore, Euclidean distances between the centroids of feature vectors of

di�erent categories can be used to �nd the similarity between categories [42]. Some techniques

attempt to �nd similarities between images by using DNNs to learn a hash function that links the

pairwise Hamming distances with the pairwise similarity [43, 44]. In the aforementioned tech-

niques, two categories are merged into a super-group—for instance, they share a parent node in

the tree if the distance (Euclidean or Hamming) between categories is smaller than a threshold.

However, our experiments discover that �nding the correct threshold for each level of the hier-

archy and each dataset requires a signi�cant amount of trial and error. An incorrect threshold

can lead to imbalanced trees that are either too wide or too tall. Thus, using a threshold on the

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.
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Table 2. Di�erent Techniques to Build Hierarchies for Image Classification

Techniques Description and De�ciencies

Distances between
feature vectors [41,

42]

Use the distances between the centroids of feature vectors to �nd similarity. All
groups of categories lying within a radius of each other are grouped. Di�cult to
determine the optimal radius.

Hierarchical
clustering [45–49]

Use the distances between the centroids of feature vectors to �nd similarity. The
k closest categories are grouped at every stage. Fixing the value k produces poor
accuracy and degenerated hierarchies.

HSV and Gabor
features [50]

Use texture and color information from categories to �nd similarities. All
categories sharing the same color template or textures are grouped. Images in
the same category may have di�erent colors and textures.

Semantic similarity
[51–54]

Use semantic information from sources like WordNet to quantify the similarity.
Categories that share more semantic details are grouped together. Semantic and
visual similarities often do not correlate.

MNN-Tree
(proposed method)

Use DNN’s softmax output for a category, averaged over all input images
belonging to other categories to �nd similarity. The softmax output is an
indication of the confusion between categories. Categories that are frequently
confused are grouped together.

distances between feature vectors is not ideal to build balanced hierarchical classi�ers. Instead,

this article presents a method for building the hierarchy without the need for �nding the thresh-

old through trial and error.

2.3.2 Clustering Techniques. Some methods build trees of classi�ers using di�erent clustering

techniques [45–47]. They �rst �nd the distances between the centroids of categories and then

group two or more closest categories into a single super-group [57]. There is no requirement for

a threshold. The number of categories in each super-group must be �xed before clustering. Some

techniques use support vector machines [48, 49] at each node of the hierarchy to obtain high in-

ference speeds. However, as clustering techniques group a �xed number of categories into a single

super-group, they do not obtain high accuracy. This is because it is not always possible to separate

visually similar categories into �xed-sized super-groups, especially higher up in the tree [50]. Our

experiments show that clustering techniques usually result in degenerated hierarchies because a

single centroid is not enough to represent a very large cluster of many categories. Degenerated

trees are usually tall and require many classi�ers to make a decision, leading to a lower inference

speed and higher energy consumption. In contrast, this work uses ASL because it does not re-

quire centroids of feature vectors to �nd the similarity between categories and thus can be used

to build more balanced hierarchies. Moreover, the proposed method can build hierarchies with

di�erent-sized super-groups.

2.3.3 Gabor and HSV Transformation Techniques. A 2D Gabor �lter [58] is a Gaussian function

modulated by a sinusoidal plane wave and is used for texture analysis. These �lters can identify

frequency content in speci�c orientations or directions. To capture all of the textures, usually

several Gabor �lters with di�erent frequencies and orientations are used. HSV (Hue-Saturation-

Value) [59] is a linear color transformation on the RGB (Red-Green-Blue) color space to get feature

vectors corresponding to di�erent color components. Panda et al. [50] propose a method that uses

Gabor and HSV transformations to identify common textures and colors to group categories that

share similar textures and colors. However, all objects belonging to the same category may not

always have the same textures or colors, as shown in Section 4.4. This work builds hierarchies that

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.
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more closely account for visual similarities to obtain signi�cantly higher accuracy in classi�cation

without using textures and colors.

2.3.4 Semantic Similarities. Some techniques [51–54] generate hierarchies using semantic sim-

ilarity between categories or use pre-de�ned semantic hierarchies like WordNet [61]. WordNet is

a large lexical database of the English language where nouns, verbs, adjectives, and adverbs are

linked to one another using conceptual-semantic and lexical relations. Some techniques [62–64]

use semantic information to build hash functions to quantify the similarity between di�erent im-

ages. However, semantic similarities do not always correspond to visual similarities—for example,

airplanes and birds are commonly seen in the sky (visually similar) but are semantically distant.

Using semantic similarities can lead to misclassi�cations and poor accuracy in image classi�cation.

In contrast, this work uses visual similarity, not semantic similarity, to build the hierarchy.

2.3.5 Other Hierarchical Techniques for Computer Vision. Wang et al. [65] treat the building of

a hierarchy as a bin-packing problem to minimize the number of nodes in the tree. This is done to

obtain high accuracy, at the expense of increased computational requirements (2× of a monolithic

DNN). Tree-CNN [66] is an incremental learning technique to train DNNs on previously unseen

categories without the requirement of extensive retraining. Our method may also be used to take

advantage of incremental learning as suggested in Tree-CNN [66], but this study does not consider

that. Given a hierarchy of linear classi�ers, Sun et at. [67] use a branch-and-bound algorithm to

improve the accuracy of tree-based methods. This is achieved by traversing down multiple paths

of the hierarchy simultaneously. These methods do not concentrate on reducing redundancies or

the energy consumption of DNNs.

3 MODULAR NEURAL NETWORK-TREE

This section �rst explains the motivation behind using the MNN-Tree and describes the challenges

associated with this technique. The proposed metric for quantifying the similarities between dif-

ferent categories of a dataset is described in Section 3.2. Then, Section 3.3 explains the algorithm

that uses the similarity metric to build the MNN-Tree. The method to train the modules is ex-

plained in Section 3.4. Finally, Section 3.5 describes how image classi�cation is performed with

the MNN-Tree.

3.1 Motivation for the MNN-Tree

DNNs use many neurons in multiple layers to model complex features associated with di�erent

categories. When performing inference on a single image, only a small fraction of the neurons

have signi�cant activations (contribute meaningfully to the output). This leads to redundancies in

both conv layers and FC layers [14, 68]. By reducing these redundancies, the MNN-Tree makes the

DNN smaller and faster while maintaining classi�cation accuracy.

We propose the MNN-Tree architecture to reduce the redundant operations by using only a sub-

set of the neurons in the DNN. The MNN-Tree architecture consists of several small DNNs (called

modules) responsible for classifying between groups of similar categories, called super-groups. The

number and the sizes of the super-groups are not �xed and are selected dynamically based on the

training data. The MNN-Tree architecture is depicted in Figure 3. The input image is processed by

the root module �rst (analogous to the root of a tree) and is classi�ed into one of several super-

groups (dotted lines in Figure 3). The image is then processed by the module associated with the

chosen super-group. This process continues until one of the leaves of the MNN-Tree is reached.

The leaf modules contain the original categories of the dataset. It is ensured that, during inference,

each image takes a single path from the root to one of the leaves. The unused modules that are not

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.



1:8 A. Goel et al.

Fig. 3. The image is first processed by the root module. The FC layer of a parent module classifies between
its children (do�ed lines). The solid lines show how the output of the conv layer (i.e., the feature map)
of a parent module is used as input to its child module. This process is repeated along a path from the
root to a leaf module. The leaf modules may have di�erent distances from the root (i.e., the tree is not
necessarily balanced). In addition, di�erent parents may have di�erent numbers of child modules (i.e., this
is not necessarily a binary tree).

on the path from the root to the leaf are never loaded into memory. This reduces the memory and

computation requirements, as well as energy consumption.

It should be noted that the output of the conv layers (feature map) from the parent module is

the input to its child modules (solid line in Figure 3). This ensures that the operations already per-

formed by the parent are not repeated in the child module, to further reduce redundancies. There-

fore, by reusing the feature maps, the MNN-Tree acts like a DNN with a large number of layers

(broken into small modules), with fewer redundant operations and high classi�cation accuracy.

This is one of the advantages of the MNN-Tree architecture when compared with Tree-CNN [66],

where the original image is used as the input to every DNN. Furthermore, the MNN-Tree is a

multi-level hierarchy with multiple levels of small DNN modules, for reducing the memory and

energy requirement. In contrast, the Tree-CNN is not designed for low-power inference on em-

bedded systems and the DNNs used in Tree-CNN are signi�cantly larger (in terms of memory

usage and number of operations) than the modules of the MNN-Tree. The DNNs in the Tree-CNN

require 20 MB of memory for the CIFAR-10 dataset and perform close to 100M operations. The

MNN-Tree requires only 0.8 MB of memory and performs 33M operations for the same dataset.

The experimental setup and details are provided in Section 4.

A few challenges are associated with using the MNN-Tree. The �rst challenge is �nding the vi-

sual similarity between the categories is crucial. We propose ASL, which detects visual similarities

by using the output of a DNN to quantify the confusion between categories. The second challenges

involves developing a systematic method for choosing the DNN hyper-parameters of each module

and subsequently building the tree based on visual similarity to achieve high accuracy and infer-

ence speed. The third challenge is that each module of the MNN-Tree needs to be trained such that

the parent is trained before its children. This ensures that the feature maps of the parent can be
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Table 3. Comparison of ASL on an Untrained (U) and Trained (T) DNN for the CIFAR-10 Dataset

In Plane Auto. Bird Cat Deer Dog Frog Horse Ship Truck

U
Cat 0.094 0.108 0.097 0.098 0.097 0.103 0.092 0.092 0.110 0.105

Truck 0.099 0.103 0.098 0.101 0.107 0.101 0.104 0.105 0.092 0.086

T
Cat 0.011 0.026 0.103 0.303 0.105 0.200 0.102 0.104 0.010 0.032

Truck 0.060 0.193 0.018 0.024 0.017 0.022 0.012 0.041 0.060 0.550

Note: This data is obtained by using the DNNmodel described in Section 3.3.1. The untrained DNN’s outputs are similar

(close to 1
10 ). After training, the categories that are similar to the input category have high softmax outputs, such as

truck and auto (0.193). The dissimilar categories, such as cat and ship, have low softmax outputs (0.010).

used as inputs to the child to eliminate redundancies. The fourth challenge is that after training,

the modules of the MNN-Tree need to be used for hierarchical image classi�cation.

3.2 Similarity Metric: Averaged So�max Likelihood

Instead of using techniques like threshold on the distances between feature vectors, hierarchi-

cal clustering, or semantic similarities, this article proposes using the ASL method to quantify

the similarity between categories. The softmax layer is the last layer of a DNN. This layer as-

signs a probability to each category in a classi�cation problem. LetM be the number of categories

in a dataset—for example, in the CIFAR-10 dataset, M = 10. Suppose A and B are two categories

in the training data. Equation (1) describes how the ASL is computed: the term softmaxA (B) de-

notes the value obtained at the output (softmax) layer of the module corresponding to category B,

when the input actually belongs to categoryA. For example, so f tmaxcat (doд) refers to the softmax

output of the category dog, when the input image belongs to the category cat. |A| represents the

number of input samples labeled with the categoryA. In other words, Equation (1) is the module’s

average output for category B, when the inputs belong to categoryA. If the LA (B) is large, it means

the classi�er is confused about the two categories A and B.

LA (B) =

∑ |A |
i=0 softmaxA (B)

|A|
(1)

On an untrained DNN, the ASL for every category is approximately the same: 1
M

(M = 10 for

CIFAR-10) as seen in Table 3. This is because the DNN cannot distinguish between the categories.

When we compute the ASL on a trained DNN, the distribution of the probabilities changes and

they rise signi�cantly close to the correct label of the input image. However, from this experiment,

we also observe that after a DNN has been trained, the DNN remains confused between a few

groups of categories. The softmax probabilities of certain categories after training (boldface in

Table 3) is greater than the probabilities before training. For example, when the input image is a

cat, the category dog has an ASL of 0.200 after training. This confusion arises due to the visual

similarity between the categories. Figure 4 shows examples of images from the CIFAR-10 dataset.

The categories cat and dog look similar and are visually distinct from categories like automobile

and truck.

The misclassi�cation matrix in Table 4 shows that the softmax confusion is related to the vi-

sual similarity. For a given input category, the categories that have a high ASL (boldface) are the

categories to which images are frequently misclassi�ed. For example, truck is most frequently

misclassi�ed as automobile and is rarely misclassi�ed as other categories. This means that the cat-

egories of truck and automobile are visually similar. Thus, ASL uses the con�dence of the DNN to

�nd groups of visually similar categories without any threshold.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.



1:10 A. Goel et al.

Fig. 4. Examples of images of di�erent categories from the CIFAR-10 dataset. Our method using ASL indi-
cates that cat and dog are visually similar.

Table 4. The DNN Confusion Matrix Shows the Number of Images Classified into Each
Category from the CIFAR-10 Dataset

Input Plane Ship Bird Cat Deer Dog Frog Horse Auto. Truck

Plane 360 75 22 6 4 4 9 7 23 20

Ship 48 370 4 12 3 2 7 4 23 20

Bird 20 7 248 42 46 30 32 32 7 3

Cat 10 9 31 204 31 98 43 30 9 7

Deer 20 10 43 37 267 29 35 44 1 9

Dog 2 7 32 96 28 256 27 30 5 4

Frog 3 8 35 46 25 27 354 24 4 2

Horse 9 3 30 27 39 36 28 319 8 13

Auto. 22 20 6 4 5 2 4 6 406 35

Truck 23 23 3 6 3 6 8 13 91 340

Note: The categories that have been grouped together by theASLmethod (boldface) are frequentlymisclassi�ed

into one another because they are visually similar. In this table, Auto. and Truck are examples of visually similar

categories.

ASL uses Equation (1) to express the similarity between each pair of categories A and B in

the dataset. The categories that have high softmax outputs are visually similar. However, making

groups of visually similar categories is not a well-de�ned operation that can be obtained using a

�xed threshold. For example, if we set the threshold to the value 1
10 (softmax value obtained from

untrained DNN, assuming M = 10), then a category with an ASL of 0.099 will not be selected.

However, a category with an ASL of 0.101 will always be selected. To avoid this problem and to

eliminate the need for a �xed threshold, the proposed technique uses concepts from fuzzy sets [69,

70]. The sigmoidal membership function is used to quantify the degree of memberships of each

category: the output of the membership function gives the likelihood that a particular category

exists in a super-group. The sigmoidal membership function is shown in Equation (2).

σ (x ) =
1

1 + exp(−
x−μ

s
)

(2)
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Fig. 5. The ASL for the root module of the CIFAR-10 dataset. To group categories that are visually similar to
airplane, we use σ (Lairplane (category)) (Equation (3)). The sigmoidal membership function is used to avoid
trial and error associated with finding a good fixed threshold.

The output of the membership function gives us the probability of grouping two categories

together into a single super-group. This work uses μ = 1
M

and s = 1
10M in Equation (2) to scale

the function for datasets of di�erent sizes. This ensures that a category B with a high LA (B) is

visually similar and has a high probability (≈1) to be grouped with category A. Visually dissimilar

categories have LA (B) ≪
1
M
, and the probability of forming a super-group is very low (≈0). Even

though it is possible that dissimilar categories may be grouped, it is very unlikely when using

the sigmoidal membership function. The use of this technique is justi�ed by the fact that we can

build super-groups of visually similar categories without the need for an optimal threshold. The

probability of grouping two categories A and B, p (A ∼ B) is de�ned in Equation (3). Equation (3)

is the expansion of Equations (1) and (2).

p (A ∼ B) = σ (LA (B)) =
1

1 + exp(−10M × (LA (B) −
1
M
))

(3)

Figure 5 is an example of how the ASL �nds similar categories without a threshold. A high

softmax output indicates that the DNN gets confused between the categories. In Figure 5, when

the input image is an airplane, the ship category has a high softmax value, indicating that the

categories are visually similar. The ship category has a high probability (0.994) of being grouped

with airplane (given by Equation (3)). Visually dissimilar categories, such as cat, have a very small

probability (0.000) of getting grouped with airplane.

3.3 Building the MNN-Tree

To build theMNN-Tree, we need to choose the appropriate DNN size for eachmodule and then �nd

the ASL to group categories. The MNN-Tree is constructed in a root-down fashion. The process to

build a trained MNN-Tree is described in Algorithm 1. The inputs to the algorithm are the training

dataset, and a hyper-parameter τ to select the size of each module (explained in Section 3.3.1).

The algorithm’s output is the trained MNN-Tree. Initially, we start with a single super-group that

contains all categories of the dataset. In step (2) of the loop, we select the size of the DNN by

using the techniques described in Section 3.3.1. The softmax output matrix, similar to Table 3 for

the trained DNN, is obtained in step (4). In step (6), the ASL is used as the similarity metric to

group categories (described in Section 3.3.2). If new children super-groups are formed, in step (7)

the module is retrained to classify between the new super-groups. The training of the modules of
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the MNN-Tree is described in Section 3.4. The loop is repeated until all super-groups’ modules are

trained. We explain the steps of this algorithm in this section.

3.3.1 Selecting Neural Network Sizes and Hyper-Parameters. Here, we explain steps (1) through

(3) of Algorithm 1. The number of layers and the size (con�guration) of each module need to be

chosen. We use a newmetric called the change in accuracy density (ΔAD). It measures the accuracy

gain per unit increase in the model size between two DNN models, ΔADi j =
VAi−VAj

MSi−MSj
, where VA

is the validation accuracy obtained during image classi�cation, and MS is the model size of the

DNNs. Here, i and j refer to the number of layers in the two DNN models. In this work, i is always

j + 1.

Table 5 shows the e�ectiveness of using ΔAD as a metric. After a certain DNN depth (4 for

CIFAR-10, 3 for SVHN, and 2 for EMNIST), there is no appreciable increase in accuracy when

the model sizes increase. The accuracy is calculated for each module of the MNN-Tree before the

children are grouped into super-groups. For example, ΔAD for the root module of an MNN-Tree is

computed on accuracy obtained for classifying between all categories of the dataset, and the ΔAD

for any other module in the MNN-Tree is computed while classifying between all of its children

categories. By using ΔAD, we can determine the DNN con�gurations that are e�cient and can

distinguish categories with high accuracy. This approach can achieve a negligible loss in accuracy

when compared with the large monolithic DNNs, because the small DNNs only need to classify

among a few groups of visually similar categories and not all categories of the dataset.

ALGORITHM 1: Building the MNN-Tree

inputs: Training dataset (x ,y) x : images and y: labels; threshold τ .

output: MNN-Tree structure T .

CATEGORIES = {c : c is a unique label ∈ y} // set of all categories

TREE = {untrained root DNN} // set holding the tree structure

S = CATEGORIES // all categories of the dataset come under the root

while (∃ an untrained DNN in TREE)

(1) lc = 0 // layer_count: keeps track of the number of layers in the DNN

(2) do

lc = lc + 1

initialize a DNN Dlc , with lc convolutional layers.

train Dlc to classify all categories of S.

if lc � 1 then calculate ΔADlc,lc−1 =
VAlc−VAlc−1
MSlc−MSlc−1

while (lc = 1 or ΔADlc,lc−1 > τ )

(3) DNNconf iд = Dlc−1 // select the DNN con�guration for the module

(4) SOFTMAX_MATRIX = softmax output of DNNconf iд∀c ∈ S // softmax output matrix

(5) CHILD_GROUPS = ϕ // keeps track of newly formed children super-groups

(6) for each c ∈ S //use the ASL

�nd set V , s.t. {V ⊂ S : prob(c ∼ v ) = sдmf (SOFTMAX_MATRIX [c,v]),∀v, c ∈ V }

add untrained DNN corresponding to V into TREE

CHILD_GROUPS = CHILD_GROUPS ∪ V // similar categories added to set of children

(7) train DNNconf iд to classify between elements of CHILD_GROUPS

(8) S = children of next untrained DNN in TREE

return tree
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Table 5. Model Size (in Megabytes), VA, and ΔADi j Are Computed for Three Di�erent Image Datasets
with DNNs of Increasing Depth

Layer Count 1 2 3

Dataset
Model
Size

VA ΔAD10
Model
Size

VA ΔAD21
Model
Size

VA ΔAD32

SVHN 0.085 0.865 NA 0.106 0.893 1.333 0.174 0.969 1.118

EMNST 0.103 0.750 NA 0.161 0.845 1.638 0.358 0.849 0.020

CIFAR-10 0.085 0.570 NA 0.106 0.620 2.381 0.174 0.780 2.353

Layer Count 4 5 6

Dataset
Model
Size

VA ΔAD43
Model
Size

VA ΔAD54
Model
Size

VA ΔAD65

SVHN 0.225 0.970 0.020 0.332 0.972 0.017 0.910 0.981 0.015

EMNIST 0.561 0.852 0.015 0.766 0.854 0.010 1.350 0.856 0.003

CIFAR-10 0.225 0.895 2.255 0.341 0.900 0.043 0.915 0.910 0.017

Note: As the number of layers in a DNN increases, the accuracy increases, and the model size also increases. After a certain

DNN depth, there is no appreciable increase in accuracy for the increase in model size. Boldface font is used to indicate

the DNN con�guration where ΔADi j is negligible. This work uses four layers for CIFAR-10, three layers for SVHN, and

two layers for EMNIST.

It is known that increasing the depth of a DNN is more e�ective than increasing the width of the

DNN to obtain better accuracy [71]. This is the reason Table 5 starts with only one convolutional

layer and increases the number of layers by one each time. Each DNN con�guration is trained

until the validation accuracy (VA) saturates, then ΔADi j is computed. We use the hyper-parameter

τ = 0.1 on ΔADi j between two consecutive DNN models. If ΔADi j is below this value (boldface in

Table 5), there is an insigni�cant gain in accuracy for a deeper DNN. The depth of the DNN is set

to j layers. For example, in Table 5 for the EMNIST dataset, when the module has one layer, the

model size is 0.103 MB, and the accuracy obtained is 75%.With two layers, the model size increases

to 0.161 MB, with an accuracy of 84.5%. Thus, ΔAD21 =
0.845−0.750
0.161−0.103 = 1.638. When three layers are

used, ΔAD32 =
0.849−0.845
0.358−0.161 = 0.02. Since ΔAD32 < τ = 0.1, the accuracy increase is marginal for the

increase in the model size. Hence, for the EMNIST dataset, we use a DNN with two layers at the

root module.

The value τ is a hyper-parameter that needs to be selected before constructing the MNN-Tree.

A large τ leads to tall MNN-Trees that contain multiple small DNN modules (each module has

few layers). Tall hierarchies have higher latency and require more energy because multiple levels

of modules need to be loaded into memory. A small τ leads to short-wide hierarchies with large

DNNs. The DNNs in such hierarchies resemble the monolithic DNNs and contain many redundan-

cies. It is important to �nd an intermediate value of τ to avoid these drawbacks. Table 6 evaluates

the tradeo� for selecting the value of τ . When τ = 5 (a large value), the size of each DNN mod-

ule is restricted (one layer in each module). This is because a deeper DNN is chosen only when a

signi�cant increase in accuracy is possible. Small modules cannot distinguish between categories

e�ectively, thus leading to the formation of a small number of super-groups under each parent

(only two super-groups under each parent). Each module performs few operations and thus con-

sumes little energy (0.358 J). However, because many modules are loaded into memory and used

(height of the MNN-Tree = 6 when τ = 5), the entire MNN-Tree consumes a signi�cant amount of

energy (2.152 J). The methods to measure the energy requirement and classi�cation accuracy are

described in Section 4.2. Moreover, tall trees have high test error (0.231). However, a smaller value

of τ results in a short and wide MNN-Tree, where each module consists of many convolutional lay-

ers (∼9 layers in each DNN module when τ = 0.001). Such modules resemble the monolithic DNN
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Table 6. Tradeo� Between Module Size, Energy Consumption, and Test Error

τ
Average No.
of Layers

Average No.
of Children
per Module

Average
Energy

Consumption
per Module (J)

Height of
MNN-Tree

Total Energy
Consumption of
MNN-Tree (J)

Test
Error

0.001 8.50 5.0 1.584 2 3.168 0.067

0.100 3.33 2.5 0.511 3 1.533 0.079

5.000 1.00 2.0 0.358 6 2.152 0.231

Note: When τ is small, each module is large and consumes more energy, but the tree obtains low test error. When

τ is large, the modules are small and test error is high. Because many levels of modules are required, the energy

consumption is also high. The methods to measure the energy requirement and test error are described in Section 4.2.

Fig. 6. Plot of energy consumption versus test error obtained from MNN-Trees built with di�erent values of
τ for the CIFAR-10 and CIFAR-100 datasets. Large values of τ result in tall MNN-Trees that consume more
energy and have a high error. A small τ results in a short-wide MNN-Tree where each module has several
convolutional layers—consuming more energy but obtaining high accuracy.

architectures, and the corresponding MNN-Tree consumes more energy (3.168 J) but achieves low

test error (0.067). Figure 6 plots the test error and energy consumption of the MNN-Tree with dif-

ferent values of τ (5, 2, 1, 0.1, 0.01, and 0.001) for the CIFAR-10 and CIFAR-100 datasets. For small

values of τ (0.01 and 0.001), we get high energy consumption and low test error. For intermediate

values of τ (∼0.1), we get signi�cantly lower energy consumption, with a marginal increase in

test error. As τ continues to increase, the energy consumption begins to increase and test error

increases. This empirical evidence tells us that τ = 0.1 is a good selection for low-power and high

accuracy to construct MNN-Trees.

The size of the DNN is calculated for every module of the MNN-Tree, and hence di�erent mod-

ules may have di�erent DNN sizes. Table 7 shows the DNN architecture obtained for each module

of the MNN-Tree of the SVHN dataset. These architectures are obtained by using the ΔAD metric

and τ = 0.1. The input images of size 32 × 32 × 3 (32 pixels tall and wide, three color channels

corresponding to R, G, and B) are fed into the root module. Here, three conv layers and one max

pooling layer are used to build the feature map. The selection between the children is made at the

end of the FC layer (there are six children: two super-groups and four categories). Depending on

the output of the root module, the feature map (of size 16 × 16 × 32) is used as an input to one
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Table 7. Architecture Used in Each Module of the MNN-Tree for the SVHN Dataset

Root Module Child Module 1 Child Module 2

Layers Output Size Output Size Output SizeLayers Layers

Input 32 × 32 × 3 Input 16 × 16 × 32 Input 16 × 16 × 32

Conv1

3 × 3 × 16

Stride = 1

Padding = 1

BatchNorm

ReLu

32 × 32 × 16

Conv1

3 × 3 × 32

Stride = 1

Padding = 1

BatchNorm

ReLu

16 × 16 × 32

Conv1

3 × 3 × 32

Stride = 1

Padding = 1

BatchNorm

ReLu

16 × 16 × 32

Conv2

3 × 3 × 32

Stride = 1

Padding = 1

BatchNorm

ReLu

32 × 32 × 32

Conv2

3 × 3 × 64

Stride = 1

Padding = 1

BatchNorm

ReLu

16 × 16 × 64

Conv2

3 × 3 × 32

Stride = 1

Padding = 1

BatchNorm

ReLu

16 × 16 × 32

Conv3

3 × 3 × 32

Stride = 1

Padding = 1

BatchNorm

ReLu

32 × 32 × 32

Max Pooling

2 × 2

Stride = 2

8 × 8 × 64

Max Pooling

2 × 2

Stride = 2

8 × 8 × 32

Max Pooling

2 × 2

Stride = 2

16 × 16 × 32 FC 4096 × 4 FC 2048 × 2

FC 8192 × 6

Note: e output feature map ohe last conv layer from the root module is used as inputs to the child modules.

of the child modules. Since each DNN is very small, most of the hyper-parameters (kernel size,

number of channels, layer width, batch normalization, weight-decay, etc.) can be the same and do

not require signi�cant �ne tuning for high accuracy.

It should be kept in mind that the output feature map from the parent module is used as inputs

to the child module. This ensures that the operations performed by the parent are not repeated

in the child. Furthermore, by reusing the feature map, the child acts as a specialized extension of

the parent. This makes each path of the MNN-Tree act like a di�erent DNN with several layers.

This is the reason the modules lower in the MNN-Tree also have small DNNs even though they

are classifying between visually similar categories.

3.3.2 Identifying Super-Groups and Building Hierarchy. In this part, we explain steps (4) through

(6) of Algorithm 1. The root of the hierarchy is created �rst. After the size of the DNN module

is selected, we use the ASL to compute the similarity between all categories of the dataset to

obtain the �rst level of super-groups (children of the root module). For each child of the root that

is a super-group, the process is repeated: �rst the module’s DNN size is selected (Section 3.3.1),

then the ASL is used to �nd the similarities between the categories and build the super-groups,

and �nally the module is trained to classify between the newly formed children super-groups

(Section 3.4). This process is depicted in Figure 7 and is performed for each child module until the

original categories of the dataset can be classi�ed without forming a super-group (i.e., individual
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Fig. 7. The method to build the MNN-Tree. First, the module’s DNN size is selected, then using the ASL, the
super-groups are found. The module is trained to classify between its children super-groups. The do�ed line
shows us that the process is repeated for the next module.

Fig. 8. The MNN-Tree obtained for the CIFAR-10 dataset. SG refers to a super-group.

categories are all leaf modules). This technique is used to create the MNN-Tree seen in Figure 8

for CIFAR-10. The tree follows intuitive ideas of visual similarity. The categories dog and cat are

similar, and they are less similar to horse and very dissimilar to ship. It is worth noting that in the

CIFAR-10 dataset, the category automobile refers to cars and SUVs, and does not include trucks or

other types of vehicles.

Furthermore, it should be noted that the number of children under each parent varies because

the proposed method groups visually similar categories dynamically. This is an improvement on

existing techniques that are limited to grouping a �xed number of categories at each level of the

hierarchy.

3.4 Training the MNN-Tree

In this section, we explain step (7) of Algorithm 1. The conventional back-propagation algorithm

is used to train each module of the MNN-Tree. The root module is trained �rst. The output feature

maps of the images that have been classi�ed correctly by a parent module are used to train its

child modules. This prevents modules lower in the MNN-Tree from being trained with features

not pertinent to them and their corresponding sub-trees. Furthermore, it also ensures that the

training error in an ancestor module does not a�ect the training of its descendants. We consider

two methods to train the MNN-Tree. Kontschieder et al. [72] compute the loss at the leaf nodes

and use back-propagation through all nodes of the tree to minimize the loss. Roy et al. [73] use

back-propagation in eachmodule, individually. We use the latter technique because the modules at

a given depth (sibling modules) are independent of one another. This allows us to train modules in

parallel to reduce the training time. Small DNNs have fewer parameters and are less likely to over�t

and can get high accuracy with little hyper-parameter tuning. The computational cost of training

small DNNs is lower because small DNNs have considerably fewer parameters. This ensures that

the building and training of the MNN-Tree can be completed quickly.

3.5 Image Classification with the MNN-Tree

Figure 9 describes how image classi�cation is performed with the MNN-Tree. The root is the �rst

module to process the image and select one of its children. The feature map of the root is used as

the input to the selected child module, and the process is repeated until a leaf of the MNN-Tree

is reached. The leaves of the MNN-Tree are the original categories of the dataset. Every module
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Fig. 9. Image classification with the MNN-Tree. First, the input image is processed by the root module. The
image is processed by every module along a path from the root to a leaf.

selects only one child, and thus a signi�cant portion of the MNN-Tree is pruned at every step,

leading to a considerable reduction in the number of operations.

In Figure 8, the root module classi�es among the super-groups SG-1, SG-2, and SG-3. Once a

classi�cation is made, the partially processed data (output feature map of the root) is then passed

onto one of the children. If the SG-3 super-group is chosen, the module responsible for classifying

between SG-4, SG-5, frog, and horse is used. This process is repeated at every level of the tree until

a leaf module is reached.

By using the output feature map of the parent module as the input to the child module, the

MNN-Tree takes advantages of deep architectures for better accuracy. When using the MNN-Tree,

at a given time, only a single module is loaded in memory. After the module is used, the memory

is freed so that it can be used by its child module. This reduces the total memory required from the

embedded device to run the MNN-Tree. Moreover, because only a small subset of the modules are

used during inference, the total number of bytes loaded into memory is signi�cantly reduced when

compared with existing DNN architectures [7, 13, 74]. Details of the experiments are presented in

the next section.

4 EXPERIMENTS AND RESULTS

The datasets used in the experiments are described in Section 4.1. The experimental setup is ex-

plained in Section 4.2. Section 4.3 compares the accuracy, memory requirement, and number of

operations of the MNN-Tree and existing monolithic DNN architectures. The MNN-Tree is com-

paredwith the existing state-of-the-art hierarchical image classi�ers in Section 4.4.We also explain

the reasons the existing methods fail to achieve high accuracy and experimentally show that the

MNN-Tree is superior. Section 4.5 compares the inference time and energy consumption of di�er-

ent architectures on embedded devices. Section 4.6 discusses potential extensions and future work.

4.1 Datasets Used

We use several image datasets in our experiments. CIFAR [75], SVHN [76], and EMNIST [77] con-

tain centered and �xed-size images, with only one object in each image. Images in larger datasets

like ImageNet 2012 [78] and Caltech-256 [79] are of di�erent sizes and represent real-life images

more closely. Examples of images from these datasets are provided in Figure 10.

The CIFAR datasets consist of 32 × 32 color images of 10 (CIFAR-10) and 100 (CIFAR-100) dif-

ferent categories. The training and test sets contain 50,000 and 10,000 images, respectively. We

follow the common practice of using 5,000 images from the training set to form the validation set.

The SVHN dataset contains 73,257 colored images of size 32 × 32 pixels in the training set and

531,131 images for additional training. While reporting the results of the SVHN dataset, we follow

the common practice of using all training data without any data augmentation. A set with 6,000

images is used to verify the training results. EMNIST is an extension of the popular MNIST dataset.

There are six con�gurations of the EMNIST dataset, and we use the EMNIST-Balanced con�gu-

ration. It contains 131,600 grayscale images of size 28 × 28 pixels belonging to 47 categories. The
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Fig. 10. Examples of images from the di�erent datasets used in our experiments. It can be seen that images
from di�erent datasets vary significantly. Some images have background (e.g., grass and sky) in addition to
the foreground objects.

Table 8. Details of the Datasets Used in the Experiments

Image No. of No. of No. of

Dataset Size Training Images Test Images Categories

CIFAR 10 32 × 32 × 3 50,000 10,000 10

CIFAR 100 32 × 32 × 3 50,000 10,000 100

SVHN 32 × 32 × 3 604,388 26,032 10

EMNIST 28 × 28 × 1 112,800 18,800 47

ImageNet 2012 Varying 1,200,000 75,000 1,000

ImageNet 2012 (subset) Varying 26,000 2,000 20

Caltech (subset) Varying 2,000 400 11

Note: The output feature map of the last conv layer from the root module is used as inputs to the child modules.

ImageNet training set contains 1,000 categories with approximately 1,000 images each. ImageNet

also contains a validation set and a testing set. We report the ImageNet top-1 accuracy in our ex-

periments when trained without any data augmentation. We also use a subset of the ImageNet

dataset with 20 categories to easily visualize the MNN-Tree and fully understand the hierarchy’s

details and properties. The Caltech dataset is used in our experiments as well. As suggested in

Panda et al. [50], we use a subset of 11 categories from the Caltech dataset to maintain a fair com-

parison with existing work. Each category in the Caltech dataset has approximately 100 training

images and 20 testing images. The datasets’ parameters are described in Table 8.

4.2 Experimental Setup

Figure 11 is a �owchart explaining the method used to conduct the experiments. For each dataset,

once the MNN-Tree is built and trained, the test set of the dataset is used to �nd the classi�cation

accuracy. The test set is used to avoid the e�ects of over�tting. The memory requirement and

number of operations are found using the torchsummary and thop PyTorch libraries, respectively.

A Yokogawa WT310E Power Meter [80] is used to measure the energy consumption for running

the di�erent DNN architectures on the embedded systems. The images for image classi�cation

are stored locally on the Raspberry Pi, and the PyTorch DataLoader [81] is set up before energy

consumption is measured. The inference time and energy consumption are measured during

image classi�cation. Measurement is stopped after the classi�cation of 500 images is complete. To

monitor the e�ects of thermal throttling between measurements, we use the vcgencmd command

for obtaining the temperature of the device. We only run the next experiment after the device has

stopped thermal throttling its CPU. The output of the vcgencmd get_throttled command is

used to identify if the Raspberry Pi is throttled.
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Fig. 11. Workflow of the method used to conduct experiments. First, the DNN size is selected, super-groups
are found, and then the DNN is trained, for each module to build the MNN-Tree. The memory requirement
of the modules and number of operations is measured. The MNN-Tree is then run on the embedded devices
to measure energy consumption. The boxes in dashed lines are implemented on the embedded devices. The
other processes are implemented on a GPU desktop machine.

On embedded systems, most image classi�cation applications perform inference on one image at

a time [2, 11, 23, 24, 82, 83]. Evenwhen processing videos, inference can be performed on individual

frames each time [84]. TheMNN-Tree is designed speci�cally for deployment on embedded devices

(e.g., Raspberry Pi). Such devices are not suitable for massive batch processing applications with

high throughput requirements because embedded devices have limited memory and computing

resources. Consequently, this work only compares the inference time when the batch size is 1.

All modules of the MNN-Tree are trained using the ADAM [85] learning rule. A batch size of

200 is used for all of the datasets with 150 epochs. An initial learning rate of 0.01 is used and

is dropped by a factor of 10 at 50% and 75% of the total number of epoch. Since each module

contains a small DNN, the number of parameters is considerably smaller than large DNNs, thus

avoiding over�tting. Small DNNs do not require signi�cant hyper-parameter tuning to achieve

high accuracy.

The MNN-Tree for the ImageNet dataset takes the longest to train because it has the largest

number of modules. Training time for the MNN-Tree architecture includes the time taken to build

the MNN-Tree. When using an Nvidia TITAN X (Pascal) GPU, the total training time is approx-

imately 29 hours for the ImageNet dataset. This training time is comparable to the training time

required by the monolithic DNNs for the ImageNet dataset.

The examples, source code, and DNN models are available on GitHub [15]. The ClassicalMa-

chineLearningTechniques folder in the GitHub repository includes source code for the di�erent ma-

chine learning techniques (without DNNs) that are used for image classi�cation (seen in Table 1).

GaborHSVSimilarity, ThresholdMethods, and HierarchicalClustering folders contain analyses of dif-

ferent existing hierarchical techniques. The MonolithicDNNs folder contains implementation of

di�erent monolithic DNNs used in our experiments. TheMNNTree folder contains training scripts,

testing scripts, examples, and implementation of theASL for di�erent datasets. A video [86] captur-

ing the experimental setup and energy consumption measurement has been uploaded to YouTube.

4.3 Comparison with Monolithic DNN Architectures

We compare the MNN-Tree architecture with several existing architectures. Table 9 compares

the MNN-Tree with existing monolithic DNNs on various metrics. The MNN-Tree has the least

memory requirement and number of operations. These performance gains come at a negligible
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Table 9. Comparison of Memory Requirement, Number of Operations, and Test Error for
Di�erent Datasets and Techniques

Model No. of Test

Dataset Technique Size (KB) Operations Error

CIFAR-10

VGG-16 [13] 78,410 313 M 0.067

VGG-Pruned [27] 28,200 206 M 0.066

DenseNet-190 [74] 102,000 9,388 M 0.070

CondenseNet-160 [22] 43,000 1,084 M 0.034

MobileNet V2 [31] 8,800 100 M 0.060

MNN-Tree+ 806 28 M 0.079

CIFAR-100

VGG-16 [13] 78,590 207 M 0.295

VGG-Pruned [27] 28,910 210 M 0.252

DenseNet-190 [74] 103,000 9,400 M 0.171

CondenseNet-160 [22] 44,500 1,080 M 0.184

Wide ResNet-28,10 [87] 141,100 25,800 M 0.192

MNN-Tree+ 832 34 M 0.209

SVHN

DenseNet-190 [74] 102,000 9,388 M 0.017

Wide ResNet-16,4 [87] 11,000 1,935 M 0.016

MNN-Tree+ 522 30 M 0.018

EMNIST
EDEN [88] — — 0.117

MNN-Tree+ 363 4 M 0.078

ImageNet 2012

(subset)

VGG-16+ [13] 528,000 15,300 M 0.076

ResNet-34+ [7] 84,000 3,640 M 0.081

DenseNet-121+ [74] 32,300 3,000 M 0.080

SqueezeNet+ [30] 5,120 837 M 0.146

MobileNet v2+ [31] 8,820 585 M 0.104

MNN-Tree+ 1,872 605 M 0.124

ImageNet 2012

VGG-16 [13] 528,120 15,300 M 0.295

ResNet-34 [7] 84,100 3,640 M 0.276

DenseNet-121 [74] 32,400 3,000 M 0.230

SqueezeNet [30] 5,330 837 M 0.425

MobileNet v2 [31] 8,910 585 M 0.280

MNN-Tree+ 2,515 713 M 0.313

Note: EDEN does not report the model size or the number of operations and hence is represented as a dash

(—). We also use a subset of ImageNet to better analyze the di�erent properties of the obtained MNN-Tree.

The plus sign (+) refers to the techniques whose results are obtained by our experiments. The other results

are obtained from the respective publications.

cost to the test error. The ResNet [7] and VGG [13] DNNs contain 54 and 16 layers, respectively.

We also compare with the pruned and quantized version of VGG architecture: VGG-Pruned [27].

DenseNet [74] and CondenseNet-160 [22] use group convolutions to improve the parameter ef-

�ciency. Huang et al. [74] suggest that DenseNet-190 be used for CIFAR and SVHN datasets,

and DenseNet-121 be used for ImageNet. We follow these suggestions in our experiments. We

also compare the MNN-Tree with Wide ResNet-28,10 and Wide ResNet-16,4 [87]. Wide ResNet-

x ,y corresponds to an architecture with x layers and a growth rate of y. The growth rate is a

hyper-parameter that determines the size of each layer in Wide ResNet. For the EMNIST dataset,

we use EDEN [88] for comparisons. We also compare with SqueezeNet [30] and MobileNet [31].
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Table 10. Comparison of the Test Error of MNN-Tree with Other Hierarchical
Image Classification Techniques

Technique Test Error

CIFAR-10 Caltech (subset) ImageNet 2012

Hierarchical Gri�n et al. [45] — 0.180 —

Clustering Chen et al. [55] — 0.174 —

Marszalek et al. [56] — 0.185 —

Lukic et al. [57] 0.231 0.199 —

Gabor and HSV Filters Panda et al. [50] 0.207 0.212 —

Semantic Similarity Qu et al. [60] — — 0.452

Proposed Method MNN-Tree 0.079 0.111 0.313

Note: A dash (—) indicates that data and/or source code is not available for the dataset. The MNN-Tree achieves

the best accuracy.

These architectures contain large DNNs with inverted bottleneck �lters to reduce the number of

operations.

In Table 9, we see that the MNN-Tree has the smallest model size. When compared with

VGG-Pruned on CIFAR-100, the MNN-Tree requires a model 97.12% (1 − 832
28910 = 0.9712) smaller.

Similarly, when comparing the MNN-Tree with SqueezeNet on ImageNet, we observe a 52.81%

(1 − 2515
5330 = 0.5281) reduction in the size. Smaller models require fewer memory accesses, achieve

faster inference, and reduce energy consumption. The table shows the number of �oating-point

multiplications and additions performed during the inference of a single image. The reported

model size and number of operations of the MNN-Tree is the sum of the values of the modules

along the longest path from the root to a leaf. The number of operations for the MNN-Tree is

99.70% (1 − 28
9388 = 0.9970) lower than DenseNet and 97.41% (1 − 28

1084 = 0.9741) lower than Con-

denseNet for the CIFAR-10 dataset. There is a negligible di�erence in memory requirement and

number of operations when comparing the MNN-Tree for ImageNet 2012 (subset) and the entire

ImageNet 2012 dataset. This shows the scalability of the proposed technique when constructed

using the methods presented in Section 3.3. The table does not report the model size and number

of operations for EDEN because the data and source code is not openly available.

From Table 9, it can be seen that theMNN-Tree achieves the lowest error of 7.8% for the EMNIST

dataset. The MNN-Tree’s accuracy is comparable to the state of the art for CIFAR-10 and SVHN

datasets. The MNN-Tree also outperforms SqueezeNet on the ImageNet dataset in top-1 classi�ca-

tion accuracy. For CIFAR-100, the benchmark test error is 17.1%, and theMNN-Tree achieves 20.9%.

It is worth noting that the test error achieved in the state-of-the-art monolithic DNN architectures

is obtained after spending signi�cant e�ort in performing hyper-parameter tuning.

4.4 Comparison with Hierarchical Image Classification Architectures

We compare the MNN-Tree with existing hierarchical image classi�cation techniques. Gri�n

et al. [45] use hierarchical spectral clustering to create a binary tree of SVM classi�ers. Hierar-

chical K-means is used in Chen at al. [55] and Marszalek et al. [56] to group SIFT feature vectors

from di�erent images to create a tree of classi�ers. Lukic et al. [57] describe methods to use fea-

ture vectors from intermediate layers of DNNs to perform hierarchical clustering. Panda et al. [50]

use Gabor and HSV �lters to identify similar colors and textures among images to build groups of

categories. TheWordNet Tree described by Qu et al. [60] is the tree of categories that is built using

the semantic information from WordNet.
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Fig. 12. Principal component analysis of the feature vectors obtained from VGG-16 trained on the CIFAR-
10 dataset, along the two axes of maximum variance. The “×” marks the centroids of the clusters of the
six di�erent categories. It can be seen that some categories are closer than other categories. The distances
between the centroids of the categories is shown later in Table 11.

Table 11. Euclidean Distances Between the Centroids of Categories of the Principal
Component Analysis of the Feature Vectors Obtained from VGG-16 Trained on

the CIFAR-10 Dataset

Categ. Auto. Truck Cat Dog Bird Deer

Auto. 0.00 2.29 17.23 14.70 15.80 14.70

Truck 2.29 0.00 19.40 20.45 17.35 15.86

Cat 17.23 19.40 0.00 1.73 8.82 9.55

Dog 18.34 20.45 1.73 0.00 8.15 9.09

Bird 15.80 17.35 8.82 8.15 0.00 3.59

Deer 14.70 15.86 9.55 9.09 3.59 0.00

Note: Some pairs of categories have a smaller distance than other pairs. It is di�cult to select a

threshold on the distances between categories to �nd groups of similar categories. Small changes

in the threshold can lead to signi�cantly di�erent groups.

Table 10 shows that the proposed method achieves the best accuracy when compared with dif-

ferent hierarchical techniques for three popular image datasets: CIFAR-10, Caltech, and ImageNet.

The test error obtained by the MNN-Tree on the Caltech dataset (11.1%) is signi�cantly lower than

other techniques. On the CIFAR-10 dataset, the MNN-Tree achieves an error of 7.9%, whereas the

technique proposed by Panda et al. [50] achieves an error of 20.7%. Because the source code is

not readily available, it is not possible to make a fair comparison in terms of energy consumption,

memory requirement, or latency on the Raspberry Pi.

The remainder of this section explains why theMNN-Tree outperforms the other techniques us-

ing hierarchical image classi�cation. Section 4.4.1 explains why threshold methods are not used in

hierarchical image classi�ers. Section 4.4.2 compares the MNN-Tree with techniques using Gabor

andHSV�lters. TheMNN-Tree is comparedwith hierarchical clustering techniques in Section 4.4.3

and with trees based on semantic similarities in Section 4.4.4.

4.4.1 Comparison with Threshold Methods. Figure 12 is a principal component analysis of the

feature vectors obtained for the CIFAR-10 dataset from a pre-trained VGG-16 DNN. Some cate-

gories like cat and dog have a small distance between them, whereas categories like dog and truck

have a large distance between them. The Euclidean distances between the centroids of the di�erent

categories are tabulated in Table 11 for the root of the CIFAR-10 tree. It can be seen that cat and dog

have a distance of 1.73, and dog and truck have a distance of 20.45. The threshold-based methods

use a manually selected threshold on these distances to group similar categories. For example, if
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Table 12. Analysis of the Euclidean Distances Between Centroids of Di�erent
Categories for Di�erent Datasets

Dataset
Avg. Distance Min Distance Max Distance

Between Clusters Between Clusters Between Clusters

CIFAR-10 15.59 12.41 21.38

CIFAR-100 15.77 6.12 21.74

SVHN 22.04 15.45 28.00

EMNIST 0.85 0.31 1.16

Note: The distances for di�erent datasets vary signi�cantly. Thus, it is not possible to select a

single threshold for di�erent datasets.

the threshold = 5, then there are three groups formed: cat and dog, bird and deer, and automobile

and truck. If the threshold = 10, then there are two groups: cat, dog, bird and deer, and automobile

and truck. Furthermore, if the threshold = 10 at the root, then a new threshold must be selected to

divide cat, dog, bird, and deer into groups of similar categories at the child node. In other words, a

new threshold needs to be selected for every node in the tree. This makes it di�cult to build a hi-

erarchy of classi�ers based on thresholds. The problems with threshold-based methods are more

pronounced in datasets with a large number of categories (e.g., ImageNet) because it is di�cult

to manually inspect the distances between all pairs of categories. The technique proposed in this

article uses the process described in Section 3.2 to �nd visually similar categories. The proposed

technique has the advantage of only requiring the DNN module’s softmax output and the number

of categories of the dataset to group categories in every node of the tree. No manual tuning of

thresholds is required.

Table 12 analyzes the distances between the centroids of the categories for di�erent datasets. For

each category, the centroid of the feature vectors is obtained from a pre-trained VGG-16 DNN [41].

The feature vectors for all datasets are of the same dimension, and therefore it is possible to

compare the distances between feature vectors across datasets. The average distance between the

categories in the EMNIST and SVHN datasets are 0.85 and 22.04, respectively. This means that the

di�erent categories of the EMNIST dataset are more similar to each other (have more common

visual characteristics) than the di�erent categories of the SVHN dataset. This is intuitive because

all images of EMNIST are normalized with a black background, whereas the images in the SVHN

dataset are of di�erent colors with varied backgrounds (see Figure 10 for reference). Because the

distances between categories for di�erent datasets vary signi�cantly, the evidence indicates that

we need di�erent thresholds to build the MNN-Tree for di�erent datasets. The threshold needs to

be selected carefully for each dataset.

The proposedmethod dynamically builds super-groups without the need of a varying threshold.

This is achieved because we use ASL, a new similarity metric, to group similar categories. As

described in Section 3.2, ASL uses the output of the softmax layer to quantify the visual similarity

between di�erent categories. A sigmoidal membership function probabilistically determines if two

categories belong to the same super-group (described in Equations (2) and (3)). This systematic

method is used for all modules in theMNN-Tree and builds hierarchies without anymanual tuning

or thresholds. Furthermore, the selection of the hyper-parameter τ (used to select the size of the

modules of the MNN-Tree) is obtained through experiments and does not need to be tuned for

each individual module/dataset.

4.4.2 Comparison with Gabor and HSV Filters. Gabor and HSV �lters are inconsistent for �nd-

ing the similarities between categories in datasets. This is because di�erent images belonging to

a single category often have di�erent colors and textures, meaning that it is di�cult to �nd a �l-
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Fig. 13. Images from the CIFAR-10 dataset belonging to categories Bird and Deer a�er Gabor and HSV
transformations. There is no single texture or color that can represent every image of the category. G-0, G-
45, G-90, and G-135 correspond to the feature maps obtained from Gabor filters oriented at 0°, 45°, 90°, and
135°, respectively. HSV-1 to HSV-8 correspond to the activations of eight HSV color components.

ter (single color or texture) that represents each category uniquely. Figure 13 shows examples of

images of birds and deer from the CIFAR-10 dataset with their corresponding feature activations

from Gabor �lters G-0, G-45, G-90, and G-135 (for Gabor �lters oriented at 0°, 45°, 90°, and 135°)

and HSV color features HSV-1 to HSV-8 (for the eight HSV color components). Each feature activa-

tion detects and highlights (white regions) the presence of textures and colors in the input image.

Certain feature activations represent the object of interest in the image accurately. For example,

the bird in the image in row 1 of Figure 13(a) is accurately represented by HSV-5. The same bird

does not contain features corresponding to the HSV-1 �lter, and thus the corresponding feature

activation does not e�ectively represent the bird.

As seen in Figure 13(a), no single �lter uniformly represents all birds in the di�erent images of

the category. The bird in the image in row 1 is e�ectively represented by HSV-5, but no other bird

(in the other images of the category) is activated by the �lter HSV-5. Similarly, the birds in the

images of row 2 and row 5 are the only ones to have a meaningful activation from G-0 and HSV-1,

respectively. Di�erent birds in the category contain di�erent colors and textures. Hence, Gabor

and HSV �lter activations do not make a good similarity metric. A similar observation is seen

in Figure 13(b) for the images belonging to the Deer category. This is the reason the hierarchical

image classi�cation technique described by Panda et al. [50] leads to poor classi�cation accuracy

on most datasets as seen in Table 10.
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Fig. 14. Box plots of the so�max confidence of the rootmodule of the CIFAR-10MNN-Tree shown in Figure 8.
Images are consistently classified into the correct super-group with high confidence. For reference, SG-1
contains airplane and ship, SG-2 contains truck and automobile, and SG-3 contains dog, cat, bird, frog, and
horse. SG stands for super-group.

We conduct experiments to show that the MNN-Tree does not su�er from the problem seen

in Figure 13. The proposed similarity metric works even when images of the same category have

varying colors and textures. The box plots in Figure 14 represent the softmax con�dence of the

three super-groups at the rootmodule of the CIFAR-10MNN-Tree. The box plots are used to display

the distribution of the softmax values obtained for each super-group (for all images belonging to

the input category). Each box plot is based on a �ve-number summary: minimum (lower whisker),

�rst quartile (bottom of the box), median (red dotted line), third quartile (top of the box), and

maximum (upper whisker). The softmax con�dence measures the certainty with which the images

are classi�ed into each super-group. The box plots show that the images belonging to the bird

category are consistently classi�ed into SG-3 (the correct super-group) with high con�dence. The

bird images have a low softmax con�dence for the other two super-groups. A similar observation

is seen for the truck category. The super-groups in the MNN-Tree closely represent the visual

similarity and is the reason the MNN-Tree obtains high classi�cation accuracy.

4.4.3 Comparison with Hierarchical Clustering. This article also compares the MNN-Tree with

techniques that use hierarchical clustering [45, 55–57] to �nd similar categories. Hierarchical

clustering techniques group a �xed number of categories in every level of the tree. Prior work

has shown that these techniques obtain low classi�cation accuracy because groups of similar cate-

gories cannot be formedwith a �xed partition [50].We experimentally show that hierarchical clus-

tering generally results in degenerate hierarchies: a tree where each non-leaf node (super-group)

has only one non-leaf child (another super-group) and one or more leaf children. Figure 15(a) de-

picts the tree obtained with hierarchical clustering when the two closest categories are grouped at

every step [57]. The distance between the categories is the distance between the centroids of the

feature vectors of the categories. The resulting tree is degenerated. Degenerate trees need many

modules (i.e., long path from the root to a leaf node) to make a prediction. They have the same

problems as tall MNN-Trees, where the error in each level of the tree is compounded, resulting in

poor accuracy with a higher memory and energy requirement.

Degenerated trees are formed because the centroid of many categories (a large super-group)

does not su�ciently represent the categories. In large super-groups, the constituent images are

more spread out (high intra-cluster variance), causing the centroid to misrepresent the images.

This misrepresentation of the images leads to a phenomenon called inversion of distances [89]. In-

version of distances causes the similarity between two dissimilar categories to increase (distances
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Fig. 15. Hierarchies obtained with di�erent techniques and for di�erent datasets. Well-balanced hierarchies
that correspond to visual similarities achieve a be�er accuracy than other hierarchies. (a) Degenerate tree
obtained with centroid-based hierarchical clustering [57] on the CIFAR-10 dataset. This tree has a high test
error and consumes more energy. (b) MNN-Tree built for the SVHN dataset using the ASL similarity metric.
This MNN-Tree is more balanced and achieves a low test error. (c) MNN-Tree built for the ImageNet 2012
(subset) dataset using the ASL similarity metric. Here, P and SB represent the categories pomegranate and
strawberry, respectively. We can see that visually similar categories (although semantically dissimilar; e.g.,
pizza and plate) are grouped.

decrease) as more super-groups are formed. This leads to the formation of groups that are not

intuitive. For example, in Figure 15(a), SG-5 contains visually dissimilar children: airplanes and

SG-6 (a super-group containing animals). One method to overcome the inversion of distances

problem is to use the average distance between every pair of feature vectors in the two categories

(instead of distances between centroids of categories). However, as the numbers of categories and

images increase, the computational cost associated with this similarity metric increases signi�-

cantly.

Balanced hierarchies obtain a lower classi�cation error and generally consume lesser energy

than degenerate hierarchies. Figure 8 is the tree obtained by the proposed method for the CIFAR-

10 dataset. It can be seen that it is signi�cantly more balanced than the tree obtained with hi-

erarchical clustering (Figure 15(a)). Figure 15(b) and Figure 15(c) show the balanced MNN-Trees

obtained with the proposed method for the SVHN and ImageNet (subset) datasets, respectively.

These more balanced trees are obtained without a signi�cant increase in the computation costs

when compared with the centroid-based hierarchical clustering method. Furthermore, such trees

enable us to obtain signi�cantly higher accuracy, as reported in Table 10.

4.4.4 Comparison with Semantic Hierarchy. Semantic hierarchies group categories that have

related meanings even though they may look quite di�erent. Here, birds and lions are grouped

together as animals, and bicycles and trucks are together as vehicles. These categories may have

low visual similarities. For example, bicycles and trucks look di�erent. Figure 16 shows the re-

lationship between the semantic similarities (measured by the Jiang-Conrath (JC) distance [90])

and the visual similarities (measured by the average distance between the centroids of the feature

vectors of the categories) for every pair of the 20 categories in the ImageNet (subset) dataset. A

smaller distance means the two pairs are similar. The red line in Figure 16 is the best �t line. Many

pairs of categories (e.g., Pizzas and Plates) have high visual similarity and low semantic similarity.
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Fig. 16. Plot of semantic distances and visual distances between the categories in the ImageNet 2012 (subset)
dataset. Visual similarities and semantic similarities have a low correlation. The red line indicates the best
fit line for the given data points. The data point ⋆ corresponds to the categories Pizza and Plate that are
visually similar but semantically dissimilar.

Fig. 17. Visualization of the di�erentiating features of pizzas and plates obtained with the GradCam [91]
technique. (a) Original plate image. Heat map identifying important plate (b) and pizza (c) features in the
plate image. (d) Original pizza image. Heat map identifying important plate (e) and pizza (f) features in the
pizza image.

The JC distance [90], given in Equation (4), quanti�es the distances between two objects, a and b,

in a semantic taxonomy. Here, LCA is the lowest common ancestor of the two objects and p() cor-

responds to the probability of the object’s occurrence.

D (a,b) = 2 × loд(p(LCA(a,b))) − (loд(p(a)) + loд(p(b))) (4)

Semantic and visual similarities do not always correlate. An example is plate and pizza. They

are semantically di�erent (plate is not edible) but share similar visual features (e.g., round or oval

shapes). Figure 17 shows an example to explain why they are commonly confused by DNNs. Here,

the GradCam technique [91] is used to identify the di�erentiating features that are important for

identifying a particular category. GradCam generates a heat map on the original image depicting

the important di�erentiating features of a particular category. The features are color coded: the

regions marked in red are the most important, followed by yellow, blue, and then green. For exam-

ple, Figure 17(a) shows the original input image to the GradCam technique, and Figure 17(b) and
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Fig. 18. Average energy consumption comparison for processing one image (averaged over 500 images) on a
Raspberry Pi 3 and a Raspberry Pi Zero. The MNN-Tree consumes the least energy on both devices.

Fig. 19. Average time taken for processing one image (averaged over 500 images) on a Raspberry Pi 3 and a
Raspberry Pi Zero. The MNN-Tree performs the fastest inference on both devices.

(c) show the heat maps marking the important features used by DNNs to identify plates and pizzas,

respectively. The presence of red regions in both Figure 17(b) and (c) show that the di�erentiating

features belonging to plates and pizzas are found in the original image of a plate. Similarly, the

red regions in Figure 17(e) and (f) indicates that images of pizzas have several features resembling

plates and pizzas. This example explains why semantic similarity and visual similarity are di�erent.

This work uses visual similarity for classi�cation.

4.5 Performance Evaluation on Embedded Systems

4.5.1 Energy Consumption and Inference Time. The MNN-Tree consumes signi�cantly less

energy and performs inference faster than the existing techniques. Figure 18 and Figure 19 show

the energy consumption and inference time of the di�erent DNN architectures on a Raspberry Pi

3 and a Raspberry Pi Zero, respectively. For the MNN-Tree, the worst-case energy consumption

(i.e., images are processed by the DNN modules along the longest path from the root to a leaf)

is reported. The energy consumption is measured using a Yokogawa WT310E Power Meter. Since
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Table 13. Average Time Taken (in Seconds) for Di�erent
Tasks Per Image

Time VGG-Pruned CondenseNet MNN-Tree

Load 0.468 1.619 0.070

Execution 0.328 4.829 0.288

Note: Results are obtained for the CIFAR-10 dataset, measured on a Rasp-

berry Pi 3. The MNN-Tree requires the least amount of memory and per-

forms the fewest operations.

Table 14. Analysis of the Average Power Consumption When Running
Di�erent DNN Architectures on Di�erent Devices

Device VGG-Pruned CondenseNet MNN-Tree

Raspberry Pi Zero 1.064 W 1.010 W 1.088 W

Raspberry Pi 3 3.979 W 3.692 W 4.283 W

Note: On the Raspberry Pi Zero, the average power consumed is approximately the

same. On the Raspberry Pi 3, the MNN-Tree has the highest average power because

it does not trigger thermal throttling.

the MNN-Tree architecture reduces redundancies by using a small subset of the modules for every

input, the energy consumption for the MNN-Tree is 52% lower than VGG-Pruned and 93.5% lower

than CondenseNet. The MNN-Tree architecture requires 55% to 95% less time to classify an image

on the Raspberry Pi 3. Similarly, the MNN-Tree requires 63% to 85% less energy and 64% to 86%

less time on the Raspberry Pi Zero. It is not possible to run large architectures such as DenseNet,

WideResNet, ResNet, MobileNet, and SqueezeNet on a Raspberry Pi 3 or a Raspberry Pi Zero.

When we run these architectures on the embedded devices, we encounter a segmentation fault

(we suspect that this occurs because the device runs out of memory). Moreover, the source code

for models using the SVHN and EMNIST datasets is not readily available. This is why Figure 18

and Figure 19 compare the MNN-Tree with only the smaller architectures, VGG-Pruned and

CondenseNet, on the CIFAR datasets.

Table 13 breaks down the running time while performing image classi�cation on a Rasp-

berry Pi 3. The MNN-Tree uses only a subset of the modules for each image and thus requires the

least time to load the DNN models into memory and perform inference. CondenseNet performs

signi�cantly more operations and requires the highest execution time.

4.5.2 Average Power Consumption and Thermal Thro�ling. The Raspberry Pi Zero is a signi�-

cantly smaller device and consumes less energy than the Raspberry Pi 3. The Raspberry Pi Zero

contains a 1-GHz single-core CPU, and the Raspberry Pi 3 contains a 1.2-GHz quad-core CPU.

The more powerful CPU is the reason the Raspberry Pi 3 performs inference signi�cantly faster

but also consumes more energy than the Raspberry Pi Zero. We report the average power con-

sumed by these devices when running di�erent DNN architectures in Table 14. On the Raspberry

Pi Zero, the average power consumption remains almost constant across techniques. However,

on the Raspberry Pi 3, the CondenseNet architecture has the lowest average power consumption,

followed by VGG-Pruned. TheMNN-Tree has the highest average power consumption. This obser-

vation seems counter-intuitive, as the MNN-Tree consumes the least energy per image. This can

be explained by the thermal throttling of the Raspberry Pi 3. Thermal throttling causes a reduction

in CPU and memory frequencies to avoid damage when the di�erent components generate heat.

This increases the time taken to process each image. This can be seen in Figure 20. When run-

ning the VGG-Pruned and CondenseNet architectures on the Raspberry Pi 3, thermal throttling
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Fig. 20. Analyzing the e�ects of thermal thro�ling on the inference time on the Raspberry Pi 3 and Raspberry
Pi Zero. As more images are processed, the time taken to classify each image increases. On the Raspberry Pi
3, the MNN-Tree is una�ected by thermal thro�ling for much longer than the other solutions. There is no
significant thermal thro�ling on the Raspberry Pi Zero. Please note the breaks in the y-axis in the plots.

is observed almost immediately. The time taken to process one image steadily increases as more

images are processed sequentially. The MNN-Tree encounters thermal throttling only after ≈170

images are processed. The MNN-Tree architecture is processed at the full CPU capacity for longer,

ensuring a shorter running time. Since the average power is measured as
energy
time , the smaller infer-

ence time is the reason for the higher average power consumption of the MNN-Tree. As explained

in Section 4.2, the vcgencmd get_throttled command is used to check for thermal throttling.

The MNN-Tree is least a�ected by thermal throttling on the Raspberry Pi 3. The inference time

(per image) increases from 0.29 seconds to ≈0.42 seconds. For CondenseNet, the inference time

increases from ≈5 seconds per image to ≈6.8 seconds after thermal throttling. Thus, the MNN-

Tree is better suited for such embedded devices, because it is possible to run a DNN with the least

amount of thermal throttling.

It is uncommon to observe thermal throttling on the Raspberry Pi Zero, because it contains

a 1-GHz single-core CPU that does not dissipate much heat. The Raspberry Pi Zero’s CPU

temperature increases to approximately 50°C (measured with the vcgencmd command) under a

heavy workload, and the CPU is designed to throttle only when the temperature exceeds 85°C.

This is why the inference time per image for the three architectures on the Raspberry Pi Zero

does not increase signi�cantly with time. Even on the Raspberry Pi Zero, the MNN-Tree performs

inference faster than the other architectures.

4.5.3 Module Analysis of the MNN-Tree. Depending on the number of modules that are used

during inference, the energy consumption of the MNN-Tree varies. For the CIFAR-10 dataset,

some categories require only two modules, whereas the other categories need three modules

before the �nal classi�cation is made. Figure 21 shows the energy consumption as the depth of

the MNN-Tree increases. If a leaf node is closer to the root, image classi�cation consumes less
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Fig. 21. Energy consumption per category of the CIFAR-10 dataset, for processing one image on a Raspberry
Pi 3. The categories are organized by their depth in the MNN-Tree, as seen in Figure 8.

Table 15. Comparison of the Inference Time, Energy Consumption, Average Power, and Memory
Requirement When a Single DNN Module, Two Levels of DNN Modules, and all DNNs Modules of the

MNN-Tree (Seen in Figure 8) Are Loaded into Memory at a Time

Levels CIFAR-10 CIFAR-100

of Modules Time Energy Average Memory Time Energy Average Memory

(s) (J) Power (W) (KB) (s) (J) Power (W) (KB)

1 0.358 1.533 4.283 806 0.506 2.160 4.268 832

2 0.356 1.684 4.732 1,466 0.504 2.325 4.614 2,692

3 (all modules) 0.344 1.716 4.981 1,802 0.502 2.476 4.933 3,512

Note: Results reported are per image, averaged over 500 images on a Raspberry Pi 3.

energy. For example, images from categories like cat, dog, bird, and deer require approximately

1.52 J of energy. Images from frog require only 0.748 J of energy.

It is possible to get a higher inference speed when multiple levels of modules are loaded into

memory simultaneously. This analysis is presented in Table 15. When a single module is loaded

into memory at a time (one child module is loaded into memory based on the output of the parent

module), the memory requirement is the least. This also has the lowest inference speed. When two

levels of the MNN-Tree are loaded into memory simultaneously (one module and all of its child

modules), the inference speed increases. When all modules (the entire MNN-Tree) are loaded, the

memory requirement and the inference speed increase further. However, when multiple modules

are loaded intomemory, a signi�cant amount of energy is spent in performingmemory operations.

For example, in the CIFAR-10 dataset, the average power consumed by the Raspberry Pi 3 is about

4.23 W when a single module is loaded at a time. This value increases to close to 5 W when all

modules of the MNN-Tree are loaded into memory for the inference of a single image.

4.6 Extensions and Future Work

4.6.1 Custom Hardware Accelerators. Only a small fraction of DNN parameters and activations

contain non-zero values. The input density and parameter density measure the percentage of non-

zero activations and parameters, respectively. The input and parameter densities of di�erent DNN

architectures are tabulated in Table 16. VGG-16 is the most sparse (has the least input and param-

eter density). The MNN-Tree architecture is less sparse compared with VGG-16 and AlexNet but

is more sparse than DenseNet-190. To improve the inference time of sparse DNNs, some custom
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Table 16. Input Density, Parameter Density, and Number of Parameters of Di�erent
DNN Architectures Compared with the MNN-Tree for the CIFAR-10 Dataset

Technique Input Density Parameter Density No. of Parameters

AlexNet [92] 41.20% 46.20% 23,270 K

VGG-16 [13] 39.84% 35.23% 14,720 K

DenseNet-190 [74] 71.57% 92.37% 18,100 K

MNN-Tree 54.50% 84.50% 107 K

hardware accelerators have been proposed [93–95]. These accelerators perform sparse vector dot

products with e�cient vector inner-joins to avoid arithmetic operations with zeros. These acceler-

ators decrease the inference time of sparse DNNs like VGG-16 and AlexNet considerably. They do

not lead to signi�cant speedups when used with the MNN-Tree and DenseNet. However, when de-

ployed on general-purpose CPUs (e.g., Raspberry Pi), dense DNNs (the MNN-Tree and DenseNet)

perform fewer redundant operations because fewer multiplications with zero are performed. This

is an acceptable tradeo� because the MNN-Tree is designed for inference on general-purpose em-

bedded devices like the Raspberry Pi.

4.6.2 MNN-Tree Inference with Large Batch Sizes. When we perform inference with batch

size > 1 using the MNN-Tree, the di�erent images in the batch would be able to traverse dif-

ferent branches of the tree. That could lead to greater memory and computation requirements.

This problem, however, is outside of the scope of this article and could be investigated in our fu-

ture work. By adding an image bu�er to the DNN modules of the MNN-Tree, we can potentially

solve this problem. The modules will bu�er the images that are classi�ed into their corresponding

super-group by their parents instead of processing the images immediately. When this bu�er is

full (i.e., a batch of images has been classi�ed into the corresponding super-group), the module

will process all images in its bu�er. This will enable DNN model reuse across several images, thus

reducing the memory accesses. Such a strategy will increase the throughput but at the expense of

increased latency.

5 CONCLUSION

We propose the MNN-Tree architecture as an improvement over monolithic DNNs by eliminating

redundant computation and memory accesses to support fast, energy-e�cient inference on em-

bedded devices. The MNN-Tree architecture utilizes several small DNNs (called modules) in the

form of a tree that work together to classify an image. Building a tree that corresponds to the

visual similarity between categories of a dataset is a signi�cant challenge associated with any hi-

erarchical image classi�cation technique. We propose a systematic and automatic method to build

MNN-Trees, where each non-leaf node corresponds to a group of visually similar categories. This

is done by de�ning a novel similarity metric: ASL. ASL achieves this task automatically for sev-

eral di�erent image datasets. Through experiments, we demonstrate that the MNN-Tree is more

balanced and thus signi�cantly outperforms the existing hierarchical classi�ers in terms of ac-

curacy. When compared with existing monolithic DNN architectures, the MNN-Tree architecture

selectively uses modules to avoid redundant computation and memory accesses. This enables the

MNN-Tree to operate with signi�cantly reducedmemory requirement, energy consumption, num-

ber of operations, and inference time, with only negligible impact on classi�cation accuracy. We

quantitatively evaluate the performance of various DNN architectures on a Raspberry Pi 3 and a

Raspberry Pi Zero, and show the advantages of using the MNN-Tree over a single large DNN for

image classi�cation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.



Modular Neural Networks for Low-Power Image Classification on Embedded Devices 1:33

REFERENCES

[1] A. Mohan et al. 2017. Internet of Video Things in 2030: A world with many cameras. In Proceedings of IEEE ISCAS

2017. 1–4.

[2] S. Han et al. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and

Hu�man coding. ArXiv:1510.00149 [cs].

[3] H. Zhao et al. 2018. Thermal-sensor-based occupancy detection for smart buildings using machine-learning methods.

ACM Transactions on Design Automation of Electronic Systems 23, 4 (2018), Article 54, 21 pages.

[4] H. Huang et al. 2018. Distributed machine learning on smart-gateway network toward real-time smart-grid energy

management with behavior cognition. ACM Transactions on Design Automation of Electronic Systems 23, 5 (2018),

1–26.

[5] S. Aghajanzadeh et al. 2020. Camera placement meeting restrictions of computer vision. In Proceedings of IEEE ICIP

2020.

[6] Y. Lu. 2019. Low-power image recognition. Nature Machine Intelligence 1, 4 (2019), 199.

[7] K. He et al. 2016. Deep residual learning for image recognition. In Proceedings of IEEE CVPR 2016. 770–778.

[8] M. Amir et al. 2018. Switching predictive control using recon�gurable state-based model.ACM Transactions on Design

Automation of Electronic Systems 24, 1 (2018), Article 2, 21 pages.

[9] R. Fallahzadeh et al. 2018. Trading o� power consumption and prediction performance in wearable motion sensors:

An optimal and real-time approach. ACM Transactions on Design Automation of Electronic Systems 23, 5 (2018), Article

67, 23 pages.

[10] S. Anup et al. 2017. Visual positioning system for automated indoor/outdoor navigation. In Proceedings of IEEE TEN-

CON 2017.

[11] S. Alyamkin et al. 2019. Low-power computer vision: Status, challenges, and opportunities. IEEE Journal on Emerging

and Selected Topics in Circuits and Systems 9, 2 (2019), 411–421.

[12] K. Gauen et al. 2018. Three years of low-power image recognition challenge. In Proceedings of IEEE DATE 2018.

[13] K. Simonyan et al. 2014. Very deep convolutional networks for large-scale image recognition. ArXiv:1409.1556 [cs].

[14] Y. Cheng et al. 2015. An exploration of parameter redundancy in deep networks with circulant projections. In Pro-

ceedings of IEEE ICCV 2015.

[15] A. Goel. 2019. Modular Neural Networks. Retrieved August 8, 2020 from https://github.com/abhinavgoel95/Modular_

Neural_Networks.

[16] I. Ghodgaonkar et al. 2020. Observing responses to the COVID-19 pandemic using worldwide network cameras.

ArXiv:2005.09091.

[17] C. Szegedy et al. 2013. Deep neural networks for object detection. In Proceedings of Advances in NeurIPS 2013. 2553–

2561.

[18] J. R. Quinlan. 1986. Induction of decision trees. Machine Learning 1, 1 (1986), 81–106.

[19] T. Cover et al. 1967. Nearest neighbor pattern classi�cation. IEEE Transactions on Information Theory 13, 1 (1967),

21–27.

[20] N. Friedman et al. 1997. Bayesian network classi�ers. Machine Learning 29 (1997), 131–163.

[21] S. Kaski. 1998. Dimensionality reduction by random mapping: Fast similarity computation for clustering. In Proceed-

ings of IEEE IJCNN 1998 and IEEE WCCI1998, Vol. 1. 413–418.

[22] G. Huang et al. 2018. CondenseNet: An e�cient DenseNet using learned group convolutions. In Proceedings of IEEE

CVPR 2018.

[23] S. Bianco et al. 2018. Benchmark analysis of representative deep neural network architectures. IEEE Access 6 (2018),

64270–64277.

[24] A. Goel et al. 2020. A survey of methods for low-power deep learning and computer vision. In Proceedings of IEEE

WF-IoT 2020.

[25] M. Rastegari et al. 2016. XNOR-Net: ImageNet classi�cation using binary convolutional neural networks. In Proceed-

ings of ECCV 2016. 525–542.

[26] H. Albalawi et al. 2017. Training �xed-point classi�ers for on-chip low-power implementation. ACM Transactions on

Design Automation of Electronic Systems 22, 4 (2017), 69:1–69:18.

[27] H. Li et al. 2016. Pruning �lters for e�cient ConvNets. ArXiv:1608.08710 [cs].

[28] A. Goel et al. 2018. CompactNet: High accuracy deep neural network optimized for on-chip implementation. In Pro-

ceedings of IEEE Big Data2018.

[29] L. Jiang et al. 2019. Energy-e�cient and quality-assured approximate computing framework using a co-training

method. ACM Transactions on Design Automation of Electronic Systems 24, 6 (2019), Article 59, 25 pages.

[30] F. N. Iandola et al. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size.

ArXiv:1602.07360 [cs].

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.

https://github.com/abhinavgoel95/Modular_Neural_Networks
https://github.com/abhinavgoel95/Modular_Neural_Networks


1:34 A. Goel et al.

[31] M. Sandler et al. 2018. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of IEEE CVPR 2018.

4510–4520.

[32] C. Szegedy et al. 2017. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In Pro-

ceedings of ACM AAAI 2017. 4278–4284.

[33] A. Sironi et al. 2015. Learning separable �lters. IEEE Transactions on Pattern Analysis and Machine Intelligence 37

(2015), 94–106.

[34] E. Denton et al. 2014. Exploiting linear structure within convolutional networks for e�cient evaluation. In Proceedings

of Advances in NeurIPS 2014. 1269–1277.

[35] M. Jaderberg et al. 2014. Speeding up convolutional neural networks with low rank expansions. ArXiv:1405.3866.

[36] G. Zhong et al. 2019. Synergy: An HW/SW framework for high throughput CNNs on embedded heterogeneous SoC.

ACM Transactions on Embedded Computing Systems 18, 2 (2019), Article 13, 23 pages.

[37] J. Li et al. 2018. SynergyFlow: An elastic accelerator architecture supporting batch processing of large-scale deep

neural networks. ACM Transactions on Design Automation of Electronic Systems 24, 1 (2018), 1–27.

[38] Y. Cheng et al. 2017. A survey of model compression and acceleration for deep neural networks. ArXiv:1710.09282

[cs].

[39] G. Hinton et al. 2015. Distilling the knowledge in a neural network. ArXiv:1503.02531 [cs, stat].

[40] J. Ba et al. 2014. Do deep nets really need to be deep? In Proceedings of Advances in NeurIPS 2014. 2654–2662.

[41] J. Guérin et al. 2017. CNN features are also great at unsupervised classi�cation. ArXiv:1707.01700 [cs].

[42] V. Di Gesú et al. 1999. Distance-based functions for image comparison. Pattern Recognition Letters 20 (1999), 207–214.

[43] R. Zhang et al. 2015. Bit-scalable deep hashing with regularized similarity learning for image retrieval and person

re-identi�cation. IEEE Transactions on Image Processing 24, 12 (2015), 4766–4779.

[44] H. Zhu et al. 2016. Deep hashing network for e�cient similarity retrieval. In Proceedings of AAAI 2016. 2415–2421.

[45] G. Gri�n et al. 2008. Learning and using taxonomies for fast visual categorization. In Proceedings of IEEE CVPR 2008.

1–8.

[46] J. Deng et al. 2011. Fast and balanced: E�cient label tree learning for large scale object recognition. In Proceedings of

Advances in NeurIPS 2011.

[47] A. Beygelzimer et al. 2009. Conditional probability tree estimation analysis and algorithms. In Proceedings of ACM

UAI 2009. 51–58.

[48] X. Yuan et al. 2006. Automatic video genre categorization using hierarchical SVM. In Proceedings of ICIP 2006. 2905–

2908.

[49] M. Rastegari et al. 2012. Attribute discovery via predictable discriminative binary codes. In Proceedings of ECCV 2012.

876–889.

[50] P. Panda et al. 2017. FALCON: Feature driven selective classi�cation for energy-e�cient image recognition. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 36, 12 (2017), 2017–2029.

[51] A. Torralba et al. 2008. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence 30 (2008), 1958–1970.

[52] J. Redmon et al. 2016. 2016. YOLO9000: Better, faster, stronger. ArXiv:1612.08242 [cs].

[53] A. Zweig et al. 2007. Exploiting object hierarchy: combining models from di�erent category levels. In Proceedings of

IEEE ICCV 2007.

[54] V. Peluso et al. 2018. Scalable-e�ort ConvNets for multilevel classi�cation. In Proceedings of IEEE/ACM ICCAD 2018.

1–8.

[55] S. Chen et al. 2015. Discriminative hierarchical k-means tree for large-scale image classi�cation. IEEE Transactions

on Neural Networks and Learning Systems 26, 9 (2015), 2200–2205.

[56] M. Marszalek et al. 2008. Constructing category hierarchies for visual recognition. In Proceedings of ECCV 2008. Vol.

5305. 479–491.

[57] Y. Lukic et al. 2016. Speaker identi�cation and clustering using convolutional neural networks. In Proceedings of IEEE

MLSP 2016. IEEE, Los Alamitos, CA, 1–6.

[58] A. K. Jain et al. 1997. Object detection using Gabor �lters. Pattern Recognition 30 (1997), 295–309.

[59] H. Levkowitz et al. 1993. GLHS: A generalized lightness, hue, and saturation color model. CVGIP: Graphical Models

and Image Processing 55 (1993), 271–285.

[60] Y. Qu et al. 2017. Joint hierarchical category structure learning and large-scale image classi�cation. IEEE Transactions

on Image Processing 26, 9 (2017), 4331–4346.

[61] G. A. Miller. 1995. WordNet: A lexical database for English. Communications of the ACM 38 (1995), 39–41.

[62] R. Xia et al. 2014. Supervised hashing for image retrieval via image representation learning. In Proceedings of AAAI

2014. 2156–2162.

[63] F. Shen et al. 2018. Unsupervised deep hashing with similarity-adaptive and discrete optimization. IEEE Transactions

on Pattern Analysis and Machine Intelligence 40, 12 (2018), 3034–3044.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.



Modular Neural Networks for Low-Power Image Classification on Embedded Devices 1:35

[64] J.Wang et al. 2010. Semi-supervised hashing for scalable image retrieval. In Proceedings of IEEE CVPR 2010. 3424–3431.

[65] Z. Wang et al. 2018. Learning �ne-grained features via a CNN tree for large-scale classi�cation. Neurocomputing 275

(2018), 1231–1240.

[66] D. Roy et al. 2018. Tree-CNN: A hierarchical deep convolutional neural network for incremental learning.

ArXiv:1802.05800.

[67] M. Sun et al. 2013. Find the best path: An e�cient and accurate classi�er for image hierarchies. In Proceedings of IEEE

ICCV 2013. 265–272.

[68] Y. Guo et al. 2016. Dynamic network surgery for e�cient DNNs. In Proceedings of Advances in of NeurIPS 2016. 1379–

1387.

[69] L. A. Zadeh. 1965. Fuzzy sets. Information and Control 8, 3 (1965), 338–353.

[70] N. D. Singpurwalla et al. 2004. Membership functions and probability measures of fuzzy sets. Journal of the American

Statistical Association 99 (2004), 867–889.

[71] M. Tan et al. E�cientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of ICML 2019.

6105–6114.

[72] P. Kontschieder et al. 2015. Deep neural decision forests. In Proceedings of ICCV 2015. 1467–1475.

[73] A. Roy et al. 2016. Monocular depth estimation using neural regression forest. In Proceedings of IEEE CVPR 2016.

5506–5514.

[74] G. Huang et al. 2017. Densely connected convolutional networks. In Proceedings of IEEE CVPR 2017.

[75] A. Krizhevsky et al. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report TR-2009. University

of Toronto.

[76] Y. Netzer et al. 2011. Reading digits in natural images with unsupervised feature learning. In Proceedings of the NeurIPS

2011 Workshop on Deep Learning and Unsupervised Feature Learning.

[77] G. Cohen et al. 2017. EMNIST: An extension of MNIST to handwritten letters. ArXiv:1702.05373 [cs].

[78] J. Deng et al. 2009. ImageNet: A large-scale hierarchical image database. In Proceedings of IEEE CVPR 2009. 248–255.

[79] G. Gri�n et al. 2007.Caltech-256 Object Category Dataset. Technical Report. Available at http://authors.library.caltech.

edu/7694.

[80] Yokogawa. 2017. WT310E/TW310EH/WT332E/WT333E Digital Power Meter: User’s Manual. Retrieved August 9,

2020 from https://cdn.tmi.yokogawa.com/IMWT310E-01EN.pdf.

[81] PyTorch. 2019. Torch.utils.data. Retrieved August 9, 2020 from https://pytorch.org/docs/stable/data.html.

[82] A. Canziani et al. 2016. An analysis of deep neural network models for practical applications. ArXiv:1605.07678

[83] B. Chen et al. 2018. Introducing the CVPR 2018 On-Device Visual Intelligence Challenge. Google AI Blog. Retrieved

August 9, 2020 from http://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html.

[84] A. Mordvintsev et al. 2013. Getting Started with Videos: OpenCV-Python Documentation. Retrieved Au-

gust 9, 2020 from https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/

py_video_display.html.

[85] D. P. Kingma et al. 2014. Adam: A method for stochastic optimization. ArXiv:1412.6980 [cs].

[86] A. Goel. 2019. Image Classi�cation with the Modular Neural Network Tree. Retrieved August 9, 2020 from https://

youtu.be/gdae-v-ZyVs.

[87] S. Zagoruyko et al. 2016. Wide residual networks. ArXiv:1605.07146 [cs].

[88] E. Dufourq et al. 2017. EDEN: Evolutionary deep networks for e�cient machine learning. In Proceedings of PRASA-

RobMech 2017.

[89] T. Hastie et al. 2001. The Elements of Statistical Learning. Springer.

[90] J. J. Jiang et al. 1997. Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of ROCLING

1997. 19–33.

[91] R. R. Selvaraju et al. 2016. Grad-CAM: Visual explanations from deep networks via gradient-based localization.

ArXiv:1610.02391 [cs].

[92] A. Krizhevsky et al. 2012. ImageNet classi�cation with deep convolutional neural networks. In Proceedings of NeurIPS

2012.

[93] A. Gondimalla et al. 2019. SparTen: A sparse tensor accelerator for convolutional neural networks. In Proceedings of

ACM/IEEE MICRO 2019. 151–165.

[94] J. Albericio et al. 2016. Cnvlutin: Ine�ectual-neuron-free deep neural network computing. In Proceedings of ACM/IEEE

ISCA 2016.

[95] A. Parashar et al. 2017. SCNN: An accelerator for compressed-sparse convolutional neural networks. In Proceedings

of ACM ISCA 2017.

Received November 2019; revised April 2020; accepted June 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 1, Article 1. Pub. date: October 2020.

http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694
https://cdn.tmi.yokogawa.com/IMWT310E-01EN.pdf
https://pytorch.org/docs/stable/data.html
http://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
https://penalty -@M youtu.be/gdae-v-ZyVs
https://penalty -@M youtu.be/gdae-v-ZyVs

	Modular Neural Networks for Low-Power Image Classification on Embedded Devices
	Recommended Citation
	Authors

	TODAES2601-01

